KR102675538B1 - Plant immune regulator SRFR1 gene from tomato and uses thereof - Google Patents

Plant immune regulator SRFR1 gene from tomato and uses thereof Download PDF

Info

Publication number
KR102675538B1
KR102675538B1 KR1020210095562A KR20210095562A KR102675538B1 KR 102675538 B1 KR102675538 B1 KR 102675538B1 KR 1020210095562 A KR1020210095562 A KR 1020210095562A KR 20210095562 A KR20210095562 A KR 20210095562A KR 102675538 B1 KR102675538 B1 KR 102675538B1
Authority
KR
South Korea
Prior art keywords
tomato
plant
leu
ser
srfr1
Prior art date
Application number
KR1020210095562A
Other languages
Korean (ko)
Other versions
KR20230014331A (en
Inventor
김상희
손건희
브엉티우옌
문지윤
김재연
Original Assignee
경상국립대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경상국립대학교산학협력단 filed Critical 경상국립대학교산학협력단
Priority to KR1020210095562A priority Critical patent/KR102675538B1/en
Priority to PCT/KR2022/008349 priority patent/WO2023003176A1/en
Publication of KR20230014331A publication Critical patent/KR20230014331A/en
Application granted granted Critical
Publication of KR102675538B1 publication Critical patent/KR102675538B1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • A01H1/12Processes for modifying agronomic input traits, e.g. crop yield
    • A01H1/122Processes for modifying agronomic input traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • A01H1/1245Processes for modifying agronomic input traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, e.g. pathogen, pest or disease resistance
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • A01H1/06Processes for producing mutations, e.g. treatment with chemicals or with radiation
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H4/00Plant reproduction by tissue culture techniques ; Tissue culture techniques therefor
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H5/00Angiosperms, i.e. flowering plants, characterised by their plant parts; Angiosperms characterised otherwise than by their botanic taxonomy
    • A01H5/10Seeds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H6/00Angiosperms, i.e. flowering plants, characterised by their botanic taxonomy
    • A01H6/82Solanaceae, e.g. pepper, tobacco, potato, tomato or eggplant
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H6/00Angiosperms, i.e. flowering plants, characterised by their botanic taxonomy
    • A01H6/82Solanaceae, e.g. pepper, tobacco, potato, tomato or eggplant
    • A01H6/825Solanum lycopersicum [tomato]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • C12N15/8271Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • C12N15/8279Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance
    • C12N15/8282Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, pathogen resistance, disease resistance for fungal resistance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Botany (AREA)
  • Developmental Biology & Embryology (AREA)
  • Environmental Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Physiology (AREA)
  • Wood Science & Technology (AREA)
  • Cell Biology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

본 발명은 서열번호 3의 아미노산 서열로 이루어진 토마토(Solanum lycopersicum) 유래 SRFR1 (SUPPRESSOR OF rps4-RLD1) 단백질을 코딩하는 유전자의 발현을 조절하여 식물체의 병 저항성을 조절하는 방법에 관한 것이다.The present invention relates to a method of controlling disease resistance in plants by regulating the expression of the gene encoding the SRFR1 ( SUPPRESSOR OF rps4-RLD1 ) protein derived from tomato ( Solanum lycopersicum ) consisting of the amino acid sequence of SEQ ID NO: 3.

Description

토마토 유래 식물면역조절인자 SRFR1 유전자 및 이의 용도{Plant immune regulator SRFR1 gene from tomato and uses thereof}Plant immune regulator SRFR1 gene from tomato and uses thereof}

본 발명은 토마토 유래 식물면역조절인자 SRFR1 (SUPPRESSOR OF rps4-RLD1) 유전자 및 이의 용도에 관한 것이다.The present invention relates to the tomato-derived plant immune regulator SRFR1 ( SUPPRESSOR OF rps4-RLD1 ) gene and its use.

식물은 끊임없이 외부의 다양한 병원균으로부터 공격을 받고, 그로부터 스스로를 보호하기 위해서 선천적 면역시스템을 발달시켜왔다. 선천적 면역시스템은 pattern-triggered immunity (PTI)와 effector-triggered immunity (ETI)로 나뉘어진다. PTI는 키틴이나 플라젤린, EF-Tu (elongation factor thermo unstable)와 같이 미생물이나 식물 병원균의 구조적 물질의 일부를 식물이 인지하여 방어시스템을 활성화시켜서 일어나는 면역반응이다. 식물의 리셉터(pattern recognition receptor, PRR) 단백질이 구조물을 인지하고 MAP (mitogen-activated protein) 키나아제 연쇄반응활성이나 전사조절인자 발현조절, 면역관련 유전자 발현조절을 통해서 식물에서 병원균이 퍼져나가는 것을 막는다. 하지만 병원균은 이펙터(effector) 단백질을 식물에 주입시켜 식물의 면역시스템을 저해한다. 이를 극복하기 위해서 식물은 이펙터 단백질을 모니터할 수 있는 저항성 단백질을 발달시키고 이 단백질들이 병원균의 이펙터 단백질을 인지하면 ETI라는 방어시스템이 활성화 된다. 많은 저항성 단백질들은 NLR이라 불리는 nucleotide-binding (NB)과 leucine-rich repeat (LRR) 도메인을 가지고 있다. NLR 단백질은 N-말단의 도메인에 따라 coiled-coil (CC)-NB-LRR (CNL) 패밀리와 Toll-interleukin 1-like receptor (TIR)-NB-LRR (TNL)로 나뉘어 진다.Plants are constantly attacked by various external pathogens and have developed an innate immune system to protect themselves from them. The innate immune system is divided into pattern-triggered immunity (PTI) and effector-triggered immunity (ETI). PTI is an immune response that occurs when a plant recognizes part of the structural material of a microorganism or plant pathogen, such as chitin, flagellin, or EF-Tu (elongation factor thermo unstable), and activates its defense system. The plant's pattern recognition receptor (PRR) protein recognizes the structure and prevents the spread of pathogens in the plant through MAP (mitogen-activated protein) kinase chain reaction activity, regulation of transcriptional regulator expression, and immune-related gene expression. However, pathogens inject effector proteins into plants and inhibit the plant's immune system. To overcome this, plants develop resistance proteins that can monitor effector proteins, and when these proteins recognize the effector proteins of pathogens, a defense system called ETI is activated. Many resistance proteins contain nucleotide-binding (NB) and leucine-rich repeat (LRR) domains called NLRs. NLR proteins are divided into the coiled-coil (CC)-NB-LRR (CNL) family and the Toll-interleukin 1-like receptor (TIR)-NB-LRR (TNL) family according to the N-terminal domain.

애기장대 SRFR1 (SUPPRESSOR OF rps4-RLD 1) 유전자는 RPS4 (Ribosomal protein S4) 유전자에 과오 돌연변이(missense mutation)를 가지고 있는 야생형 RLD 애기장대를 이용한 억제제 스크리닝(suppressor screening)을 통해서 발견되었다. 애기장대에서 SRFR1의 돌연변이는 이펙터인 avrRPS4 또는 hopA1을 발현하는 슈도모나스 시린개 pv. 토마토 (Pto) DC3000 (Pseudomonas syringae pv. tomato (Pto) DC3000)에 대해, 각각 상응되는 R 유전자인 RPS4RPS6가 돌연변이되었을 때 저항성을 증가시켰다. 열성 형질의 srfr1 돌연변이체는 야생형 RLD처럼 Pto DC3000에 유사한 감수성을 보이므로 SRFR1은 ETI에서 음성조절자로 확인되었다. SRFR1은 면역조절자인 EDS1 (Enhanced disease susceptibility 1)과 TNL 종류의 저항성 단백질인 RPS4, RPS6, SNC1 (suppressor of npr1-1, constitutive 1)과 같은 단백질과 복합체를 형성하는 어댑터 단백질로써 기능을 한다. SRFR1은 전사억제조절자로 알려져 있는 사카로미세스 세레비지애(Saccharomyces cerevisiae) Ssn6 단백질과 염기서열이 유사한 TPR (tetratricopeptide repeat) 도메인을 가지고 있다. 그리고 애기장대 srfr1 돌연변이체에서 면역관련유전자의 발현이 증가되는 것이 확인되었다. 게다가, SRFR1 단백질은 면역 샤페론인 SGT1b (Suppressor of G2 allele of SKP1 homolog B)와 TCP 패밀리 전자사조절인자들과 상호작용한다. 이러한 결과들은 SRFR1 단백질이 ETI 관련 전사면역반응을 음성으로 조절하는 어댑터 단백질로써의 역할을 뒷받침한다.The Arabidopsis SRFR1 ( SUPPRESSOR OF rps4-RLD 1 ) gene was discovered through suppressor screening using wild-type RLD Arabidopsis thaliana, which has a missense mutation in the RPS4 ( Ribosomal protein S4 ) gene. Mutation of SRFR1 in Arabidopsis pv. Pseudomonas syringae expressing the effector avrRPS4 or hopA1 . For tomato ( Pto ) DC3000 ( Pseudomonas syringae pv. tomato ( Pto ) DC3000), resistance was increased when the corresponding R genes, RPS4 and RPS6 , respectively, were mutated. Since the recessive srfr1 mutant showed similar sensitivity to Pto DC3000 as wild-type RLD, SRFR1 was identified as a negative regulator in ETI. SRFR1 functions as an adapter protein that forms a complex with proteins such as the immune regulator EDS1 (Enhanced disease susceptibility 1) and TNL-type resistance proteins RPS4, RPS6, and SNC1 (suppressor of npr1-1, constitutive 1). SRFR1 has a TPR (tetratricopeptide repeat) domain that is similar in base sequence to the Saccharomyces cerevisiae Ssn6 protein, known as a transcriptional repression regulator. And it was confirmed that the expression of immune-related genes was increased in the Arabidopsis srfr1 mutant. In addition, SRFR1 protein interacts with the immune chaperone SGT1b (Suppressor of G2 allele of SKP1 homolog B) and TCP family electromagnetic death regulators. These results support the role of SRFR1 protein as an adapter protein that negatively regulates ETI-related transcriptional immune responses.

애기장대 srfr1 돌연변이체는 곤충인 파밤나방(Spodoptera exigua)과 선충류인 사탕무시스트선충(Heterodera schachtii)에 대해 애기장대 야생형 RLD에 비해서 저항성 표현형을 보였다. 이 결과는 Pto DC3000에 대한 ETI 반응에 더하여 SRFR1이 다양한 생물학적 스트레스에 대한 식물의 선천적 면역의 세트포인트를 결정하는 광범위한 역할을 수행할 가능성을 보여준다. 그러므로, 작물에서 SRFR1 단백질의 기능을 연구하는 것은 식물 병원균으로부터 작물을 보호하는데에 중요한 단서를 제공할 것으로 예상된다.The Arabidopsis srfr1 mutant showed a resistance phenotype to the insect, Spodoptera exigua , and the nematode, sugar beet cyst nematode ( Heterodera schachtii ), compared to the Arabidopsis wild-type RLD. These results demonstrate that, in addition to the ETI response to Pto DC3000, SRFR1 likely plays a broad role in determining the set point of plant innate immunity to various biotic stresses. Therefore, studying the function of SRFR1 protein in crops is expected to provide important clues for protecting crops from plant pathogens.

최근 CRISPR/Cas 시스템을 이용한 유전체교정연구가 식물에서도 적용되고 있다. CRISPR/Cas 시스템은 엔도뉴클레아제(endonuclease) Cas 단백질과 single guide RNA (sgRNA)라 불리는 하이브리드 RNA로 이루어져있다. 많이 사용되고 있는 Cas 단백질인 SpCas9 (Streptococcus pyogenes Cas9)은 sgRNA와 복합체를 형성하고, 타겟 시퀀스 부위에 있는 PAM (protospacer adjacent motif) 서열인 NGG를 인지한다. 그리고 Cas 단백질-RNA-DNA 상호작용이 일어나 Cas9 단백질이 이중가닥 절단(double-strand breaks, DSBs)을 일으키고 error-prone DSB repair가 일어나는 동안에 non-homologous end joining (NHEJ) 또는 homology-directed repair (HDR)를 통해서 Indel (Insertion/Deletion) 돌연변이가 일어난다. CRISPR/Cas 시스템을 이용한 작물유전체교정은 식물병원균에 대한 작물특성향상을 가속시킬 수 있는 계기가 될 수 있을 것이다.Recently, genome editing research using the CRISPR/Cas system is also being applied to plants. The CRISPR/Cas system consists of an endonuclease Cas protein and a hybrid RNA called single guide RNA (sgRNA). SpCas9 ( Streptococcus pyogenes Cas9), a widely used Cas protein, forms a complex with sgRNA and recognizes NGG, a PAM (protospacer adjacent motif) sequence in the target sequence region. Then, Cas protein-RNA-DNA interaction occurs, causing double-strand breaks (DSBs) in the Cas9 protein, and error-prone DSB repair occurs during non-homologous end joining (NHEJ) or homology-directed repair (HDR). ), Indel (Insertion/Deletion) mutations occur. Crop genome editing using the CRISPR/Cas system could be an opportunity to accelerate the improvement of crop characteristics against plant pathogens.

SRFR1 유전자는 많은 유용작물에 단일 카피로 잘 보존되어 있다. 그러므로 토마토에서 SRFR1의 기능을 밝히는 것은 작물의 면역시스템을 연구하는데 있어서 중요한 단서를 제공할 것으로 예상된다.The SRFR1 gene is well conserved as a single copy in many useful crops. Therefore, uncovering the function of SRFR1 in tomatoes is expected to provide important clues in studying the immune system of crops.

한편, 한국등록특허 제101342265호에는 '병저항성 관련 유전자 CaMLO2, 이를 이용한 식물병 저항성 탐색 및 형질전환 식물체'이 개시되어 있고, 한국등록특허 제 101007314호에는 '식물의 병저항성을 조절하는 단백질 및 그 유전자'가 개시되어 있으나, 본 발명의 '토마토 유래 식물면역조절인자 SRFR1 유전자 및 이의 용도'에 대해서는 기재된 바가 없다.Meanwhile, Korean Patent No. 101342265 discloses ‘Disease resistance-related gene CaMLO2 , search for plant disease resistance and transgenic plants using it,’ and Korean Patent No. 101007314 discloses ‘Protein that regulates disease resistance in plants and its Although the 'gene' is disclosed, there is no description of the 'tomato-derived plant immune regulator SRFR1 gene and its use' of the present invention.

본 발명은 상기와 같은 요구에 의해 도출된 것으로서, 본 발명자들은 토마토 SRFR1 게노믹 DNA의 두 영역을 표적으로 하는 sgRNA와 CRISPR/Cas9을 이용하여 토마토 SRFR1 돌연변이체(slsrfr1)를 제조하였고, 상기 돌연변이체에서 살리실산 신호전달에 관여하는 병원체 관련(pathogen-related, PR) 유전자의 발현이 증가하는 것을 확인하였으며, 상기 돌연변이체가 비교정 토마토 식물체에 비해 Pto DC3000에 대한 저항성이 증진되었음을 확인하였다. 하지만 사물기생성(necrotrophic) 곰팡이인 푸사리움 옥시스포럼 f. sp. 라이코페르시씨(Fusarium oxysporum f. sp. lycopersici)에 대한 저항성은 비교정 토마토 식물체에 비해 감소되었음을 확인할 수 있었다. 이를 통해, SRFR1이 토마토 식물체에서 기생영양(biotrophic) 병원균과 사물기생성 병원균에 대한 저항성을 조절하는 데 관여함을 확인함으로써, 본 발명을 완성하였다.The present invention was derived from the above needs, and the present inventors produced a tomato SRFR1 mutant ( slsrfr1 ) using sgRNA and CRISPR/Cas9 targeting two regions of tomato SRFR1 genomic DNA, and the mutant It was confirmed that the expression of pathogen-related (PR) genes involved in salicylic acid signaling increased, and the mutant had improved resistance to Pto DC3000 compared to uncorrected tomato plants. However, the necrotrophic fungus Fusarium oxysporum f. sp. It was confirmed that resistance to Lycopersici ( Fusarium oxysporum f. sp. lycopersici ) was reduced compared to uncorrected tomato plants. Through this, the present invention was completed by confirming that SRFR1 is involved in regulating resistance to biotrophic and parasitic pathogens in tomato plants.

상기 과제를 해결하기 위해, 본 발명은 토마토(Solanum lycopersicum) 유래 SRFR1 (SUPPRESSOR OF rps4-RLD1) 단백질을 코딩하는 유전자의 발현을 조절하는 단계를 포함하는, 식물체의 병 저항성을 조절하는 방법을 제공한다.In order to solve the above problems, the present invention provides a method for controlling disease resistance of plants, comprising the step of regulating the expression of a gene encoding the SRFR1 ( SUPPRESSOR OF rps4-RLD1 ) protein derived from tomato ( Solanum lycopersicum ). .

또한, 본 발명은 토마토 유래 SRFR1 단백질을 코딩하는 유전자를 포함하는 재조합 벡터로 식물세포를 형질전환하는 단계; 및 상기 형질전환된 식물세포로부터 형질전환된 식물체를 재분화하는 단계;를 포함하는 식물병에 대한 저항성이 조절된 형질전환 식물체의 제조방법을 제공한다.In addition, the present invention includes the steps of transforming plant cells with a recombinant vector containing a gene encoding a tomato-derived SRFR1 protein; and redifferentiating the transformed plant from the transformed plant cell.

또한, 본 발명은 상기 제조방법에 의해 제조된 식물병에 대한 저항성이 조절된 형질전환 식물체 및 이의 형질전환된 종자를 제공한다.Additionally, the present invention provides transgenic plants with controlled resistance to plant diseases prepared by the above production method and their transformed seeds.

또한, 본 발명은 서열번호 3의 아미노산 서열로 이루어진 토마토 유래 SRFR1 단백질을 코딩하는 유전자를 유효성분으로 함유하는 식물체의 병 저항성 조절용 조성물을 제공한다.Additionally, the present invention provides a composition for controlling disease resistance in plants, which contains as an active ingredient the gene encoding the tomato-derived SRFR1 protein consisting of the amino acid sequence of SEQ ID NO: 3.

본 발명은 현재까지 애기장대에서 식물면역조절인자로 연구되었던 SRFR1의 기능이 토마토에서도 보존되어 있음을 확인하였고, 모델식물의 SRFR1 결과가 토마토 작물에 적용될 수 있고, 다른 작물로 확장시킬 수 있는 근거를 제시한다. SRFR1은 슈도모나스균의 이펙터 단백질을 인지하여 EDS1을 매개로 하는 ETI (effector-triggered immunity) 식물면역시스템에서 음성 조절자로 알려져 있지만, 본 발명을 통해서 애기장대와 토마토 모두에서 SRFR1이 사물기생(necrotrophic) 곰팡이 병원균에 대해선 양성 조절자임을 알아내었다. 그러므로 식물체에서 유전자의 발현을 조절함으로써 병원균에 저항성을 갖는 새로운 식물체를 제공할 수 있으며, 종자 산업의 발전과 식량자원의 수출 증대에 기여할 수 있을 것이다.The present invention has confirmed that the function of SRFR1 , which has been studied as a plant immune regulator in Arabidopsis to date, is conserved in tomato, and provides a basis for applying the SRFR1 results from model plants to tomato crops and expanding it to other crops. present. SRFR1 is known as a negative regulator in the ETI (effector-triggered immunity) plant immune system that recognizes the effector protein of Pseudomonas bacteria and mediates EDS1. However, through the present invention, SRFR1 is a necrotrophic fungus in both Arabidopsis and tomato. It was found to be a positive regulator for pathogens. Therefore, by controlling the expression of genes in plants, it is possible to provide new plants resistant to pathogens, contributing to the development of the seed industry and increased export of food resources.

도 1a는 토마토 SRFR1의 게놈 구조 및 gRNA 표적 위치(Target 1, 2)를 보여주고, 도 1b는 gRNA의 표적 서열이고, 도 1c는 pSlSRFR-GE 컨스트럭트의 T-DNA 모식도이며, 도 1d는 SlSRFR1 sgRNA1-sgRNA2-유도 G1 돌연변이체의 CAPS 분석 결과로, 하얀색 화살표는 동형접합 돌연변이체를 나타낸다.
도 2는 토마토 G0 식물체에서 표적 부위를 분석한 결과이다. 수직 점선은 각 sgRNA에 대해 SpCas9에 의한 절단 부위를 나타낸다.
도 3은 토마토 G1 식물체의 유전체 교정 양상을 분석한 결과이다.
도 4는 토마토 SRFR1 돌연변이체(slsrfr1)의 생장모습이며(a), 상기 돌연변이체에서 식물방어기작에 관여하는 유전자의 발현 정도를 qRT-PCR을 통해서 확인한 결과(b)이다. *; P<0.01.
도 5는 G1 세대 slsrfr1 식물체의 기생영양(biotrophic) 병원균인 슈도모나스 시린개 pv. 토마토 DC3000 (Pseudomonas syringae pv. tomato DC3000)에 대한 반응을 보여주는 것으로, (a)는 접종 5일 후의 잎에서 나타난 병증을 보여주는 사진이고, (b)는 균수를 측정한 결과이다. *; P<0.01.
도 6은 G1 세대 slsrfr1 식물체의 사물기생 병원균인 푸사리움 옥시스포럼 f. sp. 라이코페르시씨(Fusarium oxysporum f. sp. lycopersici)에 대한 반응을 보여주는 것으로, (a)는 접종 3일 후의 잎 사진이고, (b)는 트립판 블루 염색 이미지이며, (c)는 병변 부위의 직경을 측정한 결과이다. *; P<0.01.
Figure 1a shows the genome structure and gRNA target positions (Target 1, 2) of tomato SRFR1 , Figure 1b is the target sequence of gRNA, Figure 1c is a T-DNA schematic diagram of the pSlSRFR-GE construct, and Figure 1d is CAPS analysis results of SlSRFR1 sgRNA1- and sgRNA2 -induced G1 mutants, white arrows indicate homozygous mutants.
Figure 2 shows the results of analyzing target regions in tomato G0 plants. Vertical dashed lines indicate the cleavage site by SpCas9 for each sgRNA.
Figure 3 shows the results of analyzing the genome editing aspects of tomato G1 plants.
Figure 4 shows the growth of a tomato SRFR1 mutant ( slsrfr1 ) (a), and the results of confirming the expression level of genes involved in plant defense mechanisms in the mutant through qRT-PCR (b). *; P<0.01 .
Figure 5 shows Pseudomonas syringae pv, a biotrophic pathogen of G1 generation slsrfr1 plants. Showing the response to tomato DC3000 ( Pseudomonas syringae pv. tomato DC3000), (a) is a photograph showing disease in leaves 5 days after inoculation, and (b) is the result of measuring the number of bacteria. *; P<0.01 .
Figure 6 shows Fusarium oxysporum f, a parasitic pathogen of G1 generation slsrfr1 plants. sp. Showing the response to Lycopersici ( Fusarium oxysporum f. sp. lycopersici ), (a) is a photograph of a leaf 3 days after inoculation, (b) is a trypan blue staining image, and (c) is the diameter of the lesion site. This is the result of measurement. *; P<0.01 .

본 발명의 목적을 달성하기 위하여, 본 발명은 토마토(Solanum lycopersicum) 유래 SRFR1 (SUPPRESSOR OF rps4-RLD1) 단백질을 코딩하는 유전자의 발현을 조절하는 단계를 포함하는, 식물체의 병 저항성을 조절하는 방법을 제공한다.In order to achieve the object of the present invention, the present invention provides a method for controlling disease resistance of plants, comprising the step of regulating the expression of the gene encoding the SRFR1 ( SUPPRESSOR OF rps4-RLD1 ) protein derived from tomato ( Solanum lycopersicum). to provide.

