KR102659047B1 - 하이브리드 자동차 및 그를 위한 모드 전환 제어 방법 - Google Patents

하이브리드 자동차 및 그를 위한 모드 전환 제어 방법 Download PDF

Info

Publication number
KR102659047B1
KR102659047B1 KR1020160172824A KR20160172824A KR102659047B1 KR 102659047 B1 KR102659047 B1 KR 102659047B1 KR 1020160172824 A KR1020160172824 A KR 1020160172824A KR 20160172824 A KR20160172824 A KR 20160172824A KR 102659047 B1 KR102659047 B1 KR 102659047B1
Authority
KR
South Korea
Prior art keywords
mode
predicted
torque
acceleration
time
Prior art date
Application number
KR1020160172824A
Other languages
English (en)
Other versions
KR20180070289A (ko
Inventor
이재문
박준영
강지훈
Original Assignee
현대자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR1020160172824A priority Critical patent/KR102659047B1/ko
Priority to US15/718,694 priority patent/US10688981B2/en
Publication of KR20180070289A publication Critical patent/KR20180070289A/ko
Application granted granted Critical
Publication of KR102659047B1 publication Critical patent/KR102659047B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/387Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/10Interpretation of driver requests or demands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/20Control strategies involving selection of hybrid configuration, e.g. selection between series or parallel configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/442Series-parallel switching type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/11Controlling the power contribution of each of the prime movers to meet required power demand using model predictive control [MPC] strategies, i.e. control methods based on models predicting performance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/12Controlling the power contribution of each of the prime movers to meet required power demand using control strategies taking into account route information
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/30Control strategies involving selection of transmission gear ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/19Improvement of gear change, e.g. by synchronisation or smoothing gear shift
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • B60W40/09Driving style or behaviour
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/105Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/107Longitudinal acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/0097Predicting future conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4825Electric machine connected or connectable to gearbox input shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0062Adapting control system settings
    • B60W2050/0075Automatic parameter input, automatic initialising or calibrating means
    • B60W2050/0083Setting, resetting, calibration
    • B60W2050/0088Adaptive recalibration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/10Change speed gearings
    • B60W2510/1005Transmission ratio engaged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/12Brake pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/30Driving style
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/20Road profile, i.e. the change in elevation or curvature of a plurality of continuous road segments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/45External transmission of data to or from the vehicle
    • B60W2556/50External transmission of data to or from the vehicle of positioning data, e.g. GPS [Global Positioning System] data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/021Clutch engagement state
    • B60W2710/023Clutch engagement rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/10Change speed gearings
    • B60W2710/1005Transmission ratio engaged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/18Propelling the vehicle
    • B60Y2300/182Selecting between different operative modes, e.g. comfort and performance modes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/18Propelling the vehicle
    • B60Y2300/188Controlling power parameters of the driveline, e.g. determining the required power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/42Control of clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/43Control of engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/60Control of electric machines, e.g. problems related to electric motors or generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/904Component specially adapted for hev
    • Y10S903/912Drive line clutch
    • Y10S903/914Actuated, e.g. engaged or disengaged by electrical, hydraulic or mechanical means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S903/00Hybrid electric vehicles, HEVS
    • Y10S903/902Prime movers comprising electrical and internal combustion motors
    • Y10S903/903Prime movers comprising electrical and internal combustion motors having energy storing means, e.g. battery, capacitor
    • Y10S903/93Conjoint control of different elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Human Computer Interaction (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

본 발명은 하이브리드 자동차 및 그를 위한 모드 전환 제어 방법에 관한 것으로, 보다 상세히는 운전자의 요구 토크를 예측하여 엔진의 비구동 연료 손실을 감소시킬 수 있는 모드 전환 제어 방법 및 그를 수행하기 위한 하이브리드 자동차에 관한 것이다. 상기와 같은 기술적 과제를 해결하기 위하여, 본 발명의 일 실시예에 따른 하이브리드 자동차의 모드 전환 제어 방법은, 현재 요구토크인 제 1 토크에 따른 제 1 모드에서 제 2 모드로의 전환 여부를 제 1 판단하는 단계; 현재로부터 근미래 시점에 발생이 예상되는 요구 토크인 제 2 토크를 제 2 판단하는 단계; 상기 제 2 토크를 이용하여 예측 변속 시점 및 예측 엔진 클러치 결합 시점을 제 3 판단하는 단계; 및 상기 제 1 판단결과 상기 제 2 모드로 전환할 것으로 판단되고, 상기 예측 엔진 클러치 결합 시점이 상기 예측 변속 시점보다 빠른 경우, 상기 제 2 모드로 전환을 수행하는 단계를 포함할 수 있다.

Description

하이브리드 자동차 및 그를 위한 모드 전환 제어 방법{HYBRID VEHICLE AND METHOD OF CONTROLLING MODE TRANSITION}
본 발명은 하이브리드 자동차 및 그를 위한 모드 전환 제어 방법에 관한 것으로, 보다 상세히는 운전자의 요구 토크를 예측하여 엔진의 비구동 연료 손실을 감소시킬 수 있는 모드 전환 제어 방법 및 그를 수행하기 위한 하이브리드 자동차에 관한 것이다.
차량에 대한 끊임없는 연비 향상의 요구와 각 나라의 배출가스 규제의 강화에 따라 친환경 차량에 대한 요구가 증가하고 있으며, 이에 대한 현실적인 대안으로 하이브리드 차량(Hybrid Electric Vehicle/Plug-in Hybrid Electric Vehicle, HEV/PHEV)이 제공되고 있다.
이러한 하이브리드 차량은 엔진과 모터로 구성되는 두 개의 동력원으로 주행하는 과정에서 엔진과 모터를 어떻게 조화롭게 동작시키느냐에 따라 최적의 출력과 토크를 제공할 수 있다. 특히, 엔진과 변속기 사이에 전기모터와 엔진클러치(EC:Engine Clutch)를 장착한 병렬형(Parallel Type, 또는 TMED: Transmission Mounted Electric Device 방식) 하이브리드 시스템을 채용한 하이브리드 자동차에서는, 엔진과 모터의 출력이 동시에 구동축으로 전달될 수 있다.
하이브리드 차량의 일반적인 상황에서는 초기 가속 시 전기에너지를 이용한다(즉, EV 모드). 하지만, 전기에너지만으로는 운전자의 요구 파워를 충족시키는데 한계가 있기 때문에 결국 엔진을 주동력원으로 사용(즉, HEV 모드)해야 하는 순간이 발생한다. 이러한 경우, 하이브리드 차량에서는 모터의 회전수와 엔진의 회전수 차이가 소정 범위 이내일 때 엔진클러치를 결합시켜 모터와 엔진이 함께 회전하도록 한다. 이때, 회전수가 너무 낮을 때 엔진클러치가 접합되면 엔진 스톨이 발생할 수 있기 때문에 하이브리드 차량은 엔진의 스톨에서 비교적 안전한 대역에서 설정된 특정 회전수(이하, 편의상 "목표 접합 속도"라 칭함)에서 엔진클러치가 접합되기 시작하도록 엔진과 모터의 회전수를 제어한다. 목표 접합 속도는 차량의 엔진 특성이나 접합 시점의 변속단에 따라 상이하게 설정될 수 있다.
그런데, 엔진이 주동력원으로 필요한 시점에 바로 엔진 시동을 시작하면 실제 엔진 클러치가 결합되어(engage) 엔진의 힘이 구동륜의 차축에 전달될 때까지 일정 시간동안 대기하는 상황이 종종 발생하기도 한다. 그에 따라 엔진의 동력이 주행에 기여하지 못하게 되는 동안 연료 손실이 발생하게 되며, 이를 "비구동 연료 손실"이라 한다. 비구동 연료 손실이 발생하는 형태를 도 1을 참조하여 설명한다.
도 1은 일반적인 하이브리드 차량에서 비구동 연료 손실이 발생하는 형태의 일례를 설명하기 위한 도면이다.
도 1을 참조하면, 운전자가 가속 페달을 조작함에 따라(즉, APS on), 요구 토크가 커지게 되고, 모터의 동력으로 이를 만족시키기에 부족하여 엔진의 구동력이 필요하다고 차량에서 판단한 시점에 엔진의 시동이 켜지게 된다.
엔진 시동이 켜진 당시에는 무부하 상태이기 때문에 엔진은 신속하게 회전수(EngSpeed: Engine Speed)가 상승하나, 모터의 회전수(MotSpeed: Motor Speed)가 목표 접합 속도에 도달하지 못한 경우가 발생할 수 있다. 이러한 경우, 결합 시점까지 엔진은 목표접합속도에서 아이들(Idle) 상태를 유지하게 되는데, 이 때 비구동 연료 손실이 발생하게 된다.
상술한 비구동 연료 손실 문제는 변속으로 인하여 목표 접합 속도가 전환될 때 더욱 문제된다. 이를 도 2를 참조하여 설명한다.
도 2는 일반적인 하이브리드 차량에서 변속에 의해 비구동 연료 손실이 발생하는 형태의 일례를 설명하기 위한 도면이다.
도 2를 참조하면, 운전자가 가속 페달을 조작함에 따라(즉, APS 상승), 요구 토크가 커지게 되고, 모터의 동력으로 이를 만족시키기에 부족하여 엔진의 구동력이 필요하다고 차량에서 판단한 시점에 엔진의 시동이 켜지게 된다. 그러나, 목표 접합 속도에 도달하기 전에 변속이 발생함에 따라 목표 접합 속도에 변동이 발생할 뿐만 아니라, 변속 시작 시점에서 변속 종료 시점까지 엔진 클러치의 접합이 지연된다. 결국, 엔진 시동 후 목표 접합 속도 도달 전에 변속이 발생하는 경우 변속 구간만큼 추가적으로 비구동 연료 손실이 발생하는 문제점이 있다.
본 발명은 하이브리드 자동차에서 보다 효율적으로 모드 제어를 수행하는 방법 및 그를 수행하는 차량을 제공하기 위한 것이다.
특히, 본 발명은 병렬형 하이브리드 차량에서 변속으로 인한 비구동 연료 손실을 개선할 수 있는 모드 제어 방법 및 그를 수행하는 차량을 제공하기 위한 것이다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상기와 같은 기술적 과제를 해결하기 위하여, 본 발명의 일 실시예에 따른 하이브리드 자동차의 모드 전환 제어 방법은, 현재 요구토크인 제 1 토크에 따른 제 1 모드에서 제 2 모드로의 전환 여부를 제 1 판단하는 단계; 현재로부터 근미래 시점에 발생이 예상되는 요구 토크인 제 2 토크를 제 2 판단하는 단계; 상기 제 2 토크를 이용하여 예측 변속 시점 및 예측 엔진 클러치 결합 시점을 제 3 판단하는 단계; 및 상기 제 1 판단결과 상기 제 2 모드로 전환할 것으로 판단되고, 상기 예측 엔진 클러치 결합 시점이 상기 예측 변속 시점보다 빠른 경우, 상기 제 2 모드로 전환을 수행하는 단계를 포함할 수 있다.
또한, 본 발명의 일 실시예에 따른 병렬식 하이브리드 자동차는, 상기 하이브리드 차량의 각종 센서와 연동하여 차량 운행에 따른 운전정보를 검출하는 운전정보 검출부; 가감속 예측모델을 활용하여 상기 운전정보 검출부로부터 전달된 정보를 이용하여 차량의 주행환경이 반영된 운전자의 근미래 가감속 의지 예측 값을 생성하는 운전자 가감속 예측부; 및 상기 운전정보 검출부로부터 전달된 정보를 이용하여 현재 요구토크인 제 1 토크를 판단하고, 상기 근미래 가감속 의지 예측 값을 이용하여 현재로부터 근미래 시점에 발생이 예상되는 요구 토크인 제 2 토크를 판단하는 하이브리드 제어기를 포함하되, 상기 하이브리드 제어기는 상기 제 1 토크에 따른 제 1 모드에서 제 2 모드로의 모드 전환 여부를 판단하여, 상기 제 2 모드로의 모드 전환을 판단한 경우 상기 제 2 토크를 이용하여 예측 변속 시점 및 예측 엔진 클러치 결합 시점을 판단하며, 상기 예측 엔진 클러치 결합 시점이 상기 예측 변속 시점보다 빠른 경우, 상기 제 2 모드로의 전환을 수행할 수 있다.
상기와 같이 구성되는 본 발명의 적어도 하나의 실시예에 관련된 하이브리드 자동차는 보다 효율적으로 모드 전환 제어를 수행할 수 있다.
특히, 머신 러닝 기법을 이용한 근미래 요구 토크의 예측 및 변속 시점 예측에 따른 임계 기준과의 비교를 통해 모드 전환 여부와 시점이 결정되므로 비구동 연료 손실이 감소될 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1은 일반적인 하이브리드 차량에서 비구동 연료 손실이 발생하는 형태의 일례를 설명하기 위한 도면이다.
도 2는 일반적인 하이브리드 차량에서 변속에 의해 비구동 연료 손실이 발생하는 형태의 일례를 설명하기 위한 도면이다.
도 3은 본 발명의 일 실시예에 따른 하이브리드 차량의 제어 시스템을 개략적으로 나타낸 블록도이다.
도 4a 및 4b는 본 발명의 실시예들에 적용될 수 있는 운전자 가감속 의지 예측 과정의 일례를 나타낸다.
도 5는 본 발명의 일 실시예에 따른 근미래 가감속 예측 모델을 활용한 변속 판단 방법을 나타낸다.
도 6은 본 발명의 일 실시예에 따른 하이브리드 차량의 변속을 고려한 모드 전환 제어 방법을 나타낸 흐름도이다.
도 7은 본 발명의 일 실시예에 따른 모드 전환 방법과 일반적인 모드 전환 방법의 차이를 설명하기 위한 도면이다.
아래에서는 첨부한 도면을 참고로 하여 본 발명의 실시 예에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시 예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다. 또한, 명세서 전체에 걸쳐서 동일한 참조번호로 표시된 부분들은 동일한 구성요소들을 의미한다.
먼저, 도 3을 참조하여 본 발명의 실시예들이 적용될 수 있는 하이브리드 자동차 구조를 설명한다.
도 3은 본 발명의 일 실시예에 따른 하이브리드 차량의 제어 시스템을 개략적으로 나타낸 블록도이다.
도 5를 참조하면, 본 발명의 실시 예에 따른 하이브리드 차량의 제어 시스템(100)은 운전정보 검출부(110), 운전성향 판단부(120), 운전자 가감속 예측부(130) 및 하이브리드 제어기(140)를 포함한다. 물론, 이는 예시적인 것으로 이보자 적거나(예를 들어, 운전 성향 판단부 생략 등) 많은 구성 요소로 변속 제어 시스템이 구성될 수 있음은 물론이다.
운전정보 검출부(110)는 차속 센서(11), 가속 페달 센서(Accelerato Position Sensor, APS)(12), 브레이크 페달 센서(Brake pedal Sensor, BPS)(13), 첨단 운전자 보조 시스템(ADAS: Advanced Driver Assistance System) (14), 내비게이션(15) 중 적어도 하나와 연동하여 차량의 운행에 따른 운전정보를 검출한다.
운전정보 검출부(110)는 APS(12)를 통해 운전자의 가속페달 작동 상태를 검출하고, BPS(13)를 통해 브레이크 작동 상태를 검출한다.
운전정보 검출부(110)는 차속 센서(11)를 통해 차량 속도를 검출하고, ADAS(14)의 레이더 센서, (스테레오) 카메라 등을 통해 전방 차량과의 상대 거리 및 가속도를 포함하는 전방 거동 정보를 검출한다. 물론, 레이더나 카메라 외에도 ADAS의 구성에 따라 초음파, 레이저 등의 다양한 센서가 활용될 수 있다.
운전정보 검출부(110)는 내비게이션(15)을 통해 GPS/GIS 기반 차량의 위치정보 기반, 도로종류, 정체도, 제한속도, 교차로, 톨게이트, 선회(turn) 및 구배 정보 등의 내비게이션 정보(도로 환경 정보)를 검출한다. 여기서, 내비게이션(15)은 상기한 정보 제공을 위해 내장된 내비게이션 맵과 외부 무선통신(예; 텔레메틱스, TPEG 등)으로 수집되는 교통정보를 참조할 수 있다.
운전성향 판단부(120)는 운전자의 차량 운전 조작에 따른 평균 속도, APS 변화량(dAPS) 및 BPS 변화량(dBPS) 등의 운전패턴을 토대로 운전자의 운전성향을 파악한다.
예컨대, 운전성향 판단부(120)는 운전정보 검출부(110)에서 검출된 APS 변화량, BPS 변화량, 차속, 구배도 등의 측정 인자를 입력 변수로 퍼지 멤버십 함수(Fuzzy membership function)를 구성하여 단기 운전성향 지수(SI = 0 ~ 100%)를 산출 한다.
그리고, 운전성향 판단부(120)는 산출된 단기 운전성향 지수(SI = 0 ~ 100%)를 운전성향 강도에 따른 소정 기준비율로 구분하여 운전자의 운전성향을 복수의 레벨로 판단할 수 있다.
운전자 가감속 예측부(130)는 머신 러닝(Machine Learning) 기법을 활용하여 운전성향 별 가감속 예측모델을 학습하고, 상기 가감속 예측모델을 활용하여 차량의 주행환경 및 상기 운전성향이 반영된 운전자의 근미래 가감속 의지 예측 값을 생성한다. 즉, 운전자 가감속 예측부(130)는 운전정보 검출부(110)를 통해 검출된 차속, 레이더 정보, 내비게이션 정보와 운전자의 운전성향을 입력정보로 활용하여 비교적 짧은 시간 단위로 나타나는 운전 조작의 형태를 정량적으로 수치화함으로써 운전자의 순간적인 가/감속 의지를 판단하고, 이를 통해 운전자의 근미래 가감속 예측 값을 생성할 수 있다. 이러한 가감속 예측값은 근미래의 소정 시간 단위로 가속 페달이나 브레이크 페달을 밟는 강도와 확률로 구성될 수 있다.
가감속 예측부(130)의 구체적인 예측 알고리즘에는 머신 러닝 기법을 활용하여 기 구축된 예측 모델을 보완해가는 뉴럴 네트워크(Neural Network)가 포함될 수 있는데, 여기에 대해서는 보다 상세히 후술하기로 한다.
하이브리드 제어기(140)는 본 발명의 실시 예에 따른 하이브리드 차량의 운전 모드 전환을 위한 상기 각부의 동작을 제어하며, 최상위 제어기로 네트워크로 연결되는 엔진 제어기 및 모터 제어기 등을 통합 제어한다.
하이브리드 제어기(140)는 운전정보 검출부(110)에서 검출된 APS 또는 BPS에 따른 운전자의 현재 요구 토크를 분석하여 변속기 제어기로 전달할 수 있다. 또한, 상기 근미래 가감속 예측 값을 전달받아 근미래 특정 시점의 요구 토크를 예측하고, 이를 변속기 제어기로 전달할 수 있다.
변속기 제어기에서는 하이브리드 제어기(140)로부터 현재 요구토크와 근미래의 요구토크 예측값에 대한 정보를 획득하여 최종 변속 여부를 판단하고, 판단 결과에 대응되는 변속 지령을 변속기로 전달할 수 있다.
물론, 실시예에 따라 가감속 예측부(130)가 근미래 가감속 예측값을 이용하여 근미래 요구토크까지 예측하는 경우, 가감속 예측부(130)가 바로 변속기 제어기로 근미래 요구토크 예측값을 전달하도록 할 수도 있다.
또한, 변속기 제어기는 현재 요구토크에 따라 변속판단을 수행하되, 근미래 요구토크 예측값에 따른 변속 판단은 하이브리드 제어기(140)가 수행하도록 하고, 하이브리드 제어기(140)가 수행한 변속 판단 결과는 변속 제어기로 전달되어 변속 제어기의 변속판단을 오버라이드하도록 구현될 수도 있다.
아울러, 상술한 실시예에서 운전성향 판단부(120)는 구성에 따라 생략될 수도 있으며, 이러한 경우 운전자 가감속 예측부(130)는 운전성향에 관련된 입력 값을 제외하고 가감속 예측을 수행할 수 있다.
이하에서는 도 4a 및 도 4b를 참조하여 운전자 가감속 예측부(130)가 운전자의 가감속 의지를 예측하는 방법을 설명한다.
도 4a 및 도 4b는 본 발명의 실시예들에 적용될 수 있는 운전자 가감속 의지 예측 과정의 일례를 나타낸다.
먼저 도 4a를 참조하면, 운전자 가감속 예측부(130)의 운전자 가감속 의지 예측 과정은 크게 세 단계로 나뉠 수 있다. 구체적으로, 먼저 어떤 파라미터들이 예측을 위한 입력 값으로 사용될 지 여부가 결정될 수 있다(S41). 결정된 입력 값은 머신 러닝을 통하여 예측 모델을 수정하고(S42), 입력값과 수정된 모델을 통해 가속과 감속을 분류하여 근미래 상황에 대한 예측 값을 산출할 수 있다(S43).
여기서 입력 값을 결정하는 과정(S41)은 다시 1) 입력 값의 후보들을 추출하는 과정, 2) 입력 신호를 통합하여 데이터 전(pre) 처리하는 과정, 그리고 3) 전 처리된 후보 값을 이용하여 최종 변수를 선택하는 과정을 포함할 수 있다. 한편, 머신 러닝 기법은 시계열 모델 기반의 기법이 이용될 수도 있고, 딥 러닝(deep learning) 기반의 기법이 이용될 수도 있다. 여기서 시계열 모델 기반의 기법의 예로는 시간에 따른 행위의 변화를 추정지표(stochastic)로 설명하는 ARIMA(Autoregressive integrated moving average) 기법, 범용근사자로서 비모수 회귀(nonparametric regression) 방법을 이용하는 MLP(Multi-layer Perceprton) 기법 등을 들 수 있다. 또한, 딥 러닝 기반의 기법으로는 차원 축소를 통해 입/출력 데이터를 유사하게 만드는 SAE(Stacked AutoEncoder) 기법, 순차적인 정보를 처리하는 신경망 알고리즘인 RNNs(Recurrent Neural Networks) 기법, 장기 의존성 학습에 적합한 LSTM(Long Short Term Memory) 기법 등을 들 수 있다. 이 중 신경망 알고리즘을 이용한 운전자 가감속 예측부의 근미래 운전자 가감속 의지 예측 과정의 일례가 도 4b에 도시된다.
도 4b를 참조하면, 본 발명의 실시 예에 따른 운전자 가감속 예측부(130)는 머신 러닝 기법을 활용하여 운전자의 운전성향 별 가감속 예측모델을 학습하는 뉴럴 네트워크(Neural Network)를 포함한다.
운전자 가감속 예측부(130)에는 뉴럴 네트워크를 활용하여 차량의 출고 전 시험운전을 통해 누적된 빅데이터를 기반으로 운전성향 별 근미래 가감속 예측모델이 미리 구축되어 있는 것이 바람직하다.
또한, 운전자 가감속 예측부(130)는 뉴럴 네트워크를 활용하여 구축된 운전성향 별 근미래 가감속 예측모델에 출고 후 실제 운전자의 차량 운전을 통해 학습된 차량 거동 데이터를 더 반영하여 운전자에게 개인화된 운전성향 별 근미래 가감속 예측모델을 생성할 수 있다. 이 때, 운전자 가감속 예측부(130)는 운전자의 성향 판단에 따라 학습된 거동 데이터를 해당 운전성향의 근미래 가감속 예측모델에 적용할 수 있다.
이러한 운전자 가감속 예측부(130)는 차량 속도, 레이더 정보 및 네비게이션 정보를 종합한 주행 환경과 운전자의 운전성향을 입력정보로 활용하여 운전자의 운전성향에 따른 근미래 가감속 의지 예측 값을 산출할 수 있다. 여기서 운전 성향은 도 4b에 도시된 바와 같이 복수의 성향 타입으로 분류될 수도 있고, 평균속도, 가속페달 변화율(dAPS), 브레이크페달 변화율(dBPS) 등의 수치로 구성될 수도 있다.
아울러, 운전자 가감속 예측부(130)는 차량에 장착된 상태로 머신 러닝 기법을 통해 실시간으로 운전자 가감속 모델 학습에 따른 모델 수정을 수행할 수도 있고, 외부에서 수정된 모델을 수신하여 학습 없이 예측에만 사용할 수도 있다.
즉, 외부에서 모델이 수정되도록 하는 경우, 학습의 입력값이 되는 파라미터들을 텔레매틱스 센터나 클라우드 서버 등으로 전송되도록 하여 학습을 통한 모델 수정은 외부에서 수행된 후 최종 모델만이 차량으로 전송되도록 할 수 있다.
도 5는 본 발명의 일 실시예에 따른 근미래 가감속 예측 모델을 활용한 모드 전환 판단 방법을 나타낸다.
첨부된 도 5를 참조하면, 본 발명의 실시 예에 따른 하이브리드 제어기(140)는 운전자의 APS 또는 BPS 조작에 따른 현재 운전 요구를 해석하고, 요구토크를 계산한다(S1). 하이브리드 제어기(140)는 현재 요구 토크에 따라 EV 모드에서 HEV 모드로의 전환 여부를 판단한다(S2).
한편, 운전자 가감속 예측부(130)는 근미래 가감속 예측 모델을 활용한 운전자 가감속 의지 예측 정보를 출력하고, 이를 통해 하이브리드 제어기(140)는 근미래 시점의 변속 발생 여부를 판단할 수 있다(S3).
하이브리드 제어기(140)는 S2 단계 및 S3 단계 각각의 판단 결과를 조합하여 최종적으로 모드 전환 여부를 결정할 수 있다(S4).
여기서, 요구토크 예측값은 운전자 가감속 예측부(130)에서 계산할 수도 있고, 전술한 바와 같이 하이브리드 제어기(140)에서 계산할 수도 있으며, 도시되지는 아니하였으나 요구토크 예측값을 생성하기 위한 별도의 제어기에서 계산할 수도 있다.
한편, 전술한 하이브리드 차량의 제어 시스템(100)을 주체로 하여, 본 발명의 실시 예에 따른 하이브리드 차량의 운전 모드 전환 방법을 다음의 도 6을 통해 좀더 구체적으로 설명한다.
도 6은 본 발명의 일 실시예에 따른 하이브리드 차량의 변속을 고려한 모드 전환 제어 방법을 나타낸 흐름도이다. 도 6에서는 하이브리드 차량이 EV 모드로 주행중인 경우를 가정한다.
도 6을 참조하면, 먼저 하이브리드 제어기(140)는 운전정보 검출부(110)를 통해 APS 변화량 또는 BPS 변화량을 검출하여 운전자의 현재 요구토크를 계산한다(S610).
여기서, 요구토크는 현재 페달 센서(APS 및 BPS)가 감지한 페달 위치 값(Pedal(n))에 대한 함수로 구해질 수 있다. 보다 상세히, '(n)' 값은 가속 페달(APS)이 조작된 경우에는 양의(+) 값을 갖고, 브레이크 페달(BPS)이 조작된 경우에는 음의(-) 값을 가질 수 있다.
이때, 하이브리드 제어기(140)는 운전자의 잘못된 조작으로 APS와 BPS가 동시에 검출되는 경우 브레이크 오버라이드(Brake override) 기능을 적용하여 APS 변화는 무시하고 BPS 변화만으로 요구토크를 계산할 수 있다.
계산된 요구 토크에 따라 하이브리드 제어기(140)는 EV 모드에서 HEV 모드로 전환할지 여부를 판단할 수 있다(S620).
한편, 운전자 가감속 예측부(130)에서는 통해 차량 속도, 레이더 정보, 내비게이션 정보 및 운전자의 운전성향 등을 입력정보로 하는 함수(즉, function (Radar정보, Navi정보, 운전자 성향))를 통해 운전자의 근미래 가감속 의지 예측 값(Pedal(n+a))을 생성한다(S630).
여기서, Pedal(n+a)란 a 초 후의 가속/브레이크 페달의 위치를 의미하며, a 값은 5초 이하인 것이 바람직하나 반드시 이에 한정될 필요는 없다. 또한, 근미래 가감속 의지 예측 값은 소정 시간 후의 가까운 미래에 예측되는 운전자의 가속의지(APS 증가 또는 BPS 감소) 또는 감속의지(APS 감소 또는 BPS 증가)와 그 변화량 이나 페달 위치를 의미할 수도 있다. 물론, 앞의 가감속 의지, 변화랑, 페달 위치 등의 정보와 함께 그에 대한 확률 정보가 포함될 수도 있다.
운전자 가감속 예측부(130)의 가감속 의지 예측값(Pedal(n+a))을 이용하여 하이브리드 제어기(140)는 근미래 요구 토크 예측값을 판단할 수 있다(S640).
또한, 하이브리드 제어기(140)는 근미래 요구 토크 예측값을 반영하여 근미래 시점의 모터 회전수 예측값을 판단할 수 있다(S650).
여기서 모터 회전수 예측값(예측 RPM)은 근미래 요구 토크 예측값과 차량 부하의 함수(즉, function (예측 토크, 차량 부하))를 통해 구해질 수 있다.
하이브리드 제어기(140)는 모터 회전수 예측값을 이용하여 변속이 발생하는 시점 및 엔진 클러치의 결합 가능 시점을 각각 변속기와 엔진 클러치의 관점에서 예측하여 비교한다(S660).
비교 결과, 하이브리드 제어기(140)는 예측 결합 시점이 예측 변속 시점보다 빠를 것으로 판단되면 바로 HEV 모드로의 전환을 수행하며(S670), 그렇지 않은 경우 엔진 클러치의 접합 제어를 금하여 EV 모드가 유지되도록 제어할 수 있다(S680).
물론, 하이브리드 제어기는(140), 예측 엔진 클러치 결합 시점이 예측 변속 시점보다 느림에 따라 EV 모드가 유지되는 경우, 변속이 완료된 후 HEV 모드로 전환하는 시도할 수 있다. 이때, 엔진의 시동이 켜지는 시점은 하이드리드 제어기에서 근미래의 모터 RPM 및 요구 토크 예측에 따라 목표 접합 속도에 최적으로 근접할 수 있는 시점으로 결정될 수 있다.
이하에서는 도 7을 참조하여 상술한 실시예와 비교례 간의 비교를 통한 효과를 설명한다.
도 7은 본 발명의 일 실시예에 따른 모드 전환 방법과 일반적인 모드 전환 방법의 차이를 설명하기 위한 도면이다.
도 7에서는, 일반적인 모드 전환에서는 모터의 회전 수(MotSpeed)를 예측함에 있어 현재의 증가폭이 선형적으로 유지됨을 가정하나, 실제 모터의 회전수(실제 Mot Speed)가 운전자의 APS 조작에 따라 변속이 필요할 만큼 상승하는 경우를 가정한다.
도 7에서 엔진의 시동 시점은, "현재 모터 RPM > 목표 접합 속도 - 결합시간 동안 모터 속도 증가분"의 공식을 만족하는 시점으로 결정될 수 있다. 여기서 엔진 클러치 결합에 필요한 시간은 엔진 클러치의 기계적 특성 및 클러치 제어기의 제어 설정에 따라 결정될 수 있으며, 결합시간 동안 모터 속도 증가분은 모터 속도가 일정하게 상승한다고 가정한 경우 "상승률 * 결합에 필요한 시간"으로 구할 수 있다.
이러한 모터 속도 계산 방식을 통해 예측 결합 시점과 예측 변속 시작 시점이 예측될 수 있다.
그런데, 위의 모터 속도 증가분 계산은 모터 속도가 일정하게 상승함을 가정한 경우(예컨대, APS 고정)에만 적용될 수 있기 때문에, 도 7에 도시된 바와 같이 엔진클러치 접합 전에 실제 모터 속도(실제 Mot Speed)가 변하는 경우 정확도가 떨어진다. 결국, 예측 결합 시점 전에 모터 속도 상승으로 인하여 변속이 먼저 발생하게 되면 목표 접합 속도가 전환되고, 먼저 시동이 걸린 엔진은 다시 변속 후 목표 접합 속도에 도달할 때까지 비구동 연료 손실을 야기한다.
이와 달리, 전술한 본 실시예에 따른 근미래 모터 속도 예측이 수행되는 경우, 변속 시점이 예측될 수 있기 때문에 변속 이전에는 HEV 모드 전환을 금지하여 엔진 시동을 방지하고, 변속 이후 현재 모터 속도 및 근미래 예측 모터 속도에 대응하여 엔진 시동 시점이 결정될 수 있기 때문에 비구동 연료 손실이 최소화될 수 있다.
한편, 상술한 실시예들에서 운전자의 가감속 의지 예측 모델은 실제 차량 운행시 축적된 데이터를 기반으로 현재 주행 조건에 대응하는 미래의 운전자 의지를 기계 학습을 통해 구성되고 수정되는 것으로 설명되었다. 그러나, 이러한 예측 모델을 이용하는 대신, 미리 규칙을 설정하여 근미래 가감속 의지 예측 값이 판단될 수도 있다. 이러한 규칙의 일례가 아래 표 1에 나타난다.
입력 신호 주행 상황 해석 예상 결과
[Navi/Telematics]
도로종류 = 고속도로
정체정보 = 원활
전방event = 없음

[Radar]

전방차량 거리 = 근접
전방차량 상대 속도 = -10 kph

[운전성향/history]
과거 5분간 정속 주행

[차선 이탈 방지 시스템]
현재 차선 유지
정속 주행 중,
앞차와의 차간 거리 유지를
위해 간헐적 제동
APS = 0, BPS = 소
[Navi/Telematics]
도로종류 = 고속도로
정체정보 = 원활
전방event = 톨케이트/200m

[Radar]
전방차량 거리 = 없음
전방차량 상대 속도 = N/A

[운전성향/history]
과거 톨게이트 통과 평균 차속 = 50 kph

[차선 이탈 방지 시스템]
현재 차선 유지
고속도로 주행 중
톨게이트 통과 위해
현재 속도에서
50kph까지 감속
APS = 0, BPS = 중
아울러, 전술된 설명에서는 근미래 예측을 통해 미래의 요구 토크를 예측하도록 하였으나, 미래의 요구 토크는 가감속 예측부가 예측한 미래의 가속도 예상값 등 다른 형태의 파라미터나 정보로 대체될 수도 있음은 당업자에 자명하다.
전술한 본 발명은, 프로그램이 기록된 매체에 컴퓨터가 읽을 수 있는 코드로서 구현하는 것이 가능하다. 컴퓨터가 읽을 수 있는 매체는, 컴퓨터 시스템에 의하여 읽혀질 수 있는 데이터가 저장되는 모든 종류의 기록장치를 포함한다. 컴퓨터가 읽을 수 있는 매체의 예로는, HDD(Hard Disk Drive), SSD(Solid State Disk), SDD(Silicon Disk Drive), ROM, RAM, CD-ROM, 자기 테이프, 플로피 디스크, 광 데이터 저장 장치 등이 있다.
따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 전환은 본 발명의 범위에 포함된다.

Claims (19)

  1. 하이브리드 자동차의 모드 전환 제어 방법에 있어서,
    현재 요구토크인 제 1 토크에 따른 제 1 모드에서 제 2 모드로의 전환 여부를 제 1 판단하는 단계;
    현재로부터 근미래 시점에 발생이 예상되는 요구 토크인 제 2 토크를 제 2 판단하는 단계;
    상기 제 2 토크를 이용하여 예측 변속 시점 및 예측 엔진 클러치 결합 시점을 제 3 판단하는 단계; 및
    상기 제 1 판단결과 상기 제 2 모드로 전환할 것으로 판단되고, 상기 예측 엔진 클러치 결합 시점이 상기 예측 변속 시점보다 빠른 경우, 상기 제 2 모드로 전환을 수행하는 단계를 포함하는, 모드 전환 제어 방법.
  2. 제 1항에 있어서,
    상기 제 1 판단 결과 상기 제 1 모드로 유지할 것으로 판단되거나, 상기 예측 엔진 클러치 결합 시점이 상기 예측 변속 시점보다 느린 경우, 상기 제 1 모드를 유지하는 단계를 더 포함하는, 모드 전환 제어 방법.
  3. 제 1항에 있어서,
    상기 제 1 토크를 판단하는 단계는,
    가속 페달 및 브레이크 페달의 위치를 판단하는 단계; 및
    상기 판단된 위치를 이용하여 상기 제 1 토크를 판단하는 단계를 포함하는, 모드 전환 제어 방법.
  4. 제 1항에 있어서,
    상기 제 2 토크를 판단하는 단계는,
    운전자 성향 정보, 첨단 운전 보조장치(ADAS) 정보, 네비게이션 정보, 차속 정보 중 적어도 하나를 입력값으로 하는 가감속 예측모델을 이용하여 운전자의 가감속 의지 예측 값을 판단하는 단계; 및
    상기 가감속 의지 예측 값을 이용하여 상기 제 2 토크를 판단하는 단계를 포함하는, 모드 전환 제어 방법.
  5. 제 4항에 있어서,
    상기 가감속 예측모델은,
    머신 러닝 기반의 학습을 통해 지속적으로 수정되는, 모드 전환 제어 방법.
  6. 제 4항에 있어서,
    상기 가감속 의지 예측 값은,
    상기 근미래 시점의 가속 페달 및 브레이크 페달의 위치 정보를 포함하는, 모드 전환 제어 방법.
  7. 제 1항에 있어서,
    상기 제 3 판단하는 단계는,
    상기 제 2 토크를 이용하여 상기 근미래 시점의 전기 모터의 예측 회전수를 판단하는 단계; 및
    상기 예측 회전수를 이용하여 상기 예측 변속 시점 및 상기 예측 엔진 클러치 결합 시점을 판단하는 단계를 포함하는, 모드 전환 제어 방법.
  8. 제 2항에 있어서,
    상기 예측 엔진 클러치 결합 시점이 상기 예측 변속 시점보다 느림에 따라 상기 제 1 모드가 유지되는 경우, 상기 변속이 완료된 후 상기 제 2 모드로 전환하는 단계를 더 포함하는, 모드 전환 제어 방법.
  9. 제 1항에 있어서,
    상기 엔진 클러치는,
    엔진과 전기 모터 사이에 배치되고,
    상기 제 1 모드는 EV 모드를 포함하고, 상기 제 2 모드는 HEV 모드를 포함하는, 모드 전환 제어 방법.
  10. 제 1항 내지 제 9항 중 어느 한 항에 따른 모드 전환 제어 방법을 실행시키기 위한 프로그램을 기록한 컴퓨터 해독 가능 기록 매체.
  11. 하이브리드 자동차에 있어서,
    상기 하이브리드 차량의 각종 센서와 연동하여 차량 운행에 따른 운전정보를 검출하는 운전정보 검출부;
    가감속 예측모델을 활용하여 상기 운전정보 검출부로부터 전달된 정보를 이용하여 차량의 주행환경이 반영된 운전자의 근미래 가감속 의지 예측 값을 생성하는 운전자 가감속 예측부; 및
    상기 운전정보 검출부로부터 전달된 정보를 이용하여 현재 요구토크인 제 1 토크를 판단하고, 상기 근미래 가감속 의지 예측 값을 이용하여 현재로부터 근미래 시점에 발생이 예상되는 요구 토크인 제 2 토크를 판단하는 하이브리드 제어기를 포함하되,
    상기 하이브리드 제어기는,
    상기 제 1 토크에 따른 제 1 모드에서 제 2 모드로의 모드 전환 여부를 판단하여, 상기 제 2 모드로의 모드 전환을 판단한 경우 상기 제 2 토크를 이용하여 예측 변속 시점 및 예측 엔진 클러치 결합 시점을 판단하며, 상기 예측 엔진 클러치 결합 시점이 상기 예측 변속 시점보다 빠른 경우, 상기 제 2 모드로의 전환을 수행하는, 하이브리드 자동차.
  12. 제 11항에 있어서,
    상기 하이브리드 제어기는,
    상기 모드 전환 여부를 판단한 결과, 상기 제 1 판단 결과 상기 제 1 모드로 유지할 것으로 판단하거나, 상기 예측 엔진 클러치 결합 시점이 상기 예측 변속 시점보다 느린 경우, 상기 제 1 모드가 유지되도록 제어하는, 하이브리드 자동차.
  13. 제 11항에 있어서,
    상기 하이브리드 제어기는,
    가속 페달 및 브레이크 페달의 위치를 기반으로 상기 제 1 토크를 판단하는, 하이브리드 자동차.
  14. 제 11항에 있어서,
    상기 하이브리드 제어기는,
    운전자 성향 정보, 첨단 운전 보조장치(ADAS) 정보, 네비게이션 정보, 차속 정보 중 적어도 하나를 입력값으로 하는 가감속 예측모델을 이용하여 운전자의 가감속 의지 예측 값을 판단하고, 상기 가감속 의지 예측 값을 이용하여 상기 제 2 토크를 판단하는, 하이브리드 자동차.
  15. 제 14항에 있어서,
    상기 가감속 예측모델은,
    머신 러닝 기반의 학습을 통해 지속적으로 수정되는, 하이브리드 자동차.
  16. 제 14항에 있어서,
    상기 가감속 의지 예측 값은,
    상기 근미래 시점의 가속 페달 및 브레이크 페달의 위치 정보를 포함하는, 하이브리드 자동차.
  17. 제 11항에 있어서,
    상기 하이브리드 제어기는,
    상기 제 2 토크를 이용하여 상기 근미래 시점의 전기 모터의 예측 회전수를 판단하고, 상기 예측 회전수를 이용하여 상기 예측 변속 시점 및 상기 예측 엔진 클러치 결합 시점을 판단하는, 하이브리드 자동차.
  18. 제 12항에 있어서,
    상기 하이브리드 제어기는,
    상기 예측 엔진 클러치 결합 시점이 상기 예측 변속 시점보다 느림에 따라 상기 제 1 모드가 유지되는 경우, 상기 변속이 완료된 후 상기 제 2 모드로 전환하는, 하이브리드 자동차.
  19. 제 11항에 있어서,
    상기 엔진 클러치는,
    엔진과 전기 모터 사이에 배치되고,
    상기 제 1 모드는 EV 모드를 포함하고, 상기 제 2 모드는 HEV 모드를 포함하는, 하이브리드 자동차.
KR1020160172824A 2016-12-16 2016-12-16 하이브리드 자동차 및 그를 위한 모드 전환 제어 방법 KR102659047B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020160172824A KR102659047B1 (ko) 2016-12-16 2016-12-16 하이브리드 자동차 및 그를 위한 모드 전환 제어 방법
US15/718,694 US10688981B2 (en) 2016-12-16 2017-09-28 Hybrid vehicle and method of controlling mode transition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160172824A KR102659047B1 (ko) 2016-12-16 2016-12-16 하이브리드 자동차 및 그를 위한 모드 전환 제어 방법

Publications (2)

Publication Number Publication Date
KR20180070289A KR20180070289A (ko) 2018-06-26
KR102659047B1 true KR102659047B1 (ko) 2024-04-19

Family

ID=62556734

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160172824A KR102659047B1 (ko) 2016-12-16 2016-12-16 하이브리드 자동차 및 그를 위한 모드 전환 제어 방법

Country Status (2)

Country Link
US (1) US10688981B2 (ko)
KR (1) KR102659047B1 (ko)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102506870B1 (ko) * 2018-01-11 2023-03-08 현대자동차주식회사 엔진 기동 제어 장치 및 방법
DE102018211575A1 (de) * 2018-07-12 2020-01-16 Audi Ag Verfahren zum Betrieb eines elektrischen Bordnetzes eines Kraftfahrzeugs und Kraftfahrzeug
US10906553B2 (en) * 2018-07-30 2021-02-02 Toyota Motor Engineering & Manufactuiring North America, Inc. Systems and methods for vehicle acceleration event prediction inhibit
US11001248B2 (en) * 2018-10-08 2021-05-11 GM Global Technology Operations LLC Method for enhancing powertrain efficiency and driveline quality through dynamic mission planning optimization
US10814881B2 (en) * 2018-10-16 2020-10-27 Toyota Motor Engineering & Manufacturing North America, Inc. Vehicle velocity predictor using neural networks based on V2X data augmentation to enable predictive optimal control of connected and automated vehicles
KR102592831B1 (ko) * 2018-12-07 2023-10-23 현대자동차주식회사 하이브리드 자동차 및 그를 위한 주행 제어 방법
CN111634193B (zh) * 2019-03-01 2024-05-14 广汽埃安新能源汽车有限公司 扭矩方向判断方法、装置、车辆、计算机设备和存储介质
KR102659242B1 (ko) * 2019-07-03 2024-04-19 현대자동차주식회사 하이브리드 차량의 엔진 온 제어방법 및 시스템
CN110435635B (zh) * 2019-08-30 2020-08-14 吉林大学 一种带湿式离合器的行星混动***模式切换协调控制方法
DE102019124922A1 (de) * 2019-09-17 2021-03-18 Bayerische Motoren Werke Aktiengesellschaft Steuereinheit und Verfahren zum Betrieb einer elektrischen Maschine eines Hybridantriebs
DE102020203742A1 (de) 2020-03-24 2021-09-30 Zf Friedrichshafen Ag Modellbasierte prädiktive Regelung eines Kraftfahrzeugs
US20210402980A1 (en) * 2020-06-26 2021-12-30 Mitsubishi Electric Research Laboratories, Inc. System and Method for Data-Driven Reference Generation
CN113911047B (zh) * 2020-07-07 2023-09-22 北京新能源汽车股份有限公司 一种车辆的控制方法及装置
CN112124297B (zh) * 2020-09-07 2022-04-29 长城汽车股份有限公司 混合动力车辆的驱动方法、装置和车辆
CN112477845A (zh) * 2020-11-23 2021-03-12 浙江吉利控股集团有限公司 新能源车辆的混合动力***及其控制方法、装置和设备
CN113022549B (zh) * 2021-03-25 2022-06-28 潍柴动力股份有限公司 混合动力汽车及其模式切换与换挡协调控制方法及控制器
CN113492827A (zh) * 2021-06-23 2021-10-12 东风柳州汽车有限公司 一种混合动力汽车能量管理方法及装置
US11951972B2 (en) * 2022-03-28 2024-04-09 Ford Global Technologies, Llc Method for shaping motor torque profile during a launch engine start

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110112708A1 (en) 2008-04-14 2011-05-12 Jochen Fassnacht Method and control module for controlling the drive mode of a hybrid drive to prevent jerky movements
KR101584002B1 (ko) 2014-10-29 2016-01-21 현대자동차주식회사 하이브리드 자동차의 엔진 클러치 접합을 위한 동기화 제어 방법
US20160046282A1 (en) 2014-08-18 2016-02-18 Ford Global Technologies, Llc Methods and systems for starting an engine

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3094872B2 (ja) 1995-10-20 2000-10-03 トヨタ自動車株式会社 ハイブリッド車用制御装置
US6487477B1 (en) 2001-05-09 2002-11-26 Ford Global Technologies, Inc. Strategy to use an on-board navigation system for electric and hybrid electric vehicle energy management
JP4211831B2 (ja) 2006-09-14 2009-01-21 トヨタ自動車株式会社 ハイブリッド車両、ハイブリッド車両の制御方法およびその制御方法をコンピュータに実行させるためのプログラムを記録したコンピュータ読取可能な記録媒体
JP4501956B2 (ja) 2007-04-20 2010-07-14 トヨタ自動車株式会社 ハイブリッド車両用駆動装置の制御装置
US8825320B2 (en) * 2007-11-02 2014-09-02 GM Global Technology Operations LLC Method and apparatus for developing a deceleration-based synchronous shift schedule
US8414449B2 (en) * 2007-11-04 2013-04-09 GM Global Technology Operations LLC Method and apparatus to perform asynchronous shifts with oncoming slipping clutch torque for a hybrid powertrain system
US9008926B2 (en) * 2007-11-04 2015-04-14 GM Global Technology Operations LLC Control of engine torque during upshift and downshift torque phase for a hybrid powertrain system
JP2010215189A (ja) 2009-03-18 2010-09-30 Toyota Motor Corp 車両用駆動装置
US8600633B2 (en) * 2010-07-29 2013-12-03 GM Global Technology Operations LLC Gear preselect systems for a dual clutch transmission
JP5488711B2 (ja) * 2010-10-27 2014-05-14 トヨタ自動車株式会社 車両用動力伝達装置の制御装置
JP5096552B2 (ja) * 2010-12-28 2012-12-12 アイシン・エーアイ株式会社 車両の動力伝達制御装置
US8996265B2 (en) * 2011-01-12 2015-03-31 Toyota Jidosha Kabushiki Kaisha Control device of hybrid vehicle
CN103338992B (zh) * 2011-01-26 2015-07-29 丰田自动车株式会社 混合动力车辆的控制装置
JP5790773B2 (ja) * 2011-10-20 2015-10-07 トヨタ自動車株式会社 ハイブリッド車両のエンジン始動時制御装置
DE102013215937A1 (de) 2013-08-12 2015-02-12 Robert Bosch Gmbh Verfahren zur Phlegmatisierung einer Verbrennungskraftmaschine eines Kraftfahrzeugs
KR101484228B1 (ko) * 2013-11-08 2015-01-16 현대자동차 주식회사 하이브리드 차량 및 하이브리드 차량의 제어 방법
US10207696B2 (en) * 2014-06-09 2019-02-19 Ford Global Technologies, Llc Timing transmission gearing shifts for a hybrid electric powertrain
US10183663B2 (en) * 2014-08-18 2019-01-22 Ford Global Technologies, Llc Methods and systems for starting an engine
US9533673B2 (en) * 2014-08-27 2017-01-03 Ford Global Technologies, Llc Methods and system for improving hybrid driveline operation
KR101619250B1 (ko) * 2014-09-24 2016-05-18 현대자동차 주식회사 변속제어시스템 및 그 방법
KR101619653B1 (ko) * 2014-12-03 2016-05-10 현대자동차주식회사 하이브리드 자동차의 난방시 엔진 아이들 운전 제어 방법
KR101588793B1 (ko) * 2015-06-03 2016-01-28 현대자동차 주식회사 운전자의 운전 성향을 이용한 하이브리드 차량의 제어 방법
KR101684168B1 (ko) * 2015-09-10 2016-12-07 현대자동차주식회사 하이브리드 차량의 주행모드 변환 제어 시스템 및 방법
US10106149B2 (en) * 2016-11-02 2018-10-23 Ford Global Technologies, Llc Torque converter clutch engagement pressure control for regenerative braking
US10267412B2 (en) * 2016-11-11 2019-04-23 Ford Global Technologies, Llc Upshift control for regenerative braking

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110112708A1 (en) 2008-04-14 2011-05-12 Jochen Fassnacht Method and control module for controlling the drive mode of a hybrid drive to prevent jerky movements
US20160046282A1 (en) 2014-08-18 2016-02-18 Ford Global Technologies, Llc Methods and systems for starting an engine
KR101584002B1 (ko) 2014-10-29 2016-01-21 현대자동차주식회사 하이브리드 자동차의 엔진 클러치 접합을 위한 동기화 제어 방법

Also Published As

Publication number Publication date
US20180170356A1 (en) 2018-06-21
US10688981B2 (en) 2020-06-23
KR20180070289A (ko) 2018-06-26

Similar Documents

Publication Publication Date Title
KR102659047B1 (ko) 하이브리드 자동차 및 그를 위한 모드 전환 제어 방법
KR102659048B1 (ko) 하이브리드 자동차 및 그를 위한 모드 전환 제어 방법
CN108248609B (zh) 混合动力车辆和在混合动力车辆中预测驾驶样式的方法
KR101974357B1 (ko) 하이브리드 자동차 및 그를 위한 엔진 제어 방법
CN108016427B (zh) 混合动力车辆和控制变速器的方法
CN108688646B (zh) 混合动力车辆和控制混合动力车辆的充电模式的方法
KR102295581B1 (ko) 하이브리드 자동차 및 그를 위한 공조 제어 방법
US10967859B2 (en) Vehicle control apparatus and vehicle control method
JP2019059474A (ja) ハイブリッド自動車の制御装置
US20230406346A1 (en) Real time estimation of critical vehicle parameters in autonomous systems
KR102252916B1 (ko) 하이브리드 자동차 및 그를 위한 엔진 제어 방법
KR101943864B1 (ko) 하이브리드 자동차 및 그를 위한 엔진 제어 방법
US11807272B2 (en) Systems and methods for multiple algorithm selection
US20240208502A1 (en) Control device for vehicle
JP6459822B2 (ja) 車両制御装置
JP2023071549A (ja) 駆動力制御装置
CN116677769A (zh) 一种车辆换挡控制方法、装置和车辆

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant