KR102662618B1 - Hydrophilic treatment agent for metal material, hydrophilic treatment liquid containing the same, method for producing the same, and method for - Google Patents

Hydrophilic treatment agent for metal material, hydrophilic treatment liquid containing the same, method for producing the same, and method for Download PDF

Info

Publication number
KR102662618B1
KR102662618B1 KR1020220074070A KR20220074070A KR102662618B1 KR 102662618 B1 KR102662618 B1 KR 102662618B1 KR 1020220074070 A KR1020220074070 A KR 1020220074070A KR 20220074070 A KR20220074070 A KR 20220074070A KR 102662618 B1 KR102662618 B1 KR 102662618B1
Authority
KR
South Korea
Prior art keywords
hydrophilic treatment
hydrophilic
water
weight
pva
Prior art date
Application number
KR1020220074070A
Other languages
Korean (ko)
Other versions
KR20230174314A (en
Inventor
장민철
신서영
고성문
위은솔
Original Assignee
전남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전남대학교산학협력단 filed Critical 전남대학교산학협력단
Priority to KR1020220074070A priority Critical patent/KR102662618B1/en
Publication of KR20230174314A publication Critical patent/KR20230174314A/en
Application granted granted Critical
Publication of KR102662618B1 publication Critical patent/KR102662618B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D171/00Coating compositions based on polyethers obtained by reactions forming an ether link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D171/02Polyalkylene oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/06Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation
    • B05D3/061Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to radiation using U.V.
    • B05D3/065After-treatment
    • B05D3/067Curing or cross-linking the coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/67Particle size smaller than 100 nm
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/70Additives characterised by shape, e.g. fibres, flakes or microspheres
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/084Heat exchange elements made from metals or metal alloys from aluminium or aluminium alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2245/00Coatings; Surface treatments
    • F28F2245/02Coatings; Surface treatments hydrophilic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Nanotechnology (AREA)
  • Paints Or Removers (AREA)

Abstract

본 발명은 알루미늄을 포함하는 금속재료, 특히 열교환기로 사용하는 금속재료의 표면에 피막을 형성하는 친수화처리제 기술에 관한 것으로, 보다 구체적으로는 나노셀룰로오스가 함유되어 알루미늄 함유 금속재료 표면에 코팅되면 친수성과 내식성을 향상시킬 수 있는 금속재료용 친수화처리제, 이를 포함하는 친수화처리액, 그 제조방법 및 친수화처리액을 이용한 친수피막형성방법에 관한 것이다. The present invention relates to a hydrophilic treatment agent technology for forming a film on the surface of a metal material containing aluminum, especially a metal material used as a heat exchanger. More specifically, when nanocellulose is contained and coated on the surface of a metal material containing aluminum, it becomes hydrophilic. It relates to a hydrophilic treatment agent for metal materials that can improve corrosion resistance, a hydrophilic treatment solution containing the same, a method of producing the same, and a method of forming a hydrophilic film using the hydrophilization treatment solution.

Description

금속재료용 친수화처리제, 이를 포함하는 친수화처리액, 그 제조방법 및 친수화처리액을 이용한 친수피막형성방법{HYDROPHILIC TREATMENT AGENT FOR METAL MATERIAL, HYDROPHILIC TREATMENT LIQUID CONTAINING THE SAME, METHOD FOR PRODUCING THE SAME, AND METHOD FOR}Hydrophilic treatment agent for metal materials, hydrophilic treatment liquid containing the same, method of manufacturing the same, and method of forming a hydrophilic film using the hydrophilic treatment liquid {HYDROPHILIC TREATMENT AGENT FOR METAL MATERIAL, HYDROPHILIC TREATMENT LIQUID CONTAINING THE SAME, METHOD FOR PRODUCING THE SAME, AND METHOD FOR}

본 발명은 금속재료, 특히 열교환기로 사용하는 알루미늄을 포함하는 금속재료의 표면에 피막을 형성하는 친수화처리제 기술에 관한 것으로, 보다 구체적으로는 나노셀룰로오스가 함유되어 금속재료 표면에 코팅되면 친수성과 내식성을 향상시킬 수 있는 금속재료용 친수화처리제, 이를 포함하는 친수화처리액, 그 제조방법 및 친수화처리액을 이용한 친수피막형성방법에 관한 것이다. The present invention relates to a hydrophilic treatment agent technology for forming a film on the surface of a metal material, especially a metal material containing aluminum used as a heat exchanger. More specifically, when nanocellulose is contained and coated on the surface of a metal material, it improves hydrophilicity and corrosion resistance. It relates to a hydrophilic treatment agent for metal materials that can improve the hydrophilic treatment solution, a hydrophilic treatment solution containing the same, a method of producing the same, and a method of forming a hydrophilic film using the hydrophilization treatment solution.

최근 자동차, 냉장고, 에어컨용 공조기는 냉방, 난방, 제습 등의 기능을 높이기 위하여 마이크로채널형 튜브와 루버핀으로 구성된 알루미늄 열교환기를 주로 사용한다. Recently, air conditioners for automobiles, refrigerators, and air conditioners mainly use aluminum heat exchangers composed of microchannel tubes and louver fins to improve cooling, heating, and dehumidification functions.

이러한 마이크로채널형 알루미늄 열교환기는 냉각 및 방열 효과를 향상시키기 위하여 핀간 간격이 매우 좁도록 설계되어, 냉각기로서 열교환기를 가동시켰을 때 대기 중의 수분이 핀 표면에서 응집되어 결로를 발생시키며 통기 저항으로 이어져 열교환 효율 하락 및 소비전력 저하, 소음 등의 다양한 문제를 야기한다. 또한 냉방-비냉방 시 수분의 응축과 건조상태가 반복되면서 부식이 발생하여 백색가루의 주성분인 바이러라이트(β-Al2O3·H2O)를 형성하여 비산문제를 발생한다. This microchannel-type aluminum heat exchanger is designed to have very narrow spacing between fins to improve cooling and heat dissipation effects. When the heat exchanger is operated as a cooler, moisture in the air condenses on the surface of the fins, causing condensation, which leads to ventilation resistance and heat exchange efficiency. It causes various problems such as power loss, reduced power consumption, and noise. In addition, when cooling and non-cooling, moisture condensation and drying conditions are repeated, causing corrosion and forming viralite (β-Al 2 O 3 ·H 2 O), the main component of white powder, causing scattering problems.

알루미늄 열교환기에서 핀 간의 결로현상을 방지하기 위한 방법으로 종래 친수화 처리제를 열교환기 표면에 코팅하여 물 젖음성을 향상시키는 방법이 주로 사용되고 있다. As a method to prevent condensation between fins in an aluminum heat exchanger, a method of improving water wettability by coating the surface of the heat exchanger with a conventional hydrophilic treatment agent is mainly used.

친수화 처리제는 성분에 따라 무기타입, 유기타입 및 유기-무기 3가지 타입으로 분류할 수 있으며, 무기타입 친수화처리제는 알카리규산염계 처리와 베마이트(boehmite)계 처리가 대표적이며, 친수성은 우수하지만 금형 마모성이 떨어지고 무기물이 공기중의 냄새분자를 흡착하여 냉방 운전시 불쾌한 냄새를 유발하는 단점을 지닌다. Hydrophilic treatment agents can be classified into three types according to their ingredients: inorganic type, organic type, and organic-inorganic. Representative inorganic type hydrophilic treatment agents include alkaline silicate treatment and boehmite treatment, and have excellent hydrophilicity. However, it has the disadvantage of poor mold wear and the inorganic material adsorbs odor molecules in the air, causing an unpleasant odor during cooling operation.

유기타입은 수산기(OH), 카르복실기(COOH), 아민(NH), 설퍼닐기(SO3H) 등 관능기를 지닌 친수 수지와 계면활성제, 경화제의 혼합으로 구성되며, 금형시 마모성 저하 및 냄새에 대한 문제점은 개선되었으나, 수지의 사용으로 강도가 약하고 내수성이 취약하며 열에 약하다는 단점을 지닌다.The organic type is composed of a mixture of hydrophilic resin with functional groups such as hydroxyl group (OH), carboxyl group (COOH), amine (NH), and sulfuryl group (SO 3 H), surfactant, and hardener. It reduces wear resistance during molding and reduces odor. The problem has been improved, but it has the disadvantages of low strength due to the use of resin, poor water resistance, and weakness to heat.

이러한 친수화 처리제의 단점을 보완하고자 개발된 콜로이달 실리카와 친수 수지로 구성된 유기-무기 타입 친수화 처리제는 고도의 친수성과 친수지속성을 제공하지만, 도막내 실리카의 잔존으로 가공 시 금형의 내구성 저하, 취기 및 비산에 대한 문제가 여전히 존재한다. The organic-inorganic type hydrophilic treatment agent, which is composed of colloidal silica and hydrophilic resin, was developed to compensate for the shortcomings of these hydrophilic treatment agents. It provides high hydrophilicity and hydrophilic sustainability, but due to the remaining silica in the coating film, the durability of the mold is reduced during processing, Problems with odor and fugitives still exist.

1.국내특허등록번호 제10-1081136호1. Domestic Patent Registration No. 10-1081136 2.국제특허공개번호 PCT/JP2020/0022362. International Patent Publication No. PCT/JP2020/002236 3.국내특허등록번호 제10-1555162호3. Domestic Patent Registration No. 10-1555162 4.국내특허등록번호 제10-1626212호4. Domestic Patent Registration No. 10-1626212

본 발명자들은 다수의 연구결과를 바탕으로 실라카의 첨가로 인한 비산문제를 해결할 수 있는 친수화 처리제를 개발함으로써 본 발명을 완성하였다. Based on numerous research results, the present inventors completed the present invention by developing a hydrophilic treatment agent that can solve the scattering problem caused by the addition of silica.

따라서, 본 발명의 목적은 금속재료 특히 알루미늄 함유 금속재료를 소재로 하는 열교환기에서 응축수에 의한 열교환 효율의 저하, 취기 발생, 비산 문제를 해결하고 우수한 친수성과 친수지속성 뿐만 아니라 내구성을 부여할 수 있는 친수화 처리제, 이를 포함하는 친수화처리액, 그 제조방법 및 친수화처리액을 이용한 친수피막형성방법을 제공하는 것이다.Therefore, the purpose of the present invention is to solve the problems of reduced heat exchange efficiency due to condensate, odor generation, and scattering in heat exchangers made of metal materials, especially aluminum-containing metal materials, and to provide excellent hydrophilicity and hydrophilic sustainability as well as durability. The present invention provides a hydrophilic treatment agent, a hydrophilic treatment solution containing the same, a method for producing the same, and a method for forming a hydrophilic film using the hydrophilization treatment solution.

본 발명의 다른 목적은 알루미늄 함유 금속재료를 소재로 하는 열교환기에서 결로에 의한 눈막힘 현상을 현저히 감소시켜 열교환 효율 및 냉각효율이 높아지고, 통풍저항비를 감소시켜 소비전력 및 소음을 감소시킬 수 있는 친수화 처리제, 이를 포함하는 친수화처리액, 그 제조방법 및 친수화처리액을 이용한 친수피막형성방법을 제공하는 것이다.Another object of the present invention is to significantly reduce clogging caused by condensation in a heat exchanger made of aluminum-containing metal material, thereby increasing heat exchange efficiency and cooling efficiency, and reducing power consumption and noise by reducing ventilation resistance ratio. The present invention provides a hydrophilic treatment agent, a hydrophilic treatment solution containing the same, a method for producing the same, and a method for forming a hydrophilic film using the hydrophilization treatment solution.

본 발명의 목적은 이상에서 언급한 목적으로 제한되지 않으며, 명시적으로 언급되지 않았더라도 후술되는 발명의 상세한 설명의 기재로부터 통상의 지식을 가진 자가 인식할 수 있는 발명의 목적 역시 당연히 포함될 수 있을 것이다.The object of the present invention is not limited to the object mentioned above, and even if not explicitly mentioned, the object of the invention that can be recognized by a person of ordinary skill in the art from the description of the detailed description of the invention described later may also naturally be included. .

상술된 본 발명의 목적을 달성하기 위해, 먼저 본 발명은 광가교성 수용성고분자 및 폴리비닐알코올(Poly vinyl alcohol, PVA)계 중합체로 구성된 수용성 수지, 가교제, 광개시제, 및 나노셀룰로오스를 포함하는 금속재료용 친수화처리제를 제공한다. In order to achieve the object of the present invention described above, the present invention first provides a water-soluble resin composed of a photocrosslinkable water-soluble polymer and a polyvinyl alcohol (PVA)-based polymer, a crosslinking agent, a photoinitiator, and a metal material containing nanocellulose. A hydrophilic treatment agent is provided.

바람직한 실시예에 있어서, 상기 수용성수지 100중량부 대하여, 상기 가교제는 0.5 내지 4중량부, 상기 광개시제는 3 내지 5중량부 및 상기 나노셀룰로오스는 1 내지 30중량부 포함된다. In a preferred embodiment, based on 100 parts by weight of the water-soluble resin, 0.5 to 4 parts by weight of the crosslinking agent, 3 to 5 parts by weight of the photoinitiator, and 1 to 30 parts by weight of the nanocellulose are included.

바람직한 실시예에 있어서, 상기 수용성수지는 광가교성 수용성고분자 및 PVA계 중합체를 6 ~ 9 : 4 ~ 1의 중량비로 포함한다. In a preferred embodiment, the water-soluble resin includes a photo-crosslinkable water-soluble polymer and a PVA-based polymer in a weight ratio of 6 to 9:4 to 1.