본 발명에 따른 토마토 유래 SRFR1 단백질의 범위는 서열번호 3으로 표시되는 아미노산 서열을 갖는 단백질 및 상기 단백질의 기능적 동등물을 포함한다. 본 발명에 있어서, 용어 "기능적 동등물"이란 아미노산의 부가, 치환 또는 결실의 결과, 상기 서열번호 3으로 표시되는 아미노산 서열과 적어도 70% 이상, 바람직하게는 80% 이상, 더욱 바람직하게는 90% 이상, 더 더욱 바람직하게는 95% 이상의 서열 상동성을 갖는 것으로, 서열번호 3으로 표시되는 단백질과 실질적으로 동질의 생리활성을 나타내는 단백질을 말한다. "실질적으로 동질의 생리활성"이란 식물병에 대한 식물체의 저항성을 조절하는 활성을 의미한다.The scope of the tomato-derived SRFR1 protein according to the present invention includes a protein having the amino acid sequence shown in SEQ ID NO: 3 and functional equivalents of the protein. In the present invention, the term "functional equivalent" means at least 70%, preferably 80%, more preferably 90% of the amino acid sequence shown in SEQ ID NO: 3 as a result of addition, substitution, or deletion of amino acids. More preferably, it refers to a protein that has a sequence homology of 95% or more and exhibits substantially the same physiological activity as the protein represented by SEQ ID NO: 3. “Substantially homogeneous physiological activity” means activity that regulates the resistance of plants to plant diseases.

본 발명에 따른 식물체의 병 저항성 조절 방법은, 상기 토마토 유래 SRFR1 단백질 코딩 유전자의 발현을 저해하여 기생영양(biotrophic) 병원균에 의한 식물병에 대한 저항성을 증가시키거나, 사물기생성(necrotrophic) 병원균에 의한 식물병에 대한 저항성을 감소시키는 것일 수 있으나, 이에 제한되지 않는다.The method for controlling disease resistance in plants according to the present invention increases resistance to plant diseases caused by biotrophic pathogens by inhibiting the expression of the tomato-derived SRFR1 protein coding gene, or increases resistance to plant diseases caused by necrotrophic pathogens. This may be to reduce resistance to plant diseases, but is not limited to this.

본 발명의 일 구현 예에 따른 식물체의 병 저항성 조절 방법에 있어서, 상기 기생영양(biotrophic) 병원균은 바람직하게는 슈도모나스 시린개 pv. 토마토 (Pto) DC3000 (Pseudomonas syringae pv. tomato (Pto) DC3000)일 수 있으며, 상기 사물기생성(necrotrophic) 병원균은 바람직하게는 푸사리움 옥시스포럼 f. sp. 라이코페르시씨(Fusarium oxysporum f. sp. lycopersici)일 수 있으나, 이에 제한되지 않는다.In the method for controlling disease resistance of plants according to an embodiment of the present invention, the biotrophic pathogen is preferably Pseudomonas syringae pv. Tomato ( Pto ) DC3000 ( Pseudomonas syringae pv. tomato ( Pto ) DC3000), and the necrotrophic pathogen is preferably Fusarium oxysporum f. sp. It may be, but is not limited to, Fusarium oxysporum f. sp. lycopersici .

상기 유전자의 발현 저해는 VIGS (Virus-induced gene silencing), RNAi 또는 안티센스 RNA, T-DNA 삽입, 유전자 교정 시스템 또는 방사선 조사를 통한 돌연변이 유발에 의해 이루어지는 것일 수 있으나, 이에 제한되지 않으며, 유전자의 발현을 저해할 수 있는 당업계의 통상의 방법이면 모두 가능할 수 있다. VIGS는 바이러스 벡터에 식물 유전자를 도입한 후 식물체를 감염시키면, 그 도입된 유전자의 내인성 유전자가 발현이 억제되는 현상을 말한다. 이는 PTGS (Post-transcriptional gene silencing)의 일종으로서, 전사-후(post-transcriptional), RNA 턴오버(RNA turnover) 및 뉴클레오티드 서열 특이적(nucleotide sequence-specific) 이라는 특징들을 가진다. 상기 VIGS 벡터는 외래 유전자를 도입한 식물체 내에서 일시적으로 발현시킬 수 있는 일시적 (transient) 발현 벡터 및 외래 유전자가 도입된 식물체에서 영구적으로 발현시킬 수 있는 식물 발현 벡터로 사용할 수 있다.Inhibition of expression of the gene may be achieved by, but is not limited to, VIGS (Virus-induced gene silencing), RNAi or antisense RNA, T-DNA insertion, gene correction system, or mutagenesis through radiation irradiation, and is not limited to this. Any method common in the art that can inhibit may be possible. VIGS refers to a phenomenon in which when a plant is infected after introducing a plant gene into a viral vector, the expression of the endogenous gene of the introduced gene is suppressed. This is a type of PTGS (Post-transcriptional gene silencing) and has the characteristics of post-transcriptional, RNA turnover, and nucleotide sequence-specific. The VIGS vector can be used as a transient expression vector that can temporarily express a foreign gene in a plant into which the foreign gene has been introduced, and a plant expression vector that can permanently express the foreign gene in a plant that has been introduced.

또한, 상기 토마토 유래 SRFR1 단백질을 코딩하는 유전자는 게놈 DNA와 cDNA를 모두 포함한다. 바람직하게는 본 발명의 토마토 유래 SRFR1의 게놈 DNA는 서열번호 1로 표시되는 염기서열을 포함할 수 있고, 토마토 유래 SRFR1의 cDNA는 서열번호 2로 표시되는 염기서열을 포함할 수 있다. 또한, 상기 서열번호 2로 표시되는 염기서열의 상동체가 본 발명의 범위 내에 포함된다. 구체적으로, 상기 유전자는 서열번호 2의 염기서열과 각각 70% 이상, 더욱 바람직하게는 80% 이상, 더 더욱 바람직하게는 90% 이상, 가장 바람직하게는 95% 이상의 서열 상동성을 가지는 염기서열을 포함할 수 있다. 폴리뉴클레오티드에 대한 "서열 상동성의 %"는 두 개의 최적으로 배열된 서열과 비교 영역을 비교함으로써 확인되며, 비교 영역에서의 폴리뉴클레오티드 서열의 일부는 두 서열의 최적 배열에 대한 참고 서열(추가 또는 삭제를 포함하지 않음)에 비해 추가 또는 삭제(즉, 갭)를 포함할 수 있다.Additionally, the gene encoding the tomato-derived SRFR1 protein includes both genomic DNA and cDNA. Preferably, the genomic DNA of tomato-derived SRFR1 of the present invention may include the base sequence shown in SEQ ID NO: 1, and the cDNA of tomato-derived SRFR1 may include the base sequence shown in SEQ ID NO: 2. In addition, homologs of the base sequence represented by SEQ ID NO: 2 are included within the scope of the present invention. Specifically, the gene has a base sequence having sequence homology of at least 70%, more preferably at least 80%, even more preferably at least 90%, and most preferably at least 95% with the base sequence of SEQ ID NO: 2. It can be included. The “% sequence homology” for a polynucleotide is determined by comparing a comparison region with two optimally aligned sequences, where a portion of the polynucleotide sequence in the comparison region is a reference sequence (additions or deletions) for the optimal alignment of the two sequences. may contain additions or deletions (i.e. gaps) compared to those that do not contain .

본 발명은 또한,The present invention also,

토마토 유래 SRFR1 (SUPPRESSOR OF rps4-RLD1) 단백질을 코딩하는 유전자를 포함하는 재조합 벡터로 식물세포를 형질전환하는 단계; 및Transforming plant cells with a recombinant vector containing a gene encoding the tomato-derived SRFR1 ( SUPPRESSOR OF rps4-RLD1 ) protein; and

상기 형질전환된 식물세포로부터 형질전환된 식물체를 재분화하는 단계;를 포함하는 식물병에 대한 저항성이 조절된 형질전환 식물체의 제조방법을 제공한다.It provides a method for producing a transformed plant with controlled resistance to plant disease, comprising the step of redifferentiating the transformed plant from the transformed plant cell.

본 명세서에서 용어 "재조합"은 세포가 이종의 핵산을 복제하거나, 상기 핵산을 발현하거나 또는 펩티드, 이종의 펩티드 또는 이종의 핵산에 의해 암호된 단백질을 발현하는 세포를 지칭하는 것이다. 재조합 세포는 상기 세포의 천연 형태에서는 발견되지 않는 유전자 또는 유전자 절편을, 센스 또는 안티센스 형태 중 하나로 발현할 수 있다. 또한 재조합 세포는 천연 상태의 세포에서 발견되는 유전자를 발현할 수 있으며, 그러나 상기 유전자는 변형된 것으로서 인위적인 수단에 의해 세포 내 재도입된 것이다.As used herein, the term “recombinant” refers to a cell that replicates a heterologous nucleic acid, expresses a heterologous nucleic acid, or expresses a peptide, a heterologous peptide, or a protein encoded by a heterologous nucleic acid. Recombinant cells can express genes or gene segments that are not found in the natural form of the cell, either in sense or antisense form. Additionally, recombinant cells can express genes found in cells in their natural state, but the genes have been modified and reintroduced into the cells by artificial means.

용어 "벡터"는 세포 내로 전달하는 DNA 단편(들), 핵산 분자를 지칭할 때 사용된다. 벡터는 DNA를 복제시키고, 숙주세포에서 독립적으로 재생산될 수 있다. 용어 "전달체"는 흔히 "벡터"와 호환하여 사용된다. 용어 "발현 벡터"는 목적한 코딩 서열과, 특정 숙주 생물에서 작동가능하게 연결된 코딩 서열을 발현하는데 필수적인 적정 핵산 서열을 포함하는 재조합 DNA 분자를 의미한다.The term “vector” is used to refer to a DNA fragment(s) or nucleic acid molecule that is delivered into a cell. Vectors replicate DNA and can reproduce independently in host cells. The term “vector” is often used interchangeably with “vector”. The term “expression vector” refers to a recombinant DNA molecule containing a coding sequence of interest and an appropriate nucleic acid sequence necessary to express the operably linked coding sequence in a particular host organism.

본 발명의 상기 벡터는 전형적으로 클로닝 또는 발현을 위한 벡터로서 구축될 수 있다. 또한, 본 발명의 벡터는 원핵 세포 또는 진핵 세포를 숙주로 하여 구축될 수 있다. 예를 들어, 본 발명의 벡터가 발현 벡터이고, 원핵 세포를 숙주로 하는 경우에는, 전사를 진행시킬 수 있는 강력한 프로모터 (예컨대, pLλ프로모터, Trp 프로모터, Lac 프로모터, T7 프로모터, Tac 프로모터 등), 해독의 개시를 위한 리보좀 결합 자리 및 전사/해독 종결 서열을 포함하는 것이 일반적이다. 숙주 세포로서 대장균(Escherichia coli)이 이용되는 경우, E. coli 트립토판 생합성 경로의 프로모터 및 오퍼레이터 부위, 그리고 파아지 λ의 좌향 프로모터 (pLλ프로모터)가 조절 부위로서 이용될 수 있다.The vector of the present invention can typically be constructed as a vector for cloning or expression. Additionally, the vector of the present invention can be constructed using prokaryotic cells or eukaryotic cells as hosts. For example, when the vector of the present invention is an expression vector and a prokaryotic cell is used as a host, a strong promoter capable of advancing transcription (e.g., pLλ promoter, Trp promoter, Lac promoter, T7 promoter, Tac promoter, etc.), It typically includes a ribosome binding site for initiation of translation and a transcription/translation termination sequence. When Escherichia coli is used as a host cell, the promoter and operator regions of the E. coli tryptophan biosynthesis pathway and the left-handed promoter of phage λ (pLλ promoter) can be used as control regions.

본 발명의 재조합 벡터에서, 상기 프로모터는 형질전환에 적합한 프로모터들로서, 바람직하게는 CaMV 35S 프로모터, 액틴 프로모터, 유비퀴틴 프로모터, pEMU 프로모터, MAS 프로모터 또는 히스톤 프로모터일 수 있으며, 바람직하게는 CaMV 35S 프로모터일 수 있으나, 이에 제한되지 않는다.In the recombinant vector of the present invention, the promoter is a promoter suitable for transformation, preferably the CaMV 35S promoter, actin promoter, ubiquitin promoter, pEMU promoter, MAS promoter, or histone promoter, and preferably the CaMV 35S promoter. However, it is not limited to this.

본 발명에 있어서, "프로모터"란 용어는 구조 유전자로부터의 DNA 업스트림의 영역을 의미하며 전사를 개시하기 위하여 RNA 폴리머라아제가 결합하는 DNA 분자를 말한다. "식물 프로모터"는 식물 세포에서 전사를 개시할 수 있는 프로모터이다. "항시성(constitutive) 프로모터"는 대부분의 환경 조건 및 발달 상태 또는 세포 분화하에서 활성이 있는 프로모터이다. 형질전환체의 선택이 각종 단계에서 각종 조직에 의해서 이루어질 수 있기 때문에 항시성 프로모터가 본 발명에서 바람직할 수 있다. 따라서, 항시성 프로모터는 선택 가능성을 제한하지 않는다.In the present invention, the term "promoter" refers to a region of DNA upstream from a structural gene and refers to a DNA molecule to which RNA polymerase binds to initiate transcription. A “plant promoter” is a promoter capable of initiating transcription in plant cells. A “constitutive promoter” is a promoter that is active under most environmental conditions and developmental states or cell differentiation. A constitutive promoter may be preferred in the present invention because selection of transformants can be accomplished at various stages and by various tissues. Therefore, constitutive promoters do not limit selection possibilities.

본 발명의 재조합 벡터는 당업자에 주지된 방법에 의해 구축될 수 있다. 상기 방법은 시험관 내 재조합 DNA 기술, DNA 합성 기술 및 생체 내 재조합 기술 등을 포함한다. 상기 DNA 서열은 mRNA 합성을 이끌기 위해 발현 벡터 내의 적당한 프로모터에 효과적으로 연결될 수 있다. 또한 벡터는 번역 개시 부위로서 리보솜 결합 부위 및 전사 터미네이터를 포함할 수 있다.The recombinant vector of the present invention can be constructed by methods well known to those skilled in the art. The methods include in vitro recombinant DNA technology, DNA synthesis technology, and in vivo recombinant technology. The DNA sequence can be effectively linked to an appropriate promoter within an expression vector to drive mRNA synthesis. The vector may also include a ribosome binding site and a transcription terminator as a translation initiation site.

식물 발현 벡터의 바람직한 예는 아그로박테리움 투머파시엔스(Agrobacterium tumefaciens)와 같은 적당한 숙주에 존재할 때 그 자체의 일부, 소위 T-영역을 식물 세포로 전이시킬 수 있는 Ti-플라스미드 벡터이다. 다른 유형의 Ti-플라스미드 벡터 (EP 0 116 718 B1호 참조)는 현재 식물 세포, 또는 잡종 DNA를 식물의 게놈 내에 적당하게 삽입시키는 새로운 식물이 생산될 수 있는 원형질체로 잡종 DNA 서열을 전이시키는데 이용되고 있다. Ti-플라스미드 벡터의 특히 바람직한 형태는 EP 0 120 516 B1호 및 미국 특허 제4,940,838호에 청구된 바와 같은 소위 바이너리 (binary) 벡터이다. 본 발명에 따른 DNA를 식물 숙주에 도입시키는데 이용될 수 있는 다른 적합한 벡터는 이중 가닥 식물 바이러스 (예를 들면, CaMV) 및 단일 가닥 바이러스, 게미니 바이러스 등으로부터 유래될 수 있는 것과 같은 바이러스 벡터, 예를 들면 비완전성 식물 바이러스 벡터로부터 선택될 수 있다. 그러한 벡터의 사용은 특히 식물 숙주를 적당하게 형질전환하는 것이 어려울 때 유리할 수 있다.A preferred example of a plant expression vector is the Ti-plasmid vector, which is capable of transferring part of itself, the so-called T-region, into plant cells when present in a suitable host such as Agrobacterium tumefaciens . Other types of Ti-plasmid vectors (see EP 0 116 718 B1) are currently used to transfer hybrid DNA sequences into plant cells or protoplasts from which new plants can be produced that properly integrate the hybrid DNA into the plant's genome. there is. Particularly preferred forms of Ti-plasmid vectors are the so-called binary vectors as claimed in EP 0 120 516 B1 and US Pat. No. 4,940,838. Other suitable vectors that can be used to introduce the DNA according to the invention into a plant host include viral vectors such as those that may be derived from double-stranded plant viruses (e.g., CaMV) and single-stranded viruses, geminiviruses, etc. For example, it may be selected from non-intact plant virus vectors. The use of such vectors can be particularly advantageous when it is difficult to properly transform plant hosts.

본 발명의 재조합 벡터의 바람직한 예는 토마토 유래 SRFR1 단백질을 코딩하는 유전자를 표적으로 하는 gRNA 서열과, Cas9 엔도뉴클레아제를 코딩하는 서열을 포함하는 벡터일 수 있다.A preferred example of the recombinant vector of the present invention may be a vector containing a gRNA sequence targeting the gene encoding the tomato-derived SRFR1 protein and a sequence encoding Cas9 endonuclease.

재조합 발현 벡터는 바람직하게는 하나 이상의 선택성 마커를 포함할 수 있다. 상기 마커는 통상적으로 화학적인 방법으로 선택될 수 있는 특성을 갖는 핵산 서열로, 형질전환된 세포를 비형질전환 세포로부터 구별할 수 있는 모든 유전자가 이에 해당된다. 상기 마커 유전자는 항생제 저항성 유전자(dominant drug resistance gene)일 수 있으나, 이에 제한되지 않는다.The recombinant expression vector may preferably contain one or more selectable markers. The marker is a nucleic acid sequence that has characteristics that can be generally selected by chemical methods, and includes all genes that can distinguish transformed cells from non-transformed cells. The marker gene may be a dominant drug resistance gene, but is not limited thereto.

본 발명의 벡터를 안정되면서 연속적으로 클로닝 및 발현시킬 수 있는 숙주세포는 미세조류, 미생물 등을 포함한 당업계에 공지된 어떠한 숙주세포도 이용할 수 있으며, 예컨대, E. coli JM109, E. coli BL21, E. coli RR1, E. coli LE392, E. coli B, E. coli X 1776, E. coli W3110, 바실러스 서브틸리스(Bacillus subtilis), 바실러스 츄린겐시스(B. thuringiensis)와 같은 바실러스 속 균주, 그리고 살모넬라 티피무리움(Salmonella typhimurium), 세라티아 마르세슨스(Serratia marcescens) 및 다양한 슈도모나스 종(Pseudomonas sp.)과 같은 장내균과 균주 등이 있다.Host cells capable of stably and continuously cloning and expressing the vector of the present invention can be any host cell known in the art, including microalgae, microorganisms, etc., such as E. coli JM109, E. coli BL21, Bacillus genus strains such as E. coli RR1, E. coli LE392, E. coli B , E. coli and Enterobacteriaceae strains such as Salmonella typhimurium, Serratia marcescens, and various Pseudomonas sp.

또한, 본 발명의 벡터를 진핵 세포에 형질전환시키는 경우에는 숙주세포로서, 효모 (예컨대, Saccharomyce cerevisiae), 곤충세포, 사람세포 (예컨대, CHO 세포주(Chinese hamster ovary), W138, BHK, COS-7, 293, HepG2, 3T3, RIN 및 MDCK 세포주) 및 식물세포 등이 이용될 수 있으며, 바람직하게는 식물세포이다.In addition, when the vector of the present invention is transformed into eukaryotic cells, yeast (e.g., Saccharomyce cerevisiae ), insect cells, human cells (e.g., CHO cell line (Chinese hamster ovary), W138, BHK, COS-7) are used as host cells. , 293, HepG2, 3T3, RIN and MDCK cell lines) and plant cells can be used, preferably plant cells.

식물의 형질전환은 DNA를 식물에 전이시키는 임의의 방법을 의미한다. 그러한 형질전환 방법은 반드시 재생 및 (또는) 조직 배양기간을 가질 필요는 없다. 식물 종의 형질전환은 이제는 쌍자엽 식물뿐만 아니라 단자엽 식물 양자를 포함한 식물 종에 대해 일반적이다. 원칙적으로, 임의의 형질전환 방법은 본 발명에 따른 잡종 DNA를 적당한 선조 세포로 도입시키는데 이용될 수 있다. 방법은 원형질체에 대한 칼슘/폴리에틸렌 글리콜 방법(Krens, F.A. et al., 1982, Nature 296, 72-74; Negrutiu I. et al., 1987, Plant Mol. Biol. 8, 363-373), 원형질체의 전기천공법(Shillito R.D. et al., 1985 Bio/Technol. 3, 1099-1102), 식물 요소로의 현미주사법(Crossway A. et al., 1986, Mol. Gen. Genet. 202, 179-185), 각종 식물 요소의 (DNA 또는 RNA-코팅된) 입자충격법(Klein T.M. et al., 1987, Nature 327, 70), 식물의 침윤 또는 성숙 화분 또는 소포자의 형질전환에 의한 아그로박테리움 튜머파시엔스 매개된 유전자 전이에서 (비완전성) 바이러스에 의한 감염(EP 0 301 316호) 등으로부터 적당하게 선택될 수 있다. 본 발명에 따른 바람직한 방법은 아그로박테리움 매개된 DNA 전달을 포함한다.Plant transformation refers to any method of transferring DNA to a plant. Such transformation methods do not necessarily require a regeneration and/or tissue culture period. Transformation of plant species is now common for plant species including both monocots as well as dicots. In principle, any transformation method can be used to introduce the hybrid DNA according to the invention into suitable progenitor cells. The method is the calcium/polyethylene glycol method for protoplasts (Krens, F.A. et al., 1982, Nature 296, 72-74; Negrutiu I. et al., 1987, Plant Mol. Biol. 8, 363-373). Electroporation (Shillito R.D. et al., 1985 Bio/Technol. 3, 1099-1102), microinjection into plant elements (Crossway A. et al., 1986, Mol. Gen. Genet. 202, 179-185) , particle bombardment of various plant elements (DNA or RNA-coated) (Klein T.M. et al., 1987, Nature 327, 70), Agrobacterium tumefaciens by infiltration of plants or transformation of mature pollen or spores. It can be appropriately selected from mediated gene transfer, infection by a (non-complete) virus (EP 0 301 316), etc. A preferred method according to the invention involves Agrobacterium mediated DNA transfer.

본 발명의 제조방법에 있어서, 상기 형질전환된 식물세포로부터 형질전환 식물을 재분화하는 방법은 당업계에 공지된 임의의 방법을 이용할 수 있다. 형질전환된 식물세포는 전식물로 재분화되어야 한다. 캘러스 또는 원형질체 배양으로부터 성숙한 식물의 재분화를 위한 기술은 수많은 여러 가지 종에 대해서 당업계에 주지되어 있다(Handbook of Plant Cell Culture, 1-5권, 1983-1989 Momillan, N.Y.).In the production method of the present invention, any method known in the art can be used to redifferentiate the transformed plant from the transformed plant cell. Transformed plant cells must be redifferentiated into whole plants. Techniques for redifferentiation of mature plants from callus or protoplast cultures are well known in the art for many different species (Handbook of Plant Cell Culture, Volumes 1-5, 1983-1989 Momillan, N.Y.).

식물의 형질전환에 이용되는 "식물세포"는 어떤 식물세포도 된다. 식물세포는 배양 세포, 배양 조직, 배양기관 또는 전체 식물이다. "식물 조직"은 분화된 또는 미분화된 식물의 조직, 예를 들면 이에 한정되진 않으나, 뿌리, 줄기, 잎, 꽃가루, 종자, 암 조직 및 배양에 이용되는 다양한 형태의 세포들, 즉 단일 세포, 원형질체(protoplast), 싹 및 캘러스 조직을 포함한다. 식물 조직은 인 플란타(in planta)이거나 기관 배양, 조직배양 또는 세포 배양 상태일 수 있다.The “plant cell” used for plant transformation can be any plant cell. A plant cell is a cultured cell, cultured tissue, cultured organ, or whole plant. “Plant tissue” refers to differentiated or undifferentiated plant tissues, such as, but not limited to, roots, stems, leaves, pollen, seeds, cancer tissues, and various types of cells used in culture, such as single cells and protoplasts. (protoplast), shoot and callus tissue. Plant tissue may be in planta or in organ culture, tissue culture, or cell culture.

본 발명의 일 구현 예에 따른 제조방법에 있어서, 상기 토마토 유래 SRFR1 단백질 코딩 유전자의 발현을 식물세포에서 저해시켜면 야생형에 비해 기생영양(biotrophic) 병원균에 의한 식물병에 대한 저항성이 증가되거나, 사물기생성(necrotrophic) 병원균에 의한 식물병에 대한 저항성이 감소될 수 있으나, 이에 제한되지 않는다.In the production method according to one embodiment of the present invention, when the expression of the tomato-derived SRFR1 protein coding gene is inhibited in plant cells, resistance to plant diseases caused by biotrophic pathogens increases compared to the wild type, or Resistance to plant diseases caused by necrotrophic pathogens may be reduced, but is not limited to this.

기생영양 병원균 및 사물기생성 병원균은 전술한 것과 같다.Parasitic pathogens and parasitic pathogens are the same as described above.

본 발명은 또한, 상기 제조방법에 의해 제조된 식물병에 대한 저항성이 조절된 형질전환 식물체 및 이의 형질전환된 종자를 제공한다.The present invention also provides transgenic plants with controlled resistance to plant diseases prepared by the above production method and their transformed seeds.

본 발명에 따른 식물병에 대한 저항성이 조절된 형질전환 식물체는 SRFR1 단백질 코딩 유전자의 발현을 저해시켜 기생영양 병원균에 의한 식물병에 대한 저항성이 증가되거나, 사물기생성 병원균에 의한 식물병에 대한 저항성이 감소된 것을 특징으로 한다.Transgenic plants with controlled resistance to plant diseases according to the present invention have increased resistance to plant diseases caused by parasitic pathogens or resistance to plant diseases caused by parasitic pathogens by inhibiting the expression of the SRFR1 protein coding gene. It is characterized by a decrease in this.

상기 식물체는 토마토, 애기장대, 감자, 가지, 담배, 고추, 우엉, 쑥갓, 상추, 도라지, 시금치, 근대, 고구마, 샐러리, 당근, 미나리, 파슬리, 배추, 양배추, 갓무, 수박, 참외, 오이, 호박, 박, 딸기, 대두, 녹두, 강낭콩, 또는 완두 등의 쌍자엽 식물 또는 벼, 보리, 밀, 호밀, 옥수수, 사탕수 수, 귀리, 양파 등의 단자엽 식물일 수 있고, 바람직하게는 쌍자엽 식물일 수 있으며, 더욱 바람직하게는 토마토 식물체일 수 있으나, 이에 제한되지 않는다.The plants include tomatoes, Arabidopsis thaliana, potatoes, eggplants, tobacco, peppers, burdock, mugwort, lettuce, bellflower root, spinach, chard, sweet potatoes, celery, carrots, water parsley, parsley, Chinese cabbage, cabbage, leaf radish, watermelon, melon, cucumber, It may be a dicotyledonous plant such as pumpkin, gourd, strawberry, soybean, mung bean, kidney bean, or pea, or a monocotyledonous plant such as rice, barley, wheat, rye, corn, sugar cane, oats, or onion, and is preferably a dicotyledonous plant. It may be a tomato plant, more preferably a tomato plant, but is not limited thereto.

또한, 본 발명은 서열번호 3의 아미노산 서열로 이루어진 토마토 유래 SRFR1 (SUPPRESSOR OF rps4-RLD1) 단백질을 코딩하는 유전자를 유효성분으로 함유하는 식물체의 병 저항성 조절용 조성물을 제공한다. 본 발명의 조성물은 유효성분으로 토마토 식물체의 식물병에 대한 저항성을 조절할 수 있는 토마토 유래 SRFR1 단백질 코딩 유전자를 포함하며, 상기 유전자의 발현을 저해하여 식물체의 병 저항성을 조절할 수 있다.In addition, the present invention provides a composition for controlling disease resistance in plants containing as an active ingredient a gene encoding the tomato-derived SRFR1 ( SUPPRESSOR OF rps4-RLD1 ) protein consisting of the amino acid sequence of SEQ ID NO: 3. The composition of the present invention contains, as an active ingredient, the tomato-derived SRFR1 protein coding gene, which can control the resistance of tomato plants to plant diseases, and can control the disease resistance of plants by inhibiting the expression of the gene.

이하, 본 발명을 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail by examples. However, the following examples only illustrate the present invention, and the content of the present invention is not limited to the following examples.

재료 및 방법Materials and Methods

1. 토마토 형질 전환을 위한 벡터 구축1. Vector construction for tomato transformation

CRIPSR-P v2.0 프로그램 (http://crispr.hzau.edu.cn/CRISPR2/)을 이용하여 SlSRFR1의 N-말단 부위에서 SpCas9-gRNA 복합체의 타켓부위를 조사하였다. 그리고 유전체 교정을 일으킬 수 있는 수치인 on-score, gRNA의 2차 구조, 타켓 부위의 GC 뉴클레오티드 함량 및 off-target 서열을 고려하여 두 개의 gRNA를 선정하였다. 두 개의 gRNA는 애기장대 U6 프로모터 (originated from Addgene #46968), scafford RNA와 poly T를 프라이머 이합체화반응(dimerization) 방법을 통해 서로 연결하였고, 상기 gRNA 전체는 Golden Gate 클로닝 시스템을 통해서 레벨1 플라스미드인 pICH47751 및 pICH47761에 각각 클로닝 하였다. 만들어진 각 gRNA 모듈은 식물 선별마커 (Addgene #51144), SpCas9 (Addgene #49771), 링커 (Addgene #48019)와 함께 Golden Gate 클로닝 시스템을 통해서 pAGM4723 내부로 클로닝하여 컨스트럭트를 제조하였으며, 상기 컨스트럭트를 pSlSRFR1-GE로 명명하였다.The target site of the SpCas9-gRNA complex was investigated in the N-terminal region of SlSRFR1 using the CRIPSR-P v2.0 program (http://crispr.hzau.edu.cn/CRISPR2/). In addition, two gRNAs were selected considering the on-score, the secondary structure of the gRNA, the GC nucleotide content of the target region, and the off-target sequence, which are values that can cause genome editing. The two gRNAs were linked to the Arabidopsis U6 promoter (originated from Addgene #46968), scafford RNA, and poly T through primer dimerization, and the entire gRNA was cloned into a level 1 plasmid through the Golden Gate cloning system. They were cloned into pICH47751 and pICH47761, respectively. Each gRNA module created was cloned into pAGM4723 using the Golden Gate cloning system along with a plant selection marker (Addgene #51144), SpCas9 (Addgene #49771), and linker (Addgene #48019) to produce a construct. The protein was named pSlSRFR1-GE.

2. 아그로박테리움을 이용한 토마토 형질전환 및 CRISPR/Cas9으로 유전체 교정이 일어난 식물체 선별2. Tomato transformation using Agrobacterium and selection of plants with genome editing using CRISPR/Cas9

토마토 형질전환 및 식물체 선별은 이전 연구를 참고하여 수행하였다 (Plant Cell Rep. 2021 Jun;40(6):999-1011). 토마토 품종 M82 (Solanum lycopersicum cv. M82)를 25℃, 16시간 명/8시간 암조건에서 1/2 MSO 배지(2.2g MS salts + B5, 20g sucrose, 0.5g MES (pH=5.7), 7.5g agar for 1L)에 7일동안 키운 후 칼을 이용하여 자엽(cotyledon) 외식편들을 만들어 PREMC 배지(2.2g MS salts + B5, 30g maltose, 0.1g Ascorbic acid, 1.952g MES, 0.2mg IAA (pH=5.5), 7.5g agar for 1L; 상기 혼합물을 멸균한 후, 1.0mg Zeatin trans-isomer, 1㎖ Putrescine(1mM), acetosyringone(AS) 100μM 첨가) 위에 올려 25℃ 암조건에서 하루동안 보관한다. pSlSRFR1-GE 플라스미드는 전기천공법을 통해 아그로박테리움 튜머파시엔스(Agrobacterium tumefaciens) GV3101 (MP90)으로 형질전환시켰다. 28℃에서 18시간동안 배양한 pSlSRF1-GE를 보유한 아그로박테리움 3㎖을 30㎖의 LB 배지(50mg·L-1 kanamycin 및 10mg·L-1 gentamicin 포함)로 옮겨 OD600 값이 0.8~1 정도될 때까지 배양하였다. 아그로박테리움을 3,000rpm으로 15분동안 원심분리하고 펠렛은 200μM 아세토시린곤(acetosyringone, #D134406, Sigma, USA)을 함유한 30㎖의 ABM-MS [1.106g K2HPO4, 0.565g KH2PO4, 0.748g NH4NO3, 0.0745g KCl, 0.154g MgSO4, 0.0075g CaCl2, 0.0015g FeSO4, 20g glucose, 1.952g MES, 1.1g MS salts + B5, 2.5g sucrose (pH 5.5) for 1L]에 현탁시켰다. 현탁액을 한시간동안 28℃에서 배양하고 토마토 자엽(cotyledon) 외식편을 아그로박테리움과 20분동안 공동배양하여 토마토를 형질전환시켰다. 토마토 자엽 외식편을 200 μM 아세토시린곤을 함유하고 있는 ABM-MS에 옮겨 25℃ 암조건에서 2일동안 배양하였다. 외식편에 붙은 아그로박테리움은 500mg·L-1 티멘틴(timentin) 용액에 2분간 저어서 세척하였다. 외식편에 남아있는 물은 와트만(Whatman) 페이퍼를 이용하여 완전히 없애주고, 선별배지[SEL4-70; 4.4g MS salts + B5, 30g maltose, 0.05mg IAA, 0.976g MES, 0.5mg zeatin ribose trans-isomer, 70mg kanamycin, 300mg timentin, 1mM putrescine (pH 5.7), 8g agar for 1L]에 올려놓고 캘러스를 유도하며 완전한 줄기가 나오기까지 2주마다 캘러스를 새 선별배지(SEL4-70)에 옮겨주었다. 줄기가 나온 외식편은 뿌리유도배지[RIM; 2.2g MS salts + B5, 20g sucrose, 0.1mg NAA, 0.3mg IBA, 300mg Timentin (pH 5.7), 8g agar for 1L]에 옮기고 뿌리가 유도될 때까지 배양하였다. 건강한 식물체는 25℃, 16시간 명/8시간 암조건에서 키운다.Tomato transformation and plant selection were performed with reference to previous studies (Plant Cell Rep. 2021 Jun;40(6):999-1011). Tomato variety M82 ( Solanum lycopersicum cv. M82) was grown on 1/2 MSO medium (2.2g MS salts + B5, 20g sucrose, 0.5g MES (pH=5.7), 7.5g at 25℃, 16 hours light/8 hours dark conditions. After growing on agar for 1L for 7 days, cotyledon explants were made using a knife and placed on PREMC medium (2.2g MS salts + B5, 30g maltose, 0.1g Ascorbic acid, 1.952g MES, 0.2mg IAA (pH= 5.5), 7.5g agar for 1L; sterilize the above mixture, add 1.0mg Zeatin trans-isomer, 1ml Putrescine (1mM), and acetosyringone (AS) 100μM) and store in dark conditions at 25°C for one day. The pSlSRFR1-GE plasmid was transformed into Agrobacterium tumefaciens GV3101 (MP90) through electroporation. 3 ml of Agrobacterium containing pSlSRF1-GE cultured at 28°C for 18 hours was transferred to 30 ml of LB medium (containing 50 mg·L -1 kanamycin and 10 mg·L -1 gentamicin) until the OD 600 value was around 0.8 to 1. Cultured until formed. Agrobacterium was centrifuged at 3,000 rpm for 15 minutes, and the pellet was transferred to 30 ml of ABM-MS [1.106 g K 2 HPO 4 , 0.565 g KH 2 ] containing 200 μM acetosyringone (#D134406, Sigma, USA). PO 4 , 0.748g NH 4 NO 3 , 0.0745g KCl, 0.154g MgSO 4 , 0.0075g CaCl 2 , 0.0015g FeSO 4 , 20g glucose, 1.952g MES, 1.1g MS salts + B5, 2.5g sucrose (pH 5.5) for 1L]. The suspension was incubated at 28°C for one hour, and tomato cotyledon explants were co-cultured with Agrobacterium for 20 minutes to transform tomatoes. Tomato cotyledon explants were transferred to ABM-MS containing 200 μM acetosyringone and cultured in dark conditions at 25°C for 2 days. Agrobacterium attached to the explant was washed by stirring in 500 mg·L -1 timentin solution for 2 minutes. The water remaining in the explants was completely removed using Whatman paper, and the selection medium [SEL4-70; 4.4g MS salts + B5, 30g maltose, 0.05mg IAA, 0.976g MES, 0.5mg zeatin ribose trans-isomer, 70mg kanamycin, 300mg timentin, 1mM putrescine (pH 5.7), 8g agar for 1L] and induce callus. The callus was transferred to new selection medium (SEL4-70) every two weeks until complete stems emerged. Explants from which stems emerged were cultured on root induction medium [RIM; 2.2g MS salts + B5, 20g sucrose, 0.1mg NAA, 0.3mg IBA, 300mg Timentin (pH 5.7), 8g agar for 1L] and cultured until roots were induced. Healthy plants are grown at 25℃, 16 hours light/8 hours dark.

3. 토마토에서 게노믹 DNA 분리 3. Isolation of genomic DNA from tomatoes

게노믹(genomic) DNA 분리는 Pater 등(Plant Biotechnol. J. (2009) 7:821-835)을 참고하여 수행하였다. 콜크보러(cork borer) 5호를 이용하여 G0와 G1세대 토마토 식물체에서 두 장의 잎 조각을 튜브에 넣고 액체질소에 얼려 구슬을 이용하여 mixer mill (#MM301, Retsch, Germany)에서 1분동안 분쇄하였다. 상기 분말에 300㎕의 2X CTAB extraction buffer (0.1M Tris, 2% CTAB, 1.4M NaCl, and 20mM EDTA)를 넣고 65℃에서 20분간 반응시켰다. 튜브에 300㎕ 클로로포름을 추가로 넣어주고 강하게 섞어준 다음 14,000rpm으로 5분간 원심분리하였다. 상등액 200㎕를 취하여 새 튜브로 옮기고 200㎕의 이소프로판올을 상등액에 넣어 섞고 상온에서 2분간 반응시켰다. 그 후, 14,000rpm으로 5분간 원심분리한 후 1㎖의 70% 에탄올을 이용하여 펠렛을 씻어주었다. 14,000rpm으로 1분간 원심분리하여 DNA 펠렛을 회수하고, 상기 펠렛을 상온에서 10분간 건조시키고 50㎕의 삼차증류수를 넣어 녹였다. 이 중 2㎕의 게노믹 DNA를 이용하여 25㎕ 부피의 PCR 반응에 사용하였다.Genomic DNA isolation was performed with reference to Pater et al. (Plant Biotechnol. J. (2009) 7:821-835). Using cork borer No. 5, two leaf pieces from G0 and G1 generation tomato plants were placed in a tube, frozen in liquid nitrogen, and ground for 1 minute in a mixer mill (#MM301, Retsch, Germany) using beads. . 300㎕ of 2X CTAB extraction buffer (0.1M Tris, 2% CTAB, 1.4M NaCl, and 20mM EDTA) was added to the powder and reacted at 65°C for 20 minutes. An additional 300 μl of chloroform was added to the tube, mixed vigorously, and then centrifuged at 14,000 rpm for 5 minutes. 200㎕ of the supernatant was taken and transferred to a new tube, 200㎕ of isopropanol was added to the supernatant, mixed and reacted at room temperature for 2 minutes. Afterwards, the pellet was centrifuged at 14,000 rpm for 5 minutes and washed with 1 ml of 70% ethanol. The DNA pellet was recovered by centrifugation at 14,000 rpm for 1 minute, and the pellet was dried at room temperature for 10 minutes and dissolved in 50 μl of tertiary distilled water. Of these, 2㎕ of genomic DNA was used in a PCR reaction in a volume of 25㎕.

4. 시퀀싱을 통한 유전체교정 분석4. Genome editing analysis through sequencing

G0이나 G1 세대 토마토에서 SlSRFR1 타켓부위를 PCR을 통해서 증폭시키고 시퀀싱을 수행하였다. 상기 결과를 ICE (Inference of CRISPR Edits, https://ice.synthego.com/#/) 분석을 통해서 G0이나 G1 세대 토마토에서 Indel 돌연변이가 얼마나 일어났는지 확인하였다. G1 세대 토마토에서 좀 더 명확한 결과를 확인하기 위해서는 Miseq 시퀀싱을 수행하여 Cas-Analyzer 프로그램 (http://www.rgenome.net/)으로 분석하였다. SlSRFR1-F1/SlSRFR1-R2 프라이머 세트를 이용하여 945bp 크기의 PCR 단편을 증폭하고 유전자 특이적 염기서열과 어댑터(adaptor) 프라이머 일부 서열을 공유하는 프라이머(MiSeq-1-F2/MiSeq-1-R2 and MiSeq-2-F2/MiSeq-2-R2)를 이용하여 2차 PCR 을 통해 155bp 와 150bp 크기의 DNA 단편을 증폭하였다. MiSeq sequencing service (MiniSeqTM System, Illumina, USA)에서 제공하는 dual Index adapter (D501~D508과 D701~D712의 조합) 프라이머를 이용하여 3차 PCR 단편을 증폭하여 Miseq 시퀀싱을 통해 Indel 돌연변이 정도를 분석하였다. The SlSRFR1 target region in G0 or G1 generation tomatoes was amplified through PCR and sequenced. The above results were analyzed through ICE (Inference of CRISPR Edits, https://ice.synthego.com/#/) to determine how many Indel mutations occurred in G0 or G1 generation tomatoes. To confirm clearer results in G1 generation tomatoes, Miseq sequencing was performed and analyzed with the Cas-Analyzer program (http://www.rgenome.net/). A PCR fragment of 945bp in size was amplified using the SlSRFR1-F1/SlSRFR1-R2 primer set, and primers (MiSeq-1-F2/MiSeq-1-R2 and DNA fragments of 155bp and 150bp in size were amplified through secondary PCR using MiSeq-2-F2/MiSeq-2-R2). The third PCR fragment was amplified using the dual index adapter (combination of D501~D508 and D701~D712) primers provided by MiSeq sequencing service (MiniSeqTM System, Illumina, USA), and the degree of Indel mutation was analyzed through Miseq sequencing.

5. Cleaved Amplified Polymorphic Sequence (CAPS) 연구5. Cleaved Amplified Polymorphic Sequence (CAPS) study

G1 세대 유전자변형 토마토에서 동형(homozygous) 식물체를 찾기 위해서 유전자의 다형성(polymorphism)을 이용한 CAPS 분석을 수행하였다. SlSRFR1-sgRNA1과 SlSRFR1-sgRNA2에서 일어난 돌연변이 양상을 구별하기 위해서 SlSRFR1-F1/SlSRFR1-Bcc-R2와 SlSRFR1-F1/SlSRFR1-R2를 이용하여 DNA 단편을 증폭하였다. 이 DNA에 BccI과 BcgI을 각각 처리하고 37℃에서 3-4시간 반응시켰다. 이후 상기 혼합물을 아가로스 겔에 로딩하여 전기영동을 수행하고 G1 세대의 유전형(genotype)을 선별하였다.CAPS analysis using genetic polymorphism was performed to find homozygous plants in G1 generation transgenic tomatoes. To distinguish the mutation patterns that occurred in SlSRFR1-sgRNA1 and SlSRFR1-sgRNA2, DNA fragments were amplified using SlSRFR1-F1/SlSRFR1-Bcc-R2 and SlSRFR1-F1/SlSRFR1-R2. This DNA was treated with Bcc I and Bcg I, respectively, and reacted at 37°C for 3-4 hours. Afterwards, the mixture was loaded onto an agarose gel, electrophoresis was performed, and the genotype of the G1 generation was selected.

6. 박테리아와 곰팡이 병원균에 의한 발병 분석6. Analysis of outbreaks caused by bacterial and fungal pathogens

슈도모나스 시린개 pv. 토마토 DC3000 (Pseudomonas syringae pv. tomato DC3000, 이하 Pto DC3000)에 의한 발병 분석은 이전의 연구를 따라 수행하였다(Scalschi, L. et al., PLoS One 2014, 9:e106429). 슈도모나스 배지에서 자란 pVSP61 공벡터(empty vector)가 들어있는 Pto DC3000을 2x108 CFU/㎖로 희석하고 6주된 토마토 식물의 세 번째 또는 네 번째 잎에 상기 희석액을 30초동안 처리한 후 높은 습도를 유지하기 위해서 플라스틱백으로 감싸서 5일동안 유지하였다. 슈도모나스균이 처리된 식물에서 콜크보더 5호를 이용하여 두 장의 잎 조각을 10 mM 염화마그네슘 용액에 넣어 분쇄한 후 단계희석하여 슈도모나스 배지에 도말한 뒤 30℃에서 배양시키며 자라난 박테리아 수를 관찰하였다.Pseudomonas syringae pv. Outbreak analysis by tomato DC3000 ( Pseudomonas syringae pv. tomato DC3000, hereinafter referred to as Pto DC3000) was performed according to a previous study (Scalschi, L. et al ., PLoS One 2014, 9:e106429). Pto DC3000 containing the pVSP61 empty vector grown in Pseudomonas medium was diluted to 2x10 8 CFU/ml, and the third or fourth leaves of 6-week-old tomato plants were treated with the dilution for 30 seconds and maintained at high humidity. To do this, it was wrapped in a plastic bag and kept for 5 days. From plants treated with Pseudomonas bacteria, two leaf pieces were ground in 10 mM magnesium chloride solution using Cork Border No. 5, diluted in stages, spread on Pseudomonas medium, and cultured at 30°C to observe the number of bacteria growing. .

푸사리움 옥시스포럼 f. sp. 라이코페르시씨(Fusarium oxysporum f. sp. lycopersici, 이하 FOL)에 의한 발병 분석은 이전의 연구(Kostov, K. et al., Biotechnol. Biotechnol. Equip. 2009, 23:1121-1125.)를 따라 수행하였다. 30℃ 암조건의 potato dextrose (#254920, BD Difco, USA)에서 FOL을 배양한 후, 25℃ 16시간 명/8시간 암조건에서 5일동안 키워 실험에 사용하였다. 콜크보더 1호를 사용하여 배지에서 자란 곰팡이를 플러그를 만들어 6주된 토마토 잎 위에 얹고, 25℃, 16시간 명/8시간 암조건에서 3-8일동안 두었다.Fusarium oxysporum f. sp. Analysis of outbreaks caused by Fusarium oxysporum f. sp. lycopersici (hereinafter FOL) was performed according to previous research (Kostov, K. et al ., Biotechnol. Biotechnol. Equip. 2009, 23:1121-1125.) did. FOL was cultured in potato dextrose (#254920, BD Difco, USA) at 30°C in the dark, and then grown for 5 days at 25°C in 16-hour light/8-hour dark conditions and used in the experiment. Using Cork Border No. 1, plugs were made from the fungus grown in the medium and placed on 6-week-old tomato leaves, and left for 3-8 days at 25°C under 16-hour light/8-hour dark conditions.

7. Trypan Blue 염색7. Trypan Blue staining

곰팡이가 감염된 토마토 잎 조각을 트립판 블루(trypan blue) 용액 (1:1:1=85%(w/v) lactic acid:phenol (pH 8.0):glycerol(≥ 99%), 10mg/㎖ trypan blue)에 1시간동안 담가두었다. 염색된 잎을 99% 에탄올에 하루 담궈 색소를 제거하였다. 형광현미경을 이용하여 곰팡이 균사의 발달정도를 시각화하였다.Fungus-infected tomato leaf pieces were soaked in trypan blue solution (1:1:1=85% (w/v) lactic acid:phenol (pH 8.0):glycerol (≥ 99%), 10mg/ml trypan blue. ) for 1 hour. The dyed leaves were soaked in 99% ethanol for a day to remove the pigment. The degree of development of fungal hyphae was visualized using a fluorescence microscope.

8. RNA 분리와 cDNA 합성8. RNA isolation and cDNA synthesis

G1 세대 slsrfr1 돌연변이체에서 콜크보더 5호를 이용하여 잎 조각 3장을 뚫어 2㎖의 튜브에 넣고 액체질소에 얼린다음 mixer mill을 이용하여 분쇄하였다. RiboEx (#301-001, GeneAll, Korea) 프로토콜을 따라 50㎕ 총 RNA를 분리하고 TURBO DNA-free kit (#AM1907, Invitrogen, USA)를 사용하여 총 RNA로부터 섞여있는 genomic DNA를 제거하였다. SuperiorScrippt Ⅲ cDNA synthesis kit (#EZ405S, Enzynomics, SouthKorea)를 이용하여 cDNA를 합성한 다음 그 중에서 1㎕를 qRT-PCR 반응에 사용하였다.From the G1 generation slsrfr1 mutant, three leaf pieces were pierced using Cork Border No. 5, placed in a 2 ml tube, frozen in liquid nitrogen, and pulverized using a mixer mill. 50㎕ total RNA was isolated following the RiboEx (#301-001, GeneAll, Korea) protocol, and mixed genomic DNA was removed from the total RNA using the TURBO DNA-free kit (#AM1907, Invitrogen, USA). cDNA was synthesized using the SuperiorScript Ⅲ cDNA synthesis kit (#EZ405S, Enzynomics, SouthKorea), and then 1㎕ of it was used for qRT-PCR reaction.

9. qRT-PCR을 통하여 유전자 발현 분석9. Gene expression analysis through qRT-PCR

확인하고자 하는 유전자의 프라이머와 QuantiNova SYBR® Green PCR Kit (#208054, Qiagen, Germantown, USA)를 이용하여 CFX384 system (BioRad, Hercules, USA) 기계에서 95℃ 2분, 40 cycle (95℃ 5초, 60℃ 15초) 조건으로 DNA를 증폭하였다. SlACTSlGAPH를 이용하여 상대적인 유전자 발현정도를 분석하였다.Using primers for the gene to be identified and the QuantiNova SYBR® Green PCR Kit (#208054, Qiagen, Germantown, USA), the CFX384 system (BioRad, Hercules, USA) was used at 95°C for 2 minutes, 40 cycles (95°C for 5 seconds, DNA was amplified under conditions of 60°C for 15 seconds. Relative gene expression levels were analyzed using SlACT and SlGAPH .

10. 단백질 면역 블랏 분석10. Protein immunoblot analysis

콜크보더 5호를 이용하여 토마토 잎 조각 2개를 튜브에 넣고 50㎕의 8M 우레아(urea)를 튜브에 넣어 막자를 이용하여 분쇄하였다. 12,000rpm으로 10분간 두 번 원심분리하여 상층액을 12%의 폴리아크릴아미드 겔에 로딩하였다. 단백질 면역 블랏 분석은 α-PR1 antibody (1:10,000 dilution, #AS10 687, Agrisera, SWEDEN) 또는 α-Actin antibody (1:10,000 dilution, #AS13 2640, Agrisera)를 이용하여 수행하였으며, Clarity Western ECL Substrate (#1705061, Bio-Rad, USA)와 SuperSignal™ West Femto Maximum Sensitivity Substrate (#34094, Thermo Scientific, USA)을 이용하여 시각화하였다.Using Cork Border No. 5, two tomato leaf pieces were placed in a tube, 50㎕ of 8M urea was added to the tube, and crushed using a pestle. It was centrifuged twice at 12,000 rpm for 10 minutes, and the supernatant was loaded onto a 12% polyacrylamide gel. Protein immunoblot analysis was performed using α-PR1 antibody (1:10,000 dilution, #AS10 687, Agrisera, SWEDEN) or α-Actin antibody (1:10,000 dilution, #AS13 2640, Agrisera), Clarity Western ECL Substrate. (#1705061, Bio-Rad, USA) and SuperSignal™ West Femto Maximum Sensitivity Substrate (#34094, Thermo Scientific, USA).

실시예 1. 표적 선발 및 Example 1. Target selection and SlSRFR1SlSRFR1 교정을 위한 벡터 구축 Vector construction for calibration

SRFR1는 애기장대에서 단일 카피 유전자로, 애기장대 SRFR1는 주로 단백질-단백질 상호작용에 관여하는 11개의 TPR (tetratricopeptide repeat) 도메인으로 구성되어 있다. 토마토 프로테옴에 주석을 달기위해 블라스트(Blast) 알고리즘을 사용하였고, 애기장대 SRFR1와 65%의 유사성을 가지는 Solyc02g09280 (SlSRFR1)을 확인하였다. 애기장대 SRFR1과 서열 정렬을 통해 SlSRFR1이 1,055개의 아미노산으로 이루어진 단백질을 암호화하며, 두 개의 TPR 도메인이 N-말단에 위치하고, 9개의 TPR 도메인이 중앙에 위치함을 알 수 있었다. SRFR1 is a single copy gene in Arabidopsis thaliana. Arabidopsis SRFR1 consists of 11 TPR (tetratricopeptide repeat) domains mainly involved in protein-protein interactions. The Blast algorithm was used to annotate the tomato proteome, and Solyc02g09280 (SlSRFR1), which has 65% similarity to Arabidopsis SRFR1, was identified. Through sequence alignment with Arabidopsis SRFR1, it was found that SlSRFR1 encodes a protein consisting of 1,055 amino acids, with two TPR domains located at the N-terminus and nine TPR domains located in the center.

본 발명자는 SlSRFR1의 기능을 분석하기 위해, CRISPR/Cas 시스템을 이용하여 돌연변이체를 제조하였다. 표준 조건에 기반하여 sgRNA를 디자인하였고, SlSRFR1의 ORF (open reading frame)의 5' 말단쪽 위치를 교정을 위한 자리로 선정하였다(표 2).To analyze the function of SlSRFR1 , the present inventor prepared a mutant using the CRISPR/Cas system. The sgRNA was designed based on standard conditions, and the position at the 5' end of the ORF (open reading frame) of SlSRFR1 was selected as the site for correction (Table 2).

SlSRFR1 교정을 위한 gRNA 표적 위치gRNA target location for SlSRFR1 correction NameName gRNAgRNA Target position
on genome
Target position
on genome
Number of off-targets
(<4 MMs)
Number of off-targets
(<4MMs)
sgRNA1sgRNA1 GTAACTTTCGACGCCATCGC (서열번호 4)GTAACTTTCGACGCCATCGC (SEQ ID NO: 4) 5' UTR and CDS5'UTR and CDS 1One sgRNA2sgRNA2 ATTGACTATAGCAAAACGCT (서열번호 5)ATTGACTATAGCAAAACGCT (SEQ ID NO: 5) CDSCDS 33

실시예 2. CRISPR/Cas9에 의해 생성된 Example 2. Generated by CRISPR/Cas9 SlSRFR1SlSRFR1 대립유전자 분석 Allelic analysis

G0 세대에서, 37개 식물체가 형질전환된 자엽으로부터 재분화되었다. 생성된 식물체로부터 분리한 게노믹 DNA를 통해 잠재적인 게놈 교정 이벤트를 입증하였다. 표적 DNA 부위를 유전자 특이적 프라이머를 통해 증폭하고 아가로스 겔에 로딩하여 비교한 결과, 비교정 식물체 M82와 증폭산물의 크기가 유사하게 확인되어 표적 영역에서 큰 결실은 일어나지 않았음을 알 수 있었다. ICE (Inference of CRISPR Edits) 프로그램을 사용하여 분석한 결과, 14개의 G0 식물체에서 InDel 변이가 확인되어, CRISPR/Cas9 매개 교정 효율은 37.84%임을 알 수 있었다(도 2). 특히, 서열번호 4의 sgRNA (Target 1) 표적 부위가 서열번호 5의 sgRNA (Target 2) 표적 부위에 비해 InDel 돌연변이가 많이 발생하였음을 알 수 있었다.In the G0 generation, 37 plants were regenerated from transformed cotyledons. Potential genome editing events were demonstrated through genomic DNA isolated from the resulting plants. The target DNA region was amplified using gene-specific primers and loaded on an agarose gel for comparison. As a result, the size of the amplification product was confirmed to be similar to that of the uncorrected plant M82, indicating that no large deletion occurred in the target region. As a result of analysis using the ICE (Inference of CRISPR Edits) program, InDel mutations were identified in 14 G0 plants, showing that the CRISPR/Cas9-mediated correction efficiency was 37.84% (Figure 2). In particular, it was found that the sgRNA (Target 1) target site of SEQ ID NO: 4 had more InDel mutations than the sgRNA (Target 2) target site of SEQ ID NO: 5.

모든 InDel 변이는 절단 위치에서 발생하였다. SRFR1-sgRNA1 표적 자리에서는 1 bp 삽입(G0-5, G0-6, G0-7, G0-8, 및 G0-9) 및 3 bp 결실(G0-10 및 G0-11)이 주로 관찰되었으며, 다섯 개의 독립적인 이벤트(G0-5 to 9)에서 유사한 교정 패턴을 나타냈다. ICE-기반 decomposition 분석에서 나타난 혼재된 피크는 G0 세대에서 이형접합의(heterozygous) slsrfr1 돌연변이체의 존재를 확인시켜 주었다. 그래서, 3개의 G0 계통(G0-1, G0-2, G0-3)을 동형접합의 식물체를 획득하기 위해 다음 세대(G1)로 진전시켜 분석하였다. G1 세대 식물체로부터 분리한 DNA를 사용하여 PCR 반응을 수행하고, CAPS 분석을 진행하여 동형접합의 G1 식물체를 확인하였다(도 1d).All InDel mutations occurred at the cleavage site. At the SRFR1-sgRNA1 target site, 1 bp insertions (G0-5, G0-6, G0-7, G0-8, and G0-9) and 3 bp deletions (G0-10 and G0-11) were mainly observed, with five Two independent events (G0-5 to 9) showed similar correction patterns. Mixed peaks appearing in ICE-based decomposition analysis confirmed the presence of heterozygous slsrfr1 mutants in the G0 generation. Therefore, three G0 lines (G0-1, G0-2, G0-3) were advanced to the next generation (G1) and analyzed to obtain homozygous plants. A PCR reaction was performed using DNA isolated from the G1 generation plants, and CAPS analysis was performed to confirm homozygous G1 plants (Figure 1d).

또한, CAPS 분석을 통해 동형접으로 확인된 G1 식물체 모두를 대상으로 Deep sequencing 또는 Sanger sequencing 분석을 수행하였다. 그 결과, 2종의 monoallelic 동형접합체 (11 bp 결실 in TPR domain, slsrfr1-1; 및 1 bp 삽입 in TPR domain, slsrfr1-3), 1종의 multiallelic 동형접합체 (1, 4, 및 4 bp 결실, slsrfr1-2), 1종의 biallelic 동형접합체 (22 bp 결실 및 4 bp 결실 removing the start codon, slsrfr1-4)을 포함하는 4 유형의 대립유전자를 가진 G1 식물체가 생산되었음을 알 수 있었다(도 3). TPR 도메인의 1 bp 또는 11 bp 결실은 조기 종결코돈을 생성하였다. 또한, slsrfr1-2slsrfr1-4의 돌연변이는 개시 코돈에서 확인되었다. 또한, 정제된 PCR 앰플리콘의 Sanger sequencing 분석을 통해 모든 대상에서 off-target site가 확인되지 않았음을 알 수 있었다.In addition, deep sequencing or Sanger sequencing analysis was performed on all G1 plants that were confirmed to be homozygous through CAPS analysis. As a result, two monoallelic homozygotes (11 bp deletion in TPR domain, slsrfr1-1 ; and 1 bp insertion in TPR domain, slsrfr1-3 ) and one multiallelic homozygote (1, 4, and 4 bp deletions, It was found that G1 plants were produced with 4 types of alleles, including slsrfr1-2 ) and one biallelic homozygote (22 bp deletion and 4 bp deletion removing the start codon, slsrfr1-4 ) (Figure 3) . Deletion of 1 bp or 11 bp of the TPR domain resulted in a premature stop codon. Additionally, mutations in slsrfr1-2 and slsrfr1-4 were identified in the start codon. In addition, through Sanger sequencing analysis of purified PCR amplicons, it was found that no off-target sites were identified in all subjects.

실시예 3. Example 3. slsrfr1slsrfr1 돌연변이 식물체의 형태 및 방어 마커 유전자 발현 분석 Morphology and defense marker gene expression analysis of mutant plants

slsrfr1 G1 세대 식물체는 야생형 M82 식물체와 비교하여 약한 성장 감소가 확인되었으나, 심각한 왜화는 나타나지 않았다(도 4a). 또한, 야생형 M82 식물체와 비교하여 식물방어기작에 관여하는 유전자인 SlPR1 (Solyc09g007010.1), SlPR2 (Solyc01g008620.2), SlPR5(Solyc08g080640), TomloxD (Solyc03g122340.2) 유전자의 발현 수준이 증가되어 있음을 확인할 수 있었고(도 4b), 이 결과는 CRISPR/Cas9 매개 SlSRFR1의 돌연변이는 살리실산 의존 방어 유전자의 발현 수준을 상향 조절하고 자스몬산 신호 마커 유전자(TomloxD)의 발현도 유도함을 의미하였다. slsrfr1 G1 generation plants showed a slight growth reduction compared to wild-type M82 plants, but no severe dwarfing was observed (Figure 4a). In addition, compared to wild-type M82 plants, the expression levels of SlPR1 (Solyc09g007010.1), SlPR2 (Solyc01g008620.2), SlPR5 (Solyc08g080640), and TomloxD (Solyc03g122340.2) genes involved in plant defense mechanisms were increased. could be confirmed (Figure 4b), and this result meant that CRISPR/Cas9-mediated mutation of SlSRFR1 upregulates the expression level of salicylic acid-dependent defense genes and also induces the expression of the jasmonic acid signaling marker gene ( TomloxD ).

실시예 4. Example 4. slsrfr1slsrfr1 돌연변이 식물체의 병 저항성 분석 Disease resistance analysis of mutant plants

애기장대 srfr1 돌연변이체는 식물방어기작에 관여하는 유전자들이 항시적으로 상향 조절되었으나 병독성의 Pto DC3000에 대한 증진된 저항성이 없는 것으로 보고되었으나(Kim, S.H. et al., Plant Signal Behav. 2009, 4;149-150), 6주령의 slsrfr1 G1 세대 식물체는 야생형 M82 식물체에 비해 Pto DC3000에 대한 저항성이 증진되었음을 알 수 있었다(도 5). 반면, 사물기생 병원균인 푸사리움 옥시스포럼 f. sp. 라이코페르시씨(Fusarium oxysporum f. sp. lycopersici)에 대해서는 애기장대에서와 같이 slsrfr1 G1 세대 식물체가 야생형 M82 식물체에 비해 감수성이 더욱 증가되었음을 확인할 수 있었다(도 6).The Arabidopsis srfr1 mutant was reported to have no enhanced resistance to the virulent Pto DC3000, although genes involved in plant defense mechanisms were constitutively up-regulated (Kim, SH et al., Plant Signal Behav. 2009, 4; 149-150), 6-week-old slsrfr1 G1 generation plants were found to have improved resistance to Pto DC3000 compared to wild-type M82 plants (FIG. 5). On the other hand, the parasitic pathogen Fusarium oxysporum f. sp. As for Lycopersici ( Fusarium oxysporum f. sp. lycopersici ), as in Arabidopsis thaliana, it was confirmed that the sensitivity of slsrfr1 G1 generation plants was further increased compared to wild-type M82 plants (FIG. 6).

<110> INDUSTRY-ACADEMIC COOPERATION FOUNDATION GYEONGSANG NATIONAL UNIVERSITY <120> Plant immune regulator SRFR1 gene from tomato and uses thereof <130> PN21168 <160> 29 <170> KoPatentIn 3.0 <210> 1 <211> 16345 <212> DNA <213> Unknown <220> <223> Solanum lycopersicum <400> 1 atggcgtcga aagttactga taggattgaa ctagctaagc tttgtagctc taaggagtgg 60 tcgaaagcaa ttcgaattct cgattctctt cttgctcaaa cttgcgtcat tcaagatatc 120 tggtccgtta cgtttttcac tgttccatct ttttccctgt ttgtatatag gtttttggac 180 atttatgaat gaactgatta atttttctga atttaaaatg tgttcaattc tttttcagca 240 accgagcgtt ttgctatagt caattggagc ttcacaagca tgttattaag gattgtgata 300 aggcacttca gctcgatcct aagcttcttc aagcttatat attcaaaggt tcttttcatt 360 ttctccttgc atttccagct aactgttttt accgtgtata agaaatgcga aagagaattt 420 agaagttttc aattgcattt ggaatgtcaa ttttgaatgt ggatgtgttg tggtcaggca 480 tcctaatccc tataggcctg tgaagtcatc tgggatactc taaatttaca attttagggt 540 tcttgttcaa atttaggtga ttggctataa ttgagtaaat ttttctggtt ttggacaaac 600 atgaaccatt ggtaatttcg aggagtagga tgaagctctt gtaaagctag tgaactgttg 660 cacctctcgg ttgatgtcct acaatttacg actattgtca agtatgcgcc aaaataaggg 720 ttagctttaa atgaattgtg tatgtgagaa gccattttaa gcttgataaa ggtcatattg 780 gacttgcttt ctgtatccta tagtggtctt atattatatt tttgaaatga cttttaactt 840 taaaataaac tatgtttggt tggggtataa agggaaggga tggaaaataa aggagggcat 900 aagatggttg aattctatgc tcgcggggta cagtagaggg tttgaccata ttgtgtctat 960 tgttaagtac cttttctcta aaaggctatt tccacggcat gaacgtgtga cctccttgta 1020 tcattgcaac aactccgatc agataaaaag atcaaataca tttttgtctc ttgtgtgtaa 1080 catagccctt gaaataatga tataagaatt tgaattaaca atattcttgt gtggatactg 1140 tggattttcc ctagatgtgg ttatagttta tgctgcagaa atttcaatat tcttaaagct 1200 ttacaaactg gatttttgag tttgaagcat tatgtaacaa agttacttga tacttgttgc 1260 ttaggacgtg cattatctgc tcttggtaag aaagaggaag ctcttctagt ttgggagcaa 1320 gggtatgaac atgcagttca tcagtccgca gacttaaagc aactgttaga gcttgaagag 1380 ctgctcaaaa ttgcaaagca gaacaccgca gttggcagca acaatcattc ggtgcagtca 1440 tctggccctg agtccaacac tggacctcct ctttctacca aatctggtga aacttgtgat 1500 attagtaagg cctcagatag ggaacttaaa acatgcagca gtgggatgtt ggaaagctct 1560 gagaaatcaa agaatagctc tgttttacaa aattcctcaa gtaataattc caaaaagcat 1620 aagaagattg agtctgaatc aaaggaattg catgagagac aagcaaataa aaccaacaac 1680 aattgcaaaa aattgggtta tccatctctg gtttgcagtg agttaagtga tatatctgaa 1740 gacagtagga aatcatctgc agtaactagt gaatcaagtg aacagtcaga accaaatgag 1800 ttgcaggaaa ttctcagtca gttgaataat aaatgtgatg ttcgcgttga attgagtgat 1860 gaaggcaaga gaaacaaaaa attttgtgtt accagggtca acaaaaccaa gtccattaac 1920 gttgatttcc gattatcaag gggaatagca caggtacact gcctatcctg tgatattaca 1980 atgaagacag gaagaattag tccatctatt gatatttcct gttagtgcgg ttgatcatta 2040 atatgctatt cttctttatt gaaatacaaa taacaataca tttgtaactt caaatatatg 2100 ccaaagatca acttcatgtc tcaatttgtg agattatttt ctctcaaatt aagtagagaa 2160 atgaattttt tcttgatata tctgctaggt actgggatac catgctcatg catagcagga 2220 aaggccttct actgcagtct tcatgtcttt tctgttcact ttgcttattt cagttgtaat 2280 ttggtgatta cactccactt ttaattttgt gaacttaact ggaagattct gcatatgttc 2340 aaagcttggg tcaactaagc tctattatta gaattcattt tcttcagtta ctagatttgt 2400 atctctaact cttatgtgtt aaatttatgg agttagtatc atttttgcag tgtgcttgac 2460 tgcatgtttt gctttgttta aacttaagat gtcaaaatag gtttgtgatt gccagtcatt 2520 ctttctctct ctagtctcac atatccgcac tatagtgaca ttaaaacaaa aaagaagaag 2580 agaatttagc ttgattattt cttcaatcta gtagggtgta ttttctttcc tacgccccct 2640 aagctgcggt ggacagaggt attcggtatt tgcaccgata ggaggattta gatacccact 2700 agactacttg agatgcctgt aggttggtcc tgacaccatt gttattcaaa agaatgatgg 2760 taaattgaca atctagctct gtgtgcatat tttttcgtca aacacaagat gtgaaacaat 2820 aagtagtgct gcttgatgtg gttgagatca tggatattct gcttgcaatt gatctgacta 2880 tcacgtctcg ttgcttactt cttcaagaga ttagattatc atgatttaaa atgttgtgtt 2940 tctaaattgg atcatttatc tggggaactt cttgcccatt ttacattaga atatccaaaa 3000 cttgtatgtg tatgctgtcg taatgcagta gtagttgtct ccaaaatccc ttgatgtagg 3060 taggatgcag attatgacat ttcacaagga gcctggagag actggttaat cactctaaca 3120 accaattaga tgatgtgtca tgcaattgtg aaatacttga gtttgccagc aattcttcta 3180 tattgatcca gaccttctag agatatccat ccaaaactag tcttgacact tggatccata 3240 gaggtatcaa taagtttgca atctagtata ccttgtttct tccaatatat caggtggata 3300 cttcccttag gccttatgat attggacgtg caaacttgat ggttaggatg tattttatgt 3360 ttctacaagt gcctagtctt aaaatgactg gtgttgtata ataccttgaa gcctataagg 3420 ttgtaaggaa acagagtaaa acagatcaaa ctatgcttaa tgagactgct taagaccata 3480 aattatcggc cttgtcgaaa cgctacttta aactcttctt agttgatgtc taactgatga 3540 ctgatgaagg aactagtgga gcgtggtcgc catagaaatg gaaagaccag cacatgcaat 3600 tttagttgct aagagagagt atcaaccatt gccatatatc tgaatgtatt tgttgacaat 3660 tgattgagct ttgagacaat tataaccatc ttgattataa atactcaatg aaatccaact 3720 gtagttttat tcctgtggag gatctatctc tgaagtgcca ctgttttttg ttgtcaggca 3780 tctccttaga tatgcatgca attggtttta ccagtctaag atattgaatt tgtgcataat 3840 ttgtaatgca agcatgatat aaatgtgaaa aacaatgtga aacacctact ggattagttg 3900 gtagacgatt tgctcaaagc tgtcttcagt agaaccaaag aagagaagaa aattgttgga 3960 gaactgtcat aggggaagta agtttgtatc acaaaaaaac aaggatgaga atcgtgaaaa 4020 atgtttagtt tgctattccc tcaaggtaat gaagtttaaa tagtgtttac atatgatata 4080 atataggaag attgaatttc ccggattaat atttgttggt agcggaaagg gggatgcgag 4140 tctgagatgg ttcggatatg taaagaggag atgcacatat gttccagtga agaggtgtga 4200 gcgagtttgt ctatggtgga tctgaggaga ggtaggtgta ggttgaagaa gtattgtgta 4260 gaaatgatta gttgaacatt gtctcgctgt catttaggag gggcatgatg atagtttgga 4320 acaaattact tgttggctgt cctttctttt ccatattagt attattgtta ttactcttct 4380 attatattat tctccgattt ttattagtac atattttttc ctttgcttta attatcgtag 4440 tattgtttgt tgttgttact gttcttttct ccattatttc cgacatgaat tcttcacaac 4500 tgtatctcct tttcaaacct gctttgaatg ctttacttga gccgagggtc tatcggaaac 4560 aaccactcta ccctcacaag gcaggcacca cccttcccaa acctacttgt gggattacac 4620 cggatatgtt attgttatgt gatattccct gatctcctat acatatttcc ttatctaagt 4680 ccttaattac aaaatattct taacaagatc aatcatctct gagataataa atacaattcg 4740 aaatattaag gttaatccaa atatttttat cttgcaacaa tagtttcctt ttttttcttt 4800 tttcttaaac aagaaatatt tttaactttg taagttgagc agcaacgcca tttttagtga 4860 aaattgtgct taagtatgtt ggatggaaac tagcaaagcg aacacatgac ttacccgaaa 4920 gccaagttgc tcggactcta tactttcagt gtcgcacccg tgttgacacg ccatgggtgt 4980 gggattcgta cccggtatgg tcaaccagtt ttggatactc tgaacaaatt cgagggagaa 5040 attctggaca ggttcaatga tttttgtaat caaaacaaaa ctaatgtgat ttgaagaaaa 5100 tggaatgcct tgtatatata aatttcattt gtcaccccct ttccttttat ctccttccaa 5160 gattctcctc ttgatcaaat attttctcct caacttttcc gcataatatc tcataatttt 5220 aggttttata actctattag tagatatttt gaattatctt tcggcgaatc cccacatccg 5280 tttccataca tggatcttta tctctgaatc ttaaaattta tatcatagag gatccgacct 5340 ctagatccgc acctgcattg ggcacctgta cccgagtctg agcaacttaa cccgaaagaa 5400 gtttcaaaag agattgcacc cattcggtga tttagtggat gtaattaacc aggacttgag 5460 ttaaactatt tctttctatt cccatgtctt gactagcgat attcagttcc ttttcgtaag 5520 tatatatttg taggtaatta tattttttcc tcgatcttcc agttacgaca ctatttaatc 5580 atgtattcat cgtatttaat tgagaaatat ggtcaacgag gaatcatcta gccggctctg 5640 acttgcttgg ttttgaggcg tagtaatagt tgttattact cgtcatcctg tacaaacata 5700 gaagcgtaaa acaatatttt tggtgatttc aggttaatga aggaaaatat agtaatgctg 5760 tatccatctt tgaccaggtt agcattagcc ttaccactct tcgatatttt actagttttg 5820 tttgctagat gtgccttgtg ctttattttg ccctttttca tgtttgaatg gattaaacgg 5880 aggacttgtg tgtggcatgc tgaacttact tacggagctt cttctcttct atctataata 5940 acacagatac tagaacaaga tccaacgtac ccggaggcac ttatcggccg gggaacagcg 6000 ttggcatttc aaagagaact tgatgcagct atttctgatt ttacaaaggt ttgcattgat 6060 ttggccattt aagtaccaat tgaggtaata cttcaacccc tgttgtaaat atttaccacc 6120 tgcctttcag gccatacaat caaatccatc tgctggagag gcctggaaac gcagagggca 6180 agcccgtgct gctttaggtg aatctgttga ggtataaaat tcgtatttgt ctatttattg 6240 agctatcttt tggcttttgt cttcagggta ttcttttctg ctatatttat tttttttcaa 6300 agtcaacttt caatgatctc ttctgtggat gtgatgtgca gtgtaaatga tgtggaatta 6360 ctgaatttta tcacttgtgc tatcagattt tgaaaccaaa tttttcgtta atagcaatca 6420 gactccagtt agaccactag ggatattatc aagaggcact tggttatttt ccttcagatt 6480 gtggtagctt acagagttaa tgatggaaga tgaaatgtct ttggatgttc taactaaggc 6540 ttgagctata tcacaactta tgagcatctt cccgtgaaag ttaaattcta aaatggaatc 6600 aggagcataa cattattcag ctgcatcctt ttgatcatgg gagtttcttg gtagtctaag 6660 tctaaaacat aattttaaca ttctgatgag ttagttttag ttttgttttg ctccgattat 6720 cccatggaga gtgatattag ttacatttaa acgcttttta cttcctaaaa atgttggttt 6780 cacagtaaaa gtagtatgat tgatatttgt gacttggtat atctaaacaa aatgatttta 6840 caccaggcaa ttacagactt gaccaaagcg ttggaatttg agccagactc tgccgatata 6900 ttacatgaaa gaggtgacga gactgaactc ttccatttac tatgaacaat tggatttatg 6960 ctgttaaagt agatagacat aaatagcaaa acatacattt tatgacagat agcttttgtg 7020 catgtaattt gaaactaagg ttcactttca tctttacaac actgagatta tttattgagg 7080 cccataggtg gtttcatctt gtaactattt tgcaataaat gacctctagc ggaatattcc 7140 ataatttctt gagatttcag aaaagatcat ttgattggac aaagtttgtt caatctaacc 7200 tgggagtcac taactctcct taattagtgc aggaattgtc aattttaagt ttaaagattt 7260 caaaggtgct gttgaagacc tctctacatg tgtaaagtcc gataaggata ataaatctgc 7320 gtatacatat ttggtgagtc tatgaccttg agtctaccaa ttgttgtaga atgagctaag 7380 aatgtttatc cgcaaaagtt tgagaaattt tttgttggaa aaatactgat ataatgctgg 7440 tcgaaaaaaa tttggaaaat tatcagggtt tggcgttata ctctctagga gaatatagga 7500 aggctgagga ggcacataag aaagcaatcc aaattgaaag gaatttcctc gaggcttggg 7560 ctcatctagc acaggtatct ctgaatatat ggtgaatact cttaatgcta tttttcctgc 7620 caagtgggat cccaatactt ctattggtag tgctgatgat atagagtttc ttgatgatga 7680 agttgccttt tgacttcgag aattttctta taccaagttc ttgtttttgt ttgtctcttt 7740 tttcaccggt atctggaact caaggttgag gtaaatatat acttctgcat gcaagttaag 7800 aaattcaaga ataaggattt aaatggcaag tagacattct attgcttaac cagtgatgaa 7860 gagcctaact ctctgttatc agatattgtg tgagcgttca tcttctgggg tgcaatgcac 7920 atgtattgta atagcttttg ccttgttgca ttttcagata aggtctcctg attagctggt 7980 agatgttatt aatttacatc atcaaattgg atgtttatgg aatatctatt gccataagtt 8040 taaaattcct aagactcagg agctgctcta acctagttct tgattggttg agtttcttca 8100 cttatattaa atgtggcaaa acaatgagat ctctttgaag atattttttt aatgatgtat 8160 ttgattattg aagaatcttt atctttggtg cagttttatc aagacctagc aaactcagag 8220 aaggccttgg aatgccttca tcagattttg caaatagatg ggaggtgatt actgaggatc 8280 tcaatattta catctttttc accgataaat atctaatctc gagtatttga atggtgaagt 8340 ataaaaccta tcctcaaata ggaatataac tgataatcca tcctctatct accctttttc 8400 gttggaaggt acgcgaaagc atatcacctg cgcgggctgc tacttcatgg aatgggagag 8460 cataggtaca tatttctgaa aaattttgct gtcctgagtc tcccctttct ctcttttttg 8520 tcaaattttc tatgtataat cctcttttaa cgaaaaatgt agcaggcctt aactgcctat 8580 atatgctgtt acaggaatgc tataaaagat ttatcaatgg ggttggctat tgatagcgca 8640 aacattgaat gcttgtatct acgagcttct tgctatcatg ctattggatt atataaagaa 8700 gcagtatggg cattttcaaa ctcgtctctt gtgacttttg agtattctta aatattttaa 8760 ggtggttgtc tccaatttca gattattgat tctgaattta tgctgtaggt gaaggactat 8820 gatgctgctt tagatcttga attagattct atggaaaagt ttgtgcttca atgcttggcg 8880 ttctatcagg taaataagta tatgccagat ttccgtccat cgagctggtt caatgttatg 8940 cctctactaa gtattgtttt cttttgtgtt gcactatttt ctttttgctt tctaagtttt 9000 ggcattttct aactgttagc ttttaccttg ctggaatggt tctcgattct caagtggaca 9060 actcatactt caaattttag atttgtcatt tcgggttgtt agccatttta gtagttgcaa 9120 ttttacattt acttaagtta gtagtcaaaa atttagcaat tttacatttt cccacaaatt 9180 gtccaaacat tggctaaatt tctgaccatc tttttgttcc gttaagccac tgttggacag 9240 tttgggtcga agtggccgat ggttaacaaa gccaagcttg gcttggttta agcttgatta 9300 tgattgcgtt taggtgtccc gcatattcaa acctagcaca aatgtcccta ccaaaagctc 9360 gagttgacag atgctagctt gtgagcccag ttaagttggc agtgttcttt tcacttaacc 9420 attacacatc cggtaaaata agattttgct acccggatca tttaatagtc ctatggaaac 9480 tcttttcatt ctagttgtgt gctcctcctc cttcctcatt cttgtgaaca gccttctgct 9540 tcctgcctgt gacaatacag gtgcagccat tatcatgaga caccaattga tctctctatc 9600 tctgttattt tttgtccaat ttctatttca gtttgaatag cttatgtttt gcttttcaat 9660 atttttccct tgcagaaaga aattgcatta tacactgcat caaagatgaa cagcgaattt 9720 tcttggtttg atattgatgg agatatcgat ccccttttca aggtaatgtc taaaaagaga 9780 atatattgct tggttatttt ttgatacact cattaaaaac aacacggaat attctggtag 9840 cctctgtacc gcctctttct gagagaattg ggaaaaggaa tgaagtttga agttatagca 9900 aaaagtacta tctggtggga attacgcaga actttgaagg ttagcagaga atttggagaa 9960 tgaatgaagt ttaaagaaat aaggcctcac tgattcaatt tgaattcgat tataagctta 10020 cctgaagaat ttgaccgtga aatcactaca actctgtcaa agtaattgga cattttacca 10080 tatcttttaa catgctcata ctctattatg tagagttatc ccttttaggc ttcaaaacct 10140 tctttagagc ccccatcatt tccttaaccc ccactaaatg gttggaaagt gatctcttct 10200 caaccaatag tctcataaga ttgctacaac agtttcattg ctcaattact ttatcatgag 10260 tagagtggca atggatacaa ggactatcta gaaacgtaaa ggttgctttc actgagttgc 10320 tgctgcagac attgcttgca ctttaagtat gtgctttatt tggtgcatat gttccttcat 10380 agttagttgt caatgttctt ttgctgatcc atgtcgaatg ggtgtgcgga gtctggaaaa 10440 tactaaacgt tctgaaaaag tcacaggtac ccatatggat aggacaaagt tactggttcc 10500 agttaggtag ataatcaatg aaggtacaac atgcatatac cagtgatagt tttctggaat 10560 gatgtgtagt ctccagttca taaacctaac agtgctttaa tcacttttat gcacctggag 10620 ggtccagggt gataccttta caaagtgaac tgtcatggga aaacctttga tttcaaatga 10680 tggtttcttg acagatatgt gggatcattt cattaatttt aggggctaat aatcagtttt 10740 tgtaaatctc ggatctaaag tggtagatac ctctatgaag tgaactgtca tctgaaaagt 10800 gcttttgttg gcagtgaatt tcttatctca aagttattat ttccattgac ttcgtgttct 10860 tatacttcgt tctcaattcc tacttttttt tcccttctgt tctcaggagt attggtgcaa 10920 aaggctgcac ccaaaaaatg tttgcgaaaa ggtctacagg caacctcctt taaaagaatc 10980 tttgaaaaag gggaagcaaa gaaagcaaga atttactttc accaagcaaa aaactgccct 11040 tctacaggct gcagattcta tcggtagaaa tatccagtat cattgtccag gtttcttgca 11100 taataggcgc caggtaattc taaaaagagt taaatattaa gttaactttg ttctttctaa 11160 aaaaacccag agctccacat tttccttgag aaacctgata gtgatttcct gttgctttat 11220 tagatgcctt tttatgcttt gctttcacat ttcctctaat atagacaatg agaatattga 11280 aggaaaagaa tatgaaaatg ttaccagaac cttttgtttg cattagttgc cttgtaattg 11340 agggatttga actgatatgc cgattataag agaaagttct tgtacaagaa tgttaccttt 11400 attttcacac tcaacgtttc ctctccagct ttcgctgtac acactccttg ttttccatca 11460 atagttagtt actttccatg aaatataaaa attaaggaat tcatctcaaa ttaggttatc 11520 ggaaaaaaaa gaagagaatc catctgtcaa cagaagattt tcactatttg tggactagtg 11580 ttctatcttc tcttagcaca gaaagtgaga tttggatctt aaagacaata acaacaaacc 11640 cagcgaaatc tcactacatg ggctctgggg atcttaagga ctgtttagca ttttatattc 11700 cacaattatg aatgataact ttctacacac actgttaaat aagattgagg tgactgccaa 11760 gtgccaaggc tacatttcta gtgaaaatgt ctaaaatgaa tagcatgcaa ctaataataa 11820 tacttataga tgtgaataat gatgttagac taagaatgcc aagttttgat ggtcatctag 11880 tgcaaaaagg gttggcgtct ttagttttgt ggagacactt ataggaagca gttgtctttc 11940 gcccttcagc ctctaattct gtaatatgta tgttgtggag caatttccga tgttaactgt 12000 gatgctcttt gtagttattt cgttgagtta gtttgtgcaa tggttgtaaa cagtagtatt 12060 agatttgtgc ctttctaact tgtgttgctt tttcatgatc aaaatttctc ttttcttatc 12120 tagtgaagag gatctattgt tcgtagtgta tctcttagac cttatcatga cattcttttc 12180 tttttgcaat ttaaagatga tataatatct ttattacaga tagtggattc ataaattatt 12240 gttatgtact aatatgctgc tctttagcta caaacatgct tgccacaatg tttttattct 12300 ttcacccaaa tctgagaatt attttgcaat tatcagcacc gcatggcagg attagctgct 12360 attgagatag cacaaaaagt ctcaaaagct tggcgtgcct tacaagctga atggagaaac 12420 tcaactaaag gcacagggaa gtctgggaag agactcagga gaagggaaaa actaaattct 12480 attagtttaa acagaggtgg agctggttgt agcactagca gttcctccga cacatctact 12540 tcatacagtt tgattgatga taggtcaact ggacgttcca tgatgtcatg gaaccacttg 12600 tattcattgg ctgtcaaatg gagacaaata tctgaaccat gtgatccagt ggtgtggatt 12660 aacaagctaa ggtactccac ctgctattaa tttactgaag tttagttagt tattaaagtt 12720 cattgaaatc atacttggtc tcagcattct aacaaatatc tactacattt tgctaaagtc 12780 attccgattt gaattgagta cacaatgata tttttttctt ttatttttga taaagagctc 12840 ttatttctta atatcaacaa tgatattctc ttagtacata aagataataa gaatcactat 12900 cttcaccaca agcatgaaaa aaaccctcct tcaatttgct taacttgctc cgtttgatcc 12960 tttagttcta tggagttatt tcccagcttc tgtgttggtg tacttcactc tcatttggag 13020 cactcacgaa aagaaggatt ctagcatgta tgacttttga agtttgggtg aagatcttgg 13080 aggactaaag acctatttca ctttggctcg tctaagaaac taagactaaa atcattaatt 13140 cgtatttacg ccgggataac tagatatacc acactactta ccacgtcgac gagattctag 13200 tgtatgaagt gagcccccta aaaagtcgta gagaaattca agaaaaaaca cctgtcatgc 13260 gaatcaaata tccatacact tacccaatta tctaagcagt gagagcatta tgcgcaagtc 13320 taaacacatt agtaataatt tgataaaagg agaacaataa atccaactaa atccataatc 13380 gtatcattaa ttccacgatc accaaatacc ctctgcccaa aatacgaccg tgaagcatct 13440 aatagagtta atgagttcag ctatcaggca tggaaatccc aagaaagaag atatatgcta 13500 taaaatagat agagctgaaa caacggcctc cactaaaggt ctttagcttt actataatga 13560 agataatgat tctaatgtgc cgctttggct ttactttttg atgagaattc ttgttttttt 13620 gcatagtgag gaatttaata ctggttttgg gtctcacacc cctcttgttc tcggtcaagc 13680 caaagttgtt cgctaccatc ccaattttca gaggtaagag ctttaccttt ctgataagcg 13740 caaatgtatt tttttactat tatttttttg tgtaacatgg atactgcaaa tgatactgat 13800 gctatgattg accttttgag ctcattacag gatgtgtaaa ttgatgctac ccttgtaaat 13860 aactttacaa cagcttgctg ctggccatga ataaaaattc ctttttaaca gtcaaaaggc 13920 ataacctttc ttatttgtat tagctctttc tcaaggctct tattgtctgt caatgttcag 13980 aaccttgact gttgccaagg ctgttatcaa ggagaataaa tcagtgtgca acaaggaaga 14040 caagataatt gatctttctg aacaacagaa gttgcaagaa gtgagtttgt ttgcttatga 14100 cctaaattca tcttttgcac tgttttgcct ttttcacagt gtatagtttt tggttgttga 14160 taattatttt tctggttcat gtcaaaatac ctactttata gcatttccca tgacaataaa 14220 agcgtcaaat tgagaaatct ttattaggct gattttatat tggtcacatt tcttccttag 14280 atgttaactg atggctctct gaaatcaaac taggtgtcca cttgctagga ttaatacttc 14340 agtgccatac cttttttttt ctggtggtaa tcaacacctg aactgtactt tgcagataat 14400 ggctgcagaa tccagctcag atctttacag agttgttggt caagactttt ggttggccac 14460 ctggtgtaac agtacggcac ttgaagggta attttttata tttagtcctc tttatactgt 14520 ataacagtat gttactcttg aatattatct ctcatcgggg tcttttttct aattttccct 14580 cctttcttat tgcctgatca ggaagcgtct tgaaggaaca aggatcactg ttgtgaaaat 14640 gtagaacacc atttaacctt attggaattc aaccttttgt gtgtgtggaa aggagggtga 14700 cttgagtaaa atatcactta aactagatct gatttttctt attcctgtca acttttgttg 14760 ttccttccag gggtgagatt ggttacgact ttgcaattag aacaccttgc acacctgcta 14820 gatgggatga ctttgatgtg gagatgacat cagcctggga ggtatcctct tgatttatta 14880 ctagaaagcc attttctact ccatgacata gtttttggat atttgaaagc aatattacat 14940 caatgtaaaa cagtaacaca aaaattcttt agtggtcgtt ttgtaggctg tattaggtag 15000 aataatgcta gtactaaatt ttagtacaat gtttggtttt aaatctcacc tatgtactac 15060 taataccagt attacttata caccctattt aatacgattc ttatgcatag taaaccatgg 15120 cattaactat atcagtacca ttcctatact cataatcata caccctattc agtagtactc 15180 ttgataattc aatgcatgtc agattgctag ttttagtaca acaaaccaaa caatcaataa 15240 gaaatgatgt cagcataaaa attccctgta ctagtcttca aaccaaacag ccccttatag 15300 tacagttttt catggtttat tcatcttgtg cctgctcgga gatgatcagt taagtcttat 15360 aataagccta tattagtcag cttgggagtc tgttcatcag actattctct cacttttaaa 15420 aagagatttt gctaagcact gaaacaagca gaagtaatga accttttcct gtctgaacat 15480 agaagtaagc attatgcctg agatgatctg ggtttttgtt cggtatgatc tttctgaaat 15540 gatttggcat atatttctta cttgaacctg tttgtagacc tactattttg tttctaactg 15600 aagctttatc tatacccatt aatttcctat tgttgcttgc ttctgtttgt gtagctccct 15660 ttttttccct cctttcttct ttttatttgt tcttgagaca cacatatatt ttctgtttgg 15720 tacttaaata atagtgttct aattaagtta actaactagt gcccgaaagt tggcccggac 15780 accacggtca tcacacacac aaaaaaaaga gttaactaag ttgagactta aatgatagtg 15840 ttctagttag accaagttga acacaaaact gttatgcagg ctctttgtgc tgcgtactgt 15900 ggtgataatt atgggtcaac agattttgat gtgcttgaaa atgtgagaga tgcaatctta 15960 aggatgacat attactggta agatatatta acttctattt ggttgatcac aagggaagcg 16020 tatggttctc tttaatttgt ctgataattt ttgcaggtat aatttcatgc cgctttccag 16080 aggaactgct gttgttgggt tcatagtttt gcttggatta ctgctcgctg ctaatatgga 16140 gttcacagga agcattccaa aaggtctgca ggtggattgg gaagccatcc tggagtttga 16200 ctcgagttcc tttgtagatt ctgtaaagaa atggttgtac ccatctctca aagtcagcac 16260 atcgtggaaa agctacccag atgtcacgtc aacatttgag acgactggat cagttgttgc 16320 tgctctgagc acctattcag actaa 16345 <210> 2 <211> 3168 <212> DNA <213> Unknown <220> <223> Solanum lycopersicum <400> 2 atggcgtcga aagttactga taggattgaa ctagctaagc tttgtagctc taaggagtgg 60 tcgaaagcaa ttcgaattct cgattctctt cttgctcaaa cttgcgtcat tcaagatatc 120 tgcaaccgag cgttttgcta tagtcaattg gagcttcaca agcatgttat taaggattgt 180 gataaggcac ttcagctcga tcctaagctt cttcaagctt atatattcaa aggacgtgca 240 ttatctgctc ttggtaagaa agaggaagct cttctagttt gggagcaagg gtatgaacat 300 gcagttcatc agtccgcaga cttaaagcaa ctgttagagc ttgaagagct gctcaaaatt 360 gcaaagcaga acaccgcagt tggcagcaac aatcattcgg tgcagtcatc tggccctgag 420 tccaacactg gacctcctct ttctaccaaa tctggtgaaa cttgtgatat tagtaaggcc 480 tcagataggg aacttaaaac atgcagcagt gggatgttgg aaagctctga gaaatcaaag 540 aatagctctg ttttacaaaa ttcctcaagt aataattcca aaaagcataa gaagattgag 600 tctgaatcaa aggaattgca tgagagacaa gcaaataaaa ccaacaacaa ttgcaaaaaa 660 ttgggttatc catctctggt ttgcagtgag ttaagtgata tatctgaaga cagtaggaaa 720 tcatctgcag taactagtga atcaagtgaa cagtcagaac caaatgagtt gcaggaaatt 780 ctcagtcagt tgaataataa atgtgatgtt cgcgttgaat tgagtgatga aggcaagaga 840 aacaaaaaat tttgtgttac cagggtcaac aaaaccaagt ccattaacgt tgatttccga 900 ttatcaaggg gaatagcaca ggttaatgaa ggaaaatata gtaatgctgt atccatcttt 960 gaccagatac tagaacaaga tccaacgtac ccggaggcac ttatcggccg gggaacagcg 1020 ttggcatttc aaagagaact tgatgcagct atttctgatt ttacaaaggc catacaatca 1080 aatccatctg ctggagaggc ctggaaacgc agagggcaag cccgtgctgc tttaggtgaa 1140 tctgttgagg caattacaga cttgaccaaa gcgttggaat ttgagccaga ctctgccgat 1200 atattacatg aaagaggaat tgtcaatttt aagtttaaag atttcaaagg tgctgttgaa 1260 gacctctcta catgtgtaaa gtccgataag gataataaat ctgcgtatac atatttgggt 1320 ttggcgttat actctctagg agaatatagg aaggctgagg aggcacataa gaaagcaatc 1380 caaattgaaa ggaatttcct cgaggcttgg gctcatctag cacagtttta tcaagaccta 1440 gcaaactcag agaaggcctt ggaatgcctt catcagattt tgcaaataga tgggaggtac 1500 gcgaaagcat atcacctgcg cgggctgcta cttcatggaa tgggagagca taggaatgct 1560 ataaaagatt tatcaatggg gttggctatt gatagcgcaa acattgaatg cttgtatcta 1620 cgagcttctt gctatcatgc tattggatta tataaagaag cagtgaagga ctatgatgct 1680 gctttagatc ttgaattaga ttctatggaa aagtttgtgc ttcaatgctt ggcgttctat 1740 cagaaagaaa ttgcattata cactgcatca aagatgaaca gcgaattttc ttggtttgat 1800 attgatggag atatcgatcc ccttttcaag gagtattggt gcaaaaggct gcacccaaaa 1860 aatgtttgcg aaaaggtcta caggcaacct cctttaaaag aatctttgaa aaaggggaag 1920 caaagaaagc aagaatttac tttcaccaag caaaaaactg cccttctaca ggctgcagat 1980 tctatcggta gaaatatcca gtatcattgt ccaggtttct tgcataatag gcgccagcac 2040 cgcatggcag gattagctgc tattgagata gcacaaaaag tctcaaaagc ttggcgtgcc 2100 ttacaagctg aatggagaaa ctcaactaaa ggcacaggga agtctgggaa gagactcagg 2160 agaagggaaa aactaaattc tattagttta aacagaggtg gagctggttg tagcactagc 2220 agttcctccg acacatctac ttcatacagt ttgattgatg ataggtcaac tggacgttcc 2280 atgatgtcat ggaaccactt gtattcattg gctgtcaaat ggagacaaat atctgaacca 2340 tgtgatccag tggtgtggat taacaagcta agtgaggaat ttaatactgg ttttgggtct 2400 cacacccctc ttgttctcgg tcaagccaaa gttgttcgct accatcccaa ttttcagaga 2460 accttgactg ttgccaaggc tgttatcaag gagaataaat cagtgtgcaa caaggaagac 2520 aagataattg atctttctga acaacagaag ttgcaagaaa taatggctgc agaatccagc 2580 tcagatcttt acagagttgt tggtcaagac ttttggttgg ccacctggtg taacagtacg 2640 gcacttgaag ggaagcgtct tgaaggaaca aggatcactg ttgtgaaaat gggtgagatt 2700 ggttacgact ttgcaattag aacaccttgc acacctgcta gatgggatga ctttgatgtg 2760 gagatgacat cagcctggga ggctctttgt gctgcgtact gtggtgataa ttatgggtca 2820 acagattttg atgtgcttga aaatgtgaga gatgcaatct taaggatgac atattactgg 2880 tataatttca tgccgctttc cagaggaact gctgttgttg ggttcatagt tttgcttgga 2940 ttactgctcg ctgctaatat ggagttcaca ggaagcattc caaaaggtct gcaggtggat 3000 tgggaagcca tcctggagtt tgactcgagt tcctttgtag attctgtaaa gaaatggttg 3060 tacccatctc tcaaagtcag cacatcgtgg aaaagctacc cagatgtcac gtcaacattt 3120 gagacgactg gatcagttgt tgctgctctg agcacctatt cagactaa 3168 <210> 3 <211> 1055 <212> PRT <213> Unknown <220> <223> Solanum lycopersicum <400> 3 Met Ala Ser Lys Val Thr Asp Arg Ile Glu Leu Ala Lys Leu Cys Ser 1 5 10 15 Ser Lys Glu Trp Ser Lys Ala Ile Arg Ile Leu Asp Ser Leu Leu Ala 20 25 30 Gln Thr Cys Val Ile Gln Asp Ile Cys Asn Arg Ala Phe Cys Tyr Ser 35 40 45 Gln Leu Glu Leu His Lys His Val Ile Lys Asp Cys Asp Lys Ala Leu 50 55 60 Gln Leu Asp Pro Lys Leu Leu Gln Ala Tyr Ile Phe Lys Gly Arg Ala 65 70 75 80 Leu Ser Ala Leu Gly Lys Lys Glu Glu Ala Leu Leu Val Trp Glu Gln 85 90 95 Gly Tyr Glu His Ala Val His Gln Ser Ala Asp Leu Lys Gln Leu Leu 100 105 110 Glu Leu Glu Glu Leu Leu Lys Ile Ala Lys Gln Asn Thr Ala Val Gly 115 120 125 Ser Asn Asn His Ser Val Gln Ser Ser Gly Pro Glu Ser Asn Thr Gly 130 135 140 Pro Pro Leu Ser Thr Lys Ser Gly Glu Thr Cys Asp Ile Ser Lys Ala 145 150 155 160 Ser Asp Arg Glu Leu Lys Thr Cys Ser Ser Gly Met Leu Glu Ser Ser 165 170 175 Glu Lys Ser Lys Asn Ser Ser Val Leu Gln Asn Ser Ser Ser Asn Asn 180 185 190 Ser Lys Lys His Lys Lys Ile Glu Ser Glu Ser Lys Glu Leu His Glu 195 200 205 Arg Gln Ala Asn Lys Thr Asn Asn Asn Cys Lys Lys Leu Gly Tyr Pro 210 215 220 Ser Leu Val Cys Ser Glu Leu Ser Asp Ile Ser Glu Asp Ser Arg Lys 225 230 235 240 Ser Ser Ala Val Thr Ser Glu Ser Ser Glu Gln Ser Glu Pro Asn Glu 245 250 255 Leu Gln Glu Ile Leu Ser Gln Leu Asn Asn Lys Cys Asp Val Arg Val 260 265 270 Glu Leu Ser Asp Glu Gly Lys Arg Asn Lys Lys Phe Cys Val Thr Arg 275 280 285 Val Asn Lys Thr Lys Ser Ile Asn Val Asp Phe Arg Leu Ser Arg Gly 290 295 300 Ile Ala Gln Val Asn Glu Gly Lys Tyr Ser Asn Ala Val Ser Ile Phe 305 310 315 320 Asp Gln Ile Leu Glu Gln Asp Pro Thr Tyr Pro Glu Ala Leu Ile Gly 325 330 335 Arg Gly Thr Ala Leu Ala Phe Gln Arg Glu Leu Asp Ala Ala Ile Ser 340 345 350 Asp Phe Thr Lys Ala Ile Gln Ser Asn Pro Ser Ala Gly Glu Ala Trp 355 360 365 Lys Arg Arg Gly Gln Ala Arg Ala Ala Leu Gly Glu Ser Val Glu Ala 370 375 380 Ile Thr Asp Leu Thr Lys Ala Leu Glu Phe Glu Pro Asp Ser Ala Asp 385 390 395 400 Ile Leu His Glu Arg Gly Ile Val Asn Phe Lys Phe Lys Asp Phe Lys 405 410 415 Gly Ala Val Glu Asp Leu Ser Thr Cys Val Lys Ser Asp Lys Asp Asn 420 425 430 Lys Ser Ala Tyr Thr Tyr Leu Gly Leu Ala Leu Tyr Ser Leu Gly Glu 435 440 445 Tyr Arg Lys Ala Glu Glu Ala His Lys Lys Ala Ile Gln Ile Glu Arg 450 455 460 Asn Phe Leu Glu Ala Trp Ala His Leu Ala Gln Phe Tyr Gln Asp Leu 465 470 475 480 Ala Asn Ser Glu Lys Ala Leu Glu Cys Leu His Gln Ile Leu Gln Ile 485 490 495 Asp Gly Arg Tyr Ala Lys Ala Tyr His Leu Arg Gly Leu Leu Leu His 500 505 510 Gly Met Gly Glu His Arg Asn Ala Ile Lys Asp Leu Ser Met Gly Leu 515 520 525 Ala Ile Asp Ser Ala Asn Ile Glu Cys Leu Tyr Leu Arg Ala Ser Cys 530 535 540 Tyr His Ala Ile Gly Leu Tyr Lys Glu Ala Val Lys Asp Tyr Asp Ala 545 550 555 560 Ala Leu Asp Leu Glu Leu Asp Ser Met Glu Lys Phe Val Leu Gln Cys 565 570 575 Leu Ala Phe Tyr Gln Lys Glu Ile Ala Leu Tyr Thr Ala Ser Lys Met 580 585 590 Asn Ser Glu Phe Ser Trp Phe Asp Ile Asp Gly Asp Ile Asp Pro Leu 595 600 605 Phe Lys Glu Tyr Trp Cys Lys Arg Leu His Pro Lys Asn Val Cys Glu 610 615 620 Lys Val Tyr Arg Gln Pro Pro Leu Lys Glu Ser Leu Lys Lys Gly Lys 625 630 635 640 Gln Arg Lys Gln Glu Phe Thr Phe Thr Lys Gln Lys Thr Ala Leu Leu 645 650 655 Gln Ala Ala Asp Ser Ile Gly Arg Asn Ile Gln Tyr His Cys Pro Gly 660 665 670 Phe Leu His Asn Arg Arg Gln His Arg Met Ala Gly Leu Ala Ala Ile 675 680 685 Glu Ile Ala Gln Lys Val Ser Lys Ala Trp Arg Ala Leu Gln Ala Glu 690 695 700 Trp Arg Asn Ser Thr Lys Gly Thr Gly Lys Ser Gly Lys Arg Leu Arg 705 710 715 720 Arg Arg Glu Lys Leu Asn Ser Ile Ser Leu Asn Arg Gly Gly Ala Gly 725 730 735 Cys Ser Thr Ser Ser Ser Ser Asp Thr Ser Thr Ser Tyr Ser Leu Ile 740 745 750 Asp Asp Arg Ser Thr Gly Arg Ser Met Met Ser Trp Asn His Leu Tyr 755 760 765 Ser Leu Ala Val Lys Trp Arg Gln Ile Ser Glu Pro Cys Asp Pro Val 770 775 780 Val Trp Ile Asn Lys Leu Ser Glu Glu Phe Asn Thr Gly Phe Gly Ser 785 790 795 800 His Thr Pro Leu Val Leu Gly Gln Ala Lys Val Val Arg Tyr His Pro 805 810 815 Asn Phe Gln Arg Thr Leu Thr Val Ala Lys Ala Val Ile Lys Glu Asn 820 825 830 Lys Ser Val Cys Asn Lys Glu Asp Lys Ile Ile Asp Leu Ser Glu Gln 835 840 845 Gln Lys Leu Gln Glu Ile Met Ala Ala Glu Ser Ser Ser Asp Leu Tyr 850 855 860 Arg Val Val Gly Gln Asp Phe Trp Leu Ala Thr Trp Cys Asn Ser Thr 865 870 875 880 Ala Leu Glu Gly Lys Arg Leu Glu Gly Thr Arg Ile Thr Val Val Lys 885 890 895 Met Gly Glu Ile Gly Tyr Asp Phe Ala Ile Arg Thr Pro Cys Thr Pro 900 905 910 Ala Arg Trp Asp Asp Phe Asp Val Glu Met Thr Ser Ala Trp Glu Ala 915 920 925 Leu Cys Ala Ala Tyr Cys Gly Asp Asn Tyr Gly Ser Thr Asp Phe Asp 930 935 940 Val Leu Glu Asn Val Arg Asp Ala Ile Leu Arg Met Thr Tyr Tyr Trp 945 950 955 960 Tyr Asn Phe Met Pro Leu Ser Arg Gly Thr Ala Val Val Gly Phe Ile 965 970 975 Val Leu Leu Gly Leu Leu Leu Ala Ala Asn Met Glu Phe Thr Gly Ser 980 985 990 Ile Pro Lys Gly Leu Gln Val Asp Trp Glu Ala Ile Leu Glu Phe Asp 995 1000 1005 Ser Ser Ser Phe Val Asp Ser Val Lys Lys Trp Leu Tyr Pro Ser Leu 1010 1015 1020 Lys Val Ser Thr Ser Trp Lys Ser Tyr Pro Asp Val Thr Ser Thr Phe 1025 1030 1035 1040 Glu Thr Thr Gly Ser Val Val Ala Ala Leu Ser Thr Tyr Ser Asp 1045 1050 1055 <210> 4 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> gRNA1 <400> 4 gtaactttcg acgccatcgc 20 <210> 5 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> gRNA2 <400> 5 attgactata gcaaaacgct 20 <210> 6 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 6 cggtcaataa aacacgtgtc 20 <210> 7 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 7 gagcttcatc ctactcctcg 20 <210> 8 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 8 ggaacagtga aaaacgtaac 20 <210> 9 <211> 53 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 9 acactctttc cctacacgac gctcttccga tctaatcgca tcaattgagc tgc 53 <210> 10 <211> 54 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 10 gtgactggag ttcagacgtg tgctcttccg atctatgacg caagtttgag caag 54 <210> 11 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 11 acactctttc cctacacgac gctcttccga tctttggaca tttatgaatg aactgattaa 60 60 <210> 12 <211> 54 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 12 gtgactggag ttcagacgtg tgctcttccg atcttaggat cgagctgaag tgcc 54 <210> 13 <211> 64 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 13 cagtcggtct caggagtgat caaaagtccc acatcgatca ggtgatatat agcagcttag 60 ttta 64 <210> 14 <211> 64 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 14 gagtcggtct cacaatcgct atgtcgactc tatcattata taaactaagc tgctatatat 60 cacc 64 <210> 15 <211> 86 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 15 cagtcggtct caattggtaa ctttcgacgc catcgcgttt tagagctaga aatagcaagt 60 taaaataagg ctagtccgtt atcaac 86 <210> 16 <211> 74 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 16 cagtcggtct caagcgaaaa aaagcaccga ctcggtgcca ctttttcaag ttgataacgg 60 actagcctta tttt 74 <210> 17 <211> 87 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 17 cagtcggtct caattggatt gactatagca aaacgctgtt ttagagctag aaatagcaag 60 ttaaaataag gctagtccgt tatcaac 87 <210> 18 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 18 gccatatttc actcttgtga g 21 <210> 19 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 19 tagtctggcc tctcggaca 19 <210> 20 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 20 tccaggtaga gacagtggta aa 22 <210> 21 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 21 ctggtttctt tggtgttcct gc 22 <210> 22 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 22 gcaacaactg tccatacacc 20 <210> 23 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 23 agactccacc acaatcacc 19 <210> 24 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 24 gacaagcaat agcaggagtg 20 <210> 25 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 25 taagtgtgcc aacatcagac 20 <210> 26 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 26 gaaatagcat aagatggcag acg 23 <210> 27 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 27 atacccacca tcacaccagt at 22 <210> 28 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 28 ctgctctctc agtagccaac ac 22 <210> 29 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 29 cttcctccaa tagcagaggt tt 22 <110> INDUSTRY-ACADEMIC COOPERATION FOUNDATION GYEONGSANG NATIONAL UNIVERSITY <120> Plant immune regulator SRFR1 gene from tomato and uses its <130> PN21168 <160> 29 <170> KoPatentIn 3.0 <210> 1 <211> 16345 <212> DNA < 213> Unknown <220> <223> Solanum lycopersicum <400> 1 atggcgtcga aagttactga taggattgaa ctagctaagc tttgtagctc taaggagtgg 60 tcgaaagcaa ttcgaattct cgattctctt cttgctcaaa cttgcgtcat tcaagatatc 120 tggtccgtta c gtttttcac tgttccatct ttttccctgt ttgtatatag gtttttggac 180 atttatgaat gaactgatta atttttctga atttaaaatg tgttcaattc tttttcagca 240 accgagcgtt ttgctatagt caattggagc ttcacaagca tgttattaag gattgtgata 300 aggcacttca gctcgatcct aagcttcttc aagcttatat attcaaaggt tcttttcatt 360 ttctccttgc atttccagct aactgttttt accgtgtata agaaatgcga aagagaattt 420 agaagttttc aattgcattt ggaatgtcaa ttttgaatgt ggatgtg ttg tggtcaggca 480 tcctaatccc tataggcctg tgaagtcatc tgggatactc taaatttaca attttagggt 540 tcttgttcaa atttaggtga ttggctataa ttgagtaaat ttttctggtt ttggacaaac 600 atgaaccatt ggtaatttcg aggagtagga tgaagctctt gtaaagc tag tgaactgttg 660 cacctctcgg ttgatgtcct acaatttacg actattgtca agtatgcgcc aaaataaggg 720 ttagctttaa atgaattgtg tatgtgagaa gccattttaa gcttgataaa ggtcatattg 780 gacttgcttt ctgtatccta tagtggtctt atattatatt tttgaaatga cttttaactt 840 taaaataaac tatgtttggt tggggtataa agggaaggga tggaaaaataa aggagggcat 900 aagatggttg a attctatgc tcgcggggta cagtagaggg tttgaccata ttgtgtctat 960 tgttaagtac cttttctcta aaaggctatt tccacggcat gaacgtgtga cctccttgta 1020 tcattgcaac aactccgatc agataaaaag atcaaataca tttttgtctc ttgtgtgtaa 108 0 catagccctt gaaataatga tataagaatt tgaattaaca atattcttgt gtggatactg 1140 tggattttcc ctagatgtgg ttatagttta tgctgcagaa atttcaatat tcttaaagct 1200 ttacaaactg gatttttgag tttgaagcat tatgtaacaa agttacttga tacttgttgc 1260 ttaggacgtg cattatctgc tcttggtaag aaagaggaag ctcttctagt ttgggagcaa 1320 gggtatgaac atgcagttca tcagtccgca gacttaaagc aactgttaga gcttgaagag 1380 ctgctcaaaa ttgcaaagca gaacaccgca gttggcagca acaatcattc ggtgcagtca 1440 tctggccctg agtccaacac tggacctcct ctttctacca aatctggtga aacttgtgat 15 00 attagtaagg cctcagatag ggaacttaaa acatgcagca gtgggatgtt ggaaagctct 1560 gagaaatcaa agaatagctc tgttttacaa aattcctcaa gtaataattc caaaaagcat 1620 aagaagatg agtctgaatc aaaggaattg catgagagac aagcaaataa aaccaacaac 1680 aattgcaaaa aattgggtta tccatctctg gtttgcagtg agttaagtga tatatctgaa 1740 gacagtagga aatcatctgc agtaactagt gaat caagtg aacagtcaga accaaatgag 1800 ttgcaggaaa ttctcagtca gttgaataat aaatgtgatg ttcgcgttga attgagtgat 1860 gaaggcaaga gaaacaaaaa attttgtgtt accagggtca acaaaaccaa gtccattaac 1920 gttgatttcc gggaatagca caggtacact gcctatcctg tgatattaca 1980 atgaagacag gaagaattag tccatctatt gatatttcct gttagtgcgg ttgatcatta 2040 atatgctatt cttctttatt gaaatacaaa taacaataca tttgtaactt caaatatatg 2100 ccaaagatca acttcatgtc tcaatttgtg agattatttt ctctcaaatt aagtagagaa 2160 atgaattttt tcttgatata tctgctaggt actgggat ac catgctcatg catagcagga 2220 aaggccttct actgcagtct tcatgtcttt tctgttcact ttgcttattt cagttgtaat 2280 ttggtgatta cactccactt ttaattttgt gaacttaact ggaagattct gcatatgttc 2340 aaagcttggg tcaactaagc tctattatta t tcttcagtta ctagatttgt 2400 atctctaact cttatgtgtt aaatttatgg agttagtatc atttttgcag tgtgcttgac 2460 tgcatgtttt gctttgttta aacttaagat gtcaaaatag gtttgtgatt gccagtcatt 2520 ctttctctct ctagtctcac atatccgcac tatagtgaca ttaaaacaaa aaagaagaag 2580 agaatttagc ttgattattt cttcaatcta gtagggtgta t tttctttcc tacgccccct 2640 aagctgcggt ggacagaggt attcggtatt tgcaccgata ggaggattta gatacccact 2700 agactacttg agatgcctgt aggttggtcc tgacaccatt gttattcaaa agaatgatgg 2760 taaattgaca atctagctct gtgtgcatat gtca aacacaagat gtgaaacaat 2820 aagtagtgct gcttgatgtg gttgagatca tggatattct gcttgcaatt gatctgacta 2880 tcacgtctcg ttgcttactt cttcaagaga ttagattatc atgatttaaa atgttgtgtt 2940 tctaaattgg atcatttatc tggggaactt cttgcccatt ttacattaga atatccaaaa 3000 cttgtatgtg tatgctgtcg taatgcagta gtagttgtct ccaaaatcc c ttgatgtagg 3060 taggatgcag attatgacat ttcacaagga gcctggagag actggttaat cactctaaca 3120 accaattaga tgatgtgtca tgcaattgtg aaatacttga gtttgccagc aattcttcta 3180 tattgatcca gaccttctag agatatccat ccaaaactag tcttgacact t ggatccata 3240 gaggtatcaa taagtttgca atctagtata ccttgtttct tccaatatat caggtggata 3300 cttcccttag gccttatgat attggacgtg caaacttgat ggttaggatg tattttatgt 3360 ttctacaagt gcctagtctt aaaatgactg gtgttgtata ataccttgaa gcctataagg 3420 ttgtaaggaa acagagtaaa acagatcaaa ctatgcttaa tgagactgct taagaccata 3480 aattatcggc cttgtcgaaa cgctacttta aactcttctt agttgatgtc taactgatga 3540 ctgatgaagg aactagtgga gcgtggtcgc catagaaatg gaaagaccag cacatgcaat 3600 tttagttgct aagagagagt atcaaccatt gccatatatc tgaatgtatt tgt tgacaat 3660 tgattgagct ttgagacaat tataaccatc ttgattataa atactcaatg aaatccaact 3720 gtagttttat tcctgtggag gatctatctc tgaagtgcca ctgttttttg ttgtcaggca 3780 tctccttaga tatgcatgca attggtttta ccagtctaag atattgaatt tgtgcataat 3840 ttgtaatgca agcatgatat aaatgtgaaa aacaatgtga aacacctact ggattagttg 39 00 gtagacgatt tgctcaaagc tgtcttcagt agaaccaaag aagagaagaa aattgttgga 3960 gaactgtcat aggggaagta agtttgtatc acaaaaaaac aaggatgaga atcgtgaaaa 4020 atgtttagtt tgctattccc tcaaggtaat gaagtttaaa tagtgtttac atatgat ata 4080 atataggaag attgaatttc ccggattaat atttgttggt agcggaaaagg gggatgcgag 4140 tctgagatgg ttcggatatg taaagaggag atgcacatat gttccagtga agaggtgtga 4200 gcgagtttgt ctatggtgga tctgaggaga ggtaggtgta ggttgaagaa gtattgtgta 4260 gaaatgatta gttgaacatt gtctcgctgt catttaggag gggcatgatg atagtttgga 4320 acaaattact tgttggctgt cctttctttt ccatattagt attattgtta ttactcttct 4380 attatattat tctccgattt ttattagtac atattttttc ctttgcttta attatcgtag 4440 tattgtttgt tgttgttact gttcttttct ccattatttc cgacatgaat tcttcacaac 4500 tgtatctcct tttcaaacct gctttgaatg ctttacttga gccgagggtc tatcggaaac 4560 aaccactcta ccctcacaag gcaggcacca cccttcccaa acctacttgt gggattacac 4620 cggatatgtt attgttatgt gatattccct gatctcctat acatatttcc ttatctaagt 4680 ccttaattac aaaatattct taacaagatc aatcatctct gagataataa atacaattcg 4740 aaatattaag gttaatccaa atatttttat cttgcaac aa tagtttcctt ttttttcttt 4800 tttcttaaac aagaaatatt tttaactttg taagttgagc agcaacgcca tttttagtga 4860 aaattgtgct taagtatgtt ggatggaaac tagcaaagcg aacacatgac ttaccccgaaa 4920 gccaagttgc tcggactcta t actttcagt gtcgcacccg tgttgacacg ccatgggtgt 4980 gggattcgta cccggtatgg tcaaccagtt ttggatactc tgaacaaatt cgagggagaa 5040 attctggaca ggttcaatga tttttgtaat caaaacaaaa ctaatgtgat ttgaagaaaa 5100 tggaatgcct tgtatatata aatttcattt gtcaccccct ttccttttat ctccttccaa 5160 gattctcctc ttgatcaaat attttctcc t caacttttcc gcataatatc tcataatttt 5220 aggttttata actctattag tagatatttt gaattatctt tcggcgaatc cccacatccg 5280 tttccataca tggatcttta tctctgaatc ttaaaattta tatcatagag gatccgacct 5340 ctagatccgc acctgcattg ggcacctgta ctg agcaacttaa cccgaaagaa 5400 gtttcaaaag agattgcacc cattcggtga tttagtggat gtaattaacc aggacttgag 5460 ttaaactatt tctttctatt cccatgtctt gactagcgat attcagttcc ttttcgtaag 5520 tatatatttg taggtaatta tattttttcc tcgatcttcc agttacgaca ctatttaatc 5580 atgtattcat cgtatttaat tgagaaatat ggtcaacgag gaat catcta gccggctctg 5640 acttgcttgg ttttgaggcg tagtaatagt tgttattact cgtcatcctg tacaaacata 5700 gaagcgtaaa acaatatttt tggtgatttc aggttaatga aggaaaatat agtaatgctg 5760 tatccatctt tgaccaggtt agcattagcc ttaccactct atttt actagttttg 5820 tttgctagat gtgccttgtg ctttatttg ccctttttca tgtttgaatg gattaaacgg 5880 aggacttgtg tgtggcatgc tgaacttact tacggagctt cttctcttct atctataata 5940 acacagatac tagaacaaga tccaacgtac ccggaggcac ttatcggccg gggaacagcg 6000 ttggcatttc aaagagaact tgatgcagct atttctgatt ttacaaaggt cattgat 6060 ttggccattt aagtaccaat tgaggtaata cttcaacccc tgttgtaaat atttaccacc 6120 tgcctttcag gccatacaat caaatccatc tgctggagag gcctggaaac gcagagggca 6180 agcccgtgct gctttaggtg aatctgttga ggtataaaat tcgtatt tgt ctatttattg 6240 agctatcttt tggcttttgt cttcagggta ttcttttctg ctatatttat tttttttcaa 6300 agtcaacttt caatgatctc ttctgtggat gtgatgtgca gtgtaaatga tgtggaatta 6360 ctgaatttta tcacttgtgc tatcagattt tgaaaccaaa tttttcgtta atagcaatca 6420 gactccagtt agaccactag ggatattatc aagaggcact tggttatttt ccttcagatt 6480 gtggtagctt acagagttaa tgatggaaga tgaaatgtct ttggatgttc taactaaggc 6540 ttgagctata tcacaactta tgagcatctt cccgtgaaag ttaaattcta aaatggaatc 6600 aggagcataa cattattcag ctgcatcctt ttgatcatgg gagtttcttg gtagtc taag 6660 tctaaaacat aattttaaca ttctgatgag ttagttttag ttttgttttg ctccgattat 6720 cccatggaga gtgatattag ttacatttaa acgcttttta cttcctaaaa atgttggttt 6780 cacagtaaaa gtagtatgat tgatatttgt gacttggtat atctaaacaa aatgatttta 6840 caccaggcaa ttacagactt gaccaaagcg ttggaatttg agccagactc tgccgatata 6900 ttacatga aa gaggtgacga gactgaactc ttccatttac tatgaacaat tggatttatg 6960 ctgttaaagt agatagacat aaatagcaaa acatacattt tatgacagat agcttttgtg 7020 catgtaattt gaaactaagg ttcactttca tctttacaac actgagatta tttattgagg 7080 cccataggtg gtt tcatctt gtaactattt tgcaataaat gacctctagc ggaatattcc 7140 ataatttctt gagatttcag aaaagatcat ttgattggac aaagtttgtt caatctaacc 7200 tggggagtcac taactctcct taattagtgc aggaattgtc aattttaagt ttaaagattt 7260 caaaggtgct gttgaagacc tctctacatg tgtaaagtcc gataaggata ataaatctgc 7320 gtatacatat tc tatgaccttg agtctaccaa ttgttgtaga atgagctaag 7380 aatgtttatc cgcaaaagtt tgagaaattt tttgttggaa aaatactgat ataatgctgg 7440 tcgaaaaaaa tttggaaaat tatcagggtt tggcgttata ctctctagga gaatatagga 7500 aggct gagga ggcacataag aaagcaatcc aaattgaaag gaatttcctc gaggcttggg 7560 ctcatctagc acaggtatct ctgaatatat ggtgaatact cttaatgcta tttttcctgc 7620 caagtgggat cccaatactt ctattggtag tgctgatgat atagagtttc ttgatgatga 7680 agttgccttt tgacttcgag aattttctta taccaagttc ttgtttttgt ttgtctcttt 7740 ttt caccggt atctggaact caaggttgag gtaaatatat acttctgcat gcaagttaag 7800 aaattcaaga ataaggattt aaatggcaag tagacattct attgcttaac cagtgatgaa 7860 gagcctaact ctctgttatc agatattgtg tgagcgttca tcttctgggg tgcaatgcac 7920 ta atagcttttg ccttgttgca ttttcagata aggtctcctg attagctggt 7980 agatgttatt aatttacatc atcaaattgg atgtttatgg aatatctatt gccataagtt 8040 taaaattcct aagactcagg agctgctcta acctagttct tgattggttg agtttcttca 8100 cttatattaa atgtggcaaa acaatgagat ctctttgaag atattttttt aatgatgtat 8160 ttgattattg aagaatcttt atctttggtg cag ttttatc aagacctagc aaactcagag 8220 aaggccttgg aatgccttca tcagattttg caaatagatg ggaggtgatt actgaggatc 8280 tcaatattta catctttttc accgataaat atctaatctc gagtatttga atggtgaagt 8340 ataaaaccta tcctcaaata ggaatataac tgataatc ca tcctctatct accctttttc 8400 gttggaaggt acgcgaaagc atatcacctg cgcgggctgc tacttcatgg aatgggagag 8460 cataggtaca tatttctgaa aaattttgct gtcctgagtc tcccctttct ctcttttttg 8520 tcaaattttc tatgtataat cctcttttaa cgaaaaatgt agcaggcctt aactgcctat 8580 atatgctgtt acaggaatgc tataaaagat tta tcaatgg ggttggctat tgatagcgca 8640 aacattgaat gcttgtatct acgagcttct tgctatcatg ctattggatt atataaagaa 8700 gcagtatggg cattttcaaa ctcgtctctt gtgacttttg agtattctta aatattttaa 8760 ggtggttgtc tccaatttca gatt attgat tctgaattta tgctgtaggt gaaggactat 8820 gatgctgctt tagatcttga attagattct atggaaaaagt ttgtgcttca atgcttggcg 8880 ttctatcagg taaataagta tatgccagat ttccgtccat cgagctggtt caatgttatg 8940 cctctactaa gtattgtttt cttttgtgtt gcactatttt ctttttgctt tctaagtttt 9000 ggcattttct aactgttagc ttttaccttg ctggaat ggt tctcgattct caagtggaca 9060 actcatactt caaattttag atttgtcatt tcgggttgtt agccatttta gtagttgcaa 9120 ttttacattt acttaagtta gtagtcaaaa atttagcaat tttacatttt cccacaaatt 9180 gtccaaacat tggctaaatt tctgaccatc cc gttaagccac tgttggacag 9240 tttgggtcga agtggccgat ggttaacaaa gccaagcttg gcttggttta agcttgatta 9300 tgattgcgtt taggtgtccc gcatattcaa acctagcaca aatgtcccta ccaaaagctc 9360 gagttgacag atgctagctt gtgagcccag ttaagttggc agtgttcttt tcacttaacc 9420 attacacatc cggtaaaata agattttgct acccggatca tttaatagtc ctatggaa ac 9480 tcttttcatt ctagttgtgt gctcctcctc cttcctcatt cttgtgaaca gccttctgct 9540 tcctgcctgt gacaatacag gtgcagccat tatcatgaga caccaattga tctctctatc 9600 tctgttattt tttgtccaat ttctatttca gtttgaatag cttatgtttt gcttttcaat 9660 atttttccct tgcagaaaga aattgcatta tacactgcat caaagatgaa cagcgaattt 9720 tcttggtttg atattgatgg agatatcgat ccccttttca aggtaatgtc taaaaagaga 9780 atatattgct tggttatttt ttgatacact cattaaaaac aacacggaat attctggtag 9840 cctctgtacc gcctctttct gagagaattg ggaaaaggaa tgaagtttga agttatagca 9900 aaaagtacta ggtggga attacgcaga actttgaagg ttagcagaga atttggagaa 9960 tgaatgaagt ttaaagaaat aaggcctcac tgattcaatt tgaattcgat tataagctta 10020 cctgaagaat ttgaccgtga aatcactaca actctgtcaa agtaattgga cattttacca 10080 tatcttttaa ctctattatg tagagttatc ccttttaggc ttcaaaacct 10140 tctttagagc ccccatcatt tccttaaccc ccactaaatg gttggaaagt gatctcttct 10200 caaccaatag tctcataaga ttgctacaac agtttcattg ctcaattact ttatcatgag 10260 tagagtggca atggatacaa ggactatcta gaaacgtaaa ggttgctttc actgagttgc 10320 tgctgcagac at tgcttgca ctttaagtat gtgctttatt tggtgcatat gttccttcat 10380 agttagttgt caatgttctt ttgctgatcc atgtcgaatg ggtgtgcgga gtctggaaaa 10440 tactaaacgt tctgaaaaag tcacaggtac ccatatggat aggacaaagt tactggttcc 10500 agttaggtag ataatcaatg aaggtacaac atgcatatac cagtgatagt tttctggaat 10560 gatgtgtagt ctccagttca taaacctaac agtgctttaa tcacttttat gcacctggag 10620 ggtccagggt gataccttta caaagtgaac tgtcatggga aaacctttga tttcaaatga 10680 tggtttcttg acagatatgt gggatcattt cattaatttt aggggctaat aatcagtttt 10740 tgtaaatctc ggatctaaag tggtagatac ctctatgaag tgaactgtca tctgaaaagt 10800 gcttttgttg gcagtgaatt tcttatctca aagttattat ttccattgac ttcgtgttct 10860 tatacttcgt tctcaattcc tacttttttt tcccttctgt tctcaggagt attggtgcaa 10 920 aaggctgcac ccaaaaaatg tttgcgaaaa ggtctacagg caacctcctt taaaagaatc 10980 tttgaaaaag gggaagcaaa gaaagcaaga atttactttc accaagcaaa aaactgccct 11040 tctacaggct gcagattcta tcggtagaaa tatccagtat cattgtccag gtttcttgca 11100 taataggcgc caggtaattc taaaaagagt taaatattaa gttaactttg ttctttctaa 11160 aaaaacccag agctccacat tttccttgag a aacctgata gtgatttcct gttgctttat 11220 tagatgcctt tttatgcttt gctttcacat ttcctctaat atagacaatg agaatattga 11280 aggaaaagaa tatgaaaatg ttaccagaac cttttgtttg cattagttgc cttgtaattg 11340 agggatttga c cgattataag agaaagttct tgtacaagaa tgttaccttt 11400 attttcacac tcaacgtttc ctctccagct ttcgctgtac acactccttg ttttccatca 11460 atagttagtt actttccatg aaatataaaa attaaggaat tcatctcaaa ttaggttatc 11520 ggaaaaaaaa gaagagaatc catctgtcaa cagaagattt tcactatttg tggactagtg 11580 ttctatcttc tcttagcaca gaaagtgaga tttggatctt aaaga caata acaacaaacc 11640 cagcgaaatc tcactacatg ggctctgggg atcttaagga ctgtttagca ttttatattc 11700 cacaattatg aatgataact ttctacacac actgttaaat aagattgagg tgactgccaa 11760 gtgccaaggc tacatttcta gtgaaaatgt ctaaaatgaa tagcatg caa ctaataataa 11820 tacttataga tgtgaataat gatgttagac taagaatgcc aagttttgat ggtcatctag 11880 tgcaaaaagg gttggcgtct ttagttttgt ggagacactt ataggaagca gttgtctttc 11940 gcccttcagc ctctaattct gtaatatgta tgttgtggag caatttccga tgttaactgt 12000 gatgctcttt gtagttattt cgttgagtta gtttg tgcaa tggttgtaaa cagtagtatt 12060 agatttgtgc ctttctaact tgtgttgctt tttcatgatc aaaatttctc ttttcttatc 12120 tagtgaagag gatctattgt tcgtagtgta tctcttagac cttatcatga cattcttttc 12180 tttttgcaat aagatga tataatatct ttattacaga tagtggattc ataaattatt 12240 gttatgtact aatatgctgc tctttagcta caaacatgct tgccacaatg tttttattct 12300 ttcacccaaa tctgagaatt attttgcaat tatcagcacc gcatggcagg attagctgct 12360 attgagatag cacaaaaagt ctcaaaagct tggcgtgcct tacaagctga atggagaaac 12420 tcaactaaag gcacagggaa gtctgggaag agactcagga gaagggaaaa actaaattct 12480 attagt ttaa acagaggtgg agctggttgt agcactagca gttcctccga cacatctact 12540 tcatacagtt tgattgatga taggtcaact ggacgttcca tgatgtcatg gaaccacttg 12600 tattcattgg ctgtcaaatg gagacaaata tctgaaccat gtgatccagt ggtgtggatt 1266 0 aacaagctaa ggtactccac ctgctattaa tttactgaag tttagttagt tattaaagtt 12720 cattgaaatc atacttggtc tcagcattct aacaaatatc tactacattt tgctaaagtc 12780 attccgattt gaattgagta cacaatgata tttttttctt ttattttga taaagagctc 12840 ttatttctta atatcaacaa tgatattctc ttagtacata aagataataa gaatcactat 12900 cttc accaca agcatgaaaa aaaccctcct tcaatttgct taacttgctc cgtttgatcc 12960 tttagttcta tggagttatt tcccagcttc tgtgttggtg tacttcactc tcatttggag 13020 cactcacgaa aagaaggatt ctagcatgta tgacttttga agtttgggtg gg 13080 aggactaaag acctatttca ctttggctcg tctaagaaac taagactaaa atcattaatt 13140 cgtatttacg ccgggataac tagatatacc acactactta ccacgtcgac gagattctag 13200 tgtatgaagt gagcccccta aaaagtcgta gagaaattca agaaaaaaca cctgtcatgc 13260 gaatcaaata tccatacact tacccaatta tctaagcagt gagagcatta tgcgcaagtc 13320 taaacacatt agtaataatt tgataa aagg agaacaataa atccaactaa atccataatc 13380 gtatcattaa ttccacgatc accaaatacc ctctgcccaa aatacgaccg tgaagcatct 13440 aatagagtta atgagttcag ctatcaggca tggaaatccc aagaaagaag atatatgcta 13500 taaaatagat agagctgaaa caacggcctc cactaaaggt ctttagcttt actataatga 13560 agataatgat tctaatgtgc cgctttggct ttactttttg atgagaattc ttgttttttt 13620 gcatagtgag gaatttaata ctggttttgg gtctcacacc tcggtcaagc 13680 caaagttgtt cgctaccatc ccaattttca gaggtaagag ctttaccttt ctgataagcg 13740 caaatgtatt tttttactat tatttttttg tgtaacatgg atactgcaaa tgatactgat 13800 gctatgattg accttttgag ctcattacag gatg tgtaaa ttgatgctac ccttgtaaat 13860 aactttacaa cagcttgctg ctggccatga ataaaaattc ctttttaaca gtcaaaaggc 13920 ataacctttc ttatttgtat tagctctttc tcaaggctct tattgtctgt caatgttcag 13980 aaccttgact gttgccaagg ctgttatcaa ggagaataaa tcagtgtgca acaaggaaga 14040 caagataatt gatctttctg aacaacagaa gttgcaagaa gtgagtttgt ttgcttatga 14100 cctaaattca tcttttgcac tgttttgcct ttttcacagt gtatagtttt tggttgttga 14160 taattatttt tctggttcat gtcaaaatac ctactttata gcatttccca tgacaataaa 14220 agcgtcaaat tgagaaatct ttattaggct gattttatat tggt cacatt tcttccttag 14280 atgttaactg atggctctct gaaatcaaac taggtgtcca cttgctagga ttaatacttc 14340 agtgccatac cttttttttt ctggtggtaa tcaacacctg aactgtactt tgcagataat 14400 ggctgcagaa tccagctcag atctttacag agttgttggt caagactttt ggttggccac 14460 ctggtgtaac agtacggcac ttgaagggta attttttata tttagtcctc tttatactgt 14520 at aacagtat gttactcttg aatattatct ctcatcgggg tcttttttct aattttccct 14580 cctttcttat tgcctgatca ggaagcgtct tgaaggaaca aggatcactg ttgtgaaaat 14640 gtagaacacc atttaacctt attggaattc aaccttttgt gtgtgtggaa tga 14700 cttgagtaaa atatcactta aactagatct gatttttctt attcctgtca acttttgttg 14760 ttccttccag gggtgagatt ggttacgact ttgcaattag aacaccttgc acacctgcta 14820 gatgggatga ctttgatgtg gagatgacat cagcctggga ggtatcctct tgatttatta 14880 ctagaaagcc attttctact ccatgacata gtttttggat atttgaaagc aatattacat 14940 caatgtaaaa cagtaacaca a aaattcttt agtggtcgtt ttgtaggctg tattaggtag 15000 aataatgcta gtactaaatt ttagtacaat gtttggtttt aaatctcacc tatgtactac 15060 taataccagt attacttata caccctattt aatacgattc ttatgcatag taaaccatgg 15120 cattaactat atcagtacca tatact cataatcata caccctattc agtagtactc 15180 ttgataattc aatgcatgtc agattgctag ttttagtaca acaaaccaaa caatcaataa 15240 gaaatgatgt cagcataaaa attccctgta ctagtcttca aaccaaacag ccccttatag 15300 tacagttttt catggtttat tcatcttgtg cctgctcgga gatgatcagt taagtcttat 15360 aataagccta tattagtcag cttgggagtc t gttcatcag actattctct cacttttaaa 15420 aagagatttt gctaagcact gaaacaagca gaagtaatga accttttcct gtctgaacat 15480 agaagtaagc attatgcctg agatgatctg ggtttttgtt cggtatgatc tttctgaaat 15540 gatttggcat atatttct ta cttgaacctg tttgtagacc tactattttg tttctaactg 15600 aagctttatc tatacccatt aatttcctat tgttgcttgc ttctgtttgt gtagctccct 15660 ttttttccct cctttcttct ttttatttgt tcttgagaca cacatatatt ttctgtttgg 15720 tacttaaata atagtgttct aattaagtta actaactagt gcccgaaagt tggcccggac 15780 accacggtca tcacacacac aaaaaaaaga gttaactaag gactta aatgatagtg 15840 ttctagttag accaagttga acacaaaact gttatgcagg ctctttgtgc tgcgtactgt 15900 ggtgataatt atgggtcaac agattttgat gtgcttgaaa atgtgagaga tgcaatctta 15960 aggatgacat attactggta agatatatta acttctatt t ggttgatcac aagggaagcg 16020 tatggttctc tttaatttgt ctgataattt ttgcaggtat aatttcatgc cgctttccag 16080 aggaactgct gttgttgggt tcatagtttt gcttggatta ctgctcgctg ctaatatgga 16140 gttcacagga agcattccaa aaggtctgca ggtggattgg gaagccatcc tggagtttga 16200 ctcgagttcc tttgtagatt ctgtaaagaa atggtt gtac ccatctctca aagtcagcac 16260 atcgtggaaaa agctacccag atgtcacgtc aacatttgag acgactggat cagttgttgc 16320 tgctctgagc acctattcag actaa 16345 <210> 2 <211> 3168 <212> DNA <213> Unknown < 220> <223> Solanum lycopersicum <400> 2 atggcgtcga aagttactga taggattgaa ctagctaagc tttgtagctc taaggagtgg 60 tcgaaagcaa ttcgaattct cgattctctt cttgctcaaa cttgcgtcat tcaagatatc 120 tgcaaccgag cgttttg cta tagtcaattg gagcttcaca agcatgttat taaggattgt 180 gataaggcac ttcagctcga tcctaagctt cttcaagctt atatattcaa aggacgtgca 240 ttatctgctc ttggtaagaa agaggaagct cttctagttt gggagcaagg gtatgaacat 300 gcagttcatc agtcc gcaga cttaaagcaa ctgttagagc ttgaagagct gctcaaaatt 360 gcaaagcaga acaccgcagt tggcagcaac aatcattcgg tgcagtcatc tggccctgag 420 tccaacactg gacctcctct ttctaccaaa tctggtgaaa cttgtgatat tagtaaggcc 480 tcagataggg aacttaaaac atgcagcagt gggatgttgg aa agctctga gaaatcaaag 540 aatagctctg ttttacaaaa ttcctcaagt aataattcca aaaagcataa gaagattgag 600 tctgaatcaa aggaattgca tgagagacaa gcaaataaaa ccaacaacaa ttgcaaaaaa 660 ttgggttatc catctctggt ttgcagtgag ttaagtgata tatct gaaga cagtaggaaa 720 tcatctgcag taactagtga atcaagtgaa cagtcagaac caaatgagtt gcaggaaatt 780 ctcagtcagt tgaataataa atgtgatgtt cgcgttgaat tgagtgatga aggcaagaga 840 aacaaaaaat tttgtgttac cagggtcaac aaaaccaagt ccattaacgt tgatttccga 900 ttatcaaggg gaatagcaca ggttaatgaa ggaaaatata gtaatgct gt atccatcttt 960 gaccagatac tagaacaaga tccaacgtac ccggaggcac ttatcggccg gggaacagcg 1020 ttggcatttc aaagagaact tgatgcagct atttctgatt ttacaaaggc catacaatca 1080 aatccatctg ctggagaggc ctggaaacgc agagggcaag cccgt gctgc tttaggtgaa 1140 tctgttgagg caattacaga cttgaccaaa gcgttggaat ttgagccaga ctctgccgat 1200 atattacatg aaagaggaat tgtcaatttt aagtttaaag atttcaaagg tgctgttgaa 1260 gacctctcta catgtgtaaa gtccgataag gataataaat ctgcgtatac atatttgggt 1320 ttggcgttat actctctagg agaatatagg aaggctgagg aggcacataa gaaagcaat c 1380 caaattgaaa ggaatttcct cgaggcttgg gctcatctag cacagtttta tcaagaccta 1440 gcaaactcag agaaggcctt ggaatgcctt catcagattt tgcaaataga tgggaggtac 1500 gcgaaagcat atcacctgcg cgggctgcta cttcatggaa tgggagagca taggaatgct 1560 ataaaagatt tatcaatggg gttggctatt gatagcgcaa acattgaatg cttgtatcta 1620 cgagcttctt gctatcatgc tattggatta tataaagaag cagtgaagga ctatgatgct 1680 gctttagatc ttgaattaga ttctatggaa aagtttgtgc ttcaatgctt ggcgttctat 1740 cagaaagaaa ttgcattata cactgcatca aagatgaaca gcgaattttc ttggtttgat 1800 attgatggag atatcgatcc ccttttcaag gagtattggt gcaaaaggct gcacccaaaa 1860 aatgtttgcg aaaaggtcta caggcaacct cctttaaaag aatctttgaa aaaggggaag 1920 caaagaaagc aagaatttac tttcaccaag caaaaaactg cccttctaca ggcttgca gat 1980 tctatcggta gaaatatcca gtatcattgt ccaggtttct tgcataatag gcgccagcac 2040 cgcatggcag gattagctgc tatgagata gcacaaaaag tctcaaaagc ttggcgtgcc 2100 ttacaagctg aatggagaaa ctcaactaaa ggcacaggga agtctgggaa gagactcagg 2160 agaagggaaa aactaaattc tattagttta aacagaggtg gagctggttg tagcactagc 2220 agttcctccg aca catctac ttcatacagt ttgattgatg ataggtcaac tggacgttcc 2280 atgatgtcat ggaaccactt gtattcattg gctgtcaaat ggagacaaat atctgaacca 2340 tgtgatccag tggtgtggat taacaagcta agtgaggaat ttaatactgg ttttgggtct 2400 cacacccctc ttgttctcgg tcaagccaaa gttgttcgct accatcccaa ttttcagaga 2460 accttgactg ttgccaaggc tgttatcaag gagaataaat cagtgtgcaa caaggaagac 2520 aagataattg atctttctga acaacagaag ttgcaagaaa taatggctgc agaatccagc 2580 tcagatcttt acagagttgt tggtcaagac ttttggttgg ccacctggtg taacagtacg 2640 gcacttgaag gga agcgtct tgaaggaaca aggatcactg ttgtgaaaat gggtgagatt 2700 ggttacgact ttgcaattag aacaccttgc acacctgcta gatgggatga ctttgatgtg 2760 gagatgacat cagcctggga ggctctttgt gctgcgtact gtggtgataa ttatgggtca 282 0 acagattttg atgtgcttga aaatgtgaga gatgcaatct taaggatgac atattactgg 2880 tataatttca tgccgctttc cagaggaact gctgttgttg ggttcatagt tttgcttgga 2940 ttactgctcg ctgctaatat ggagttcaca ggaagcattc caaaaggtct gcaggtggat 3000 tgggaagcca tcctggagtt tgactcgagt tcctttgtag attctgtaaa gaaatggttg 3060 tacccatct c tcaaagtcag cacatcgtgg aaaagctacc cagatgtcac gtcaacattt 3120 gagacgactg gatcagttgt tgctgctctg agcacctatt cagactaa 3168 <210> 3 <211> 1055 <212> PRT <213> Unknown <220> <223> Solanum lycopersicum <400> 3 Met Ala Ser Lys Val Thr Asp Arg Ile Glu Leu Ala Lys Leu Cys Ser 1 5 10 15 Ser Lys Glu Trp Ser Lys Ala Ile Arg Ile Leu Asp Ser Leu Leu Ala 20 25 30 Gln Thr Cys Val Ile Gln Asp Ile Cys Asn Arg Ala Phe Cys Tyr Ser 35 40 45 Gln Leu Glu Leu His Lys His Val Ile Lys Asp Cys Asp Lys Ala Leu 50 55 60 Gln Leu Asp Pro Lys Leu Leu Gln Ala Tyr Ile Phe Lys Gly Arg Ala 65 70 75 80 Leu Ser Ala Leu Gly Lys Lys Glu Glu Ala Leu Leu Val Trp Glu Gln 85 90 95 Gly Tyr Glu His Ala Val His Gln Ser Ala Asp Leu Lys Gln Leu Leu 100 105 110 Glu Leu Glu Glu Leu Leu Lys Ile Ala Lys Gln Asn Thr Ala Val Gly 115 120 125 Ser Asn Asn His Ser Val Gln Ser Ser Gly Pro Glu Ser Asn Thr Gly 130 135 140 Pro Pro Leu Ser Thr Lys Ser Gly Glu Thr Cys Asp Ile Ser Lys Ala 145 150 155 160 Ser Asp Arg Glu Leu Lys Thr Cys Ser Ser Gly Met Leu Glu Ser Ser 165 170 175 Glu Lys Ser Lys Asn Ser Ser Val Leu Gln Asn Ser Ser Ser Asn Asn 180 185 190 Ser Lys Lys His Lys Lys Ile Glu Ser Glu Ser Lys Glu Leu His Glu 195 200 205 Arg Gln Ala Asn Lys Thr Asn Asn Asn Cys Lys Lys Leu Gly Tyr Pro 210 215 220 Ser Leu Val Cys Ser Glu Leu Ser Asp Ile Ser Glu Asp Ser Arg Lys 225 230 235 240 Ser Ser Ala Val Thr Ser Glu Ser Ser Glu Gln Ser Glu Pro Asn Glu 245 250 255 Leu Gln Glu Ile Leu Ser Gln Leu Asn Asn Lys Cys Asp Val Arg Val 260 265 270 Glu Leu Ser Asp Glu Gly Lys Arg Asn Lys Lys Phe Cys Val Thr Arg 275 280 285 Val Asn Lys Thr Lys Ser Ile Asn Val Asp Phe Arg Leu Ser Arg Gly 290 295 300 Ile Ala Gln Val Asn Glu Gly Lys Tyr Ser Asn Ala Val Ser Ile Phe 305 310 315 320 Asp Gln Ile Leu Glu Gln Asp Pro Thr Tyr Pro Glu Ala Leu Ile Gly 325 330 335 Arg Gly Thr Ala Leu Ala Phe Gln Arg Glu Leu Asp Ala Ala Ile Ser 340 345 350 Asp Phe Thr Lys Ala Ile Gln Ser Asn Pro Ser Ala Gly Glu Ala Trp 355 360 365 Lys Arg Arg Gly Gln Ala Arg Ala Ala Leu Gly Glu Ser Val Glu Ala 370 375 380 Ile Thr Asp Leu Thr Lys Ala Leu Glu Phe Glu Pro Asp Ser Ala Asp 385 390 395 400 Ile Leu His Glu Arg Gly Ile Val Asn Phe Lys Phe Lys Asp Phe Lys 405 410 415 Gly Ala Val Glu Asp Leu Ser Thr Cys Val Lys Ser Asp Lys Asp Asn 420 425 430 Lys Ser Ala Tyr Thr Tyr Leu Gly Leu Ala Leu Tyr Ser Leu Gly Glu 435 440 445 Tyr Arg Lys Ala Glu Glu Ala His Lys Lys Ala Ile Gln Ile Glu Arg 450 455 460 Asn Phe Leu Glu Ala Trp Ala His Leu Ala Gln Phe Tyr Gln Asp Leu 465 470 475 480 Ala Asn Ser Glu Lys Ala Leu Glu Cys Leu His Gln Ile Leu Gln Ile 485 490 495 Asp Gly Arg Tyr Ala Lys Ala Tyr His Leu Arg Gly Leu Leu Leu His 500 505 510 Gly Met Gly Glu His Arg Asn Ala Ile Lys Asp Leu Ser Met Gly Leu 515 520 525 Ala Ile Asp Ser Ala Asn Ile Glu Cys Leu Tyr Leu Arg Ala Ser Cys 530 535 540 Tyr His Ala Ile Gly Leu Tyr Lys Glu Ala Val Lys Asp Tyr Asp Ala 545 550 555 560 Ala Leu Asp Leu Glu Leu Asp Ser Met Glu Lys Phe Val Leu Gln Cys 565 570 575 Leu Ala Phe Tyr Gln Lys Glu Ile Ala Leu Tyr Thr Ala Ser Lys Met 580 585 590 Asn Ser Glu Phe Ser Trp Phe Asp Ile Asp Gly Asp Ile Asp Pro Leu 595 600 605 Phe Lys Glu Tyr Trp Cys Lys Arg Leu His Pro Lys Asn Val Cys Glu 610 615 620 Lys Val Tyr Arg Gln Pro Pro Leu Lys Glu Ser Leu Lys Lys Gly Lys 625 630 635 640 Gln Arg Lys Gln Glu Phe Thr Phe Thr Lys Gln Lys Thr Ala Leu Leu 645 650 655 Gln Ala Ala Asp Ser Ile Gly Arg Asn Ile Gln Tyr His Cys Pro Gly 660 665 670 Phe Leu His Asn Arg Arg Gln His Arg Met Ala Gly Leu Ala Ala Ile 675 680 685 Glu Ile Ala Gln Lys Val Ser Lys Ala Trp Arg Ala Leu Gln Ala Glu 690 695 700 Trp Arg Asn Ser Thr Lys Gly Thr Gly Lys Ser Gly Lys Arg Leu Arg 705 710 715 720 Arg Arg Glu Lys Leu Asn Ser Ile Ser Leu Asn Arg Gly Gly Ala Gly 725 730 735 Cys Ser Thr Ser Ser Ser Ser Asp Thr Ser Thr Ser Tyr Ser Leu Ile 740 745 750 Asp Asp Arg Ser Thr Gly Arg Ser Met Met Ser Trp Asn His Leu Tyr 755 760 765 Ser Leu Ala Val Lys Trp Arg Gln Ile Ser Glu Pro Cys Asp Pro Val 770 775 780 Val Trp Ile Asn Lys Leu Ser Glu Glu Phe Asn Thr Gly Phe Gly Ser 785 790 795 800 His Thr Pro Leu Val Leu Gly Gln Ala Lys Val Val Arg Tyr His Pro 805 810 815 Asn Phe Gln Arg Thr Leu Thr Val Ala Lys Ala Val Ile Lys Glu Asn 820 825 830 Lys Ser Val Cys Asn Lys Glu Asp Lys Ile Ile Asp Leu Ser Glu Gln 835 840 845 Gln Lys Leu Gln Glu Ile Met Ala Ala Glu Ser Ser Ser Asp Leu Tyr 850 855 860 Arg Val Val Gly Gln Asp Phe Trp Leu Ala Thr Trp Cys Asn Ser Thr 865 870 875 880 Ala Leu Glu Gly Lys Arg Leu Glu Gly Thr Arg Ile Thr Val Val Lys 885 890 895 Met Gly Glu Ile Gly Tyr Asp Phe Ala Ile Arg Thr Pro Cys Thr Pro 900 905 910 Ala Arg Trp Asp Asp Phe Asp Val Glu Met Thr Ser Ala Trp Glu Ala 915 920 925 Leu Cys Ala Ala Tyr Cys Gly Asp Asn Tyr Gly Ser Thr Asp Phe Asp 930 935 940 Val Leu Glu Asn Val Arg Asp Ala Ile Leu Arg Met Thr Tyr Tyr Trp 945 950 955 960 Tyr Asn Phe Met Pro Leu Ser Arg Gly Thr Ala Val Val Gly Phe Ile 965 970 975 Val Leu Leu Gly Leu Leu Leu Ala Ala Asn Met Glu Phe Thr Gly Ser 980 985 990 Ile Pro Lys Gly Leu Gln Val Asp Trp Glu Ala Ile Leu Glu Phe Asp 995 1000 1005 Ser Ser Ser Phe Val Asp Ser Val Lys Lys Trp Leu Tyr Pro Ser Leu 1010 1015 1020 Lys Val Ser Thr Ser Trp Lys Ser Tyr Pro Asp Val Thr Ser Thr Phe 1025 1030 1035 1040 Glu Thr Thr Gly Ser Val Val Ala Ala Leu Ser Thr Tyr Ser Asp 1045 1050 1055 <210> 4 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> gRNA1 <400> 4 gtaactttcg acgccatcgc 20 <210> 5 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> gRNA2 <400> 5 attgactata gcaaaacgct 20 <210> 6 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 6 cggtcaataa aacacgtgtc 20 <210> 7 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 7 gagcttcatc ctactcctcg 20 <210> 8 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 8 ggaacagtga aaaacgtaac 20 <210> 9 <211> 53 <212> DNA <213> Artificial Sequence <220 > <223> primer <400> 9 acactctttc cctacacgac gctcttccga tctaatcgca tcaattgagc tgc 53 <210> 10 <211> 54 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 10 gtgactggag ttcagacgtg tgctcttccg atctatgacg caagtttga g caag 54 <210> 11 <211> 60 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 11 acactctttc cctacacgac gctcttccga tctttggaca tttatgaatg aactgattaa 60 60 <210> 12 <211> 54 <212> DNA <213> Artificial Sequence <220> <223 > primer <400> 12 gtgactggag ttcagacgtg tgctcttccg atcttaggat cgagctgaag tgcc 54 <210> 13 <211> 64 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 13 cagtcggtct caggagtgat caaaagtccc tca ggtgatatat agcagcttag 60 ttta 64 <210> 14 <211> 64 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 14 gagtcggtct cacaatcgct atgtcgactc tatcattata taaactaagc tgctatatat 60 cacc 64 <210> 15 <211> 86 <212> DNA < 213> Artificial Sequence <220> <223> primer <400> 15 cagtcggtct caattggtaa ctttcgacgc catcgcgttt tagagctaga aatagcaagt 60 taaaataagg ctagtccgtt atcaac 86 <210> 16 <211> 74 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 16 cagtcggtct caagcgaaaa aaagcaccga ctcggtgcca ctttttcaag ttgataacgg 60 actagcctta tttt 74 <210> 17 <211> 87 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 17 cagtcggtct ca attggatt gactatagca aaacgctgtt ttagagctag aaatagcaag 60 ttaaaataag gctagtccgt tatcaac 87 <210> 18 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 18 gccatatttc actcttgtga g 21 <210> 19 <211> 19 <212> DNA <213 > Artificial Sequence <220> <223> primer <400> 19 tagtctggcc tctcggaca 19 <210> 20 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 20 tccaggtaga gacagtggta aa 22 < 210> 21 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 21 ctggtttctt tggtgttcct gc 22 <210> 22 <211> 20 <212> DNA <213> Artificial Sequence <220 > <223> primer <400> 22 gcaacaactg tccatacacc 20 <210> 23 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 23 agactccacc acaatcacc 19 <210> 24 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 24 gacaagcaat agcaggagtg 20 <210> 25 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400 > 25 taagtgtgcc aacatcagac 20 <210> 26 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 26 gaaatagcat aagatggcag acg 23 <210> 27 <211> 22 <212> DNA < 213> Artificial Sequence <220> <223> primer <400> 27 atacccacca tcacaccagt at 22 <210> 28 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 28 ctgctctctc agtagccaac ac 22 <210> 29 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> primer<400> 29 cttcctccaa tagcagaggt tt 22

Claims (10)

서열번호 3의 아미노산 서열로 이루어진 토마토(Solanum lycopersicum) 유래 SRFR1 (SUPPRESSOR OF rps4-RLD1) 단백질을 코딩하는 유전자의 발현을 저해하는 단계를 포함하는, 식물체의 슈도모나스 시린개 pv. 토마토 (Pto) DC3000 (Pseudomonas syringae pv. tomato (Pto) DC3000)에 의한 식물병에 대한 저항성을 증가시키거나 푸사리움 옥시스포럼 f. sp. 라이코페르시씨(Fusarium oxysporum f. sp. lycopersici)에 의한 식물병에 대한 저항성을 감소시키는 방법.Pseudomonas syringae pv of plants, including the step of inhibiting the expression of the gene encoding the SRFR1 ( SUPPRESSOR OF rps4-RLD1 ) protein derived from tomato ( Solanum lycopersicum ) consisting of the amino acid sequence of SEQ ID NO: 3. Tomato ( Pto ) DC3000 ( Pseudomonas syringae pv. tomato ( Pto ) DC3000) or Fusarium oxysporum f. sp. Method for reducing resistance to plant diseases caused by Lycopersici ( Fusarium oxysporum f. sp. lycopersici ). 삭제delete 삭제delete 제1항에 있어서, 상기 유전자의 발현 저해는 VIGS (Virus-induced gene silencing), RNAi 또는 안티센스 RNA, T-DNA 삽입, 유전자 교정 시스템 또는 방사선 조사를 통한 돌연변이 유발에 의해 이루어지는 것을 특징으로 하는 방법.The method of claim 1, wherein the inhibition of expression of the gene is achieved by mutagenesis through VIGS (Virus-induced gene silencing), RNAi or antisense RNA, T-DNA insertion, gene correction system, or irradiation. 서열번호 3의 아미노산 서열로 이루어진 토마토 유래 SRFR1 (SUPPRESSOR OF rps4-RLD1) 단백질을 코딩하는 유전자를 포함하는 재조합 벡터로 식물세포를 형질전환하여 SRFR1 유전자의 발현을 저해하는 단계; 및
상기 형질전환된 식물세포로부터 형질전환된 식물체를 재분화하는 단계;를 포함하는 슈도모나스 시린개 pv. 토마토 (Pto) DC3000 (Pseudomonas syringae pv. tomato (Pto) DC3000)에 의한 식물병에 대한 저항성이 증가되거나, 푸사리움 옥시스포럼 f. sp. 라이코페르시씨(Fusarium oxysporum f. sp. lycopersici)에 의한 식물병에 대한 저항성이 감소된 형질전환 식물체의 제조방법.
Inhibiting the expression of the SRFR1 gene by transforming plant cells with a recombinant vector containing a gene encoding the tomato-derived SRFR1 ( SUPPRESSOR OF rps4-RLD1 ) protein consisting of the amino acid sequence of SEQ ID NO: 3; and
Pseudomonas syringae pv comprising; redifferentiating the transformed plant from the transformed plant cell; Tomato ( Pto ) DC3000 ( Pseudomonas syringae pv. tomato ( Pto ) DC3000) has increased resistance to plant diseases, or Fusarium oxysporum f. sp. Method for producing transgenic plants with reduced resistance to plant diseases caused by Lycopersici ( Fusarium oxysporum f. sp. lycopersici ).
삭제delete 삭제delete 제5항의 방법에 의해 제조된 슈도모나스 시린개 pv. 토마토 (Pto) DC3000 (Pseudomonas syringae pv. tomato (Pto) DC3000)에 의한 식물병에 대한 저항성이 증가되거나, 푸사리움 옥시스포럼 f. sp. 라이코페르시씨(Fusarium oxysporum f. sp. lycopersici)에 의한 식물병에 대한 저항성이 감소된 형질전환 식물체.Pseudomonas syringae pv prepared by the method of claim 5. Tomato ( Pto ) DC3000 ( Pseudomonas syringae pv. tomato ( Pto ) DC3000) has increased resistance to plant diseases, or Fusarium oxysporum f. sp. A transgenic plant with reduced resistance to plant diseases caused by Lycopersici ( Fusarium oxysporum f. sp. lycopersici ). 제8항에 따른 식물체의 형질전환된 종자.A transformed seed of the plant according to claim 8. 서열번호 3의 아미노산 서열로 이루어진 토마토 유래 SRFR1 (SUPPRESSOR OF rps4-RLD1) 단백질을 코딩하는 유전자를 유효성분으로 함유하는 식물체의 슈도모나스 시린개 pv. 토마토 (Pto) DC3000 (Pseudomonas syringae pv. tomato (Pto) DC3000)에 의한 식물병에 대한 저항성을 증가시키거나 푸사리움 옥시스포럼 f. sp. 라이코페르시씨(Fusarium oxysporum f. sp. lycopersici)에 의한 식물병에 대한 저항성을 감소시키는 조성물.Pseudomonas syringae pv of a plant containing the gene encoding the tomato-derived SRFR1 ( SUPPRESSOR OF rps4-RLD1 ) protein consisting of the amino acid sequence of SEQ ID NO: 3 as an active ingredient. Tomato ( Pto ) DC3000 ( Pseudomonas syringae pv. tomato ( Pto ) DC3000) or Fusarium oxysporum f. sp. A composition that reduces resistance to plant diseases caused by Fusarium oxysporum f. sp. lycopersici .
KR1020210095562A 2021-07-21 2021-07-21 Plant immune regulator SRFR1 gene from tomato and uses thereof KR102675538B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020210095562A KR102675538B1 (en) 2021-07-21 2021-07-21 Plant immune regulator SRFR1 gene from tomato and uses thereof
PCT/KR2022/008349 WO2023003176A1 (en) 2021-07-21 2022-06-14 Tomato-derived plant immune regulator srfr1 gene and uses thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210095562A KR102675538B1 (en) 2021-07-21 2021-07-21 Plant immune regulator SRFR1 gene from tomato and uses thereof

Publications (2)

Publication Number Publication Date
KR20230014331A KR20230014331A (en) 2023-01-30
KR102675538B1 true KR102675538B1 (en) 2024-06-13

Family

ID=84980257

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210095562A KR102675538B1 (en) 2021-07-21 2021-07-21 Plant immune regulator SRFR1 gene from tomato and uses thereof

Country Status (2)

Country Link
KR (1) KR102675538B1 (en)
WO (1) WO2023003176A1 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101852532B1 (en) * 2016-06-22 2018-04-27 서울대학교산학협력단 Method for increasing pest resistance in plant using SRA1 gene from Solanum lycopersicum and the plant thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NCBI Reference Sequence, PREDICTED: Solanum lycopersicum suppressor of RPS4-RLD 1 (LOC101252448), mRNA, ACCESSION no. XM_010317699, 2018년 개시*
Sang Hee Kim, The Arabidopsis immune adaptor SRFR1 interacts with TCP transcription factors that redundantly contribute to effector-triggered immunity, the plant journal, 2014년, vol.78, pp.978-989*

Also Published As

Publication number Publication date
KR20230014331A (en) 2023-01-30
WO2023003176A1 (en) 2023-01-26

Similar Documents

Publication Publication Date Title
KR20150085846A (en) Tal-Mediated Transfer DNA Insertion
CN113637684B (en) Rice lesion mutant gene SCYL2 and application thereof
CN111560384A (en) Application of gene FoRnt in regulation and control of pathogenicity of banana fusarium wilt
CN116179589B (en) SlPRMT5 gene and application of protein thereof in regulation and control of tomato fruit yield
CN114846022A (en) Enhancing disease resistance in crops by downregulation of repressor genes
CN111154800A (en) Application of rice OsRNCR gene and encoding protein thereof in enhancing salt tolerance of plants
KR102408985B1 (en) OsMOR1a gene from Oryza sativa regulating disease resistance of plant and uses thereof
CN110713994B (en) Plant stress tolerance associated protein TaMAPK3, and coding gene and application thereof
CN117430678A (en) Immune induced resistance protein from wheat stripe rust and related biological material and application thereof
KR102675538B1 (en) Plant immune regulator SRFR1 gene from tomato and uses thereof
KR102542508B1 (en) α1-COP gene controlling abiotic stress of plant and uses thereof
CN115806979A (en) Arabidopsis long-chain non-coding RNA-DANA1 and application thereof in plant drought tolerance
CN108795949B (en) Rice leaf color regulation related gene OsWSL6 and encoding protein and application thereof
KR102675540B1 (en) Method for producing tomato plant having controlled disease-resistance using gene editing and tomato plant produced by the same method
CN109593782B (en) Disease-resistant plant obtained by using HiR3s gene of Nicotiana benthamiana and application of gene
KR100510430B1 (en) Novel polypeptide having function of 7-keto-8-aminopelargonic acid synthase of plant and method for inducing growth inhibition and lethality by suppressing expression of the polypeptide
CN113046361A (en) Application of NtFER gene-based modification in improvement of bacterial wilt resistance of plants
CN112080513A (en) Rice artificial genome editing system with expanded editing range and application thereof
JP3964701B2 (en) Disease resistant gramineous plant
CN111500604A (en) Dendrobium officinale DcCS L A8 gene and application thereof in promoting synthesis of plant polysaccharide
JP2007306917A (en) Method for increasing the resistance of rice plant to pathogenic microorganism and pathogenic microorganism-resistant rice transformant
US20020138868A1 (en) Method and means for modulating plant cell cycle proteins and their use in plant cell growth control
KR102646071B1 (en) RsMYB1 or RsTT8 transcript with intron retention from radish and uses thereof
Tao et al. Using the phosphomannose isomerase (PMI) gene from saccharomyces cerevisiae for selection in rice transformation
KR101231142B1 (en) Composition for promoting flowering comprising IDS gene

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant