KR102634715B1 - A method for simultaneously producing hydrogen and carbon materials for electrodes with high specific surface area and high conductivity from activated carbon through methane decomposition - Google Patents

A method for simultaneously producing hydrogen and carbon materials for electrodes with high specific surface area and high conductivity from activated carbon through methane decomposition Download PDF

Info

Publication number
KR102634715B1
KR102634715B1 KR1020210162952A KR20210162952A KR102634715B1 KR 102634715 B1 KR102634715 B1 KR 102634715B1 KR 1020210162952 A KR1020210162952 A KR 1020210162952A KR 20210162952 A KR20210162952 A KR 20210162952A KR 102634715 B1 KR102634715 B1 KR 102634715B1
Authority
KR
South Korea
Prior art keywords
carbon
reaction
activated carbon
based catalyst
electrodes
Prior art date
Application number
KR1020210162952A
Other languages
Korean (ko)
Other versions
KR20230076222A (en
Inventor
임지선
강석창
김지홍
윤지수
문수영
공창인
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Priority to KR1020210162952A priority Critical patent/KR102634715B1/en
Publication of KR20230076222A publication Critical patent/KR20230076222A/en
Application granted granted Critical
Publication of KR102634715B1 publication Critical patent/KR102634715B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/30Active carbon
    • C01B32/354After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • B01J35/33
    • B01J35/618
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • C01B3/24Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons
    • C01B3/26Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons using catalysts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/16Controlling the process
    • C01B2203/1614Controlling the temperature
    • C01B2203/1623Adjusting the temperature

Abstract

본 발명에 따르면, 메탄으로부터 청정 연료인 수소 생산과 동시에 메탄분해반응 촉매로 사용된 활성탄을 고부가가치를 갖는 고전도성 활성탄으로 개질하여 고부가가치의 전극용 고전도성 탄소재료를 제공할 수 있다.
또한, 본 발명에 따르면 상기 고전도성 탄소재료를 이용하여 감도 변화율이 향상된 전극 소재를 제공할 수 있다.
According to the present invention, it is possible to provide a high value-added, highly conductive carbon material for electrodes by producing hydrogen, a clean fuel, from methane and simultaneously reforming the activated carbon used as a methane decomposition reaction catalyst into highly conductive activated carbon with high added value.
In addition, according to the present invention, an electrode material with an improved sensitivity change rate can be provided by using the highly conductive carbon material.

Description

메탄분해반응을 통해 활성탄으로부터 고비표면적 및 고전도성 전극용 탄소재료 및 수소를 동시에 제조하는 방법{A method for simultaneously producing hydrogen and carbon materials for electrodes with high specific surface area and high conductivity from activated carbon through methane decomposition}{A method for simultaneously producing hydrogen and carbon materials for electrodes with high specific surface area and high conductivity from activated carbon through methane decomposition}

본 발명은 메탄분해반응을 통해 활성탄으로부터 고비표면적 및 고전도성 전극용 탄소재료 및 수소를 동시에 제조하는 방법에 관한 것이다. 보다 상세하게는, 메탄분해반응으로부터 생성되는 탄소를 반응 촉매인 활성탄의 개질에 활용함으로서 고감도 가스센서 전극용 고전도성 탄소재료를 제조함과 동시에 청정가스인 수소를 제조하는 방법에 관한 것이다.The present invention relates to a method of simultaneously producing carbon materials for high specific surface area and high conductivity electrodes and hydrogen from activated carbon through methane decomposition reaction. More specifically, it relates to a method of producing a highly conductive carbon material for a highly sensitive gas sensor electrode and simultaneously producing hydrogen, a clean gas, by utilizing the carbon generated from the methane decomposition reaction to reform activated carbon, which is a reaction catalyst.

기후 변화에 관한 정부간 협의체(IPCC)의 최근보고서에서 메탄(CH4)의 단기 온실효과가 주요 온실기체인 이산화탄소(CO2)의 80배 이상에 달한다고 지적했고, 2019년 국가 온실가스 인벤토리 보고서 내 메탄 총배출량 자료에 따르면 강력한 온실효과를 갖는 메탄의 분야별 비중은 농업 분야가 43.9%, 폐기물 분야 31.0%, 에너지 분야 22.9%, 산업공정 분야 2.2% 순으로서, 생활에 필수적인 농업, 발전 및 산업활동으로부터 메탄이 배출되는 것으로 나타났다. 인류의 활동에 필수적으로 수반되는 메탄 배출량을 저감하기 위해서는 친환경적인 메탄의 전환기술이 필요하다.A recent report by the Intergovernmental Panel on Climate Change (IPCC) pointed out that the short-term greenhouse effect of methane (CH 4 ) is more than 80 times that of carbon dioxide (CO 2 ), a major greenhouse gas, and in the 2019 National Greenhouse Gas Inventory Report. According to the total methane emissions data, the proportion of methane, which has a strong greenhouse effect, by sector is 43.9% in the agricultural sector, 31.0% in the waste sector, 22.9% in the energy sector, and 2.2% in the industrial process sector, which is from agriculture, power generation, and industrial activities essential to life. It was found that methane was emitted. In order to reduce methane emissions, which are essential for human activities, eco-friendly methane conversion technology is needed.

한편, 에너지원으로서의 상기 메탄은 천연가스의 주 성분으로서 매장량이 풍부할 뿐만 아니라 생물자원으로부터 수득 가능한 점에서 전통적인 화석연료를 대체할 자원으로 각광받고 있다. 특히, 메탄으로부터 청정연료로 주목받고 있는 수소로 전환하고자 하는 연구개발이 시도되고 있다.Meanwhile, methane as an energy source is attracting attention as a resource to replace traditional fossil fuels because it is a main component of natural gas and has abundant reserves and can be obtained from biological resources. In particular, research and development efforts are being made to convert methane into hydrogen, which is attracting attention as a clean fuel.

종래 메탄을 수소 가스로 전환하는 연구는 크게 2가지 방법으로 진행되었다. 현재까지 주로 사용되고 있는 공정은 스팀 메탄 개질(SMR, Steam Reforming of Methane)공정으로서 고온의 수증기를 흡열이 요구되는 메탄의 개질반응에 투입하는 공정이다. 상기 SMR 공정에서는 수증기로부터 유래되는 온실가스인 CO2 및 CO 가스가 동시에 생성되므로, 복잡한 정제공정이 요구될 뿐만 아니라 환경부하가 크다는 문제가 있다. Previously, research on converting methane into hydrogen gas was conducted in two main ways. The process that has been mainly used to date is the Steam Reforming of Methane (SMR) process, which is a process in which high-temperature steam is introduced into a reforming reaction of methane that requires endotherm. In the SMR process, CO 2 and CO gas, which are greenhouse gases derived from water vapor, are simultaneously generated, so not only does a complex purification process is required, but there is a problem that the environmental load is large.

상기 SMR의 대안으로서, 상대적으로 적은 에너지가 요구되는 열-촉매 분해(TCD, Thermo-Catalytic Decomposition) 공정이 제시되고 있다. 상기 TCD 공정은 SMR 공정과 달리 CO2 및 CO 가스로의 전환이 일어나지 않고, 생성물이 탄소 침적물과 청정연료인 수소 가스로 분리되어 정제과정을 간략화시킬 수 있으며, 친환경적이라는 이점이 있다.As an alternative to the SMR, a thermo-catalytic decomposition (TCD) process that requires relatively little energy has been proposed. Unlike the SMR process, the TCD process does not convert into CO 2 and CO gas, and the product is separated into carbon deposits and hydrogen gas, which is a clean fuel, simplifying the purification process and having the advantage of being environmentally friendly.

상기 TCD 공정에 사용되는 촉매는 금속계 촉매와 탄소계 촉매로 분류된다. 상기 탄소계 촉매는 금속계 촉매 대비 낮은 가격, 우수한 고온 안정성 및 황과 같은 불순물에 대한 저항성의 이점을 가지고 있다.Catalysts used in the TCD process are classified into metal-based catalysts and carbon-based catalysts. The carbon-based catalyst has the advantages of low price, excellent high-temperature stability, and resistance to impurities such as sulfur compared to the metal-based catalyst.

그러나, 탄소계 촉매는 가격이 금속계 촉매보다 낮은 반면, 800~1,000 ℃의 고온의 조건을 조성해야하는 공정이 요구되는 점에서 수소 가스 생산만으로는 메탄 분해 공정의 가격 경쟁력이 감소할 수 밖에 없는 실정이다. 따라서, 메탄 분해 반응으로부터 생성되는 물질의 고부가화를 동반하는 것이 필요한 상황이다.However, while the price of carbon-based catalysts is lower than that of metal-based catalysts, the price competitiveness of the methane decomposition process for hydrogen gas production alone is inevitably reduced because the process requires high temperature conditions of 800 to 1,000 ° C. Therefore, it is necessary to accompany high addition of materials produced from methane decomposition reaction.

한편, 전극 소재로서의 활성탄 수요가 증가함과 동시에 고에너지밀도, 고출력 및 고전도성의 활성탄에 대한 요구가 증가하고 있으나, 전극용 탄소재료로서 본래 활성탄은 탄소나노튜브 및 탄소섬유 대비 낮은 전도성과 에너지 출력이라는 문제가 있다. Meanwhile, as the demand for activated carbon as an electrode material increases, the demand for activated carbon with high energy density, high output, and high conductivity is increasing. However, as a carbon material for electrodes, activated carbon has lower conductivity and energy output than carbon nanotubes and carbon fiber. There is a problem.

이와 관련하여, 국제특허공개공보 WO2021/102521 A1(2021.06.03.공개)은 열분해 및 탄소 분해에 관한 것으로, 상세하게는, 열분해를 통해 바이오매스 등의 자원을 열분해하여 활성탄을 생성하고, 이어서 활성탄에 메탄을 분해하여 생성되는 탄소를 증착시켜 고품질의 결정성 탄소재료를 제조하는 기술에 관하여 개시하고 있다. 그러나, 선행문헌에 따르면 상기 결정성 탄소재료는 비표면적이 200 m2/g 이하로 매우 낮고, 고비표면적 및 전도성이 요구되는 전극소재로서의 활용 가능성이 낮다는 문제가 있다.In this regard, International Patent Publication WO2021/102521 A1 (published on 2021.06.03) relates to pyrolysis and carbon decomposition. Specifically, through pyrolysis, resources such as biomass are pyrolyzed to produce activated carbon, followed by activated carbon. discloses a technology for producing high-quality crystalline carbon materials by depositing carbon produced by decomposing methane. However, according to prior literature, the crystalline carbon material has a very low specific surface area of 200 m 2 /g or less, and has a problem in that it has low usability as an electrode material that requires high specific surface area and conductivity.

지구온난화를 비롯한 환경 문제를 해결함과 동시에 상기 TCD 공정에서 사용되는 활성탄을 개질함으로서 고감도 가스센서 전극용으로 활용가능한 고전도성 탄소재료 제조기술이 필요한 실정이다.There is a need for manufacturing technology for highly conductive carbon materials that can be used for highly sensitive gas sensor electrodes by reforming the activated carbon used in the TCD process while solving environmental problems including global warming.

국제특허공개공보 WO2021/102521 A1(2021.06.03.공개)International Patent Publication WO2021/102521 A1 (published on 2021.06.03.)

본 발명의 목적은 메탄분해반응을 최적의 반응시간 및 온도 조건에서 수행함으로서 수소 생산과 동시에 고부가가치의 고감도 가스센서 전극용 고전도성 탄소재료를 제조하는 방법을 제공하는 것이다.The purpose of the present invention is to provide a method for producing high value-added, highly sensitive gas sensor electrodes and producing highly conductive carbon materials at the same time as producing hydrogen by performing the methane decomposition reaction under optimal reaction time and temperature conditions.

또한, 본 발명은 상기 제법으로부터 제조된 고전도성 탄소재료를 이용한 고감도 가스센서를 제공하는 것을 목적으로 한다.Additionally, the present invention aims to provide a highly sensitive gas sensor using a highly conductive carbon material manufactured by the above manufacturing method.

상기 과제를 해결하기 위하여, 본 발명은 메탄분해반응을 통해 활성탄으로부터 고감도 가스센서 전극용 고전도성 탄소재료를 제조하는 방법에 있어서, (a) 탄소계 촉매를 포함하는 반응기내 메탄 포함 기체 반응물 공급하여 메탄분해반응을 수행하는 단계; 및 (b) 반응후 탄소계 촉매 및 수소 포함 기체 생성물을 분리하는 단계;를 포함하고, 상기 (b) 단계의 반응후 탄소계 촉매는 표면 및 기공 내부의 전부 또는 적어도 일부에 탄소 간 이중결합이 형성됨에 따라 결정성 및 전도성이 향상된 탄소재료인 것을 특징으로 할 수 있다.In order to solve the above problem, the present invention provides a method for producing a highly conductive carbon material for a highly sensitive gas sensor electrode from activated carbon through a methane decomposition reaction, by (a) supplying a gaseous reactant containing methane in a reactor containing a carbon-based catalyst; Performing a methane decomposition reaction; and (b) separating the carbon-based catalyst and the hydrogen-containing gas product after the reaction, wherein the carbon-based catalyst after the reaction in step (b) has double bonds between carbons on all or at least part of the surface and inside the pores. It can be characterized as a carbon material with improved crystallinity and conductivity as it is formed.

상기 (a) 단계의 탄소계 촉매는 활성탄, 활성탄소섬유, 카본 블랙, 비결정성(amorphous) 탄소 소재, 난층 구조(turbostratic) 탄소 소재 및 이들의 혼합물일 수 있다.The carbon-based catalyst in step (a) may be activated carbon, activated carbon fiber, carbon black, amorphous carbon material, turbostratic carbon material, and mixtures thereof.

본 발명의 일 실시예로서, 상기 (a) 단계의 탄소계 촉매는 활성탄이고, 상기 활성탄의 비표면적은 2,000 m2/g 이상일 수 있다.In one embodiment of the present invention, the carbon-based catalyst in step (a) is activated carbon, and the specific surface area of the activated carbon may be 2,000 m 2 /g or more.

상기 (a) 단계의 메탄분해반응은 온도 850 내지 950 ℃에서 4 내지 20분, 바람직하게는, 온도 900 내지 950 ℃에서 10 내지 20분 동안 수행하는 것을 특징으로 할 수 있다.The methane decomposition reaction in step (a) may be performed at a temperature of 850 to 950°C for 4 to 20 minutes, preferably at a temperature of 900 to 950°C for 10 to 20 minutes.

상기 (b) 단계에서 반응후 탄소계 촉매는 전기전도도 10 내지 19 S/cm 범위일 수 있다.After reaction in step (b), the carbon-based catalyst may have an electrical conductivity in the range of 10 to 19 S/cm.

상기 (b) 단계에서 반응후 탄소계 촉매의 비표면적 감소율은 상기 (a) 단계의 반응전 탄소계 촉매 대비 25% 이하일 수 있다.The specific surface area reduction rate of the carbon-based catalyst after reaction in step (b) may be 25% or less compared to the carbon-based catalyst before reaction in step (a).

상기 제법으로부터 제조된 고비표면적 및 고전도성 전극용 탄소재료를 이용한 전극 소재를 제공할 수 있다.It is possible to provide an electrode material using a carbon material for electrodes with high specific surface area and high conductivity prepared by the above manufacturing method.

본 발명에 따르면, 메탄으로부터 청정 연료인 수소 생산과 동시에 반응 촉매로 사용된 활성탄을 고부가가치를 갖는 고비표면적 및 고전도성의 활성탄으로 개질하여 고부가가치의 캐퍼시터, CDI, 가스센서 등의 전극용 탄소재료를 제조할 수 있는 현저한 효과가 있다.According to the present invention, while producing hydrogen, a clean fuel, from methane, activated carbon used as a reaction catalyst is reformed into activated carbon with high specific surface area and high conductivity with high added value, and carbon materials for electrodes such as capacitors, CDI, and gas sensors with high added value. There is a remarkable effect in producing .

또한, 상기 본 발명의 제조방법으로부터 제조된 전극용 탄소재료를 이용한 전극 소재를 제공할 수 있으며, 상기 전극 소재가 활용된 일 예인 가스센서는 감도 변화율이 향상되는 현저한 효과를 나타낸다.In addition, it is possible to provide an electrode material using the carbon material for electrodes manufactured by the manufacturing method of the present invention, and a gas sensor, which is an example of the electrode material used, shows a significant effect of improving the sensitivity change rate.

도 1은 본 발명에 따라 제조된 메탄분해반응을 통해 활성탄으로부터 전극용 고전도성 탄소재료의 반응시간에 따른 (a)흡장량, (b)전기 전도도를 나타낸 그래프이다.
도 2(a) 내지 도 2(b)는 메탄분해반응을 진행하지 않은 비교예 1 및 과도한 메탄분해반응을 진행한 비교예 3의 탄소재료의 SEM 및 TEM 사진을 나타낸 것이다.
도 3(a) 내지 도 3(e)는 비교예 2 및 실시예 1 내지 4의 탄소재료의 XPS 측정결과이다.
도 4는 메탄분해반응에 투입된 탄소계 촉매의 반응온도에 따른 (a)메탄 전환율, (b)기체 생성물내 수소 조성 및 (c)흡장량을 나타낸 그래프, (d) 반응온도 800 ℃ 인 반응관 및 (e) 반응온도 1,000 ℃ 인 반응관의 사진이다.
도 5는 본 발명에 따라 제조된 메탄분해반응을 통해 활성탄으로부터 전극용 고전도성 탄소재료의 반응시간에 따른 흡장량을 나타낸 그래프이다.
도 6은 본 발명에 따라 제조된 전극용 고전도성 탄소재료가 가스센서 전극 소재로 활용될 시의 감도를 나타낸 그래프이다.
Figure 1 is a graph showing (a) storage amount and (b) electrical conductivity according to reaction time of highly conductive carbon material for electrodes from activated carbon through methane decomposition reaction prepared according to the present invention.
Figures 2(a) and 2(b) show SEM and TEM photographs of carbon materials of Comparative Example 1, in which no methane decomposition reaction was performed, and Comparative Example 3, in which excessive methane decomposition reaction was performed.
Figures 3(a) to 3(e) show the XPS measurement results of the carbon materials of Comparative Example 2 and Examples 1 to 4.
Figure 4 is a graph showing (a) methane conversion rate, (b) hydrogen composition in the gaseous product, and (c) storage amount according to the reaction temperature of the carbon-based catalyst introduced into the methane decomposition reaction, (d) a reaction tube with a reaction temperature of 800 ° C. and (e) a photograph of a reaction tube with a reaction temperature of 1,000°C.
Figure 5 is a graph showing the storage amount of the highly conductive carbon material for electrodes from activated carbon through the methane decomposition reaction prepared according to the present invention according to the reaction time.
Figure 6 is a graph showing the sensitivity of the highly conductive carbon material for electrodes manufactured according to the present invention when used as a gas sensor electrode material.

이하 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 용이하게 실시할 수 있도록 본 발명을 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예의 구성은 본 발명의 가장 바람직한 예들에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원 시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.Hereinafter, the present invention will be described in detail so that those skilled in the art can easily practice the present invention. Prior to this, the terms or words used in this specification and claims should not be construed as limited to their usual or dictionary meanings, and the inventor should appropriately define the concept of terms in order to explain his or her invention in the best way. It must be interpreted as meaning and concept consistent with the technical idea of the present invention based on the principle of definability. Therefore, the configurations of the embodiments described in this specification are only the most preferred examples of the present invention and do not represent the entire technical idea of the present invention, so there are various equivalents and modifications that can replace them at the time of filing the present application. You must understand that it is possible.

본 발명의 바람직한 실시예에 대한 원리를 상세하게 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략한다.In explaining in detail the principles of a preferred embodiment of the present invention, if it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the gist of the present invention, the detailed description will be omitted.

본 발명은 메탄분해반응을 통해 청정 연료인 수소 생산과 동시에 반응 촉매로 사용된 활성탄을 고부가가치를 갖는 고비표면적 및 고전도성의 활성탄으로 개질함으로서 고부가가치의 물리화학적 전극용 탄소소재를 제공하는 것을 특징으로 한다.The present invention is characterized by providing a carbon material for physical and chemical electrodes with high added value by producing hydrogen, a clean fuel, through a methane decomposition reaction and simultaneously reforming the activated carbon used as a reaction catalyst into activated carbon with high specific surface area and high conductivity with high added value. Do it as

아래 식 1으로 표현되는 상기 메탄분해반응은 흡열반응 결과로서 수소 기체 및 탄소를 생성한다.The methane decomposition reaction, expressed in Equation 1 below, produces hydrogen gas and carbon as an endothermic reaction.

CH4(g) → C(s) + 2H2(g) (△H = 18.0 kcal/mol) [식 1]CH 4 (g) → C(s) + 2H 2 (g) (△H = 18.0 kcal/mol) [Equation 1]

그러나, 상기 메탄분해반응 생성물인 탄소는 반응 촉매에 대해 탄소 침적으로 인한 코킹 현상을 유발하여 촉매 활성을 감소시키는 것으로 알려져 있다. 상기 코킹 현상을 저감하고자, 코킹 억제가 가능한 금속계 촉매를 사용하려는 연구개발이 지속되었으나, 코킹 현상을 완전히 억제하는 것은 기술적으로 어려울 뿐만 아니라, 상기 금속계 촉매에 포함되는 고가의 금속으로 인해 경제성이 악화되는 점에서 상대적으로 저가인 탄소계 촉매를 활용할 수 있는 방안이 필요한 실정이다.However, it is known that carbon, a product of the methane decomposition reaction, reduces catalyst activity by causing a coking phenomenon due to carbon deposition on the reaction catalyst. In order to reduce the coking phenomenon, research and development has continued to use metal catalysts capable of suppressing coking, but it is not only technically difficult to completely suppress the coking phenomenon, but also the economic feasibility is worsened due to the expensive metals contained in the metal catalysts. In this regard, there is a need for a method to utilize relatively inexpensive carbon-based catalysts.

이에 본 발명의 출원인은 상대적으로 저가인 탄소계 촉매를 메탄분해반응의 반응촉매로서 채택하고, 종래 메탄분해반응 과정에서 기피 또는 억제해야했던 촉매의 코킹 현상을 상기 탄소계 촉매의 개질에 활용함과 동시에 이를 위한 메탄분해반응의 최적인 조건을 적용함으로서 높은 비표면적을 유지하면서 고전도성을 갖는 고부가가치의 탄소재료를 제조하는 방법을 완성하였다.Accordingly, the applicant of the present invention adopts a relatively inexpensive carbon-based catalyst as a reaction catalyst for methane decomposition reaction, and utilizes the coking phenomenon of the catalyst, which had to be avoided or suppressed in the conventional methane decomposition reaction process, for reforming the carbon-based catalyst. At the same time, by applying the optimal conditions for the methane decomposition reaction for this purpose, a method of manufacturing high value-added carbon materials with high conductivity while maintaining a high specific surface area was completed.

이하, 본 발명의 메탄분해반응을 통해 활성탄으로부터 전극용 고전도성 탄소재료를 제조하는 방법을 설명하기로 한다.Hereinafter, a method for producing a highly conductive carbon material for electrodes from activated carbon through the methane decomposition reaction of the present invention will be described.

본 발명의 메탄분해반응을 통해 활성탄으로부터 전극용 고전도성 탄소재료를 제조하는 방법은 (a) 탄소계 촉매를 포함하는 반응기 내 메탄 포함 기체 반응물 공급하여 메탄분해반응을 수행하는 단계; 및 (b) 반응 후 탄소계 촉매 및 수소 포함 기체 생성물을 분리하는 단계;를 포함하고, 상기 (b) 단계의 반응 후 탄소계 촉매는 표면 및 기공 내부의 전부 또는 적어도 일부에 탄소 간 이중결합이 형성됨에 따라 결정성 및 전도성이 향상된 탄소 재료인 것을 특징으로 한다.The method of producing a highly conductive carbon material for electrodes from activated carbon through a methane decomposition reaction of the present invention includes the steps of (a) supplying a gaseous reactant containing methane into a reactor containing a carbon-based catalyst to perform a methane decomposition reaction; and (b) separating the carbon-based catalyst and the hydrogen-containing gas product after the reaction, wherein after the reaction in step (b), the carbon-based catalyst has double bonds between carbons on all or at least part of the surface and inside the pores. It is characterized as a carbon material with improved crystallinity and conductivity as it is formed.

상기 (a) 단계의 탄소계 촉매는 비제한적으로 활성탄, 활성탄소섬유, 카본 블랙, 비결정성(amorphous) 탄소 소재, 난층 구조(turbostratic) 탄소 소재 및 이들의 혼합물이 사용될 수 있으나, 바람직하게는 활성탄을 사용할 수 있다.The carbon-based catalyst in step (a) may be, but is not limited to, activated carbon, activated carbon fiber, carbon black, amorphous carbon material, turbostratic carbon material, and mixtures thereof, but activated carbon is preferred. can be used.

상기 (a) 단계의 탄소계 촉매로서 사용하는 활성탄은 미세기공을 포함하는 다공성 물질로서, 비표면적이 2,000 m2/g 이상인 것을 사용하는 것을 특징으로 한다. 상기 활성탄의 비표면적이 2,000 m2/g 미만인 경우에는 메탄 분해 초기 활성이 급격히 저하되고, 캐퍼시터, CDI, 가스 센서와 같이 고비표면적이 요구되는 전극 소재로 활용할 수 없는 문제가 있다.The activated carbon used as the carbon-based catalyst in step (a) is a porous material containing micropores and is characterized in that it has a specific surface area of 2,000 m 2 /g or more. If the specific surface area of the activated carbon is less than 2,000 m 2 /g, the initial activity of methane decomposition decreases rapidly, and there is a problem that it cannot be used as an electrode material that requires a high specific surface area, such as capacitors, CDIs, and gas sensors.

본 발명에 따르면, 상기 (a) 단계의 탄소계 촉매는 메탄분해반응에서 탄소가 침적되는 코킹 현상에 의해 비표면적은 감소하나, 탄소계 촉매의 표면 및 기공 내부의 전부 또는 적어도 일부에 탄소 간 이중결합이 형성됨에 따라 결정성 및 전도성이 향상되는 기술적 특징이 있다.According to the present invention, the specific surface area of the carbon-based catalyst in step (a) is reduced due to the coking phenomenon in which carbon is deposited during the methane decomposition reaction, but the carbon-based catalyst is doubled on all or at least part of the surface and inside the pores of the carbon-based catalyst. It has the technical characteristic of improving crystallinity and conductivity as bonds are formed.

상기 (a) 단계의 메탄분해반응은 온도 850 내지 950 ℃에서 1 내지 50분, 바람직하게는 온도 900 내지 950 ℃에서 10 내지 50분 동안 수행하는 것을 특징으로 한다. 메탄분해반응의 시간이 1분 미만인 경우에는 탄소 침적이 미미하여 탄소재료의 결정성 및 전도성이 향상되지 않는 문제가 있고, 시간이 50분을 초과하는 경우에는 과도한 탄소 침적에 의해 비표면적이 제어되지 않을 뿐만 아니라 가스 센서 등의 전극 소재로 활용시에 감도 변화율이 감소할 수 있다. 또한, 상기 메탄분해반응의 온도가 850 ℃ 미만인 경우에는 메탄이 분해되지 않아 수소 동시 생산이 불가능하다는 문제가 있고, 온도가 950 ℃를 초과하는 경우에는 과한 열 공급으로 인해 메탄이 촉매 상에서 분해되는 것이 아니라, 반응관 내벽에 탄소 생성물이 침적되어 반응관의 막힘 현상이 발생하는 등 연속적인 공정 운용이 곤란한 문제가 있다.The methane decomposition reaction in step (a) is characterized in that it is carried out at a temperature of 850 to 950 ° C. for 1 to 50 minutes, preferably at a temperature of 900 to 950 ° C. for 10 to 50 minutes. If the methane decomposition reaction time is less than 1 minute, there is a problem that the crystallinity and conductivity of the carbon material are not improved due to insignificant carbon deposition, and if the time exceeds 50 minutes, the specific surface area may not be controlled due to excessive carbon deposition. In addition, when used as an electrode material for gas sensors, the rate of change in sensitivity may decrease. In addition, if the temperature of the methane decomposition reaction is less than 850 ℃, there is a problem that simultaneous production of hydrogen is impossible because methane is not decomposed, and if the temperature exceeds 950 ℃, methane is decomposed on the catalyst due to excessive heat supply. In addition, there is a problem in that continuous process operation is difficult, such as carbon products depositing on the inner wall of the reaction tube and clogging of the reaction tube.

상기 (b) 단계는 (a) 단계의 메탄분해반응을 수행한 이후, 반응후 탄소계 촉매 및 수소 포함 기체 생성물을 분리하는 단계이다. 상기 반응후 탄소계 촉매는 표면 및 기공 내부의 전부 또는 적어도 일부에 탄소 간 이중결합이 형성됨에 따라 결정성 및 전도성이 향상된 탄소재료로서 캐퍼시터, CDI 및 가스 센서 등의 전극 용도로 활용될 수 있다.Step (b) is a step of separating the carbon-based catalyst and hydrogen-containing gas product after performing the methane decomposition reaction in step (a). After the reaction, the carbon-based catalyst is a carbon material with improved crystallinity and conductivity due to the formation of double bonds between carbons on all or at least part of the surface and inside the pores, and can be used for electrode purposes such as capacitors, CDIs, and gas sensors.

상기 반응후 탄소계 촉매 및 수소 포함 기체 생성물의 분리는 여과, 집진 등 고체-기체 간 분리방법이라면 제한없이 적용될 수 있으며, 이를 통해 반응후 탄소계 촉매를 포함하는 탄소재료를 수득할 수 있다.The separation of the carbon-based catalyst and the hydrogen-containing gas product after the reaction can be applied without limitation by any solid-gas separation method such as filtration or dust collection, and through this, a carbon material containing the carbon-based catalyst can be obtained after the reaction.

생성된 수소 및 미반응 메탄은 흡착 및 분리막 기술을 이용하여 분리할 수 있으며, 이 중 분리막 기술은 장치 규모가 작고, 에너지 효율적이므로 기체 크기 차이가 많이 나는 수소(2.89 Å)와 메탄(3.8 Å)분리에 매우 적합하다. 특히 폴리이미드, 폴리설폰 등 수소 투과선택성 막을 이용하여 분리막 공정에 적용할 경우 고순도의 수소를 생산할 수 있다.The generated hydrogen and unreacted methane can be separated using adsorption and membrane technology. Among these, the membrane technology has a small device scale and is energy efficient, so hydrogen (2.89 Å) and methane (3.8 Å) have a large difference in gas size. Very suitable for separation. In particular, when applied to a separation membrane process using hydrogen permselective membranes such as polyimide and polysulfone, high purity hydrogen can be produced.

분리막 이외에도 PSA(Pressure Swing Adsorption) 등 혼합 기체를 분리하는 공정 단독 혹은 복합 공정의 적용이 가능하다.In addition to the separation membrane, it is possible to apply a single or combined process to separate mixed gases, such as PSA (Pressure Swing Adsorption).

수득한 탄소재료는 반응중 표면 및 기공 내부의 전부 또는 적어도 일부에 탄소 간 이중결합이 형성됨에 따라 결정성 및 전도성이 향상되는 한편, 비표면적이 감소하는 현상으로 인해 적합한 반응시간 및 온도 조건을 설정함으로서 우수한 감도 변화율을 갖도록 결정성, 전도성 및 비표면적을 조절하는 것이 중요하다.The obtained carbon material improves crystallinity and conductivity as double bonds between carbons are formed on all or at least part of the surface and inside the pores during the reaction, while the specific surface area decreases, so appropriate reaction time and temperature conditions are set. Therefore, it is important to control crystallinity, conductivity, and specific surface area to have an excellent sensitivity change rate.

전술한 온도 및 시간 조건 하에 메탄분해반응을 수행함으로서 생성되는 상기 (b) 단계의 반응후 탄소계 촉매는 전기전도도 10 내지 19 S/cm 범위의 탄소재료이면서 비표면적 감소율은 상기 (a) 단계의 반응전 탄소계 촉매 대비 25% 이하인 것을 특징으로 한다. The carbon-based catalyst after the reaction in step (b), which is produced by performing the methane decomposition reaction under the above-mentioned temperature and time conditions, is a carbon material with an electrical conductivity in the range of 10 to 19 S/cm, and the specific surface area reduction rate is that of step (a). It is characterized by being 25% or less compared to the carbon-based catalyst before reaction.

이에 본 발명은 상기 제법으로부터 제조된 고전도성 탄소재료를 이용한 전극 소재를 제공할 수 있으며, 메탄분해반응에 따른 비표면적 감소율이 25%를 초과하지 않으면서 상기 전기전도도 범위를 갖는 탄소재료는 가스센서용 전극의 재료로 활용하는 경우에 우수한 감도 변화율을 갖는 이점이 있다.Accordingly, the present invention can provide an electrode material using the highly conductive carbon material prepared by the above manufacturing method, and the carbon material having the above electrical conductivity range while the specific surface area reduction rate due to the methane decomposition reaction does not exceed 25% can be used as a gas sensor. When used as a material for an electrode, it has the advantage of having an excellent sensitivity change rate.

이하 바람직한 실시예 및 비교예를 통해 본 발명의 메탄분해반응을 통해 활성탄으로부터 전극용 고전도성 탄소재료를 제조하는 방법을 더욱 상세하게 설명한다. Hereinafter, the method of producing a highly conductive carbon material for electrodes from activated carbon through the methane decomposition reaction of the present invention will be described in more detail through preferred examples and comparative examples.

비교예 1Comparative Example 1

비표면적이 2,283 m2/g인 활성탄(MSP20) 2.0 g을 준비하였다.2.0 g of activated carbon (MSP20) with a specific surface area of 2,283 m 2 /g was prepared.

실시예 1 내지 7, 비교예 2 및 3Examples 1 to 7, Comparative Examples 2 and 3

반응기내 상기 비교예 1의 활성탄 2.0 g을 충진한 후, 아르곤 분위기에서 10 ℃/분 속도로 800 내지 1,000 ℃까지 승온시킨 후, 메탄 가스 100 mL/분, 공간속도 3,000 mL/gcat·h 조건하에서 메탄분해반응을 아래 표 1에 기재된 반응시간 동안 수행한 후, 수소 포함 기체 생성물 및 반응후 탄소계 촉매를 여과, 집진 등의 방법으로 분리하여 탄소재료를 수득하였다.After charging 2.0 g of the activated carbon of Comparative Example 1 in the reactor, the temperature was raised to 800 to 1,000 °C at a rate of 10 °C/min in an argon atmosphere, and then methane gas was 100 mL/min and space velocity was 3,000 mL/g cat· h. After the methane decomposition reaction was performed for the reaction time shown in Table 1 below, the hydrogen-containing gas product and the carbon-based catalyst after the reaction were separated by methods such as filtration and dust collection to obtain carbon materials.

실험예 1Experimental Example 1

상기 실시예 및 비교예의 탄소계 촉매 또는 탄소재료에 대해 비표면적, 미세기공도, 기공부피 및 크기를 측정하여 아래 표 1에 기재하였고, 상기 탄소계 촉매 또는 탄소재료의 흡장량을 도 1(a)에 나타내었다.The specific surface area, microporosity, pore volume, and size of the carbon-based catalysts or carbon materials of the examples and comparative examples were measured and listed in Table 1 below, and the storage amount of the carbon-based catalysts or carbon materials is shown in Figure 1(a). shown in

구분division 반응온도
(℃)
reaction temperature
(℃)
반응시간
(분)
reaction time
(minute)
비표면적
(m²/g)
specific surface area
(m²/g)
미세기공도
(%)
Microporosity
(%)
기공부피
(cm³/g)
Pore volume
(cm³/g)
기공크기
(nm)
Pore size
(nm)
비교예1Comparative Example 1 -- -- 2283.5082283.508 98.76798.767 1.4191431.419143 1.51701.5170 비교예2Comparative example 2 900900 00 2197.3612197.361 98.86698.866 0.9427110.942711 1.716081.71608 실시예1Example 1 44 2159.1962159.196 98.90498.904 0.9271750.927175 1.717631.71763 실시예2Example 2 88 2034.5652034.565 98.92698.926 0.8734550.873455 1.717231.71723 실시예3Example 3 1010 1968.7051968.705 98.97298.972 0.8452100.845210 1.717291.71729 실시예4Example 4 2020 1728.6421728.642 99.00699.006 0.7411160.741116 1.714911.71491 비교예3Comparative example 3 6060 1048.9481048.948 99.30399.303 0.4588690.458869 1.749831.74983

상기 표 1에 따르면, 메탄분해반응에서 반응시간이 증가함에 따라 탄소계 촉매 또는 탄소재료의 기공부피 및 크기는 증가하는 반면, 비표면적은 감소하는 경향이 나타났다. According to Table 1 above, as the reaction time increases in the methane decomposition reaction, the pore volume and size of the carbon-based catalyst or carbon material tend to increase, while the specific surface area tends to decrease.

특히, 메탄분해반응시간이 60분인 비교예 3의 비표면적은 메탄분해반응을 수행하지 않은 비교예 1 및 2 대비 50% 이상 감소한 것으로 나타났다.In particular, the specific surface area of Comparative Example 3, in which the methane decomposition reaction time was 60 minutes, was found to be reduced by more than 50% compared to Comparative Examples 1 and 2 in which methane decomposition reaction was not performed.

실험예 2Experimental Example 2

상기 실시예 및 비교예의 탄소계 촉매 또는 탄소재료에 대해 반응시간에 따른 전기 전도도를 측정하여 도 1(b)에 나타내었다.Electrical conductivity according to reaction time was measured for the carbon-based catalysts or carbon materials of the examples and comparative examples and is shown in FIG. 1(b).

상기 도 1(b)에 따르면, 메탄분해반응에서 반응시간이 증가함에 따라 탄소계 촉매 또는 탄소재료의 전기 전도성은 증가하는 것으로 나타났다.According to FIG. 1(b), as the reaction time increases in the methane decomposition reaction, the electrical conductivity of the carbon-based catalyst or carbon material appears to increase.

특히, 메탄분해반응시간이 20분인 실시예 4의 전기 전도성은 18.866 S/cm 로서, 메탄분해반응을 수행하지 않은 비교예 1의 전기전도성 10.185 S/cm 대비 85% 이상 증가한 것으로 나타났다.In particular, the electrical conductivity of Example 4, in which the methane decomposition reaction time was 20 minutes, was 18.866 S/cm, showing an increase of more than 85% compared to the electrical conductivity of 10.185 S/cm in Comparative Example 1 in which the methane decomposition reaction was not performed.

실험예 3Experimental Example 3

상기 비교예 1 및 3의 탄소계 촉매 또는 탄소재료에 대해 SEM 및 TEM 촬영한 이미지를 도 2(a) 내지 도 2(b)에 나타내었다.SEM and TEM images of the carbon-based catalysts or carbon materials of Comparative Examples 1 and 3 are shown in Figures 2(a) and 2(b).

상기 도 2(a) 내지 도 2(b)에 따르면, 메탄분해반응에서 반응시간이 60분 경과함에 따라 비교예 3의 탄소재료의 일부에 결정이 형성된 것을 확인할 수 있다.According to FIGS. 2(a) to 2(b), it can be seen that crystals were formed in a portion of the carbon material of Comparative Example 3 as the reaction time of 60 minutes elapsed in the methane decomposition reaction.

실험예 4Experimental Example 4

상기 비교예 2, 실시예 1 내지 4의 탄소계 촉매 또는 탄소재료에 대해 XPS 측정 결과를 도 3(a) 내지 도 3(e)에 나타내었다.The XPS measurement results for the carbon-based catalysts or carbon materials of Comparative Example 2 and Examples 1 to 4 are shown in FIGS. 3(a) to 3(e).

상기 도 3(a) 내지 도 3(e)에 따르면, 실시예 1 내지 4는 메탄분해반응에서 반응시간이 증가함에 따라 탄소 간 이중결합 피크(C=C peak)의 강도가 점차 증가하는 것으로 보아 결정성 및 전도성이 증가하는 것으로 사료된다.According to FIGS. 3(a) to 3(e), in Examples 1 to 4, the intensity of the double bond peak between carbons (C=C peak) gradually increases as the reaction time increases in the methane decomposition reaction. It is believed that crystallinity and conductivity increase.

실험예 5Experimental Example 5

상기 실시예 5 내지 7의 탄소계 촉매 또는 탄소재료에 대해 반응온도에 따른 메탄 전환율 및 기체 생성물내 수소 조성 및 흡장량을 측정한 결과를 도 4(a) 내지 도 4(c)에 나타내었다.The results of measuring the methane conversion rate and the hydrogen composition and storage amount in the gas product according to the reaction temperature for the carbon-based catalysts or carbon materials of Examples 5 to 7 are shown in FIGS. 4(a) to 4(c).

상기 도 4(a) 내지 도 4(c)에 따르면, 메탄분해반응에서 반응온도가 증가함에 따라 메탄 전환율, 기체 생성물내 수소 조성 및 흡장량이 증가하는 것으로 나타났다.According to FIGS. 4(a) to 4(c), as the reaction temperature increases in the methane decomposition reaction, the methane conversion rate, hydrogen composition and storage amount in the gas product increase.

또한, 도 4(d) 및 도 4(e)에 따르면, 반응온도가 800 ℃ 인 경우에는 메탄 분해반응이 발생하지 않아 탄소의 질량이 증가되지 않았고, 반응온도가 1,000 ℃ 인 경우에는 메탄의 촉매적 전환 외에 열분해가 발생하여 반응기 내벽에 탄소가 침적되는 것을 확인하였다. 본 발명의 반응온도 850 내지 950 ℃의 범위를 벗어나는 경우에는 상기 탄소의 침적에 의해 공정 운용상 바람직하지 않은 반응기의 폐색 문제가 유발될 것으로 사료된다.In addition, according to Figures 4(d) and 4(e), when the reaction temperature was 800 ℃, the methane decomposition reaction did not occur and the mass of carbon did not increase, and when the reaction temperature was 1,000 ℃, the methane catalyst In addition to red conversion, it was confirmed that thermal decomposition occurred and carbon was deposited on the inner wall of the reactor. If the reaction temperature of the present invention is outside the range of 850 to 950 ° C, it is believed that deposition of the carbon will cause blockage of the reactor, which is undesirable in process operation.

실험예 6Experimental Example 6

상기 비교예 1, 실시예 5 내지 7의 탄소계 촉매 또는 탄소재료에 대해 반응온도에 따른 전기 전도도를 측정한 결과를 도 5에 나타내었다.The results of measuring electrical conductivity according to reaction temperature for the carbon-based catalysts or carbon materials of Comparative Example 1 and Examples 5 to 7 are shown in FIG. 5.

상기 도 5에 따르면, 실시예 5 내지 7의 탄소재료는 메탄분해반응에서 반응온도가 증가함에 따라 전기 전도도가 증가하는 것으로 나타났다.According to FIG. 5, the carbon materials of Examples 5 to 7 showed that the electrical conductivity increased as the reaction temperature increased in the methane decomposition reaction.

실험예 7Experimental Example 7

상기 비교예 1,3 및 실시예 1~4의 탄소계 촉매 또는 탄소재료를 전극 소재로 이용한 가스센서의 감도를 측정한 결과를 도 6에 나타내었다.The results of measuring the sensitivity of a gas sensor using the carbon-based catalyst or carbon material of Comparative Examples 1 and 3 and Examples 1 to 4 as electrode materials are shown in FIG. 6.

상기 도 6에 따르면, 기울기는 감도 변화율로서 실시예 1 내지 4의 탄소재료를 전극소재로 이용한 가스센서의 경우에는 본 발명의 온도 및 반응시간 범위를 벗어난 비교예 1 및 3 대비 감도 변화율이 우수한 것으로 나타났다.According to FIG. 6, the slope is the rate of change in sensitivity, and in the case of the gas sensor using the carbon material of Examples 1 to 4 as the electrode material, the rate of change in sensitivity is superior to that of Comparative Examples 1 and 3, which are outside the temperature and reaction time range of the present invention. appear.

본 발명의 단순한 변형 또는 변경은 모두 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 실시될 수 있으며 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.Any simple modification or change of the present invention can be easily implemented by those skilled in the art, and all such modifications or changes can be considered to be included in the scope of the present invention.

Claims (8)

메탄분해반응을 통해 활성탄으로부터 전극용 고전도성 탄소재료를 제조하는 방법에 있어서,
(a) 탄소계 촉매를 포함하는 반응기내 메탄 포함 기체 반응물 공급하여 메탄분해반응을 수행하는 단계; 및
(b) 반응후 탄소계 촉매 및 수소 포함 기체 생성물을 분리하는 단계;를 포함하고,
상기 (b) 단계의 반응후 탄소계 촉매는 표면 및 기공 내부의 전부 또는 적어도 일부에 탄소 간 이중결합이 형성됨에 따라 결정성 및 전도성이 향상된 탄소재료인 것을 특징으로 하는, 메탄분해반응을 통해 활성탄으로부터 전극용 고전도성 탄소재료를 제조하는 방법.
In the method of producing a highly conductive carbon material for electrodes from activated carbon through a methane decomposition reaction,
(a) performing a methane decomposition reaction by supplying a gaseous reactant containing methane into a reactor containing a carbon-based catalyst; and
(b) separating the carbon-based catalyst and the hydrogen-containing gas product after the reaction,
After the reaction in step (b), the carbon-based catalyst is activated carbon through methane decomposition reaction, characterized in that it is a carbon material with improved crystallinity and conductivity as double bonds between carbons are formed on all or at least part of the surface and inside the pores. A method of producing a highly conductive carbon material for electrodes.
제1항에 있어서,
상기 (a) 단계의 탄소계 촉매는 활성탄, 활성탄소섬유, 카본 블랙, 비결정성(amorphous) 탄소 소재, 난층 구조(turbostratic) 탄소 소재 및 이들의 혼합물인 것을 특징으로 하는, 메탄분해반응을 통해 활성탄으로부터 전극용 고전도성 탄소재료를 제조하는 방법.
According to paragraph 1,
The carbon-based catalyst of step (a) is characterized in that activated carbon, activated carbon fiber, carbon black, amorphous carbon material, turbostratic carbon material, and mixtures thereof, activated carbon through methane decomposition reaction A method of producing a highly conductive carbon material for electrodes.
제1항에 있어서,
상기 (a) 단계의 탄소계 촉매는 활성탄이고, 상기 활성탄은 비표면적이 2,000 m2/g 이상인 것을 특징으로 하는, 메탄분해반응을 통해 활성탄으로부터 전극용 고전도성 탄소재료를 제조하는 방법.
According to paragraph 1,
The carbon-based catalyst in step (a) is activated carbon, and the activated carbon has a specific surface area of 2,000 m 2 /g or more. A method of producing a highly conductive carbon material for electrodes from activated carbon through a methane decomposition reaction.
제1항에 있어서,
상기 (a) 단계의 메탄분해반응은 온도 850 내지 950 ℃에서 1 내지 50분 동안 수행하는 것을 특징으로 하는, 메탄분해반응을 통해 활성탄으로부터 전극용 고전도성 탄소재료를 제조하는 방법.
According to paragraph 1,
A method for producing a highly conductive carbon material for electrodes from activated carbon through a methane decomposition reaction, characterized in that the methane decomposition reaction in step (a) is performed at a temperature of 850 to 950 ° C. for 1 to 50 minutes.
제1항에 있어서,
상기 (a) 단계의 메탄분해반응은 온도 900 내지 950 ℃에서 10 내지 50분 동안 수행하는 것을 특징으로 하는, 메탄분해반응을 통해 활성탄으로부터 전극용 고전도성 탄소재료를 제조하는 방법.
According to paragraph 1,
A method of producing a highly conductive carbon material for electrodes from activated carbon through a methane decomposition reaction, characterized in that the methane decomposition reaction in step (a) is performed at a temperature of 900 to 950 ° C. for 10 to 50 minutes.
제1항에 있어서,
상기 (b) 단계의 반응후 탄소계 촉매는 전기전도도 10 내지 19 S/cm 범위의 탄소재료인 것을 특징으로 하는, 메탄분해반응을 통해 활성탄으로부터 전극용 고전도성 탄소재료를 제조하는 방법.
According to paragraph 1,
A method of producing a highly conductive carbon material for electrodes from activated carbon through a methane decomposition reaction, wherein the carbon-based catalyst after the reaction in step (b) is a carbon material with an electrical conductivity in the range of 10 to 19 S/cm.
제1항에 있어서,
상기 (b) 단계의 반응후 탄소계 촉매의 비표면적 감소율은 상기 (a) 단계의 반응전 탄소계 촉매 대비 25% 이하인 것을 특징으로 하는, 메탄분해반응을 통해 활성탄으로부터 전극용 고전도성 탄소재료를 제조하는 방법.
According to paragraph 1,
The specific surface area reduction rate of the carbon-based catalyst after the reaction in step (b) is 25% or less compared to the carbon-based catalyst before the reaction in step (a). A highly conductive carbon material for electrodes is produced from activated carbon through a methane decomposition reaction. How to manufacture.
제1항, 제2항, 제4항 및 제5항 중 어느 한 항의 제법으로부터 제조되고,
상기 (a) 단계의 탄소계 촉매는 활성탄이고, 상기 활성탄은 비표면적이 2,000 m2/g 이상이고,
상기 (b) 단계의 반응후 탄소계 촉매는 전기전도도 10 내지 19 S/cm 범위의 탄소재료이며,
상기 (b) 단계의 반응후 탄소계 촉매의 비표면적 감소율은 상기 (a) 단계의 반응전 탄소계 촉매 대비 25% 이하인 전극용 고전도성 탄소재료를 이용한 전극 소재.
Manufactured from the manufacturing method of any one of paragraphs 1, 2, 4, and 5,
The carbon-based catalyst in step (a) is activated carbon, and the activated carbon has a specific surface area of 2,000 m 2 /g or more,
After the reaction in step (b), the carbon-based catalyst is a carbon material with an electrical conductivity in the range of 10 to 19 S/cm,
An electrode material using a highly conductive carbon material for electrodes in which the specific surface area reduction rate of the carbon-based catalyst after the reaction in step (b) is 25% or less compared to the carbon-based catalyst before the reaction in step (a).
KR1020210162952A 2021-11-24 2021-11-24 A method for simultaneously producing hydrogen and carbon materials for electrodes with high specific surface area and high conductivity from activated carbon through methane decomposition KR102634715B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210162952A KR102634715B1 (en) 2021-11-24 2021-11-24 A method for simultaneously producing hydrogen and carbon materials for electrodes with high specific surface area and high conductivity from activated carbon through methane decomposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210162952A KR102634715B1 (en) 2021-11-24 2021-11-24 A method for simultaneously producing hydrogen and carbon materials for electrodes with high specific surface area and high conductivity from activated carbon through methane decomposition

Publications (2)

Publication Number Publication Date
KR20230076222A KR20230076222A (en) 2023-05-31
KR102634715B1 true KR102634715B1 (en) 2024-02-08

Family

ID=86543658

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210162952A KR102634715B1 (en) 2021-11-24 2021-11-24 A method for simultaneously producing hydrogen and carbon materials for electrodes with high specific surface area and high conductivity from activated carbon through methane decomposition

Country Status (1)

Country Link
KR (1) KR102634715B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005170712A (en) 2003-12-09 2005-06-30 Denso Corp Method and apparatus for producing hydrogen-containing gas
JP2014234321A (en) 2013-05-31 2014-12-15 東邦瓦斯株式会社 Method and apparatus for producing hydrogen
KR101493765B1 (en) 2014-01-16 2015-02-17 성균관대학교산학협력단 Carbon dioxide reforming method of methane and apparatus therefor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11162795A (en) * 1997-11-21 1999-06-18 Isuzu Advanced Engineering Center Ltd Activated carbon powder, carbon body, carbon electrode electrode for electric double layer capacitor, and manufacture of the same
KR101730799B1 (en) * 2014-11-24 2017-04-28 한국과학기술연구원 Catalyst for preparing synthesis gas by co2 reforming of ch4 and preparation method of synthesis gas using the samw
US20230348788A1 (en) 2019-11-29 2023-11-02 Royal Melbourne Institute Of Technology A method and system for pyrolysis and carbon deposition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005170712A (en) 2003-12-09 2005-06-30 Denso Corp Method and apparatus for producing hydrogen-containing gas
JP2014234321A (en) 2013-05-31 2014-12-15 東邦瓦斯株式会社 Method and apparatus for producing hydrogen
KR101493765B1 (en) 2014-01-16 2015-02-17 성균관대학교산학협력단 Carbon dioxide reforming method of methane and apparatus therefor

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Appl. Chem. Eng., Vol. 32, No. 1, February 2021, 42-48*
공업화학, 제25 권 제2 호, 2014*

Also Published As

Publication number Publication date
KR20230076222A (en) 2023-05-31

Similar Documents

Publication Publication Date Title
Serrano et al. H2 production from methane pyrolysis over commercial carbon catalysts: kinetic and deactivation study
Li et al. Nitrogen-doped porous carbon from coal for high efficiency CO2 electrocatalytic reduction
Fidalgo et al. Carbon materials as catalysts for decomposition and CO2 reforming of methane: a review
LeValley et al. The progress in water gas shift and steam reforming hydrogen production technologies–A review
US20200048099A1 (en) Method for producing activated carbon
KR102622341B1 (en) Device and Process for simultaneous carbon dioxide capture and hydrogen production with hybrid process of hydrogen separation and carbon dioxide sorption
Zhang et al. Catalytic performance of N-doped activated carbon supported cobalt catalyst for carbon dioxide reforming of methane to synthesis gas
JP2008529943A (en) Hydrogen production
Lee et al. Catalytic characteristics of specialty carbon blacks in decomposition of methane for hydrogen production
KR101565036B1 (en) 3D hierachical nanosized activated carbon and method thereof
JP2021138562A (en) Method for producing hydrogen
Pinzón et al. New catalysts based on reduced graphene oxide for hydrogen production from ammonia decomposition
Zhang et al. Catalytic performance of CH4–CO2 reforming over metal free nitrogen-doped biomass carbon catalysts: Effect of different preparation methods
Tahir et al. Investigating influential effect of methanol‐phenol‐steam mixture on hydrogen production through thermodynamic analysis with experimental evaluation
KR100816879B1 (en) A hydrocarbon steam reforming-membrane reactor combined with co removal reaction and its utilization for hydrogen production
KR102634715B1 (en) A method for simultaneously producing hydrogen and carbon materials for electrodes with high specific surface area and high conductivity from activated carbon through methane decomposition
JP4588268B2 (en) Processing method and processing system for crude coke oven gas
Natewong et al. Fibrous platelet carbon nanofibers-silica fiber composite supports for a Co-based catalyst in the steam reforming of acetic acid
Tri et al. High activity and stability of nano‐nickel catalyst based on LaNiO3 perovskite for methane bireforming
Zhang et al. Recent progress in melt pyrolysis: Fabrication and applications of high‐value carbon materials from abundant sources
KR101487387B1 (en) Preparation Method of Metal Carbide Methane Reforming Catalyst and Methane Reforming Catalyst Prepared by the Method
Shen Molten salt-mediated carbon capture and conversion
US20130092877A1 (en) Methane Steam Reforming Using Fibrous Composite Catalytic Structures Having at Least Three Solid Phases
Liu et al. When Carbon Meets CO2: Functional Carbon Nanostructures for CO2 Utilization
Ashok et al. Methane decomposition catalysts for COx-free hydrogen production

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right