바람직한 실시예에 있어서, 상기 광가교성 수용성고분자는 폴리에틸렌 글리콜 다이아크릴레이트(Polyethylene glycol diacrylate, PEGDA), 폴리에틸렌 글리콜 메틸 에테르 아크릴레이트(poly(ethylene glycol) methyl ether acrylate, PEGMEA), 폴리에틸렌 글리콜 아크릴레이트(poly(ethylene glycol) acrylate, PEGA), 폴리에틸렌 글리콜 디메타크릴레이트(poly(ethylene glycol) dimethacrylate, PEGDMA) 및 테트라에틸렌글리콜 디메타크릴레이트(tetra(ethylene glycol) dimethacrylate, TEGDM), 폴리에틸렌 글리콜(poly ethylene glycol, PEG)로 구성된 그룹에서 선택되는 하나 이상이다. In a preferred embodiment, the photo-crosslinkable water-soluble polymer is polyethylene glycol diacrylate (PEGDA), poly(ethylene glycol) methyl ether acrylate (PEGMEA), and polyethylene glycol acrylate (poly (ethylene glycol) acrylate, PEGA), poly(ethylene glycol) dimethacrylate (PEGDMA) and tetra(ethylene glycol) dimethacrylate (TEGDM), polyethylene glycol , PEG) is one or more selected from the group consisting of

바람직한 실시예에 있어서, 상기 PVA계 중합체는 폴리비닐알코올 또는 그의 유도체로서, 상기 유도체는 폴리아세트산비닐의 부분 비누화물, 완전 비누화물, 및 아세트산비닐과 다른 단량체의 공중합물의 부분 비누화물 및 완전 비누화물 및 폴리비닐알코올의 변성물을 포함하는 그룹에서 선택되는 어느 하나이다. In a preferred embodiment, the PVA-based polymer is polyvinyl alcohol or a derivative thereof, and the derivative is a partially saponified or completely saponified product of polyvinyl acetate, and a partially saponified or fully saponified product of a copolymer of vinyl acetate and another monomer. and any one selected from the group containing denatured products of polyvinyl alcohol.

바람직한 실시예에 있어서, 상기 PVA계 중합체는 검화도가 80mole% 이상이고, 중량 평균 분자량은 5,000 내지 200,000이다. In a preferred embodiment, the PVA-based polymer has a degree of saponification of 80 mole% or more and a weight average molecular weight of 5,000 to 200,000.

바람직한 실시예에 있어서, 상기 가교제는 옥살산, 말레산, 타르타르산, 시트릭산, 글루탐산, 푸마르산, 폴리아크릴산, 붕산, 아세트 알데히드, 포름알데히드, 글루타르알데히드(Glutaraldehyde, GA), 술폰아미드알데히드로 구성된 그룹에서 선택되는 하나 이상이다. In a preferred embodiment, the cross-linking agent is selected from the group consisting of oxalic acid, maleic acid, tartaric acid, citric acid, glutamic acid, fumaric acid, polyacrylic acid, boric acid, acetaldehyde, formaldehyde, glutaraldehyde (GA), and sulfonamidaldehyde. There is more than one to choose from.

바람직한 실시예에 있어서, 상기 광개시제는 2-하이드록시-4'-(2-하이드록시에톡시)-2-메틸프로페논 [2-hydroxy-4'-(2-hydroxyethoxy)-2-methylpropenone], 2-디메톡시-2-페닐-아세토페논[2-Dimethoxy-2-phenyl-acetophenone], 1-하이드록시사이클로헥실-1-페닐케톤[1- hydroxycyclohexyl-1-phenylketone], 2-벤질-2-(디메틸아미노)-1-[4-(4-모포리닐)페닐]-1-부타논(2-benzyl-2-(dimethylamino)-1-[4-(4-morpholinyl)phenyl]-1-butanone)로 구성된 그룹에서 선택되는 하나 이상이다. In a preferred embodiment, the photoinitiator is 2-hydroxy-4'-(2-hydroxyethoxy)-2-methylpropenone [2-hydroxy-4'-(2-hydroxyethoxy)-2-methylpropenone], 2-Dimethoxy-2-phenyl-acetophenone [2-Dimethoxy-2-phenyl-acetophenone], 1-hydroxycyclohexyl-1-phenylketone [1- hydroxycyclohexyl-1-phenylketone], 2-benzyl-2- (dimethylamino)-1-[4-(4-morpholinyl)phenyl]-1-butanone (2-benzyl-2-(dimethylamino)-1-[4-(4-morpholinyl)phenyl]-1-butanone ) is one or more selected from the group consisting of

바람직한 실시예에 있어서, 상기 나노셀룰로오스는 셀룰로오스나노결정(Cellulose Nanocrystal, Nanocrystalline Cellulose, CNC) 또는 셀룰로오스 나노섬유(Cellulose Nanofiber, Cellulose Nanofibril, Nanofibrillated Cellulose, CNFs)이다. In a preferred embodiment, the nanocellulose is cellulose nanocrystal (Cellulose Nanocrystal, Nanocrystalline Cellulose, CNC) or cellulose nanofiber (Cellulose Nanofiber, Cellulose Nanofibril, Nanofibrillated Cellulose, CNFs).

바람직한 실시예에 있어서, 상기 셀룰로오스 나노결정(CNC)은 직경(폭)이 10 내지 20nm이고, 길이가 300nm 내지 900nm인 막대기 모양의 결정이고, 상기 셀룰로오스 나노섬유는 직경(폭)이 10 내지 20nm, 길이가 2 내지 3μm인 섬유이다. In a preferred embodiment, the cellulose nanocrystals (CNC) are rod-shaped crystals with a diameter (width) of 10 to 20 nm and a length of 300 nm to 900 nm, and the cellulose nanofibers have a diameter (width) of 10 to 20 nm. It is a fiber with a length of 2 to 3 μm.

바람직한 실시예에 있어서, 계면 활성제 및 산 중 하나 이상을 더 포함한다. In a preferred embodiment, it further comprises one or more of a surfactant and an acid.

또한, 본 발명은 상술된 어느 하나의 친수화처리제를 포함하는 금속재료용 친수화처리액을 제공한다.Additionally, the present invention provides a hydrophilic treatment solution for metal materials containing any of the hydrophilic treatment agents described above.

바람직한 실시예에 있어서, 상기 친수화처리제는 5 내지 30중량%의 농도로 포함된다. In a preferred embodiment, the hydrophilic treatment agent is included at a concentration of 5 to 30% by weight.

바람직한 실시예에 있어서, 상기 친수화처리액의 pH는 pH 3 내지 pH 4.5이다. In a preferred embodiment, the pH of the hydrophilic treatment solution is pH 3 to pH 4.5.

또한, 본 발명은 물에 광가교성 수용성고분자 및 PVA계 중합체를 동시에 또는 순차적으로 용해시켜 수지용액을 준비하는 단계; 상기 수지용액에 가교제를 첨가하여 전구체용액을 준비하는 단계; 상기 전구체용액에 나노셀룰로오스를 첨가한 후 초음파로 처리하여 상기 나노셀룰로오스가 분산된 전구체분산액을 준비하는 단계; 및 상기 전구체분산액에 광개시제를 첨가한 후 교반하여 친수화처리액을 얻는 단계;를 포함하는 금속재료용 친수화처리액 제조방법을 제공한다. In addition, the present invention includes the steps of dissolving a photocrosslinkable water-soluble polymer and a PVA-based polymer in water simultaneously or sequentially to prepare a resin solution; Preparing a precursor solution by adding a crosslinking agent to the resin solution; Adding nanocellulose to the precursor solution and then treating it with ultrasound to prepare a precursor dispersion in which the nanocellulose is dispersed; and adding a photoinitiator to the precursor dispersion and then stirring to obtain a hydrophilic treatment solution.

바람직한 실시예에 있어서, 상기 친수화처리액은 농도가 5 내지 30중량%이다. In a preferred embodiment, the concentration of the hydrophilic treatment solution is 5 to 30% by weight.

바람직한 실시예에 있어서, 상기 친수화처리액은 상기 광가교성 수용성고분자 및 PVA계 중합체로 구성된 수용성수지 100중량부 대하여, 상기 가교제 0.5 내지 4중량부, 상기 광개시제 3 내지 5중량부 및 상기 나노셀룰로오스 1 내지 30중량부를 포함한다. In a preferred embodiment, the hydrophilic treatment solution contains 0.5 to 4 parts by weight of the crosslinking agent, 3 to 5 parts by weight of the photoinitiator, and 1 part by weight of the nanocellulose, based on 100 parts by weight of the water-soluble resin composed of the photocrosslinkable water-soluble polymer and the PVA-based polymer. Contains to 30 parts by weight.

바람직한 실시예에 있어서, 상기 수용성수지는 광가교성 수용성고분자 및 PVA계 중합체를 6 ~ 9 : 4 ~ 1의 중량비로 포함한다. In a preferred embodiment, the water-soluble resin includes a photo-crosslinkable water-soluble polymer and a PVA-based polymer in a weight ratio of 6 to 9:4 to 1.

바람직한 실시예에 있어서, 상기 수지용액을 준비하는 단계에서 계면활성제 및 산 중 하나 이상을 첨가하는 단계를 더 포함한다.In a preferred embodiment, the step of preparing the resin solution further includes adding one or more of a surfactant and an acid.

또한, 본 발명은 금속재료 표면에 제 12 항의 친수화처리액으로 도포층을 형성하는 도포단계; 상기 도포층을 광조사하여 상기 친수화처리액에 포함된 광가교성 고분자를 가교시키는 광조사단계; 및 상기 광조사단계를 거친 도포층에 열을 가하여 상기 친수화처리액에 포함된 PVA계중합체를 가교시켜 친수피막을 형성하는 열처리단계;를 포함하는 친수피막형성방법을 제공한다.In addition, the present invention includes an application step of forming an application layer with the hydrophilic treatment solution of claim 12 on the surface of a metal material; A light irradiation step of crosslinking the photocrosslinkable polymer contained in the hydrophilic treatment solution by irradiating the application layer with light; and a heat treatment step of applying heat to the application layer that has undergone the light irradiation step to crosslink the PVA-based polymer contained in the hydrophilic treatment solution to form a hydrophilic film.

바람직한 실시예에 있어서, 상기 금속재료에 대해 그 표면의 이물질을 제거하는 전처리단계, 상기 광조사단계가 UV를 300 nm 내지 400nm의 파장으로 90초 이상 수행되는 단계, 및 상기 열처리단계가 100℃ 내지 200℃에서 15분 내지 25분 동안 수행되는 단계 중 하나 이상을 포함한다. In a preferred embodiment, the pretreatment step of removing foreign substances from the surface of the metal material, the light irradiation step being performed with UV at a wavelength of 300 nm to 400 nm for more than 90 seconds, and the heat treatment step at 100° C. to 100° C. and one or more of the steps performed at 200° C. for 15 to 25 minutes.

또한, 본 발명은 알루미늄 함유 금속재료를 튜브와 핀으로 성형 가공한 후 상술된 친수피막형성방법으로 친수피막을 형성한 열교환기를 제공한다. In addition, the present invention provides a heat exchanger in which a hydrophilic film is formed by forming an aluminum-containing metal material into tubes and fins and then forming a hydrophilic film using the hydrophilic film forming method described above.

상술된 본 발명에 의하면, 알루미늄 함유 금속재료를 소재로 하는 열교환기에서 응축수에 의한 열교환 효율의 저하, 취기 발생, 비산 문제를 해결하고 우수한 친수성과 친수지속성 뿐만 아니라 내구성을 부여할 수 있다.According to the above-described invention, it is possible to solve problems such as a decrease in heat exchange efficiency due to condensate, odor generation, and scattering in a heat exchanger made of an aluminum-containing metal material, and to provide excellent hydrophilicity and hydrophilic sustainability as well as durability.

또한, 본 발명에 의하면, 알루미늄 함유 금속재료를 소재로 하는 열교환기에서 결로에 의한 눈막힘 현상을 현저히 감소시켜 열교환 효율 및 냉각효율이 높아지고, 통풍저항비를 감소시켜 소비전력 및 소음을 감소시킬 수 있다.In addition, according to the present invention, the clogging phenomenon caused by condensation is significantly reduced in a heat exchanger made of aluminum-containing metal material, thereby increasing heat exchange efficiency and cooling efficiency, and reducing the ventilation resistance ratio, thereby reducing power consumption and noise. there is.

본 발명의 이러한 기술적 효과들은 이상에서 언급한 범위만으로 제한되지 않으며, 명시적으로 언급되지 않았더라도 후술되는 발명의 실시를 위한 구체적 내용의 기재로부터 통상의 지식을 가진 자가 인식할 수 있는 발명의 효과 역시 당연히 포함된다.These technical effects of the present invention are not limited to the scope mentioned above, and even if not explicitly mentioned, the effects of the invention that can be recognized by a person of ordinary skill in the art from the description of the specific contents for implementing the invention described later. Of course it is included.

도 1은 본 발명의 다양한 실시예에 따른 친수화처리제로 구성된 필름의 수분 함수율을 보여주는 그래프이다.
도 2a 내지 도 2c는 본 발명의 다양한 실시예에 따른 친수화처리제로 처리된 알루미늄소재의 4시간 유수 후 접촉각 특성을 나타낸다.
1 is a graph showing the moisture content of a film composed of a hydrophilic treatment agent according to various embodiments of the present invention.
Figures 2a to 2c show the contact angle characteristics of an aluminum material treated with a hydrophilic treatment agent according to various embodiments of the present invention after running in water for 4 hours.

본 발명에서 사용하는 용어는 단지 특정한 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 발명의 설명에 기재된 특징, 숫자, 단계, 동작, 구성 요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성 요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다. The terms used in the present invention are merely used to describe specific embodiments and are not intended to limit the present invention. Singular expressions include plural expressions unless the context clearly dictates otherwise. In this application, terms such as “comprise” or “have” are intended to designate the presence of features, numbers, steps, operations, components, parts, or combinations thereof described in the description of the invention, but are intended to indicate the presence of one or more other It should be understood that this does not exclude in advance the possibility of the presence or addition of features, numbers, steps, operations, components, parts, or combinations thereof.

제1, 제2 등의 용어는 다양한 구성 요소들을 설명하는데 사용될 수 있지만, 상기 구성 요소들은 상기 용어들에 의해 한정되어서는 안된다. 상기 용어들은 하나의 구성 요소를 다른 구성 요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성 요소는 제2 구성 요소로 명명될 수 있고, 유사하게 제2 구성 요소도 제1 구성 요소로 명명될 수 있다. Terms such as first, second, etc. may be used to describe various components, but the components should not be limited by the terms. The above terms are used only for the purpose of distinguishing one component from another. For example, a first component may be referred to as a second component, and similarly, the second component may also be referred to as a first component without departing from the scope of the present invention.

다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 갖는 것으로 해석되어야 하며, 본 발명에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다. Unless otherwise defined, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by a person of ordinary skill in the technical field to which the present invention pertains. Terms defined in commonly used dictionaries should be interpreted as having a meaning consistent with the meaning in the context of the related technology, and unless clearly defined in the present invention, should not be interpreted in an idealized or excessively formal sense. No.

구성 요소를 해석함에 있어서, 별도의 명시적 기재가 없더라도 오차 범위를 포함하는 것으로 해석한다. 특히, 정도의 용어 "약", "실질적으로" 등이 사용되는 경우 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되는 것으로 해석될 수 있다.When interpreting a component, it is interpreted to include the margin of error even if there is no separate explicit description. In particular, when terms of degree such as "about", "substantially", etc. are used, they may be interpreted as being used at or close to that value when manufacturing and material tolerances inherent in the stated meaning are presented. .

시간 관계에 대한 설명일 경우, 예를 들어, '~후에', '~에 이어서', '~다음에', '~전에' 등으로 시간 적 선후관계가 설명되는 경우, '바로' 또는 '직접'이 사용되지 않는 이상 연속적이지 않은 경우도 포함한다.In the case of a description of a temporal relationship, for example, if a temporal relationship is described as ‘after’, ‘after’, ‘after’, ‘before’, etc., ‘immediately’ or ‘directly’ Even non-consecutive cases are included unless ' is used.

이하, 첨부한 도면 및 바람직한 실시예들을 참조하여 본 발명의 기술적 구성을 상세하게 설명한다.Hereinafter, the technical configuration of the present invention will be described in detail with reference to the attached drawings and preferred embodiments.

그러나, 본 발명은 여기서 설명되는 실시예에 한정되지 않고 다른 형태로 구체화 될 수도 있다. 명세서 전체에 걸쳐 본 발명을 설명하기 위해 사용되는 동일한 참조번호는 동일한 구성요소를 나타낸다.However, the present invention is not limited to the embodiments described herein and may be embodied in other forms. Like reference numerals used to describe the invention throughout the specification represent like elements.

본 발명의 기술적 특징은 수용성수지와 수소결합을 할 수 있는 나노셀룰로오스를 첨가하였을 뿐만 아니라, 광가교성과 열가교성을 갖는 두 종류의 수용성수지를 일정 함량으로 사용함으로써 알루미늄 함유 금속재료에 우수한 친수성 및 친수지속성과 내구성을 부여할 수 있고, 기존 실리카에서 발생하던 날림문제도 해결할 수 있는 금속재료용 친수화처리제, 이를 포함하는 친수화처리액, 그 제조방법 및 친수화처리액을 이용한 친수피막형성방법에 있다.The technical feature of the present invention is not only the addition of nanocellulose capable of hydrogen bonding with water-soluble resin, but also the use of two types of water-soluble resin with photo-crosslinking and heat-crosslinking properties in a certain amount, thereby providing excellent hydrophilicity and hydrophilicity to aluminum-containing metal materials. A hydrophilic treatment agent for metal materials that can provide sustainability and durability and solve the flying problem that occurs with existing silica, a hydrophilic treatment solution containing the same, a method of manufacturing the same, and a method of forming a hydrophilic film using the hydrophilization treatment solution. there is.

즉, 종래의 친수화처리제는 폴리비닐알코올에 고친수성 성분인 콜로이달 실리카의 단순 혼합에 의해 제조되기 때문에 콜로이달 실리카입자가 친수성 피막에 고정되지 않아 비산 및 친수 지속성의 문제가 존재하는 반면, 본 발명에 따른 친수화처리제는 실리카 대신 나노셀룰로오스를 사용함으로써 나노셀룰로오스와 수용성고분자사이의 분자 간 상호작용으로 인해 비산 문제를 억제할 뿐만 아니라, 친수지속성 및 기계적 강도 등을 향상시킬 수 있기 때문이다. In other words, since the conventional hydrophilic treatment agent is manufactured by simply mixing polyvinyl alcohol with colloidal silica, a highly hydrophilic component, the colloidal silica particles are not fixed to the hydrophilic film, resulting in scattering and hydrophilic sustainability problems. By using nanocellulose instead of silica, the hydrophilic treatment agent according to the invention not only suppresses the scattering problem due to the intermolecular interaction between nanocellulose and water-soluble polymers, but also improves hydrophilic sustainability and mechanical strength.

따라서, 본 발명의 금속재료용 친수화처리제는 광가교성 수용성고분자 및 폴리비닐알코올(Poly vinyl alcohol, PVA)계 중합체로 구성된 수용성 수지, 가교제, 광개시제, 및 나노셀룰로오스를 포함한다.Therefore, the hydrophilic treatment agent for metal materials of the present invention includes a water-soluble resin composed of a photo-crosslinkable water-soluble polymer and a polyvinyl alcohol (PVA)-based polymer, a cross-linking agent, a photoinitiator, and nanocellulose.

여기서, 수용성수지 100중량부 대하여, 가교제는 0.5 내지 4중량부, 광개시제는 3 내지 5중량부 및 나노셀룰로오스는 1 내지 30중량부 포함될 수 있다. 가교제 및 광개시제의 함량은 수용성수지에 포함된 PVA계 중합체 및 광가교성 수용성고분자의 함량을 고려하여 실험적으로 결정된 것으로 가교제의 함량은 수용성수지에 포함된 PVA계 중합체의 가교정도가 최적인 친수피막의 막제조성 및 결로 친수성을 부여할 수 있는 범위를 갖도록 결정되었고, 광개시제의 함량 또한 수용성수지에 포함된 광가교성 수용성고분자의 가교정도를 고려하여 최적의 친수성 및 내구성을 부여할 수 있는 범위를 갖도록 결정되었다. Here, based on 100 parts by weight of the water-soluble resin, 0.5 to 4 parts by weight of the crosslinking agent, 3 to 5 parts by weight of the photoinitiator, and 1 to 30 parts by weight of nanocellulose may be included. The content of the cross-linking agent and photoinitiator was experimentally determined considering the content of the PVA-based polymer and the photo-crosslinkable water-soluble polymer contained in the water-soluble resin. The content of the cross-linking agent is a hydrophilic film that has the optimal degree of cross-linking of the PVA-based polymer contained in the water-soluble resin. The composition and condensation were determined to have a range that could provide hydrophilicity, and the content of the photoinitiator was also determined to have a range that could provide optimal hydrophilicity and durability considering the degree of crosslinking of the photocrosslinkable water-soluble polymer contained in the water-soluble resin.

한편, 나노셀룰로오스의 함량은 전체 수용성수지의 함량을 고려하여 결정된 것으로, 나노셀룰로오스의 함량이 1중량부 미만이면 친수지속성 및 기계적 강도 등 나노셀룰로오스 함유로 인한 특유의 효과를 누릴 수 없었고, 30중량부를 초과하면 나노셀룰로오스의 분산성 감소와 초기 친수성 하락 등의 문제점이 발생하였다. Meanwhile, the content of nanocellulose was determined considering the content of the total water-soluble resin. If the content of nanocellulose was less than 1 part by weight, the unique effects of nanocellulose, such as hydrophilic sustainability and mechanical strength, could not be enjoyed, and 30 parts by weight was used. If it is exceeded, problems such as a decrease in the dispersibility of nanocellulose and a decrease in initial hydrophilicity occur.

수용성수지는 광가교성 수용성고분자 및 PVA계 중합체를 6 ~ 9 : 4 ~ 1의 중량비로 하는데, 광가교성 수용성고분자 및 PVA계 중합체의 중량비가 6:4를 초과하여 광가교성 수용성고분자 대비 PVA계 중합체의 함량이 많아지면 친수특성이 좋지 못하고, 9:1을 초과하여 광가교성 수용성고분자 대비 PVA계 중합체의 함량이 적어지면 기계적 강도가 하락하는 단점을 지닌다. 따라서, 본 발명에서 실험적으로 결정된 상술된 최적의 광가교성 수용성고분자 및 PVA계 중합체의 배합비는 두 고분자의 서로 다른 가교밀도의 조합으로 인해 수분에 대한 팽윤특성의 증가와 이에 따른 친수성 증가를 가져올 뿐만 아니라 적절한 기계적 강도를 가져올 수 있었다. The water-soluble resin consists of a photo-crosslinkable water-soluble polymer and a PVA-based polymer in a weight ratio of 6 to 9:4 to 1. The weight ratio of the photo-crosslinkable water-soluble polymer and PVA-based polymer exceeds 6:4, so that the PVA-based polymer is higher than the photo-crosslinkable water-soluble polymer. As the content increases, the hydrophilic properties are poor, and if the content of PVA-based polymer exceeds 9:1 and decreases compared to the photo-crosslinkable water-soluble polymer, the mechanical strength decreases. Therefore, the optimal mixing ratio of the above-described optimal photo-crosslinkable water-soluble polymer and PVA-based polymer determined experimentally in the present invention not only results in an increase in swelling characteristics with respect to moisture and a corresponding increase in hydrophilicity due to the combination of different cross-linking densities of the two polymers. Appropriate mechanical strength could be obtained.

광가교성 수용성고분자는 폴리에틸렌글리콜 다이아크릴레이트(Polyethylene glycol diacrylate, PEGDA), 폴리에틸렌 글리콜 메틸 에테르 아크릴레이트(poly(ethylene glycol) methyl ether acrylate, PEGMEA), 폴리에틸렌 글리콜 아크릴레이트(poly(ethylene glycol) acrylate, PEGA), 폴리에틸렌 글리콜 디메타크릴레이트(poly(ethylene glycol) dimethacrylate, PEGDMA) 및 테트라에틸렌글리콜 디메타크릴레이트(tetra(ethylene glycol) dimethacrylate, TEGDM), 폴리에틸렌 글리콜(poly ethylene glycol, PEG)로 구성된 그룹에서 선택되는 하나 이상으로서, 일 구현예로서 후술하는 실시예에서는 폴리에틸렌글리콜 다이아크릴레이트(PEGDA)를 사용하였다. PEGDA는 알킬렌 옥사이드기 (alkylene oxide functional group, -R-O-)로 구성된 친수성기를 가지고 있으며, PVA계 중합체와 함께 해당 친수성 피막의 내구성 및 기계적 강도를 높여주는 역할을 한다. 이의 일반적인 화학식은 아래와 같다.Photocrosslinkable water-soluble polymers include polyethylene glycol diacrylate (PEGDA), poly(ethylene glycol) methyl ether acrylate (PEGMEA), and poly(ethylene glycol) acrylate (PEGA). ), poly(ethylene glycol) dimethacrylate (PEGDMA) and tetra(ethylene glycol) dimethacrylate (TEGDM), from the group consisting of polyethylene glycol (PEG). As one or more selected examples, polyethylene glycol diacrylate (PEGDA) was used in the examples described below. PEGDA has a hydrophilic group consisting of an alkylene oxide functional group (-R-O-), and together with PVA-based polymers, it plays a role in increasing the durability and mechanical strength of the hydrophilic film. Its general chemical formula is as follows.

, 여기서, n은 1이상의 정수이다. , where n is an integer of 1 or more.

PVA계 중합체는 폴리비닐알코올(PVA) 또는 그의 유도체로서, 하이드록실기 (hydroxyl functional group, -OH)를 통해 친수성을 부여하는 구성요소이다. PVA 유도체는 폴리아세트산비닐의 부분 비누화물, 완전 비누화물, 및 아세트산비닐과 다른 단량체의 공중합물의 부분 비누화물 및 완전 비누화물 및 폴리비닐알코올의 변성물을 포함하는 그룹에서 선택되는 어느 하나일 수 있는데, 아세트산비닐과 공중합되는 공단량체는 제하되지는 않지만 예를 들어 음이온성 공단량체로서 아크릴산, 메타크릴산, 이타콘산, 말레산 또는 그들의 염 등이며, 비이온성 공단량체로서는, 스티렌, 아크릴로니트릴, 비닐에테르, (메트)아크릴아미드, N-메틸올(메트)아크릴아미드, 메틸(메트)아크릴레이트, 히드록시에틸(메트)아크릴레이트, 비닐피롤리돈, 아크로일모르폴린, 아세트산비닐 등 및 양이온성 공단량체로서는, 아미노에틸(메트)아크릴레이트, N-히드록시프로필아미노에틸(메트)아크릴레이트, 비닐이미다졸, N,N-디메틸디알릴아민 등을 사용할 수 있다. PVA계 중합체는 완전검화형, 중간검화형, 부분검화형이 있는데, 검화도가 80mole% 이상인 것을 사용하는 것이 바람직하다. 검화도가 80 mole% 미만으로 낮아질 경우, 비누화도가 낮고 아세틸기가 다량으로 부가되어 가교제와의 반응이 충분히 진행되지 않아 가교도 저하로 피막의 제조가 불충분해져 내구성 저하의 원인이 될 수 있으며, 열에 의한 황변이 발생할 수 있기 때문이다. PVA계 중합체의 중량 평균 분자량은 5,000 내지 200,000일 수 있으며, 바람직하게는 20,000 내지 50,000이 사용될 수 있다. 중량 평균 분자량이 5,000 미만이면 피막 중에서 충분한 네트워크 구조를 만들 수 없어 내구성을 발휘할 수 없고, 분자량이 200,000을 초과하면 점도가 높아져, 친수성 피막 중의 나노셀룰로오스가 피막 중에 균일하게 분산되기 어려워져 배수성이 저하된다. PVA-based polymer is polyvinyl alcohol (PVA) or its derivative, and is a component that imparts hydrophilicity through a hydroxyl functional group (-OH). The PVA derivative may be any one selected from the group consisting of partially saponified and fully saponified products of polyvinyl acetate, partially saponified and completely saponified products of copolymers of vinyl acetate and other monomers, and denatured products of polyvinyl alcohol. , Comonomers copolymerized with vinyl acetate are not excluded, but examples include acrylic acid, methacrylic acid, itaconic acid, maleic acid or salts thereof as anionic comonomers, and examples of nonionic comonomers include styrene, acrylonitrile, Vinyl ether, (meth)acrylamide, N-methylol (meth)acrylamide, methyl (meth)acrylate, hydroxyethyl (meth)acrylate, vinylpyrrolidone, acroylmorpholine, vinyl acetate, etc. and cations. As the comonomer, aminoethyl (meth)acrylate, N-hydroxypropylaminoethyl (meth)acrylate, vinylimidazole, N,N-dimethyldiallylamine, etc. can be used. PVA-based polymers are of fully saponified type, intermediate saponified type, and partially saponified type, and it is preferable to use one with a saponification degree of 80 mole% or more. If the degree of saponification is lowered to less than 80 mole%, the degree of saponification is low and a large amount of acetyl groups are added, so the reaction with the cross-linking agent does not proceed sufficiently, and the production of the film becomes insufficient due to the decrease in the degree of cross-linking, which may cause a decrease in durability and may be damaged by heat. This is because yellowing may occur. The weight average molecular weight of the PVA-based polymer may be 5,000 to 200,000, and preferably 20,000 to 50,000. If the weight average molecular weight is less than 5,000, a sufficient network structure cannot be created in the film and durability cannot be achieved. If the molecular weight exceeds 200,000, the viscosity increases and it becomes difficult for the nanocellulose in the hydrophilic film to be uniformly dispersed in the film, leading to lower drainage. .

가교제는 PVA계 중합체만으로 이루어진 친수피막이 물에 쉽게 용해되기 때문에 물에 대한 안전성을 확보하기 위해 사용되는 구성요소로서, PVA계 중합체의 하이드록실기와 반응할 수 있는 관능기를 2개 이상 갖는 유기 화합물일 수 있다. 가교제에 포함된 하이드록실기와 반응할 수 있는 관능기로는, 예를 들어, 카르복실기, 하이드록실기, 에폭시기, 포스폰기 등의 관능기가 있는데 액체산 또는 알데히드 두 종류가 사용될 수 있다. 액체산으로는 옥살산, 말레산, 타르타르산, 시트릭산, 글루탐산, 푸마르산, 폴리아크릴산, 붕산 등이 사용되며, 알데히드로는 아세트 알데히드, 포름알데히드, 글루타르알데히드, 술폰아미드알데히드 등이 사용될 수 있다. 일 구현예로서 후술하는 실시예에서는 가교제로서 글루타알데히드(Glutaraldehyde, GA)가 사용되엇다. 상술된 바와 같이 가교제는 수용성수지 100중량부당 0.5 내지 4중량부 포함되는데, 0.5 중량부보다 적으면, 피막 제조시 가교 효과가 충분하지 않으며, 반대로 4 중량부를 초과하면, 친수성을 나타내는 관능기와의 가교 결합이 과잉되어, 결로 친수성(젖음성)이 저하되거나 피막이 너무 단단해져 가교에 관여하지 않는 가교제의 잔존에 의해 내수성 저하가 나타나는 경우가 있기 때문이다. A crosslinker is a component used to ensure safety against water because the hydrophilic film made only of PVA-based polymer is easily soluble in water. It is an organic compound having two or more functional groups that can react with the hydroxyl group of the PVA-based polymer. You can. Functional groups that can react with the hydroxyl group contained in the crosslinking agent include, for example, a carboxyl group, a hydroxyl group, an epoxy group, and a phosphonic group, and two types of liquid acid or aldehyde can be used. Liquid acids include oxalic acid, maleic acid, tartaric acid, citric acid, glutamic acid, fumaric acid, polyacrylic acid, and boric acid, and aldehydes include acetaldehyde, formaldehyde, glutaraldehyde, and sulfonamidaldehyde. In one embodiment, glutaraldehyde (GA) was used as a cross-linking agent in the examples described below. As described above, the cross-linking agent is included in an amount of 0.5 to 4 parts by weight per 100 parts by weight of the water-soluble resin. If it is less than 0.5 parts by weight, the cross-linking effect during film production is not sufficient, and if it exceeds 4 parts by weight, cross-linking with functional groups showing hydrophilicity occurs. This is because excessive bonding may result in a decrease in hydrophilicity (wetability) due to condensation, or the film may become too hard, resulting in a decrease in water resistance due to the remaining cross-linking agent that does not participate in cross-linking.

필요한 경우 본 발명의 친수화처리제는 PVA중합체를 가교제로 가교시 촉매로 작용하는 산을 더 포함할 수 있는데, 촉매로 사용되는 산은 황산, 초산 등과 같은 공지된 모든 산이 사용될 수 있고, 사용량은 통상 반응계의 pH가 2∼6, 바람직하게는 pH 3∼4.5의 범위로 조절될 수 있는 함량일 수 있다. 촉매로 사용되는 산의 사용량이 적고 pH가 6보다 높은 경우는 반응에 장시간이 필요하기 때문에 경제적이지 않고, pH가 2보다 낮은 경우 코팅기재를 식각하기 때문에 적당하지 않다. If necessary, the hydrophilic treatment agent of the present invention may further include an acid that acts as a catalyst when crosslinking the PVA polymer. The acid used as a catalyst may be any known acid such as sulfuric acid, acetic acid, etc., and the amount used is generally the reaction system. The pH may be adjusted to a range of 2 to 6, preferably pH 3 to 4.5. If the amount of acid used as a catalyst is small and the pH is higher than 6, it is not economical because the reaction requires a long time, and if the pH is lower than 2, it is not suitable because the coating substrate is etched.

광개시제는 광가교성 수용성고분자의 광가교반응을 개시하기 위한 구성요소로서, 수용성고분자의 광가교반응을 개시할 수 있기만 하면 공지된 광개시제를 모두 사용할 수 있는데, 일 구현예로서, 2-하이드록시-4'-(2-하이드록시에톡시)-2-메틸프로페논 [2-hydroxy-4'-(2-hydroxyethoxy)-2-methylpropenone], 2-디메톡시-2-페닐-아세토페논[2-Dimethoxy-2-phenyl-acetophenone], 1-하이드록시사이클로헥실-1-페닐케톤[1-hydroxycyclohexyl-1-phenylketone], 2-벤질-2-(디메틸아미노)-1- [4-(4-모포리닐)페닐]-1-부타논(2-benzyl-2-(dimethylamino)-1-[4- (4-morpholinyl)phenyl]-1-butanone)로 구성된 그룹에서 선택되는 하나 이상일 수 있다. 이 때, 광가교반응은 자외선 또는 가시광선의 조사에 의하여 촉진될 수 있으며, 광가교반응은 상온(25℃)에서도 이루어질 수 있다. The photoinitiator is a component for initiating the photocrosslinking reaction of the photocrosslinkable water-soluble polymer. Any known photoinitiator can be used as long as it can initiate the photocrosslinking reaction of the water-soluble polymer. As an example, 2-hydroxy-4 '-(2-hydroxyethoxy)-2-methylpropenone [2-hydroxy-4'-(2-hydroxyethoxy)-2-methylpropenone], 2-dimethoxy-2-phenyl-acetophenone [2-Dimethoxy -2-phenyl-acetophenone], 1-hydroxycyclohexyl-1-phenylketone [1-hydroxycyclohexyl-1-phenylketone], 2-benzyl-2-(dimethylamino)-1- [4-(4-morpholinyl ) Phenyl]-1-butanone (2-benzyl-2-(dimethylamino)-1-[4- (4-morpholinyl)phenyl]-1-butanone). At this time, the photocrosslinking reaction can be promoted by irradiation of ultraviolet rays or visible light, and the photocrosslinking reaction can be carried out even at room temperature (25°C).

나노셀룰로오스는 셀룰로오스 사슬이 다발을 이루며 빽빽하게 결합한 나노·마이크로미터 크기의 막대 형태 입자 혹은 섬유를 말하며, 높은 aspect ratio 및 기계적 강도, elastic modulus와 열적 안정성을 가지며, 높은 표면적을 가진 장점을 지니고 있을 뿐만 아니라, 금속에 비해 가볍고 강도는 높고, 열을 가해도 팽창하지 않는 특징을 가진 친환경 신소재로서 이의 일반적인 화학식은 아래와 같다. Nanocellulose refers to nano- and micrometer-sized rod-shaped particles or fibers in which cellulose chains are tightly bound together in bundles. It not only has the advantages of high aspect ratio, mechanical strength, elastic modulus and thermal stability, and high surface area. , It is an eco-friendly new material that is lighter than metal, has higher strength, and does not expand when heated. Its general chemical formula is as follows.

이러한 구조를 통해 나노셀룰로오스는 강철 혹은 케블라와 비슷한 인장탄성계수(100 내지 160 GPa)를 가지기 때문에 높은 기계적 강도를 나타내며, 높은 친수성 및 분산성을 가지고 있는 바이오 기반의 소재인데, 사이즈와 처리방법, 표면관능기(Surface Group)구조에 따라 셀룰로오스나노결정(Cellulose Nanocrystal, Nanocrystalline Cellulose, CNC)과 셀룰로오스 나노섬유(Cellulose Nanofiber, Cellulose Nanofibril, Nanofibrillated Cellulose, CNFs)로 나눌 수 있으며, 셀룰로오스 나노섬유는 보통 직경(폭)이 5 내지 100nm, 길이가 수 내지 수십 μm인 섬유로써 기계적 처리를 통해 제조되며, 셀룰로오스 나노결정(CNC)은 직경(폭)이 2 내지 20nm이고, 길이가 100nm 내지 1μm인 막대기 모양의 결정으로써 산 가수분해에 의한 화학적 처리를 통해 얻어진다. Through this structure, nanocellulose has a tensile modulus of elasticity (100 to 160 GPa) similar to that of steel or Kevlar, showing high mechanical strength, and is a bio-based material with high hydrophilicity and dispersibility. Its size, processing method, and surface Depending on the surface group structure, it can be divided into cellulose nanocrystals (Cellulose Nanocrystal, Nanocrystalline Cellulose, CNC) and cellulose nanofibers (Cellulose Nanofiber, Cellulose Nanofibril, Nanofibrillated Cellulose, CNFs). Cellulose nanofibers usually have a diameter (width). Cellulose nanocrystals (CNC) are fibers of 5 to 100 nm and a length of several to several tens of μm, manufactured through mechanical processing, and cellulose nanocrystals (CNC) are rod-shaped crystals with a diameter (width) of 2 to 20 nm and a length of 100 nm to 1 μm, which are produced by acid. It is obtained through chemical treatment by hydrolysis.

본 발명의 친수화처리제는 실리카 대신 나노셀룰로오스를 포함함으로써 수용성수지의 하이드록실기와 수소결합을 통해 친수피막의 기계적 강도, 내구성 및 내수성의 증진은 물론 우수한 친수특성을 부여할 수 있는데, 일 구현예로서 셀룰로오스 나노결정(CNC)은 직경(폭)이 10 내지 20nm이고, 길이가 300nm 내지 900nm인 막대기 모양의 결정을 사용하였고, 셀룰로오스 나노섬유는 직경(폭)이 10 내지 20nm, 길이가 2 내지 3μm인 섬유를 사용하였다. 셀룰로오스 나노섬유의 경우 길이가 3ㅅm보다 길어지는 경우 수용성 수지용액 내에 분산도가 떨어지지는 경향이 있었다. The hydrophilic treatment agent of the present invention contains nanocellulose instead of silica, thereby improving the mechanical strength, durability, and water resistance of the hydrophilic film through hydrogen bonding with the hydroxyl group of the water-soluble resin, as well as providing excellent hydrophilic properties. As cellulose nanocrystals (CNC), rod-shaped crystals with a diameter (width) of 10 to 20 nm and a length of 300 nm to 900 nm were used, and cellulose nanofibers had a diameter (width) of 10 to 20 nm and a length of 2 to 3 μm. Phosphorus fiber was used. In the case of cellulose nanofibers, when the length was longer than 3ㅅm, the degree of dispersion in the water-soluble resin solution tended to decrease.

필요한 경우 본 발명의 친수화처리제는 계면활성제를 더 포함할 수 있는데, 계면 활성제는 본 발명의 효과를 저해하지 않는 종류의 계면 활성제이기만 하면 제한되지 않지만, 일 구현예로서 계면 활성제로는, 카티온성, 아니온성, 양쪽성, 논이온성 등의 계면 활성제를 사용할 수 있고, 예를 들어, 알킬아민염, 알킬트리메틸암모늄할라이드 등의 카티온성 계면 활성제 ; 알킬술폰산에스테르, 폴리옥시에틸렌알킬페닐에테르황산염, 도데실디페닐에테르디술폰산나트륨, 도데실황산나트륨 등의 아니온성 계면 활성제 ; 알킬아미노프로피온산염, 알킬디메틸베타인 등의 양쪽성 계면 활성제 ; 폴리옥시에틸렌알킬페닐에테르, 폴리옥시알킬렌지방산 에스테르, 지방산 글리세린에스테르, 소르비탄 지방산 에스테르, 폴리옥시에틸렌글리세린 지방산, 폴리옥시에틸렌프로필렌글리콜 지방산 에스테르 등의 논이온성 계면 활성제 ; 등을 들 수 있고, 이것들은 1 종을 단독으로 사용해도 되고, 2 종 이상을 조합하여 사용해도 된다로 구성된 그룹에서 선택되는 하나 이상이 사용될 수 있다. 또한, 계면활성제 함량은 작업성, 저장성 및 심미성을 향상시키면서, 본 발명에서 얻어지는 품질(친수성과 내식성 등)을 손상시키지 않는다는 관점에서, 수용성 수지 100중량부 당 1중량부 내지 10중량부 범위일 수 있다. If necessary, the hydrophilic treatment agent of the present invention may further include a surfactant. The surfactant is not limited as long as it is a type of surfactant that does not inhibit the effect of the present invention. However, in one embodiment, the surfactant is a cationic surfactant. , anionic, amphoteric, and nonionic surfactants can be used, for example, cationic surfactants such as alkylamine salts and alkyltrimethylammonium halides; Anionic surfactants such as alkyl sulfonic acid ester, polyoxyethylene alkyl phenyl ether sulfate, sodium dodecyl diphenyl ether disulfonate, and sodium dodecyl sulfate; Amphoteric surfactants such as alkylaminopropionate and alkyldimethylbetaine; Nonionic surfactants such as polyoxyethylene alkyl phenyl ether, polyoxyalkylene fatty acid ester, fatty acid glycerin ester, sorbitan fatty acid ester, polyoxyethylene glycerin fatty acid, and polyoxyethylene propylene glycol fatty acid ester; These may be used individually, or two or more types may be used in combination. One or more selected from the group consisting of these may be used. In addition, the surfactant content may range from 1 to 10 parts by weight per 100 parts by weight of the water-soluble resin from the viewpoint of improving workability, storability and aesthetics while not compromising the qualities (hydrophilicity and corrosion resistance, etc.) obtained in the present invention. there is.

다음으로, 본 발명의 금속재료용 친수화처리액은 상술된 구성의 친수화처리제를 포함할 수 있다. 여기서, 친수화처리제는 5 내지 30중량%의 농도로 포함되며, 용매는 물 또는 극성용매일 수 있다. 필요한 경우 친수화처리제는 계면활성제 및 산 중 하나 이상을 더 포함할 수 있다. Next, the hydrophilic treatment liquid for metal materials of the present invention may include a hydrophilic treatment agent having the above-described composition. Here, the hydrophilic treatment agent is included at a concentration of 5 to 30% by weight, and the solvent may be water or a polar solvent. If necessary, the hydrophilic treatment agent may further include one or more of a surfactant and an acid.

본 발명의 금속재료용 친수화처리액에서 친수화처리제의 농도는 실험을 통해 결정된 것으로 친수화처리제의 농도가 5중량%미만이면 농도가 낮고, 친수화처리제의 농도가 30중량%를 초과하면 농도가 진해서 적절한 피막두께를 구현하는데 문제가 있었다. 또한, 친수화처리액의 pH가 pH 3 내지 pH 4.5일 때 적절한 피막두께를 구현할 수 있음을 실험적으로 확인하였다.The concentration of the hydrophilic treatment agent in the hydrophilic treatment solution for metal materials of the present invention was determined through experiment. If the concentration of the hydrophilic treatment agent is less than 5% by weight, the concentration is low, and if the concentration of the hydrophilic treatment agent exceeds 30% by weight, the concentration is low. There was a problem in achieving an appropriate film thickness due to the thick film. In addition, it was experimentally confirmed that an appropriate film thickness could be achieved when the pH of the hydrophilic treatment solution was pH 3 to pH 4.5.

다음으로, 본 발명의 금속재료용 친수화처리액 제조방법은 물에 광가교성 수용성고분자 및 PVA계 중합체를 동시에 또는 순차적으로 용해시켜 수지용액을 준비하는 단계; 상기 수지용액에 가교제를 첨가하여 전구체용액을 준비하는 단계; 상기 전구체용액에 나노셀룰로오스를 첨가한 후 초음파로 처리하여 상기 나노셀룰로오스가 분산된 전구체분산액을 준비하는 단계; 및 상기 전구체분산액에 광개시제를 첨가한 후 교반하여 친수화처리액을 얻는 단계;를 포함할 수 있다. 필요한 경우 상기 수지용액을 준비하는 단계에서 계면활성제 및 산 중 하나 이상을 첨가하는 단계;를 더 포함할 수 있다. Next, the method for producing a hydrophilic treatment solution for metal materials of the present invention includes preparing a resin solution by simultaneously or sequentially dissolving a photocrosslinkable water-soluble polymer and a PVA-based polymer in water; Preparing a precursor solution by adding a crosslinking agent to the resin solution; Adding nanocellulose to the precursor solution and then treating it with ultrasound to prepare a precursor dispersion in which the nanocellulose is dispersed; and adding a photoinitiator to the precursor dispersion and then stirring to obtain a hydrophilic treatment solution. If necessary, the step of adding one or more of a surfactant and an acid in preparing the resin solution may be further included.

여기서, 친수화처리액은 농도가 5 내지 25중량%이고, 광가교성 수용성고분자 및 PVA계 중합체로 구성된 수용성수지 100중량부 대하여, 가교제 0.5 내지 4중량부, 광개시제 3 내지 5중량부 및 나노셀룰로스 1 내지 30중량부를 포함할 수 있으며, 수용성수지는 광가교성 수용성고분자 및 PVA계 중합체를 6 ~ 9 : 4 ~ 1의 중량비로 포함할 수 있다. 한편 계면활성 및 산이 포함되는 경우, 계면활성제는 일구현예로서 Triton X-100과 Brij 비이온계면활성제가 포함될 수 있고, 산의 첨가량은 수지용액의 pH가 pH 3 내지 pH 4.5로 조절될 수 있는 함량일 수 있다. Here, the hydrophilization treatment solution has a concentration of 5 to 25% by weight, and contains 0.5 to 4 parts by weight of crosslinker, 3 to 5 parts by weight of photoinitiator, and 1 part by weight of nanocellulose for 100 parts by weight of water-soluble resin composed of photocrosslinkable water-soluble polymer and PVA-based polymer. It may contain from 30 parts by weight, and the water-soluble resin may include a photo-crosslinkable water-soluble polymer and a PVA-based polymer at a weight ratio of 6 to 9:4 to 1. On the other hand, when surfactant and acid are included, the surfactant may include Triton It may be the content.

다음으로, 본 발명의 친수피막형성방법은 금속재료 표면에 친수화처리액으로 도포층을 형성하는 도포단계; 상기 도포층을 광조사하여 상기 친수화처리액에 포함된 광가교성 고분자를 가교시키는 광조사단계; 및 상기 광조사단계를 거친 도포층에 열을 가하여 상기 친수화처리액에 포함된 PVA계중합체를 가교시켜 친수피막을 형성하는 열처리단계;를 포함할 수 있다.Next, the hydrophilic film forming method of the present invention includes an application step of forming a coating layer with a hydrophilic treatment solution on the surface of a metal material; A light irradiation step of crosslinking the photocrosslinkable polymer contained in the hydrophilic treatment solution by irradiating the application layer with light; And a heat treatment step of applying heat to the application layer that has undergone the light irradiation step to crosslink the PVA-based polymer contained in the hydrophilic treatment solution to form a hydrophilic film.

여기서, 사용되는 금속재료는 특별히 한정되지 않으며, 알루미늄판, 알루미늄 합금판, 알루미늄 도금강판, 용융 아연 도금 강판(GI), 합금화 용융 아연 도금 강판(GA), 전기 아연 도금 강판 (EG) 등을 예로 들 수 있다. 그 중에서도 알루미늄판, 알루미늄 합금판 등의 알루미늄 함유 금속재료가 적합할 수 있다.Here, the metal material used is not particularly limited, and examples include aluminum sheet, aluminum alloy sheet, aluminum-plated steel sheet, hot-dip galvanized steel sheet (GI), alloyed hot-dip galvanized steel sheet (GA), and electro-galvanized steel sheet (EG). I can hear it. Among them, aluminum-containing metal materials such as aluminum plates and aluminum alloy plates may be suitable.

도포단계에서 도포층을 형성하기 위한 도포방법은 특별히 한정되지 않으며 침지법, 분무법, 브러시법, 롤코트법, 플로우코트법 등을 사용하여 공지된 방법으로 금속재료 표면에 상술된 구성을 갖는 친수화처리액으로 도포층을 형성할 수 있다.The application method for forming the application layer in the application step is not particularly limited, and hydrophilization with the above-described structure is applied to the surface of the metal material by known methods such as dipping, spraying, brushing, roll coating, and flow coating. A coating layer can be formed with the treatment liquid.

광조사단계는 친수화처리액으로 도포층이 형성된 알루미늄 함유 금속재료 기재를 광조사기를 통과시켜 수행될 수 있는데, 통상적으로 실온(25℃)에서 처리할 수 있으며, 수분 이내에 도포층 내의 광가교성 수용성고분자가 광개시제에 의해 광가교반응을 시작하여 신속하게 광경화가 될 수 있다, 이때 광조사기는 UV를 사용할 수 있으며, LED 및 램프가 사용될 수 있다. 광가교반응 시간은 약 90초 이상일 수 있는데, 90초미만으로 조사하면 가교밀도가 떨어지며 상한의 경우 특별한 제한은 없지만 광가교성 수용성고부자가 모두 광가교가 되고 나면 광조사 시간을 연장하는 것이 시간 낭비에 불과하므로 최대 15분 이상이면 의미가 없었다. 이와 같이 90초 이상 조사시 고분자의 분해(degradation) 및 생산속도에 영향을 미치기 때문에 적어도 90초 이상 광조사를 수행하면 본 발명의 목적을 달성할 수 있다. 조사 파장은 광개시제의 종류에 따라 달라지지만, 276 nm 내지 400nm 일수 있고 바람직하게는 365 nm 일수 있다. The light irradiation step can be performed by passing an aluminum-containing metal material substrate on which an application layer is formed with a hydrophilic treatment solution through a light irradiation device. It can usually be treated at room temperature (25°C), and the photo-crosslinkable water-soluble content in the application layer is formed within a few minutes. The polymer can be quickly photocured by starting a photocrosslinking reaction using a photoinitiator. At this time, UV can be used as the light irradiator, and LEDs and lamps can be used. The photocrosslinking reaction time can be about 90 seconds or more, but if irradiation is less than 90 seconds, the crosslinking density decreases. There is no particular upper limit, but extending the photoirradiation time is a waste of time once all the photocrosslinkable water-soluble highly rich materials are photocrosslinked. It was meaningless if it lasted longer than 15 minutes. In this way, since irradiation for more than 90 seconds affects the degradation and production rate of the polymer, the purpose of the present invention can be achieved by performing light irradiation for at least 90 seconds. The irradiation wavelength varies depending on the type of photoinitiator, but may be 276 nm to 400 nm, preferably 365 nm.

열처리단계에서 수행되는 열처리 방법은 특별히 한정되지 않으며, 온도 40 내지 300℃의 범위 내에서 10분 내지 40분 동안 가열처리하여 수행될 수 있는데, 바람직하게는 100 내지 200℃에서 15분 내지 25분 동안 가열처리하여 친수피막을 형성시킬 수 있다. 열처리 온도가 40℃ 미만이면, 친수화처리액의 주용매인 수분이 잔존하여, 막제조가 불충분해져, 친수피막을 금속 재료 표면 위에 고정할 수 없게 되어, 내수성이나 친수 지속성이 저하될 수 있다. 열처리 온도가 300℃를 초과하면, 친수피막에 균열이 생기게 되어, 내습성이나 밀착성이 저하될 수 있다.The heat treatment method performed in the heat treatment step is not particularly limited, and may be performed by heat treatment within a temperature range of 40 to 300°C for 10 to 40 minutes, preferably at 100 to 200°C for 15 to 25 minutes. A hydrophilic film can be formed by heat treatment. If the heat treatment temperature is less than 40°C, moisture, which is the main solvent of the hydrophilic treatment liquid, remains, making film production insufficient, making it impossible to fix the hydrophilic film on the surface of the metal material, and water resistance and hydrophilic sustainability may be reduced. If the heat treatment temperature exceeds 300°C, cracks may form in the hydrophilic film, and moisture resistance and adhesion may decrease.

필요한 경우, 도포단계를 수행하기 전에 금속재료를 전처리하는 단계를 수행할 수 있는데, 전처리단계는 금속재료의 표면의 유분이나 오염 등 이물질을 제거하기 위해 실시된다. 금속재료는 방청유가 도포되어 있거나, 작업 중에 가공유 등의 유분이나 오염이 부착되어 있는 경우가 있기 때문에, 전처리를 실시함으로써, 금속재료의 표면을 청정하게 하여, 친수화처리액 균일하게 젖게 한다. 전처리단계를 수행하기 위한 방법은 특별히 한정되지 않고, 탕세, 용제 세정, 알칼리 탈지 세정, 산세 등의 방법이 있다. 또한 내식을 부여하기 위한 Cr, Zr, Ti, V 등이 포함된 산성용액을 이용하여 화성피막처리가 수반될 수도 있다. If necessary, a step of pre-treating the metal material may be performed before performing the application step. The pre-treatment step is performed to remove foreign substances such as oil or contamination on the surface of the metal material. Since metal materials may be coated with anti-rust oil or have oils or contaminants such as processing oil attached during work, pretreatment is performed to clean the surface of the metal material and make it uniformly wet with the hydrophilic treatment solution. The method for performing the pretreatment step is not particularly limited, and includes methods such as hot water washing, solvent washing, alkaline degreasing washing, and acid washing. Additionally, chemical coating treatment may be performed using an acidic solution containing Cr, Zr, Ti, V, etc. to provide corrosion resistance.

다음으로, 본 발명의 열교환기는 알루미늄 함유 금속재료를 튜브와 핀으로 성형 가공한 후 상술된 친수피막형성방법으로 친수피막을 형성한 것이다. 여기서, 본 발명의 열교환기에 형성된 친수피막의 접촉각은 적어도 25°미만이며, 바람직하게는 21°이하로서 친수특성이 매우 우수하다. Next, the heat exchanger of the present invention is formed by forming an aluminum-containing metal material into tubes and fins, and then forming a hydrophilic film using the hydrophilic film forming method described above. Here, the contact angle of the hydrophilic film formed in the heat exchanger of the present invention is at least less than 25°, and preferably less than 21°, so that the hydrophilic characteristics are very excellent.

실시예 1Example 1

1. 수지용액을 준비하는 단계1. Steps to prepare resin solution

물 90g에 PEGDA 8g 및 PVA 2g을 순차적으로 첨가한 후 용해시켜 수지용액을 제조하였다.A resin solution was prepared by sequentially adding 8 g of PEGDA and 2 g of PVA to 90 g of water and dissolving them.

2. 전구체용액을 준비하는 단계2. Steps to prepare precursor solution

가교제로 글루타알데히드 0.12g을 첨가하여 용해시켜 전구체용액을 제조하였다.A precursor solution was prepared by adding and dissolving 0.12 g of glutaraldehyde as a cross-linking agent.

3. 전구체분산액을 준비하는 단계3. Steps to prepare precursor dispersion

전구체용액에 직경(폭)이 15nm이고, 길이가 500nm인 셀룰로오스나노결정(CNC) 0.3g을 첨가한 후 울트라 소닉 클리너 초음파세척기를 이용하여 초음파처리하여 CNC가 균일하게 분산된 전구체분산액을 얻었다.0.3 g of cellulose nanocrystals (CNC) with a diameter (width) of 15 nm and a length of 500 nm were added to the precursor solution and then sonicated using an ultrasonic cleaner ultrasonic cleaner to obtain a precursor dispersion in which the CNCs were uniformly dispersed.

4. 친수화처리액을 얻는 단계4. Step of obtaining hydrophilic treatment solution

전구체분산액에 광개시제로서 2-하이드록시-4'-(2-하이드록시에톡시)-2-메틸프로페논 0.4g을 첨가한 후 용해시키고, 황산을 첨가하여 pH를 3.7로 조절하여 친수화처리액1을 얻었다.Add 0.4 g of 2-hydroxy-4'-(2-hydroxyethoxy)-2-methylpropenone as a photoinitiator to the precursor dispersion, dissolve it, and add sulfuric acid to adjust the pH to 3.7 to create a hydrophilic treatment solution. got 1

실시예 2Example 2

CNC 대신 직경(폭)이 15nm이고, 길이가 2.5μm인 CNF를 사용한 것을 제외하면 실시예1과 동일한 방법을 수행하여 친수화처리액2를 얻었다.Hydrophilic treatment solution 2 was obtained in the same manner as in Example 1, except that CNF with a diameter (width) of 15 nm and a length of 2.5 μm was used instead of CNC.

실시예 3Example 3

PEGDA 7g 및 PVA 3g을 사용하고, 가교제를 0.18g사용하며, CNC 대신 직경(폭)이 15nm이고, 길이가 2.5μm인 CNF를 사용한 것을 제외하면 실시예1과 동일한 방법을 수행하여 친수화처리액3을 얻었다.The same method as Example 1 was performed except that 7g of PEGDA and 3g of PVA were used, 0.18g of crosslinker was used, and CNF with a diameter (width) of 15nm and a length of 2.5μm was used instead of CNC, thereby producing a hydrophilic treatment solution. Got 3.

실시예 4Example 4

하기와 같은 과정을 수행하여 알루미늄 함유금속재료에 친수화처리액으로 친수피막을 형성하였다.The following process was performed to form a hydrophilic film on an aluminum-containing metal material using a hydrophilic treatment solution.

1. 전처리단계1. Pre-processing stage

알루미늄 함유 금속재료를 60℃로 유지되는 0.1M 농도의 황산 용액에서 80초간 침지시켜 유분 등의 표면의 잔류플럭스 및 오염물을 제거한 뒤, 수돗물로 15초간 수세 진행하여 청정화하는 전처리단계를 수행하였다.The aluminum-containing metal material was immersed in a 0.1M sulfuric acid solution maintained at 60°C for 80 seconds to remove residual flux and contaminants such as oil on the surface, and then washed with tap water for 15 seconds to clean it.

2. 도포단계2. Application step

전처리된 알루미늄 함유 금속재료를 실시예1에서 준비된 친수화처리액1에 침지시켜 그 표면에 도포층을 형성하였다.The pretreated aluminum-containing metal material was immersed in the hydrophilic treatment solution 1 prepared in Example 1 to form a coating layer on its surface.

3. 광조사단계3. Light irradiation step

도포층이 형성된 알루미늄 함유 금속재료를 친수화처리액1이 완전히 건조되지 않은 상태에서 광개시를 진행하며, 해당 알루미늄 금속재료의 약 10cm 높이에 세팅한 자외선 램프(380nm)를 사용하여 3분 동안 광조사하였다. 광조사가 되면 친수화처리액1에 포함된 광개시제에 의해 PEGDAD의 광가교반응이 개시되어 가교가 진행되게 된다. The aluminum-containing metal material on which the coating layer has been formed is photo-initiated in a state where the hydrophilic treatment solution 1 is not completely dried, and the aluminum metal material is exposed to light for 3 minutes using an ultraviolet lamp (380 nm) set at a height of approximately 10 cm. investigated. When light is irradiated, the photo-crosslinking reaction of PEGDAD is initiated by the photoinitiator contained in the hydrophilic treatment solution 1, and the crosslinking progresses.

4. 열처리단계4. Heat treatment step

도포층에 광조사가 이루어진 알루미늄 함유 금속재료를 오븐에서 140℃, 20분 동안 열처리를 수행하였다. 열처리를 통해 도포층에서 글루탐산에 의해 폴리비닐알코올의 가교반응이 일어나 금속재료에 형성된 친수피막1(PVA:PEGDA 2:8 CNC3%)이 제조되었다. The aluminum-containing metal material whose coating layer was irradiated with light was heat treated in an oven at 140°C for 20 minutes. Through heat treatment, a cross-linking reaction of polyvinyl alcohol occurred with glutamic acid in the coating layer, thereby producing hydrophilic film 1 (PVA: PEGDA 2:8 CNC 3%) formed on the metal material.

실시예 5Example 5

실시예 2에서 제조된 친수화처리액2를 사용한 것을 제외하면 실시예 4와 동일한 방법을 수행하여 친수피막2(PVA:PEGDA 2:8 CNF3%)를 제조하였다. Hydrophilic film 2 (PVA: PEGDA 2:8 CNF 3%) was prepared in the same manner as in Example 4, except that the hydrophilic treatment solution 2 prepared in Example 2 was used.

실시예 6Example 6

실시예 3에서 제조된 친수화처리액3을 사용한 것을 제외하면 실시예 4와 동일한 방법을 수행하여 친수피막3(PVA:PEGDA 3:7 CNF3%)을 제조하였다. Hydrophilic coating 3 (PVA: PEGDA 3:7 CNF 3%) was prepared in the same manner as in Example 4, except that the hydrophilic treatment solution 3 prepared in Example 3 was used.

비교예 1Comparative Example 1

물 90g에 PVA 10g을 첨가한 후 용해시켜 수지용액을 제조한 후, 가교제로 글루타알데히드 0.6g을 첨가한 다음 용해시키고, 황산을 첨가하여 pH를 3.7로 조절하여 비교예친수화처리액1을 제조하였다.A resin solution was prepared by adding 10 g of PVA to 90 g of water and dissolving it, then adding 0.6 g of glutaraldehyde as a cross-linking agent, dissolving it, and adding sulfuric acid to adjust the pH to 3.7 to prepare Comparative Example Hydrophilization Treatment Solution 1. did.

비교예 2Comparative Example 2

1. 수지용액을 준비하는 단계1. Steps to prepare resin solution

물 90g에 PEGDA 7g 및 PVA 3g을 순차적으로 첨가한 후 용해시켜 수지용액을 제조하였다.A resin solution was prepared by sequentially adding 7g of PEGDA and 3g of PVA to 90g of water and dissolving them.

2. 전구체용액을 준비하는 단계2. Steps to prepare precursor solution

가교제로 글루타알데히드 0.18g을 첨가하여 용해시켜 전구체용액을 제조하였다.A precursor solution was prepared by adding and dissolving 0.18 g of glutaraldehyde as a cross-linking agent.

3. 비교예 친수화처리액을 얻는 단계3. Step of obtaining comparative example hydrophilic treatment solution

전구체용액에 광개시제로서 2-하이드록시-4'-(2-하이드록시에톡시)-2-메틸프로페논 0.35g을 첨가한 후 용해시키고, 황산을 첨가하여 pH를 3.7로 조절하여 비교예친수화처리액2를 얻었다.Comparative example hydrophilization treatment by adding 0.35 g of 2-hydroxy-4'-(2-hydroxyethoxy)-2-methylpropenone as a photoinitiator to the precursor solution, dissolving it, and adjusting the pH to 3.7 by adding sulfuric acid. I got solution 2.

비교예 3Comparative Example 3

PEGDA 8g 및 PVA 2g을 사용하고, 가교제를 0.12g 사용한 것을 제외하면 비교예2와 동일한 방법을 수행하여 비교예친수화처리액3을 얻었다.Comparative Example hydrophilization treatment solution 3 was obtained by performing the same method as Comparative Example 2, except that 8 g of PEGDA and 2 g of PVA were used, and 0.12 g of cross-linking agent was used.

비교예 4Comparative Example 4

1. 전처리단계1. Pre-processing stage

알루미늄 함유 금속재료를 60℃로 유지되는 0.1M 농도의 황산 용액에서 80초간 침지시켜 유분 등의 표면의 잔류플럭스 및 오염물을 제거한 뒤, 수돗물로 15초간 수세 진행하여 청정화하는 전처리단계를 수행하였다.The aluminum-containing metal material was immersed in a 0.1 M sulfuric acid solution maintained at 60°C for 80 seconds to remove residual flux and contaminants such as oil on the surface, and then washed with tap water for 15 seconds to clean it.

2. 도포단계2. Application step

전처리된 알루미늄 함유 금속재료를 비교예1에서 준비된 비교예친수화처리액1에 침지시켜 그 표면에 도포층을 형성하였다.The pretreated aluminum-containing metal material was immersed in Comparative Example Hydrophilization Treatment Solution 1 prepared in Comparative Example 1 to form a coating layer on its surface.

3. 열처리단계3. Heat treatment step

도포층이 형성된 알루미늄 함유 금속재료를 오븐에서 140℃, 20분 동안 열처리를 수행하였다. 열처리를 통해 도포층에서 글루탐산에 의해 폴리비닐알코올의 가교반응이 일어나 금속재료에 형성된 비교예친수피막1(PVA)이 제조되었다. The aluminum-containing metal material on which the coating layer was formed was heat treated in an oven at 140°C for 20 minutes. Through heat treatment, a crosslinking reaction of polyvinyl alcohol with glutamic acid occurred in the coating layer, thereby producing Comparative Example Hydrophilic Film 1 (PVA) formed on a metal material.

비교예 5Comparative Example 5

비교예친수화처리액2를 사용한 것을 제외하면 실시예 4와 동일한 방법을 수행하여 비교예친수피막2를 제조하였다. Comparative Example Hydrophilic Film 2 was prepared in the same manner as in Example 4, except that Comparative Example Hydrophilic Treatment Solution 2 was used.

비교예 6Comparative Example 6

비교예친수화처리액3을 사용한 것을 제외하면 실시예 4와 동일한 방법을 수행하여 비교예친수피막3을 제조하였다. Comparative Example Hydrophilic Film 3 was prepared in the same manner as Example 4, except that Comparative Example Hydrophilic Treatment Solution 3 was used.

실험예 1Experimental Example 1

최적의 산촉매 조건을 찾기 위해 하기 표 1과 같이 pH 조건을 달리하여 폴리비닐알코올 필름을 제조하고, 150도씨에서 15분 내지 20분 건조한 후, 상기 필름을 증류수에 함침하여 수분함수율을 측정하였다. In order to find the optimal acid catalyst conditions, polyvinyl alcohol films were prepared under different pH conditions as shown in Table 1 below, dried at 150 degrees Celsius for 15 to 20 minutes, and then the films were impregnated with distilled water to measure the moisture content.

pHpH Weight (g)Weight (g) 증가량increase 초기Early 1시간 후1 hour later 22 0.620.62 0.990.99 161.43%161.43% 2.52.5 0.580.58 1.251.25 217.67%217.67% 33 0.520.52 1.111.11 214.83%214.83% 3.53.5 0.430.43 1.541.54 359.12%359.12% 44 0.410.41 1.32441.3244 326.53%326.53% 55 0.410.41 0.920.92 222.17%222.17% 5.85.8 0.400.40 water solublewater soluble  

상기 표 1로부터 pH 3.5 내지 4에서 가장 높은 수분함수율을 나타냄을 확인하였고, pH 5.8 이상에서는 가교가 잘 이루어지지 않은 것을 확인하였다. From Table 1, it was confirmed that the highest moisture content was observed at pH 3.5 to 4, and that crosslinking did not occur well at pH 5.8 or higher.

실험예 2Experimental Example 2

수용성수지를 구성하는 광가교성 수용성고분자와 PVA계중합체의 배합비를 결정하기 위해 광가교성 수용성고분자는 PEDGA를 사용하고 PVA계 중합체는 폴리비닐알코올(PVA)를 사용하여 각각 배합비율을 하기 표 2와 같이 변화시켜 용액을 제조하고 알루미늄 시편에 코팅한 후 접촉각을 측정하고 그 결과를 표 2에 나타냈다. To determine the mixing ratio of the photo-crosslinkable water-soluble polymer and PVA-based polymer constituting the water-soluble resin, PEDGA was used as the photo-crosslinkable water-soluble polymer and polyvinyl alcohol (PVA) was used as the PVA-based polymer, and the mixing ratio was shown in Table 2 below. After preparing the solution and coating it on an aluminum specimen, the contact angle was measured and the results are shown in Table 2.

표 2로부터, PVA를 단독으로 사용하는 경우 접촉각이 비교적 높은 경향을 보였으며, 나타내지는 않았지만 PEDGA를 단독으로 사용하는 경우 기계적 강도가 좋지 못하여 PVA와 PEDGA를 적절하게 혼합하였는데, PEGDA:PVA의 중량비가 6:4 내지 9:1인 범위에서 초기접촉각이 낮아 졌으며, 특히 PEGDA:PVA의 중량비가 8:2일 때 초기접촉각이 가장 낮은 것을 확인하였다. From Table 2, when PVA was used alone, the contact angle tended to be relatively high. Although not shown, when PEDGA was used alone, the mechanical strength was poor, so PVA and PEDGA were appropriately mixed, and the weight ratio of PEGDA:PVA was The initial contact angle decreased in the range of 6:4 to 9:1, and in particular, it was confirmed that the initial contact angle was lowest when the weight ratio of PEGDA:PVA was 8:2.

제조조건 - 150도, pH 3.7Manufacturing conditions - 150 degrees, pH 3.7 샘플(수지조성)Sample (resin composition) 초기접촉각initial contact angle PEGDA : PVA = 0 : 10
(비교예피막1)
PEGDA:PVA=0:10
(Comparative example film 1)
34.0334.03
PEGDA : PVA = 9 : 1PEGDA:PVA=9:1 28.2728.27 PEGDA : PVA = 8 : 2
(비교예피막2)
PEGDA:PVA=8:2
(Comparative example film 2)
27.9027.90
PEGDA : PVA = 7 : 3
(비교예피막2)
PEGDA:PVA=7:3
(Comparative example film 2)
28.1728.17
PEGDA : PVA = 6 : 4PEGDA:PVA=6:4 28.8428.84 PEGDA : PVA = 2 : 8PEGDA:PVA=2:8 36.9636.96

실험예 3Experimental Example 3

실시예4 내지 6에서 얻어진 친수피막1 내지 3과 비교예3에서 얻어진 비교예친수피막1을 대상으로 실험예 2와 동일한 조건에서 접촉각을 측정하고 그 결과를 표 3에 나타내었다. The contact angles were measured for the hydrophilic coatings 1 to 3 obtained in Examples 4 to 6 and the comparative hydrophilic coating 1 obtained in Comparative Example 3 under the same conditions as in Experimental Example 2, and the results are shown in Table 3.

구분division 수지조성Resin composition 초기접촉각initial contact angle 친수피막1Hydrophilic film 1 PEGDA : PVA : CNC = 8 : 2 : 0.3PEGDA:PVA:CNC=8:2:0.3 20.2320.23 친수피막2Hydrophilic film 2 PEGDA : PVA : CNF = 8 : 2 : 0.3PEGDA:PVA:CNF = 8:2:0.3 17.5917.59 친수피막3Hydrophilic film 3 PEGDA : PVA : CNF = 7 : 3 : 0.3PEGDA:PVA:CNF=7:3:0.3 19.3619.36 비교예친수피막1Comparative example Hydrophobic film 1 PEGDA : PVA = 0 : 10PEGDA:PVA=0:10 34.0334.03 비교예친수피막2Comparative example Hydrophobic film 2 PEGDA : PVA = 7 : 3PEGDA:PVA=7:3 28.1728.17

표2 및 표 3을 비교하면, PEGDA 및 PVA가 동일 배합비를 갖는 경우 CNC 또는 CNF가 더 포함되면 초기접촉각이 수지만 사용한 경우에 비해 우수한 결과를 나타냄을 확인하였다. 따라서 CNC 또는 CNF 즉 나노셀룰로오스의 첨가가 친수특성에 좋은 영향을 미치는 것을 알 수 있다. Comparing Table 2 and Table 3, it was confirmed that when PEGDA and PVA had the same mixing ratio, if CNC or CNF was added, the initial contact angle showed superior results compared to the case where only the resin was used. Therefore, it can be seen that the addition of CNC or CNF, i.e. nanocellulose, has a positive effect on hydrophilic properties.

실험예 4Experimental Example 4

실시예4 내지 6에서 얻어진 친수피막1 내지 3과 비교예 4에서 얻어진 비교예친수피막1을 대상으로 함수율을 측정하고 그 결과를 도 1에 나타내었다. 함수율은 건조된 피막의 중량(W1)을 측정한 뒤, 증류수에 1시간, 2시간, 3시간, 4시간 간격으로 함침하여 피막의 중량(W2)을 측정하여 무게의 증가량을 W2-W1/W1 * 100 백분율로 환산하여 계산하였다. The water content was measured for the hydrophilic coatings 1 to 3 obtained in Examples 4 to 6 and the comparative hydrophilic coating 1 obtained in Comparative Example 4, and the results are shown in Figure 1. The moisture content is measured by measuring the weight (W 1 ) of the dried film, then impregnating it with distilled water at intervals of 1 hour, 2 hours, 3 hours, and 4 hours to measure the weight (W 2 ) of the film, and calculating the weight increase as W 2 - It was calculated by converting it into a percentage of W 1 /W 1 * 100.

도 1에 도시된 바와 같이, 실시예에서 제조된 친수피막 1 내지 3과 같이 CNC 또는 CNF가 첨가된 경우 1시간이내의 함수율은 각각 285, 305, 330% 로 큰 값을 나타내었다. 또한 시간이 지남에 따라 함수량이 증가하는 것을 확인하였다. As shown in Figure 1, when CNC or CNF was added as in the hydrophilic films 1 to 3 prepared in the examples, the water content within 1 hour was as high as 285, 305, and 330%, respectively. Additionally, it was confirmed that the water content increased over time.

반면, PVA를 단독으로 사용한 비교예피막1의 경우, 1시간내에 함수율이 275%까지 증가한 후 이후 4시간까지 함침했음에도 불구하고 중량 변화는 거의 관찰되지 않았다. On the other hand, in the case of Comparative Example Film 1 using PVA alone, the water content increased to 275% within 1 hour and almost no change in weight was observed even though it was impregnated for 4 hours.

실험예 5Experimental Example 5

실시예 4 내지 6에서 제조된 친수피막1 내지 3과 비교예6에서 얻어진 비교예친수피막3을 대상으로 4시간 유수 후 접촉각을 측정하고 그 결과를 도 2a 내지 도 2d에 도시하였다.The contact angles of the hydrophilic coatings 1 to 3 prepared in Examples 4 to 6 and the comparative hydrophilic coating 3 obtained in Comparative Example 6 were measured after 4 hours of running water, and the results are shown in FIGS. 2A to 2D.

수지만 사용한 비교예친수피막3의 접촉각이 도시된 도 2d와 비교하여 수지에 나노셀룰로오스가 더 첨가된 친수피막 1 내지 3의 접촉각이 도시된 도 2a 내지 도 2c에 도시된 바와 같이, 친수피막의 친수특성이 나노셀룰로오스에 의해 좋아지는 것을 확인하였다. 특히 나노셀룰로오스 중에서도 CNF가 CNC보다 더 우수한 성능 향상을 나타내는 것을 알 수 있다. As shown in Figures 2a to 2c, which show the contact angles of hydrophilic films 1 to 3 to which nanocellulose was added to the resin compared to Figure 2d, which shows the contact angle of comparative hydrophilic film 3 using only resin, the hydrophilic film It was confirmed that hydrophilic properties were improved by nanocellulose. In particular, it can be seen that among nanocelluloses, CNF shows better performance improvement than CNC.

본 발명은 이상에서 살펴 본 바와 같이 바람직한 실시 예를 들어 도시하고 설명하였으나, 상기한 실시 예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 다양한 변경과 수정이 가능할 것이다.Although the present invention has been illustrated and described with preferred embodiments as discussed above, it is not limited to the above-described embodiments and is not limited to the spirit of the present invention. Various changes and modifications will be possible.

Claims (22)

광가교성 수용성고분자 및 폴리비닐알코올(Poly vinyl alcohol, PVA)계 중합체로 구성된 수용성 수지, 가교제, 광개시제, 및 나노셀룰로오스를 포함하는데,
상기 수용성수지 100중량부 대하여, 상기 가교제는 0.5 내지 4중량부, 상기 광개시제는 3 내지 5중량부 및 상기 나노셀룰로오스는 1 내지 30중량부 포함되고,
상기 수용성수지는 광가교성 수용성고분자 및 PVA계 중합체를 6 ~ 9 : 4 ~ 1의 중량비로 포함하는 것을 특징으로 하는 금속재료용 친수화처리제.
It includes a water-soluble resin composed of a photocrosslinkable water-soluble polymer and a polyvinyl alcohol (PVA)-based polymer, a crosslinking agent, a photoinitiator, and nanocellulose.
Based on 100 parts by weight of the water-soluble resin, 0.5 to 4 parts by weight of the crosslinking agent, 3 to 5 parts by weight of the photoinitiator, and 1 to 30 parts by weight of the nanocellulose,
The water-soluble resin is a hydrophilic treatment agent for metal materials, characterized in that it contains a photo-crosslinkable water-soluble polymer and a PVA-based polymer in a weight ratio of 6 to 9:4 to 1.
삭제delete 삭제delete 제 1 항에 있어서,
상기 광가교성 수용성고분자는 폴리에틸렌 글리콜 다이아크릴레이트(Polyethylene glycol diacrylate, PEGDA), 폴리에틸렌 글리콜 메틸 에테르 아크릴레이트(poly(ethylene glycol) methyl ether acrylate, PEGMEA), 폴리에틸렌 글리콜 아크릴레이트(poly(ethylene glycol) acrylate, PEGA), 폴리에틸렌 글리콜 디메타크릴레이트(poly(ethylene glycol) dimethacrylate, PEGDMA) 및 테트라에틸렌글리콜 디메타크릴레이트(tetra(ethylene glycol) dimethacrylate, TEGDM), 폴리에틸렌 글리콜(poly ethylene glycol, PEG)로 구성된 그룹에서 선택되는 하나 이상인 것을 특징으로 하는 금속재료용 친수화처리제.
According to claim 1,
The photocrosslinkable water-soluble polymer includes polyethylene glycol diacrylate (PEGDA), poly(ethylene glycol) methyl ether acrylate (PEGMEA), and poly(ethylene glycol) acrylate. PEGA), poly(ethylene glycol) dimethacrylate (PEGDMA) and tetra(ethylene glycol) dimethacrylate (TEGDM), a group consisting of polyethylene glycol (PEG) A hydrophilic treatment agent for metal materials, characterized in that it is one or more selected from .
제 1 항에 있어서,
상기 PVA계 중합체는 폴리비닐알코올 또는 그의 유도체로서, 상기 유도체는 폴리아세트산비닐의 부분 비누화물, 완전 비누화물, 및 아세트산비닐과 다른 단량체의 공중합물의 부분 비누화물 및 완전 비누화물 및 폴리비닐알코올의 변성물을 포함하는 그룹에서 선택되는 어느 하나인 것을 특징으로 하는 금속재료용 친수화처리제.
According to claim 1,
The PVA-based polymer is polyvinyl alcohol or a derivative thereof, and the derivative is a partially saponified product, a fully saponified product, and a partially saponified product of a copolymer of vinyl acetate and another monomer, and a modified polyvinyl alcohol. A hydrophilic treatment agent for metal materials, characterized in that it is any one selected from the group containing water.
제 5 항에 있어서,
상기 PVA계 중합체는 검화도가 80mole% 이상이고, 중량 평균 분자량은 5,000 내지 200,000인 것을 특징으로 하는 금속재료용 친수화처리제.
According to claim 5,
A hydrophilic treatment agent for metal materials, characterized in that the PVA-based polymer has a degree of saponification of 80 mole% or more and a weight average molecular weight of 5,000 to 200,000.
제 1 항에 있어서,
상기 가교제는 옥살산, 말레산, 타르타르산, 시트릭산, 글루탐산, 푸마르산, 폴리아크릴산, 붕산, 아세트 알데히드, 포름알데히드, 글루타르알데히드(Glutaraldehyde, GA), 술폰아미드알데히드로 구성된 그룹에서 선택되는 하나 이상인 것을 특징으로 하는 금속재료용 친수화처리제.
According to claim 1,
The cross-linking agent is characterized in that it is at least one selected from the group consisting of oxalic acid, maleic acid, tartaric acid, citric acid, glutamic acid, fumaric acid, polyacrylic acid, boric acid, acetaldehyde, formaldehyde, glutaraldehyde (GA), and sulfonamidaldehyde. A hydrophilic treatment agent for metal materials.
제 1 항에 있어서,
상기 광개시제는 2-하이드록시-4'-(2-하이드록시에톡시)-2-메틸프로페논 [2-hydroxy-4'-(2-hydroxyethoxy)-2-methylpropenone], 2-디메톡시-2-페닐-아세토페논[2-Dimethoxy-2-phenyl-acetophenone], 1-하이드록시사이클로헥실-1-페닐케톤[1- hydroxycyclohexyl-1-phenylketone], 2-벤질-2-(디메틸아미노)-1-[4-(4-모포리닐)페닐]-1-부타논(2-benzyl-2-(dimethylamino)-1-[4-(4-morpholinyl)phenyl]-1-butanone)로 구성된 그룹에서 선택되는 하나 이상인 것을 특징으로 하는 금속재료용 친수화처리제.
According to claim 1,
The photoinitiator is 2-hydroxy-4'-(2-hydroxyethoxy)-2-methylpropenone [2-hydroxy-4'-(2-hydroxyethoxy)-2-methylpropenone], 2-dimethoxy-2 -Phenyl-acetophenone [2-Dimethoxy-2-phenyl-acetophenone], 1-hydroxycyclohexyl-1-phenylketone [1- hydroxycyclohexyl-1-phenylketone], 2-benzyl-2-(dimethylamino)-1 -[4-(4-morpholinyl)phenyl]-1-butanone (2-benzyl-2-(dimethylamino)-1-[4-(4-morpholinyl)phenyl]-1-butanone) A hydrophilic treatment agent for metal materials, characterized in that it contains one or more of the following:
제 1 항에 있어서,
상기 나노셀룰로오스는 셀룰로오스나노결정(Cellulose Nanocrystal, Nanocrystalline Cellulose, CNC) 또는 셀룰로오스 나노섬유(Cellulose Nanofiber, Cellulose Nanofibril, Nanofibrillated Cellulose, CNFs)인 것을 특징으로 하는 금속재료용 친수화처리제.
According to claim 1,
A hydrophilic treatment agent for metal materials, wherein the nanocellulose is cellulose nanocrystal (Cellulose Nanocrystal, Nanocrystalline Cellulose, CNC) or cellulose nanofiber (Cellulose Nanofiber, Cellulose Nanofibril, Nanofibrillated Cellulose, CNFs).
제 9 항에 있어서,
상기 셀룰로오스 나노결정(CNC)은 직경(폭)이 10 내지 20nm이고, 길이가 300nm 내지 900nm인 막대기 모양의 결정이고, 상기 셀룰로오스 나노섬유는 직경(폭)이 10 내지 20nm, 길이가 2 내지 3μm인 섬유인 것을 특징으로 하는 금속재료용 친수화처리제.
According to clause 9,
The cellulose nanocrystals (CNC) are rod-shaped crystals with a diameter (width) of 10 to 20 nm and a length of 300 nm to 900 nm, and the cellulose nanofibers have a diameter (width) of 10 to 20 nm and a length of 2 to 3 μm. A hydrophilic treatment agent for metal materials, characterized in that it is a fiber.
제 1 항에 있어서,
계면 활성제 및 산 중 하나 이상을 더 포함하는 것을 특징으로 하는 금속재료용 친수화처리제.
According to claim 1,
A hydrophilic treatment agent for metal materials, characterized in that it further contains at least one of a surfactant and an acid.
제 1 항, 제 4 항 내지 제 11 항 중 어느 한 항의 친수화처리제를 포함하는 금속재료용 친수화처리액.
A hydrophilic treatment liquid for metal materials containing the hydrophilic treatment agent of any one of claims 1, 4 to 11.
제 12 항에 있어서,
상기 친수화처리제는 5 내지 30중량%의 농도로 포함되는 것을 특징으로 하는 금속재료용 친수화처리액.
According to claim 12,
A hydrophilic treatment solution for metal materials, characterized in that the hydrophilic treatment agent is contained at a concentration of 5 to 30% by weight.
제 12 항에 있어서,
상기 친수화처리액의 pH는 pH 3 내지 pH 4.5인 것을 특징으로 하는 금속재료용 친수화처리액.
According to claim 12,
A hydrophilic treatment solution for metal materials, characterized in that the pH of the hydrophilization treatment solution is pH 3 to pH 4.5.
물에 광가교성 수용성고분자 및 PVA계 중합체를 동시에 또는 순차적으로 용해시켜 수지용액을 준비하는 단계; 상기 수지용액에 가교제를 첨가하여 전구체용액을 준비하는 단계; 상기 전구체용액에 나노셀룰로오스를 첨가한 후 초음파로 처리하여 상기 나노셀룰로오스가 분산된 전구체분산액을 준비하는 단계; 및 상기 전구체분산액에 광개시제를 첨가한 후 교반하여 친수화처리액을 얻는 단계;를 포함하는데,
상기 친수화처리액은 농도가 5 내지 30중량%이고,
상기 광가교성 수용성고분자 및 PVA계 중합체로 구성된 수용성수지 100중량부 대하여, 상기 가교제 0.5 내지 4중량부, 상기 광개시제 3 내지 5중량부 및 상기 나노셀룰로오스 1 내지 30중량부를 포함하며,
상기 수용성수지는 광가교성 수용성고분자 및 PVA계 중합체를 6 ~ 9 : 4 ~ 1의 중량비로 포함하는 것을 특징으로 하는 금속재료용 친수화처리액 제조방법.
Preparing a resin solution by simultaneously or sequentially dissolving a photocrosslinkable water-soluble polymer and a PVA-based polymer in water; Preparing a precursor solution by adding a crosslinking agent to the resin solution; Adding nanocellulose to the precursor solution and treating it with ultrasonic waves to prepare a precursor dispersion in which the nanocellulose is dispersed; And adding a photoinitiator to the precursor dispersion and then stirring to obtain a hydrophilic treatment solution.
The hydrophilic treatment solution has a concentration of 5 to 30% by weight,
It contains 0.5 to 4 parts by weight of the cross-linking agent, 3 to 5 parts by weight of the photoinitiator, and 1 to 30 parts by weight of the nanocellulose, based on 100 parts by weight of the water-soluble resin composed of the photo-crosslinkable water-soluble polymer and the PVA-based polymer.
A method for producing a hydrophilic treatment solution for metal materials, characterized in that the water-soluble resin contains a photocrosslinkable water-soluble polymer and a PVA-based polymer in a weight ratio of 6 to 9:4 to 1.
삭제delete 삭제delete 삭제delete 제 15 항에 있어서,
상기 수지용액을 준비하는 단계에서 계면활성제 및 산 중 하나 이상을 첨가하는 단계를 더 포함하는 것을 특징으로 하는 금속재료용 친수화처리액 제조방법.
According to claim 15,
A method for producing a hydrophilic treatment solution for metal materials, further comprising adding at least one of a surfactant and an acid in the step of preparing the resin solution.
금속재료 표면에 제 12 항의 친수화처리액으로 도포층을 형성하는 도포단계;
상기 도포층을 광조사하여 상기 친수화처리액에 포함된 광가교성 고분자를 가교시키는 광조사단계; 및
상기 광조사단계를 거친 도포층에 열을 가하여 상기 친수화처리액에 포함된 PVA계중합체를 가교시켜 친수피막을 형성하는 열처리단계;를 포함하는 친수피막형성방법.
An application step of forming a coating layer with the hydrophilic treatment solution of claim 12 on the surface of a metal material;
A light irradiation step of crosslinking the photocrosslinkable polymer contained in the hydrophilic treatment solution by irradiating the application layer with light; and
A method of forming a hydrophilic film comprising a heat treatment step of applying heat to the applied layer that has undergone the light irradiation step to crosslink the PVA-based polymer contained in the hydrophilic treatment solution to form a hydrophilic film.
제 20 항에 있어서,
상기 금속재료에 대해 그 표면의 이물질을 제거하는 전처리단계,
상기 광조사단계가 UV를 300 nm 내지 400nm의 파장으로 90초 이상 수행되는 단계, 및
상기 열처리단계가 100℃ 내지 200℃에서 15분 내지 25분 동안 수행되는 단계 중 하나 이상을 포함하는 것을 특징으로 하는 친수피막형성방법.
According to claim 20,
A pretreatment step of removing foreign substances from the surface of the metal material,
The light irradiation step is performed for more than 90 seconds with UV at a wavelength of 300 nm to 400 nm, and
A method of forming a hydrophilic film, characterized in that the heat treatment step includes at least one of the steps of performing the heat treatment step at 100°C to 200°C for 15 to 25 minutes.
알루미늄 함유 금속재료를 튜브와 핀으로 성형 가공한 후 제 20 항의 친수피막형성방법으로 친수피막을 형성한 열교환기.
A heat exchanger in which a hydrophilic film is formed by forming an aluminum-containing metal material into tubes and fins and then forming a hydrophilic film using the hydrophilic film forming method of Article 20.
KR1020220074070A 2022-06-17 2022-06-17 Hydrophilic treatment agent for metal material, hydrophilic treatment liquid containing the same, method for producing the same, and method for KR102662618B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220074070A KR102662618B1 (en) 2022-06-17 2022-06-17 Hydrophilic treatment agent for metal material, hydrophilic treatment liquid containing the same, method for producing the same, and method for

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220074070A KR102662618B1 (en) 2022-06-17 2022-06-17 Hydrophilic treatment agent for metal material, hydrophilic treatment liquid containing the same, method for producing the same, and method for

Publications (2)

Publication Number Publication Date
KR20230174314A KR20230174314A (en) 2023-12-28
KR102662618B1 true KR102662618B1 (en) 2024-05-02

Family

ID=89385182

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220074070A KR102662618B1 (en) 2022-06-17 2022-06-17 Hydrophilic treatment agent for metal material, hydrophilic treatment liquid containing the same, method for producing the same, and method for

Country Status (1)

Country Link
KR (1) KR102662618B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004339345A (en) * 2003-05-15 2004-12-02 Dainippon Ink & Chem Inc Energy ray-curable hydrophilic surface treating agent
JP2020193299A (en) * 2019-05-30 2020-12-03 株式会社トクヤマデンタル Hydrophilic surface-treating agent

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4464076B2 (en) 2003-06-09 2010-05-19 日本ペイント株式会社 Crosslinkable fine particles, hydrophilic treatment agent, hydrophilic film coating method and hydrophilic film
US9534132B2 (en) 2013-03-21 2017-01-03 Nihon Parkerizing Co., Ltd. Hydrophilic surface treatment agent for aluminum-containing metal heat exchangers having excellent drainage
KR101630208B1 (en) * 2014-08-20 2016-06-14 한국화학연구원 A preparation method of hydrophilic membrane and a hydrophilic membrane prepared by the same
KR101626212B1 (en) 2014-10-15 2016-06-13 강남제비스코 주식회사 The enhancer of hydrophilicity for a heat exchanger containing aluminium
JP6941465B2 (en) * 2017-04-07 2021-09-29 日本ペイント・サーフケミカルズ株式会社 Hydrophilization treatment agent and method for forming a hydrophilic film
US11436620B2 (en) 2018-06-25 2022-09-06 NortonLifeLock Inc. Facilitating third party utilization of personal computing resources in exchange for software usage

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004339345A (en) * 2003-05-15 2004-12-02 Dainippon Ink & Chem Inc Energy ray-curable hydrophilic surface treating agent
JP2020193299A (en) * 2019-05-30 2020-12-03 株式会社トクヤマデンタル Hydrophilic surface-treating agent

Also Published As

Publication number Publication date
KR20230174314A (en) 2023-12-28

Similar Documents

Publication Publication Date Title
KR100706972B1 (en) Heat exchanger made of aluminum alloy
JP6618903B2 (en) Method for coating hydrophilic film on aluminum fin material, aluminum fin material and aluminum heat exchanger
JP2009149715A (en) Composition for hydrophilization treatment
JP2011506732A (en) Thermosetting polymer
JP4769112B2 (en) Aluminum coating material and aluminum fin material for heat exchanger using the same
JP6449735B2 (en) Heat ray reflective material and window, and method for producing heat ray reflective material
JP4464076B2 (en) Crosslinkable fine particles, hydrophilic treatment agent, hydrophilic film coating method and hydrophilic film
KR102662618B1 (en) Hydrophilic treatment agent for metal material, hydrophilic treatment liquid containing the same, method for producing the same, and method for
KR102065224B1 (en) Solution composition for surface treating of steel sheet, steel sheet using the same, and manufacturing method of the same
CA3084922A1 (en) Sheet for heat exchange
JP2000328038A (en) Composition and method for improving hydrophilicity
JP5180145B2 (en) Crosslinkable fine particles, hydrophilic treatment agent, hydrophilic film coating method and hydrophilic film
JP7192881B2 (en) Inorganic fiber binder and inorganic fiber mat
JP2006214675A (en) Heat exchanger, refrigerating cycle device, and hydrophilic paint used in them
JP2005187576A (en) Hydrophilic hardcoat composition, hardcoat material and method for forming hardcoat film
KR20240014112A (en) Antibacterial hydrophilic treatment agent for metal material, antibacterial hydrophilic treatment solution containing the same, method for producing the same, and method for forming the hydrophilic coating
JP4834194B2 (en) Water-based paint composition
KR20240040955A (en) Hydrophilicizing agent composition for aluminum metal
JP7226566B2 (en) Inorganic fiber binder and inorganic fiber mat
KR101626212B1 (en) The enhancer of hydrophilicity for a heat exchanger containing aluminium
JP2018027691A (en) Decorative sheet
JPH07188585A (en) Fine fiber-containing hydrophilic treating agent, and fin material made of al or al alloy treated with the same treating agent for heat exchanger
JP2005075841A (en) Coating composition for fin and fin material
JP2525378B2 (en) Resin composition for surface treatment
JPH0531463B2 (en)

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant