KR102626324B1 - Adsorbent for removing volatile organic compounds comprising activated carbonized polyaniline and method for preparing thereof - Google Patents

Adsorbent for removing volatile organic compounds comprising activated carbonized polyaniline and method for preparing thereof Download PDF

Info

Publication number
KR102626324B1
KR102626324B1 KR1020210137228A KR20210137228A KR102626324B1 KR 102626324 B1 KR102626324 B1 KR 102626324B1 KR 1020210137228 A KR1020210137228 A KR 1020210137228A KR 20210137228 A KR20210137228 A KR 20210137228A KR 102626324 B1 KR102626324 B1 KR 102626324B1
Authority
KR
South Korea
Prior art keywords
polyaniline
volatile organic
activated
carbonized polyaniline
activated carbonized
Prior art date
Application number
KR1020210137228A
Other languages
Korean (ko)
Other versions
KR20230054525A (en
Inventor
장윤영
자나단 레디 코두루
양재규
최종수
락시미 프라산나 린감딘네
임선화
Original Assignee
광운대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 광운대학교 산학협력단 filed Critical 광운대학교 산학협력단
Priority to KR1020210137228A priority Critical patent/KR102626324B1/en
Publication of KR20230054525A publication Critical patent/KR20230054525A/en
Application granted granted Critical
Publication of KR102626324B1 publication Critical patent/KR102626324B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • B01J20/3483Regenerating or reactivating by thermal treatment not covered by groups B01J20/3441 - B01J20/3475, e.g. by heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28066Surface area, e.g. B.E.T specific surface area being more than 1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3021Milling, crushing or grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/305Addition of material, later completely removed, e.g. as result of heat treatment, leaching or washing, e.g. for forming pores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3071Washing or leaching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

본 발명은 휘발성 유기 화합물(Volatile Organic Compounds; VOCs) 제거를 위한 흡착제 및 이의 제조방법에 관한 것으로, 구체적으로 본 발명은 표면 활성화된 탄화 폴리아닐린(activated carbonized polyaniline; ACP)을 이용한 휘발성 유기 화합물 흡착제 및 이의 제조방법에 관한 것이다. 본 발명의 제조방법에 의하여 제조된 표면 활성화된 탄화 폴리아닐린은 종래 흡착제 소재와 비교하여 비표면적이 넓고, 기공 직경이 큰 메조포어(mesopore)의 비율이 높은 3차원 네트워크 구조를 이루고 있어, 휘발성 유기 화합물에 대한 흡착 성능이 우수한 이점이 있으며, 오염원 탈착 공정에서 휘발성 유기 화합물의 탈착이 용이하여 재사용이 가능할 뿐만 아니라, 재사용 시의 흡착 성능 또한 우수한 이점이 있다.The present invention relates to an adsorbent for removing volatile organic compounds (VOCs) and a method for manufacturing the same. Specifically, the present invention relates to a volatile organic compound adsorbent using surface activated carbonized polyaniline (ACP) and its preparation method. It is about manufacturing method. The surface-activated carbonized polyaniline produced by the production method of the present invention has a large specific surface area compared to conventional adsorbent materials and has a three-dimensional network structure with a high proportion of mesopores with large pore diameters, thereby producing volatile organic compounds. It has the advantage of excellent adsorption performance, and it is easy to desorb volatile organic compounds in the pollutant desorption process, so it can be reused, and also has excellent adsorption performance during reuse.

Description

표면 활성화된 탄화 폴리아닐린을 포함하는 휘발성 유기 화합물 흡착제 및 이의 제조방법{Adsorbent for removing volatile organic compounds comprising activated carbonized polyaniline and method for preparing thereof}Volatile organic compound adsorbent comprising surface activated carbonized polyaniline and method for preparing the same {Adsorbent for removing volatile organic compounds comprising activated carbonized polyaniline and method for preparing the same}

본 발명은 휘발성 유기 화합물(Volatile Organic Compounds; VOCs) 제거를 위한 흡착제 및 이의 제조방법에 관한 것이다. 구체적으로 본 발명은 표면 활성화된 탄화 폴리아닐린(activated carbonized polyaniline; ACP)을 이용한 휘발성 유기 화합물 흡착제 및 이의 제조방법에 관한 것이다.The present invention relates to an adsorbent for removing volatile organic compounds (VOCs) and a method for producing the same. Specifically, the present invention relates to a volatile organic compound adsorbent using surface-activated carbonized polyaniline (ACP) and a method for manufacturing the same.

휘발성 유기 화합물(Volatile Organic Compounds; VOCs)은 주로 인쇄 및 코팅 시설이나 화학 산업 시설, 폐기물 및 폐수 처리 공정 시설 등과 같은 산업적인 점오염원(point source pollution)에서 배출되는 냄새 및 독성이 있는 유해 물질을 말한다. 이러한 휘발성 유기 화합물이 공기 중으로 노출되어 인체에 흡입되면 두통, 메스꺼움, 콧물, 인두염, 폐암 등을 유발하며, 나아가 사망에 이르게까지 할 수 있는 심각한 증상을 유발하는 것으로 알려져 있다. 또한 휘발성 유기 화합물은 햇빛에서 질소 산화물과 반응하여 오존을 형성하고 광화학 스모그를 유발하는 것으로 알려져 있다.Volatile Organic Compounds (VOCs) refer to hazardous substances with odor and toxicity emitted mainly from industrial point source pollution such as printing and coating facilities, chemical industry facilities, and waste and wastewater treatment process facilities. . These volatile organic compounds are known to cause serious symptoms such as headaches, nausea, runny nose, pharyngitis, lung cancer, etc. when exposed to the air and inhaled into the human body, and can even lead to death. Additionally, volatile organic compounds are known to react with nitrogen oxides in sunlight to form ozone and cause photochemical smog.

이러한 휘발성 유기 화합물은 매우 낮은 농도에서도 인체에 큰 해를 가하며 잠재적인 환경 오염원이 되기 때문에, 이의 배출량을 줄이기 위한 규제들이 이미 전세계적으로 도입되고 운영되고 있다. 세계보건기구(World Health Organization; WHO)에 따르면, 먹는 물 수질 기준으로 벤젠은 0.01 mg/L, 톨루엔은 0.7 mg/L 이하로 규제되고 있으며(국내 규제 기준 동일), 미국환경보호청(United States Environmental Protection Agency; US EPA)에 따르면, 먹는 물 수질 기준으로 벤젠은 0.005 ppm, 톨루엔은 1.0 ppm 이하로 규제되고 있다.Because these volatile organic compounds cause great harm to the human body even at very low concentrations and are potential environmental pollutants, regulations to reduce their emissions have already been introduced and operated around the world. According to the World Health Organization (WHO), based on drinking water quality, benzene is regulated to 0.01 mg/L and toluene to 0.7 mg/L or less (same as domestic regulations), and the United States Environmental Protection Agency (United States Environmental) According to the Protection Agency (US EPA), as a drinking water quality standard, benzene is regulated to 0.005 ppm and toluene to 1.0 ppm or less.

휘발성 유기 화합물을 제거하는 기술로는 오존산화처리, 고도산화처리, 촉매를 이용한 산화처리, 용매 추출, 막여과, 미생물처리, 흡착 등이 있으며, 이 중 흡착제에 의한 흡착 처리가 가장 효과적인 방법으로 알려져 있어 주로 사용되고 있다. 흡착제에 의한 흡착 처리는 수중 또는 기상에서 고상의 흡착제 표면에 액상, 기상 또는 이온 형태의 오염 물질이 접촉 및 부착되고, 이를 다시 수중 또는 기상에서 분리해 내는 기술에 해당한다. Technologies for removing volatile organic compounds include ozone oxidation treatment, advanced oxidation treatment, oxidation treatment using catalysts, solvent extraction, membrane filtration, microbial treatment, and adsorption. Among these, adsorption treatment using adsorbents is known to be the most effective method. It is mainly used. Adsorption treatment using an adsorbent corresponds to a technology in which contaminants in the form of liquid, gas, or ions come into contact with and adhere to the surface of a solid adsorbent in water or the gas phase, and then separate them from the water or the gas phase.

휘발성 유기 화합물을 제거하기 위한 흡착제로는 활성탄, 바이오차, 제올라이트, 점토, 레드 머드, 산화 금속 찌꺼기 등과 같은 저렴하고 쉽게 구할 수 있는 물질에서부터 그래핀, 나노 영가철(nZVI; nanoscale Zero Valent Iron), 탄소나노튜브에 이르기까지 다양한 물질이 활용될 수 있는 것으로 알려져 있으며, 이에 대한 많은 연구가 진행되고 있다. 이 중 대표적으로 수중 및 기상의 휘발성 유기 화합물 흡착 처리에 가장 많이 사용되고 있는 물질로는 활성탄을 들 수 있다. 활성탄은 견과 껍질, 나무껍질, 석탄, 비산회 및 뼈 숯을 포함한 탄소질 재료를 열처리하여 주로 생산된다.Adsorbents for removing volatile organic compounds range from inexpensive and easily available materials such as activated carbon, biochar, zeolite, clay, red mud, and oxidized metal residues to graphene, nanoscale Zero Valent Iron (nZVI), It is known that a variety of materials, including carbon nanotubes, can be used, and much research is being conducted on this. Among these, activated carbon is the most widely used material for adsorption and treatment of volatile organic compounds in water and gas. Activated carbon is mainly produced by heat treating carbonaceous materials including nut shells, tree bark, coal, fly ash, and bone char.

활성탄은 비교적 큰 비표면적을 나타내며, 이에 흡착 용량이 커서 휘발성 유기 화합물 흡착에 유리한 특성이 있다. 그러나 활성탄의 경우 기공이 매우 작은 마이크로포어(micropore)가 지배적인 벌집 구조로서 휘발성 유기 화합물에 대한 높은 흡착 성능 및 강한 흡착 강도를 나타내는 반면, 탈착 과정에서 흡착된 휘발성 유기 화합물이 제대로 빠져나오지 못해 재사용이 원활하지 못하고 대부분 폐기되어 2차 오염을 유발하는 문제점이 있다.Activated carbon has a relatively large specific surface area and has a large adsorption capacity, which is advantageous for adsorbing volatile organic compounds. However, in the case of activated carbon, micropores with very small pores have a dominant honeycomb structure, showing high adsorption performance and strong adsorption strength for volatile organic compounds. However, the adsorbed volatile organic compounds do not escape properly during the desorption process, making it difficult to reuse. There is a problem that it is not smooth and is mostly discarded, causing secondary pollution.

활성탄을 이용한 흡착제 기술로 대한민국 등록특허 제10-2068184호(2020.01.20) 등이 있고, 활성탄 재생 기술로 대한민국 등록특허 제10-2201983호(2021.01.06) 등이 있으나, 활성탄은 여전히 재사용되기 어려운 흡착제 소재로 여겨지고 있으며 그 폐기물 처리에 대한 문제가 해결되지 못하고 있다. 이에, 활성탄을 대체하여 사용할 수 있는 소재로서, 높은 흡착 성능을 나타내면서도 탈착 과정 또한 용이하여 재사용이 가능한 흡착제 소재의 개발이 시급한 실정이다.There is Korea Patent No. 10-2068184 (2020.01.20) for adsorbent technology using activated carbon, and Korea Patent No. 10-2201983 (2021.01.06) for activated carbon regeneration technology, but activated carbon is still difficult to reuse. It is considered an adsorbent material, and the problem of its waste disposal has not been resolved. Accordingly, there is an urgent need to develop a reusable adsorbent material that can be used as a replacement for activated carbon and has high adsorption performance while also facilitating the desorption process.

본 발명은 상기와 같은 종래의 문제점을 해결하기 위하여, 휘발성 유기 화합물에 대한 흡착 성능이 우수하면서도 탈착 공정에서 오염원 탈착이 용이하여 재사용 효율이 높은 휘발성 유기 화합물 흡착제 및 이의 제조방법을 제공하는 것을 주된 목적으로 한다.In order to solve the above-described conventional problems, the main purpose of the present invention is to provide a volatile organic compound adsorbent with excellent adsorption performance for volatile organic compounds and a high reuse efficiency by easily desorbing pollutants in the desorption process and a method for producing the same. Do it as

구체적으로 본 발명은 표면 활성화된 탄화 폴리아닐린(activated carbonized polyaniline; ACP)을 이용한 휘발성 유기 화합물 흡착제의 제조방법을 제공하는 것을 하나의 목적으로 한다.Specifically, one object of the present invention is to provide a method for producing a volatile organic compound adsorbent using surface-activated carbonized polyaniline (ACP).

또한, 본 발명은 상기 제조방법에 의하여 제조된, 표면 활성화된 탄화 폴리아닐린을 포함하는 휘발성 유기 화합물 흡착제를 제공하는 것을 하나의 목적으로 한다.Another object of the present invention is to provide a volatile organic compound adsorbent containing surface-activated carbonized polyaniline prepared by the above production method.

또한, 본 발명은 비표면적이 넓고 메조포어(mesopore)의 비율이 높은 3차원 네트워크 구조를 갖는 표면 활성화된 탄화 폴리아닐린 및 이를 포함하는 휘발성 유기 화합물 흡착제의 제조방법을 제공하는 것을 하나의 목적으로 한다.Another object of the present invention is to provide a method for producing a surface-activated carbonized polyaniline having a three-dimensional network structure with a large specific surface area and a high mesopore ratio, and a volatile organic compound adsorbent containing the same.

본 발명의 목적은 상기의 기재에 국한되지 않으며 본 발명을 활용하여 적절한 효과를 얻을 수 있는 모든 경우를 목적으로 하여 제공된다.The purpose of the present invention is not limited to the above description, and is provided for all cases where appropriate effects can be obtained by utilizing the present invention.

본 발명자들은 휘발성 유기 화합물에 대한 흡착 성능이 우수하고 재사용 가능한 흡착제를 제조하기 위하여, 종래 흡착제 소재 대비 비표면적이 넓고 메조포어(mesopore)의 비율이 높은 3차원 네트워크 구조를 갖는 표면 활성화된 탄화 폴리아닐린(activated carbonized polyaniline; ACP)을 제조하였으며, 이를 이용한 휘발성 유기 화합물 흡착제 및 그 제조방법에 대한 발명을 완성하였다.In order to manufacture a reusable adsorbent that has excellent adsorption performance for volatile organic compounds, the present inventors developed surface-activated carbonized polyaniline (surface-activated carbonized polyaniline), which has a three-dimensional network structure with a large specific surface area and a high proportion of mesopores compared to conventional adsorbent materials. activated carbonized polyaniline (ACP) was manufactured, and the invention of a volatile organic compound adsorbent using it and its manufacturing method was completed.

구체적으로 본 발명은,Specifically, the present invention,

a) 폴리아닐린(polyaniline; PANI)을 탄화(carbonization)시키는 단계;a) carbonizing polyaniline (PANI);

b) 상기 a) 단계에서 수득한 탄화 폴리아닐린(carbonized polyaniline; CP)을 수산화 칼륨(potassium hydroxide; KOH) 수용액과 혼합하고 건조시키는 단계; 및b) mixing the carbonized polyaniline (CP) obtained in step a) with an aqueous potassium hydroxide (KOH) solution and drying it; and

c) 상기 b) 단계에서 수득한 탄화 폴리아닐린 및 수산화 칼륨 혼합 건조물(CP/KOH)을 질소(Nitrogen; N2) 조건 하에서 500 내지 900℃로 열처리하여, 표면 활성화된 탄화 폴리아닐린(activated carbonized polyaniline; ACP)을 수득하는 단계; 를 포함하는, 휘발성 유기 화합물 흡착제의 제조방법을 제공한다.c) The dried mixture of carbonized polyaniline and potassium hydroxide (CP/KOH) obtained in step b) is heat-treated at 500 to 900° C. under nitrogen (N 2 ) conditions to produce surface activated carbonized polyaniline (ACP). ) Obtaining; It provides a method for producing a volatile organic compound adsorbent, including.

또한 본 발명은 하나의 구체적인 실시 양태로서, 상기 a) 단계의 폴리아닐린이 아닐린(aniline), 증류수 및 피트산(phytic acid)을 혼합한 제1 용액; 및 과황산암모늄(ammonium persulfate) 및 증류수를 혼합한 제2 용액을 혼합하여 제조된 것인, 휘발성 유기 화합물 흡착제의 제조방법을 제공한다.In addition, the present invention, as one specific embodiment, includes a first solution in which the polyaniline of step a) is mixed with aniline, distilled water, and phytic acid; and a second solution containing ammonium persulfate and distilled water.

또한 본 발명은 하나의 구체적인 실시 양태로서, 상기 a) 단계는 폴리아닐린을 동결건조시킨 후, 질소 조건 하에 200 내지 700℃의 온도 조건에서 탄화시키는 것인, 휘발성 유기 화합물 흡착제의 제조방법을 제공한다.In addition, the present invention, as a specific embodiment, provides a method for producing a volatile organic compound adsorbent, in which step a) is performed by freeze-drying polyaniline and then carbonizing it at a temperature of 200 to 700° C. under nitrogen conditions.

또한 본 발명은 하나의 구체적인 실시 양태로서, 상기 b) 단계는 탄화 폴리아닐린 : 수산화 칼륨 수용액의 중량비가 1 : 1.5 내지 1 : 5가 되도록 혼합한 후 건조시키는 것인, 휘발성 유기 화합물 흡착제의 제조방법을 제공한다.In addition, the present invention, as one specific embodiment, is a method for producing a volatile organic compound adsorbent, wherein step b) is performed by mixing the carbonized polyaniline:potassium hydroxide aqueous solution at a weight ratio of 1:1.5 to 1:5 and then drying it. to provide.

또한 본 발명은 하나의 구체적인 실시 양태로서, 상기 b) 단계는 탄화 폴리아닐린을 수산화 칼륨 수용액과 혼합한 후, 40 내지 80℃의 온도 조건 하에 진공 건조시키는 것인, 휘발성 유기 화합물 흡착제의 제조방법을 제공한다.In addition, the present invention, as a specific embodiment, provides a method for producing a volatile organic compound adsorbent, wherein step b) is performed by mixing carbonized polyaniline with an aqueous potassium hydroxide solution and then drying it under vacuum under temperature conditions of 40 to 80 ° C. do.

또한 본 발명은 하나의 구체적인 실시 양태로서, 상기 c) 단계에서 수득한 표면 활성화된 탄화 폴리아닐린을 pH 6 내지 8이 되도록 증류수로 세척하고, 40 내지 80℃의 온도 조건 하에 진공 건조한 후 분말화하는 d) 단계를 더 포함하는, 휘발성 유기 화합물 흡착제의 제조방법을 제공한다.In addition, the present invention is a specific embodiment, wherein the surface-activated carbonized polyaniline obtained in step c) is washed with distilled water to pH 6 to 8, vacuum dried under temperature conditions of 40 to 80 ° C, and then powdered. ) It provides a method for producing a volatile organic compound adsorbent, further comprising the step.

또한 본 발명은 하나의 구체적인 실시 양태로서, 상기 제조방법에 의하여 제조된, 표면 활성화된 탄화 폴리아닐린(activated carbonized polyaniline; ACP)을 포함하는 휘발성 유기 화합물 흡착제를 제공한다.In addition, as a specific embodiment, the present invention provides a volatile organic compound adsorbent containing surface-activated carbonized polyaniline (ACP) prepared by the above production method.

또한 본 발명은 하나의 구체적인 실시 양태로서, 상기 표면 활성화된 탄화 폴리아닐린은 77.35 K에서 N2 흡·탈착 조건 하에서 BET 표면적 분석한 결과 값이 1,500 내지 3,500 m2/g 범위 내인, 휘발성 유기 화합물 흡착제를 제공한다.In addition, as a specific embodiment of the present invention, the surface-activated carbonized polyaniline is a volatile organic compound adsorbent having a BET surface area analysis value in the range of 1,500 to 3,500 m 2 /g under N 2 adsorption and desorption conditions at 77.35 K. to provide.

또한 본 발명은 하나의 구체적인 실시 양태로서, 상기 표면 활성화된 탄화 폴리아닐린은 기공 직경이 2 내지 50 nm인 메조포어(mesopore)의 표면적 : 기공 직경이 0 초과 2 nm 이하인 마이크로포어(micropore)의 표면적 비가 1 : 1 내지 1 : 5인 것인, 휘발성 유기 화합물 흡착제를 제공한다.In addition, the present invention, as one specific embodiment, the surface-activated carbonized polyaniline has a ratio of the surface area of mesopores with a pore diameter of 2 to 50 nm to the surface area of micropores with a pore diameter of 2 nm or less. Provided is a volatile organic compound adsorbent having a ratio of 1:1 to 1:5.

또한 본 발명은 하나의 구체적인 실시 양태로서, 상기 표면 활성화된 탄화 폴리아닐린은 3차원 네트워크 구조를 가지며, 수중 벤젠 및 톨루엔 중 적어도 1종 이상에 대한 흡착 제거능을 가지는, 휘발성 유기 화합물 흡착제를 제공한다.In addition, as a specific embodiment, the present invention provides a volatile organic compound adsorbent in which the surface-activated carbonized polyaniline has a three-dimensional network structure and has the ability to adsorb and remove at least one of benzene and toluene in water.

본 발명에서 사용되는 용어, "휘발성 유기 화합물(Volatile Organic Compounds; VOCs)"은 주로 인쇄 및 코팅 시설이나 화학 산업 시설, 폐기물 및 폐수 처리 공정 시설 등과 같은 산업적인 점오염원(Point Source Pollution)에서 배출되는 냄새 및 독성이 있는 유해 물질을 의미한다. 이러한 휘발성 유기 화합물이 공기 중으로 노출되어 인체에 흡입되면 두통, 메스꺼움, 콧물, 인두염, 폐암 등을 유발하며, 나아가 사망에 이르게까지 할 수 있는 심각한 증상을 유발하는 것으로 알려져 있다. 또한 휘발성 유기 화합물은 햇빛에서 질소 산화물과 반응하여 오존을 형성하고 광화학 스모그를 유발하는 것으로 알려져 있다.As used in the present invention, the term "Volatile Organic Compounds (VOCs)" mainly refers to emissions from industrial point source pollution such as printing and coating facilities, chemical industry facilities, waste and wastewater treatment facilities, etc. It refers to hazardous substances with odor and toxicity. These volatile organic compounds are known to cause serious symptoms such as headaches, nausea, runny nose, pharyngitis, lung cancer, etc. when exposed to the air and inhaled into the human body, and can even lead to death. Additionally, volatile organic compounds are known to react with nitrogen oxides in sunlight to form ozone and cause photochemical smog.

상기 휘발성 유기 화합물의 비제한적인 예로는 에틸렌(ethylene), 초산에틸(ethyl acetate), 아세틸렌(acetylene), 프로판(propane), 프로펜(propene), n-부탄(n-butane), i-부탄(i-butane), 1-부탄(1-butene), 시스-2-부텐(cis-2-butene), 트렌스-2-부텐(trnas-2-butene), n-펜탄(n-pentane), i-펜탄(i-pentane), 시스-2-펜탄(cis-2-pentane), 트렌스-2-펜탄(trans-2-pentane), 이소프렌(isoprene), n-헥산(n-hexane), 2-메틸펜탄(2-methylpentane), 3-메틸펜탄(3-methylpentane), n-헵탄(n-heptane), 벤젠(benzene), 톨루엔(toluene), 에틸벤젠(ethyl benzene), o-자일렌(o-xylene), m-자일렌(m-xylene), 1,2,4-트리메틸벤젠(1,2,4-trimethylbenzene), 1,3,5-트리메틸벤젠(1,3,5-trimethylbenzene) 등을 들 수 있다.Non-limiting examples of the volatile organic compounds include ethylene, ethyl acetate, acetylene, propane, propene, n-butane, and i-butane. (i-butane), 1-butene, cis-2-butene, trans-2-butene, n-pentane, i-pentane, cis-2-pentane, trans-2-pentane, isoprene, n-hexane, 2 -2-methylpentane, 3-methylpentane, n-heptane, benzene, toluene, ethyl benzene, o-xylene ( o-xylene), m-xylene, 1,2,4-trimethylbenzene, 1,3,5-trimethylbenzene etc. can be mentioned.

본 발명에서 사용되는 용어, "폴리아닐린(polyaniline; PANI)"은 일반적으로 하기의 [화학식 1]로 표시되는 전도성 고분자 물질을 의미한다.The term “polyaniline (PANI)” used in the present invention generally refers to a conductive polymer material represented by the following [Chemical Formula 1].

[화학식 1][Formula 1]

본 발명의 구체적인 일 실시 양태에서, 상기 폴리아닐린은 아닐린(aniline), 증류수 및 피트산(phytic acid)을 혼합한 제1 용액; 및 과황산암모늄(ammonium persulfate) 및 증류수를 혼합한 제2 용액을 혼합하여 제조될 수 있다. 상기 제1 용액 및 제2 용액을 혼합하는 과정은 더 상세하게는 1 내지 10℃, 2 내지 8℃, 3 내지 7℃, 더욱 상세하게는 약 4℃ 내외의 온도 조건에서 빠르게 혼합하는 방식으로 수행될 수 있다.In a specific embodiment of the present invention, the polyaniline is a first solution of aniline, distilled water, and phytic acid; and a second solution containing ammonium persulfate and distilled water. The process of mixing the first solution and the second solution is carried out by rapid mixing under temperature conditions of 1 to 10 ℃, 2 to 8 ℃, 3 to 7 ℃, more specifically, about 4 ℃. It can be.

본 발명의 구체적인 일 실시 양태에서, 상기 폴리아닐린을 탄화(carbonization)시키는 a) 단계는, 폴리아닐린을 동결건조시킨 후, 질소(Nitrogen; N2) 조건 하에 200 내지 700℃의 온도 조건에서 탄화시키는 방식으로 수행될 수 있다. 상기 탄화 단계의 온도 조건은 더 상세하게는 200 내지 600℃, 300 내지 500℃, 350 내지 450℃일 수 있으며, 더욱 상세하게는 약 400℃ 내외일 수 있다.In a specific embodiment of the present invention, step a) of carbonizing the polyaniline is performed by freeze-drying the polyaniline and carbonizing it at a temperature of 200 to 700° C. under nitrogen (N 2 ) conditions. It can be done. The temperature conditions of the carbonization step may be 200 to 600°C, 300 to 500°C, and 350 to 450°C, and more specifically, may be around 400°C.

본 발명의 구체적인 일 실시 양태에서, 상기 a) 단계에서 수득한 탄화 폴리아닐린(carbonized polyaniline; CP)을 수산화 칼륨(potassium hydroxide; KOH) 수용액과 혼합하고 건조시키는 b) 단계는, 탄화 폴리아닐린 : 수산화 칼륨 수용액의 중량비가 1 : 1.5 내지 1 : 5가 되도록 혼합한 후 건조시키는 방식으로 수행될 수 있으며, 더욱 상세하게는 탄화 폴리아닐린 : 수산화 칼륨 수용액의 중량비가 1 : 2 내지 1 : 4.5, 1 : 2.5 내지 1: 4일 수 있고, 더욱 상세하게는 약 1 : 3 내외일 수 있다. 상기 건조 공정은 상기 탄화 폴리아닐린 및 수산화 칼륨 수용액 혼합물을 40 내지 80℃, 50 내지 70℃, 더 상세하게는 약 60℃ 내외의 온도 조건에서, 4시간 이상 진공 건조시키는 방식으로 수행될 수 있다. 상기 진공 건조는 진공 오븐을 이용하여 수행될 수 있다.In a specific embodiment of the present invention, step b) of mixing the carbonized polyaniline (CP) obtained in step a) with an aqueous potassium hydroxide (KOH) solution and drying the carbonized polyaniline: aqueous potassium hydroxide solution. It can be carried out by mixing and drying so that the weight ratio is 1:1.5 to 1:5, and more specifically, the weight ratio of carbonized polyaniline:potassium hydroxide aqueous solution is 1:2 to 1:4.5, 1:2.5 to 1. : It may be 4, and more specifically, it may be around 1:3. The drying process may be performed by vacuum drying the mixture of carbonized polyaniline and potassium hydroxide aqueous solution at a temperature of 40 to 80°C, 50 to 70°C, and more specifically, about 60°C for 4 hours or more. The vacuum drying can be performed using a vacuum oven.

본 발명의 구체적인 일 실시 양태에서, 상기 b) 단계에서 수득한 탄화 폴리아닐린 및 수산화 칼륨 혼합 건조물(CP/KOH)을 질소 조건 하에서 500 내지 900℃로 열처리하여 표면 활성화된 탄화 폴리아닐린(activated carbonized polyaniline; ACP)을 수득하는 c) 단계는, 더 상세하게는 600 내지 850℃, 700 내지 850℃, 750 내지 850℃, 더욱 상세하게는 약 800℃ 내외의 온도 조건에서 약 60분간 열처리하여 탄화 폴리아닐린의 표면을 활성화시키는 방식으로 수행될 수 있다.In a specific embodiment of the present invention, the dried mixture of carbonized polyaniline and potassium hydroxide (CP/KOH) obtained in step b) is heat-treated at 500 to 900° C. under nitrogen conditions to form activated carbonized polyaniline (ACP). ) Step c) of obtaining is, more specifically, heat treatment at a temperature of about 600 to 850°C, 700 to 850°C, 750 to 850°C, more specifically about 800°C for about 60 minutes to heat the surface of the carbonized polyaniline. This can be done by activating it.

본 발명의 구체적인 일 실시 양태에서, 상기 c) 단계에서 수득한 표면 활성화된 탄화 폴리아닐린을 pH 6 내지 8이 되도록 증류수로 세척하고, 40 내지 80℃의 온도 조건 하에 진공 건조한 후 분말화하는 d) 단계를 더 포함할 수 있다. 상기 d) 단계는 더 상세하게는 표면 활성화된 탄화 폴리아닐린을 pH가 7 내외가 되도록 수회 증류수로 세척하는 방식으로 수행될 수 있으며, 세척 후 더 상세하게는 50 내지 70℃, 55 내지 65℃, 더욱 상세하게는 약 60℃ 내외의 온도 조건에서 약 1시간 이상 진공 건조하여 수분을 제거한 후, 분쇄기 등을 이용해 분말화하는 방식으로 수행될 수 있다.In a specific embodiment of the present invention, step d) of washing the surface-activated carbonized polyaniline obtained in step c) with distilled water to pH 6 to 8, vacuum drying under temperature conditions of 40 to 80°C, and powdering it. It may further include. Step d) may be performed by washing the surface-activated carbonized polyaniline with distilled water several times so that the pH is around 7, and after washing, the surface-activated carbonized polyaniline may be washed at a temperature of 50 to 70°C, 55 to 65°C, and more specifically. In detail, it can be performed by vacuum drying for about 1 hour or more at a temperature of about 60°C to remove moisture, and then powdering it using a grinder or the like.

본 발명의 구체적인 일 실시 양태에서, 본 발명은,In one specific embodiment of the present invention, the present invention:

a) 아닐린(aniline), 증류수 및 피트산(phytic acid)을 혼합한 제1 용액; 및 과황산암모늄(ammonium persulfate) 및 증류수를 혼합한 제2 용액을 1 내지 10℃의 온도 하에 혼합하여 폴리아닐린(polyaniline; PANI)을 제조하는 단계;a) a first solution mixing aniline, distilled water, and phytic acid; and mixing a second solution of ammonium persulfate and distilled water at a temperature of 1 to 10° C. to prepare polyaniline (PANI);

b) 상기 a) 단계에서 수득한 폴리아닐린을 증류수로 정제하고 동결건조시킨 후, 질소(Nitrogen; N2) 조건 하에 200 내지 700℃의 온도에서 약 1 시간 동안 탄화시키는 단계;b) purifying the polyaniline obtained in step a) with distilled water, lyophilizing it, and carbonizing it at a temperature of 200 to 700° C. for about 1 hour under nitrogen (N 2 ) conditions;

c) 상기 b) 단계에서 수득한 탄화 폴리아닐린(carbonized polyaniline; CP)을 수산화 칼륨(potassium hydroxide; KOH) 수용액과 혼합하되, 탄화 폴리아닐린 : 수산화 칼륨 수용액의 중량비가 1 : 1.5 내지 1 : 5가 되도록 혼합하고, 40 내지 80℃의 온도 조건 하에 약 4시간 이상 진공 건조시키는 단계;c) Mix the carbonized polyaniline (CP) obtained in step b) with an aqueous potassium hydroxide (KOH) solution, such that the weight ratio of carbonized polyaniline:aqueous potassium hydroxide is 1:1.5 to 1:5. and vacuum drying for about 4 hours or more under temperature conditions of 40 to 80°C;

d) 상기 c) 단계에서 수득한 혼합 건조물을 질소 조건 하에서 500 내지 900℃로 약 60분간 열처리하여 표면을 활성화시키는 단계; 및d) heat-treating the dried mixed product obtained in step c) at 500 to 900° C. for about 60 minutes under nitrogen conditions to activate the surface; and

e) 상기 d) 단계에서 수득한 활성화된 혼합 건조물을 pH 6 내지 8이 되도록 증류수로 세척하고, 40 내지 80℃의 온도 조건 하에 약 1시간 이상 진공 건조한 후 분쇄하여 분말화하는 단계; 를 포함하는, 표면 활성화된 탄화 폴리아닐린(activated carbonized polyaniline; ACP)의 제조방법 및 이를 포함하는 휘발성 유기 화합물 흡착제의 제조방법을 제공한다.e) washing the activated mixed dried material obtained in step d) with distilled water to pH 6 to 8, vacuum drying for about 1 hour or more under temperature conditions of 40 to 80°C, and pulverizing it into powder; Provided is a method for producing surface-activated carbonized polyaniline (ACP) and a method for producing a volatile organic compound adsorbent including the same.

본 발명의 제조방법에 따라 제조된 표면 활성화된 탄화 폴리아닐린(activated carbonized polyaniline; ACP)은 비표면적이 넓고, 기공 직경이 큰 메조포어(mesopore)의 비율이 높은 3차원 네트워크 구조(도 4)를 이루고 있어, 휘발성 유기 화합물에 대한 흡착 성능이 우수한 이점이 있으며, 오염원 탈착 공정에서 휘발성 유기 화합물의 탈착이 용이하여 재사용이 가능할 뿐만 아니라, 재사용 시의 흡착 성능 또한 우수한 이점이 있다.The surface-activated carbonized polyaniline (ACP) produced according to the production method of the present invention has a large specific surface area and a three-dimensional network structure with a high proportion of mesopores with large pore diameters (FIG. 4). There is an advantage in that it has excellent adsorption performance for volatile organic compounds, and it is easy to desorb volatile organic compounds in the pollutant desorption process, so it can be reused, and also has excellent adsorption performance during reuse.

본 발명의 구체적인 일 실시 양태에서, 상기의 제조방법에 의하여 제조된, 표면 활성화된 탄화 폴리아닐린(activated carbonized polyaniline; ACP)을 포함하는 휘발성 유기 화합물 흡착제를 제공한다.In a specific embodiment of the present invention, a volatile organic compound adsorbent containing surface activated carbonized polyaniline (ACP) prepared by the above production method is provided.

본 발명의 구체적인 일 실시 양태에서, 상기 표면 활성화된 탄화 폴리아닐린은 77.35K에서 N2 흡·탈착 조건 하에서 BET 표면적 분석한 결과 값이 1,500 내지 3,500 m2/g 범위 내일 수 있으며, 보다 우수한 흡착 성능 및 오염원 탈착 공정에서의 탈착 용이성을 발휘하기 위하여, 더 상세하게는 BET 표면적값이 1,500 내지 3,000 m2/g, 2,000 내지 3,000 m2/g일 수 있으며, 더욱 상세하게는 2,500 내지 3,000 m2/g일 수 있다.In a specific embodiment of the present invention, the surface-activated carbonized polyaniline may have a BET surface area in the range of 1,500 to 3,500 m 2 /g as a result of BET analysis under N 2 adsorption and desorption conditions at 77.35 K, and may have better adsorption performance and In order to demonstrate ease of desorption in the pollutant desorption process, the BET surface area value may be 1,500 to 3,000 m 2 /g, 2,000 to 3,000 m 2 /g, and more specifically 2,500 to 3,000 m 2 /g. It can be.

상기 BET (Brunauer-Emmett-Teller) 표면적 분석, 또는 비표면적 분석은 고체 시료의 표면에 있는 기체 질소의 흡착 및 탈착을 통해 물질의 비표면적과 기공 크기 분포를 계산하고, 각 부분압에 대한 흡착량을 측정하는 분석법으로서 시료 1g당 표면적(m2/g)으로 결과값을 나타내는 분석법을 말한다. 상기 BET 표면적 분석법은 당해 기술분야에서 통상적으로 수행되는 방식에 따라 수행될 수 있으며, 이러한 수행 방식 및 분석 방법은 당해 기술분야의 통상의 지식을 가진 자에게 자명하게 이해될 수 있는 사항이다.The BET (Brunauer-Emmett-Teller) surface area analysis, or specific surface area analysis, calculates the specific surface area and pore size distribution of a material through adsorption and desorption of gaseous nitrogen on the surface of a solid sample, and calculates the adsorption amount for each partial pressure. It is an analysis method that expresses the result in terms of surface area per 1g of sample (m 2 /g). The BET surface area analysis method can be performed according to a method commonly performed in the technical field, and this performance method and analysis method can be clearly understood by those skilled in the art.

본 발명의 구체적인 일 실시 양태에서, 상기 BET 표면적 분석은 60℃진공오븐에서 6시간동안 샘플의 전처리를 수행한 다음, 77.35K에서 N2 흡·탈착 조건 하에서 수행되고 분석된 값으로 계산되었다.In a specific embodiment of the present invention, the BET surface area analysis was performed by pre-treating the sample in a vacuum oven at 60°C for 6 hours, then performed under N 2 adsorption/desorption conditions at 77.35 K, and calculated using the analyzed value.

본 발명의 구체적인 일 실시 양태에서, 상기 표면 활성화된 탄화 폴리아닐린은 기공 직경이 2 내지 50 nm인 메조포어(mesopore)의 표면적 : 기공 직경이 0 초과 2 nm 이하인 마이크로포어(micropore)의 표면적 비가 1 : 1 내지 1 : 5일 수 있으며, 보다 우수한 흡착 성능 및 오염원 탈착 공정에서의 탈착 용이성을 발휘하기 위하여, 더 상세하게는 1 : 1 내지 1 : 4, 1 : 1 내지 1 : 3, 1 : 1.5 내지 1 : 2일 수 있으며, 더욱 상세하게는 약 1 : 2 내외일 수 있다.In a specific embodiment of the present invention, the surface-activated carbonized polyaniline has a ratio of the surface area of mesopores with a pore diameter of 2 to 50 nm to the surface area of micropores with a pore diameter of 2 nm or less of 1: It may be 1 to 1:5, and in order to demonstrate better adsorption performance and ease of desorption in the pollutant desorption process, more specifically, 1:1 to 1:4, 1:1 to 1:3, 1:1.5 to 1:1.5. It may be 1:2, and more specifically, it may be around 1:2.

상기 마이크로포어(micropore)는 기공 직경이 약 2 nm 이하인 미세 기공을 의미하며, 상기 메조포어(mesopore)는 기공 직경이 마이크로포어 보다 큰 기공으로서, 기공 직경이 약 2 내지 50 nm인 기공을 의미한다.The micropore refers to a fine pore with a pore diameter of about 2 nm or less, and the mesopore refers to a pore with a pore diameter larger than a micropore and refers to a pore with a pore diameter of about 2 to 50 nm. .

본 발명의 구체적인 일 실시 양태에서, 상기 표면 활성화된 탄화 폴리아닐린은 3차원 네트워크 구조(도 4)를 가지며, 수중 벤젠 및 톨루엔 중 적어도 1종 이상에 대한 우수한 흡착 제거능을 나타낼 수 있다.In a specific embodiment of the present invention, the surface-activated carbonized polyaniline has a three-dimensional network structure (FIG. 4) and can exhibit excellent adsorption and removal ability for at least one of benzene and toluene in water.

본 발명의 상기 제조방법에 따라 제조된 표면 활성화된 탄화 폴리아닐린은 종래 흡착제 소재인 분말 활성탄 등과 비교하여, 비표면적이 상당히 넓고 메조포어의 비율이 매우 높은 3차원 네트워크 구조(도 4)를 이루고 있어, 휘발성 유기 화합물에 대한 우수한 흡착 성능을 나타내면서도 탈착 공정에서 오염원 탈착이 매우 용이한 이점이 있다. 이에, 본 발명에 따라 제조된 표면 활성화된 탄화 폴리아닐린을 이용한 흡착제의 경우, 탁월한 흡착 성능 뿐만 아니라, 재사용 효율도 높아 흡착제 폐기물에 따른 2차 오염 문제를 해결할 수 있는 이점이 있다.The surface-activated carbonized polyaniline produced according to the production method of the present invention has a significantly larger specific surface area and a very high mesopore ratio compared to powdered activated carbon, which is a conventional adsorbent material, and forms a three-dimensional network structure (FIG. 4). It has the advantage of being very easy to desorb pollutants in the desorption process while exhibiting excellent adsorption performance for volatile organic compounds. Accordingly, the adsorbent using surface-activated carbonized polyaniline prepared according to the present invention has the advantage of not only excellent adsorption performance but also high reuse efficiency, which can solve the problem of secondary contamination caused by adsorbent waste.

본 발명에서 달리 정의되지 않은 용어들은 당해 기술 분야에서 통상적으로 사용되는 의미를 갖는 것으로 해석한다. 또한, 본 발명에 기재된 “또는” 이라는 표현은 별도의 언급이 없는 경우, “및”을 포함하는 개념으로 해석될 수 있다.Terms not otherwise defined in the present invention are interpreted to have meanings commonly used in the technical field. Additionally, the expression “or” described in the present invention may be interpreted as a concept including “and” unless otherwise specified.

본 발명에서 개시되는 구체적인 서술에 의하여 본 발명의 범주가 제한되지 않으며, 본 발명에서 개시되는 각각의 설명 및 실시 형태는 각각의 다른 설명 및 실시 형태에도 적용될 수 있다. 즉, 본 발명에서 개시되는 다양한 요소들의 모든 가능한 조합이 본 발명의 범주에 속하는 것으로 해석된다. 또한, 당해 기술 분야에서 통상의 지식을 가진 자는 통상의 실험을 통하여 본 발명의 특정 실시예에 대한 다수의 등가물을 인지하거나 확인할 수 있으며, 이러한 등가물은 본 발명의 범주에 속하는 것으로 해석된다.The scope of the present invention is not limited by the specific description disclosed in the present invention, and each description and embodiment disclosed in the present invention can be applied to each other description and embodiment. That is, all possible combinations of the various elements disclosed in the present invention are interpreted to fall within the scope of the present invention. In addition, those skilled in the art can recognize or confirm many equivalents to specific embodiments of the present invention through routine experimentation, and such equivalents are construed as falling within the scope of the present invention.

본 발명은 표면 활성화된 탄화 폴리아닐린(activated carbonized polyaniline; ACP)을 이용한 휘발성 유기 화합물 흡착제 및 이의 제조방법에 관한 것으로, 본 발명의 제조방법에 의하여 제조된 표면 활성화된 탄화 폴리아닐린은 종래 흡착제 소재와 비교하여 비표면적이 넓고, 기공 직경이 큰 메조포어(mesopore)의 비율이 높은 3차원 네트워크 구조를 이루고 있어, 휘발성 유기 화합물에 대한 흡착 성능이 우수한 이점이 있으며, 오염원 탈착 공정에서 휘발성 유기 화합물의 탈착이 용이하여 재사용이 가능할 뿐만 아니라, 재사용 시의 흡착 성능 또한 우수한 이점이 있다.The present invention relates to a volatile organic compound adsorbent using surface-activated carbonized polyaniline (ACP) and a method for producing the same. The surface-activated carbonized polyaniline produced by the production method of the present invention has an adsorbent strength compared to conventional adsorbent materials. It has a three-dimensional network structure with a large specific surface area and a high proportion of mesopores with large pore diameters, which has the advantage of excellent adsorption performance for volatile organic compounds and makes it easy to desorb volatile organic compounds in the pollutant desorption process. Not only is it reusable, but it also has excellent adsorption performance when reused.

도 1은 본 발명의 실시예 1에 따른 표면 활성화된 탄화 폴리아닐린(activated carbonized polyaniline; ACP)의 제조 방법을 도식화한 것이다.
도 2는 본 발명의 실시예 1에 따른 표면 활성화된 탄화 폴리아닐린(ACP) 및 종래 흡착제 소재로 사용되고 있는 분말 활성탄(Powdered Activated Carbon; PAC)의 각 부분압에 대한 기체 질소의 흡착량을 측정한 결과를 나타낸 것이다.
도 3은 본 발명의 실시예 1에 따른 표면 활성화된 탄화 폴리아닐린(ACP) 및 종래 분말 활성탄(PAC)의 기공 크기에 따른 기공 부피를 측정한 결과를 나타낸 것이다.
도 4는 본 발명의 실시예 1에 따른 표면 활성화된 탄화 폴리아닐린(ACP)의 주사전자현미경(SEM) 분석을 통한 이미지를 나타낸 것이다.
도 5는 본 발명의 실시예 1에 따른 표면 활성화된 탄화 폴리아닐린(ACP) 및 종래 분말 활성탄(PAC)의 시간에 따른 수중 벤젠 및 톨루엔 흡착 제거 실험 결과를 나타낸 것이다.
도 6은 본 발명의 실시예 1에 따른 표면 활성화된 탄화 폴리아닐린(ACP) 및 종래 분말 활성탄(PAC)의 농도에 따른 수중 벤젠 및 톨루엔 흡착 제거 실험 결과를 나타낸 것이다.
도 7은 본 발명의 실시예 1에 따른 표면 활성화된 탄화 폴리아닐린(ACP) 및 종래 분말 활성탄(PAC)의 재사용을 통한 톨루엔 반복 흡착 제거 실험 결과를 나타낸 것이다.
Figure 1 schematically illustrates a method for producing surface-activated carbonized polyaniline (ACP) according to Example 1 of the present invention.
Figure 2 shows the results of measuring the adsorption amount of gaseous nitrogen for each partial pressure of surface-activated carbonized polyaniline (ACP) according to Example 1 of the present invention and powdered activated carbon (PAC), which is used as a conventional adsorbent material. It is shown.
Figure 3 shows the results of measuring the pore volume according to the pore size of surface-activated carbonized polyaniline (ACP) and conventional powdered activated carbon (PAC) according to Example 1 of the present invention.
Figure 4 shows an image through scanning electron microscopy (SEM) analysis of surface-activated carbonized polyaniline (ACP) according to Example 1 of the present invention.
Figure 5 shows the results of an experiment on the adsorption and removal of benzene and toluene in water over time for surface-activated carbonized polyaniline (ACP) and conventional powdered activated carbon (PAC) according to Example 1 of the present invention.
Figure 6 shows the results of an experiment for adsorption and removal of benzene and toluene in water depending on the concentration of surface-activated carbonized polyaniline (ACP) according to Example 1 of the present invention and conventional powdered activated carbon (PAC).
Figure 7 shows the results of a toluene repeated adsorption and removal experiment through reuse of surface-activated carbonized polyaniline (ACP) and conventional powdered activated carbon (PAC) according to Example 1 of the present invention.

이하, 구체적인 실시예를 통하여 본 발명을 보다 상세하게 설명한다. 그러나 이들 실시예는 본 발명을 설명하기 위한 예시에 불과하며, 이들 실시예에 의해 본 발명의 범위가 어떠한 의미로든 한정되는 것으로 해석되어서는 아니된다.Hereinafter, the present invention will be described in more detail through specific examples. However, these examples are merely examples for explaining the present invention, and the scope of the present invention should not be construed as being limited in any way by these examples.

실시예 1: 표면 활성화된 탄화 폴리아닐린(activated carbonized polyaniline; ACP)의 제조Example 1: Preparation of surface activated carbonized polyaniline (ACP)

표면 활성화된 탄화 폴리아닐린(activated carbonized polyaniline; ACP)의 제조 방법은 도 1에 도식화하였으며, 구체적인 제조 방법은 다음과 같다.The manufacturing method of surface-activated carbonized polyaniline (ACP) is schematized in Figure 1, and the specific manufacturing method is as follows.

아닐린(aniline), 증류수 및 피트산(phytic acid)을 혼합하여 제1 용액을 제조하고, 과황산암모늄(ammonium persulfate)을 증류수에 녹여 제2 용액을 제조하였다. 상기 제1 용액 및 제2 용액을 4℃에서 빠르게 혼합하여 폴리아닐린(polyaniline; PANI)을 제조하였다. 상기 제조된 폴리아닐린은 과량의 산 및 중합 부산물을 함유하고 있으므로, 이를 증류수에 여러 번 침지하여 정제하는 과정을 수행하였다. 상기 정제된 폴리아닐린을 동결건조시킨 다음, 질소(Nitrogen; N2) 조건 하에 400℃의 온도로 60분간 처리하여 폴리아닐린을 탄화시켰다. 상기 제조된 탄화 폴리아닐린(carbonized polyaniline; CP)을 수산화 칼륨(potassium hydroxide; KOH) 수용액에 탄화 폴리아닐린 : 수산화 칼륨 수용액의 질량비가 1 : 3이 되도록 잘 혼합하고 60℃의 진공 오븐에서 4시간 이상 건조하였다. 상기 건조된 혼합 건조물을 질소 조건 하에 800℃의 온도로 60분간 처리하여 표면 활성화를 시켜 표면 활성화된 탄화 폴리아닐린(activated carbonized polyaniline; ACP)을 제조하였다. 상기 제조된 표면 활성화된 탄화 폴리아닐린(ACP)을 증류수로 pH 값이 7이 될 때까지 세척한 다음, 60℃에서 1시간 이상 진공 건조하여 수분을 제거한 후 분쇄기로 분쇄하여 분말로 만들었다.A first solution was prepared by mixing aniline, distilled water, and phytic acid, and a second solution was prepared by dissolving ammonium persulfate in distilled water. Polyaniline (PANI) was prepared by rapidly mixing the first and second solutions at 4°C. Since the prepared polyaniline contained an excessive amount of acid and polymerization by-products, it was purified by immersing it in distilled water several times. The purified polyaniline was freeze-dried and then treated at 400°C for 60 minutes under nitrogen (N 2 ) conditions to carbonize the polyaniline. The carbonized polyaniline (CP) prepared above was mixed well with an aqueous potassium hydroxide (KOH) solution so that the mass ratio of carbonized polyaniline:potassium hydroxide aqueous solution was 1:3 and dried in a vacuum oven at 60°C for more than 4 hours. . The dried mixture was treated at a temperature of 800° C. for 60 minutes under nitrogen conditions to surface activate, thereby producing surface activated carbonized polyaniline (ACP). The prepared surface-activated carbonized polyaniline (ACP) was washed with distilled water until the pH value reached 7, then vacuum-dried at 60°C for more than 1 hour to remove moisture, and then ground with a grinder to make powder.

실시예 2: 표면 활성화된 탄화 폴리아닐린의 비표면적 측정Example 2: Measurement of specific surface area of surface activated carbonized polyaniline

상기 실시예 1에서 제조된 표면 활성화된 탄화 폴리아닐린(ACP)의 특성 평가를 위하여 BET (Brunauer-Emmett-Teller) 비표면적 분석을 수행하였으며, 그 결과를 도 2 및 도 3에 나타내었다. BET 비표면적 분석은 고체 시료의 표면에 있는 기체 질소의 흡착 및 탈착을 통해 물질의 비표면적과 기공 크기 분포를 계산하고, 각 부분압에 대한 흡착량을 측정하는 분석법으로서 시료 1g당 표면적(m2/g)으로 결과값을 나타낸다.To evaluate the properties of the surface-activated carbonized polyaniline (ACP) prepared in Example 1, BET (Brunauer-Emmett-Teller) specific surface area analysis was performed, and the results are shown in Figures 2 and 3. BET specific surface area analysis is an analysis method that calculates the specific surface area and pore size distribution of a material through the adsorption and desorption of gaseous nitrogen on the surface of a solid sample and measures the amount of adsorption for each partial pressure. The surface area per gram of sample (m 2 / The result is expressed as g).

상기 BET 표면적 분석은 60℃진공오븐에서 6시간동안 샘플의 전처리를 수행한 다음, 77.35K에서 N2 흡·탈착 조건 하에서 수행되고 분석된 값으로 계산되었다.The BET surface area analysis was performed by pre-treating the sample in a vacuum oven at 60°C for 6 hours, then performed under N 2 adsorption/desorption conditions at 77.35 K and calculated using the analyzed value.

실시예 1에서 제조된 표면 활성화된 탄화 폴리아닐린(ACP)의 총 비표면적(SBET)은 2890.4 m2/g로 측정되었으며, 이는 종래 휘발성 유기 화합물의 흡착제 소재로 많이 사용되고 있는 분말 활성탄(Powdered Activated Carbon; PAC)의 총 비표면적 1065.2 m2/g과 비교할 때, 약 2.7배 정도 더 큰 비표면적을 나타내는 것으로 확인되었다(도 2). The total specific surface area (S BET ) of the surface-activated carbonized polyaniline (ACP) prepared in Example 1 was measured to be 2890.4 m 2 /g, which is similar to powdered activated carbon, which is widely used as an adsorbent material for volatile organic compounds. ; PAC), which had a total specific surface area of 1065.2 m 2 /g, was confirmed to have a specific surface area that was approximately 2.7 times larger (Figure 2).

또한 표면 활성화된 탄화 폴리아닐린(ACP)의 Smic/SBET는 0.63으로 측정되었고, Smeso/SBET는 0.34로 측정되어 Smic(micropore surface area)와 Smeso(mesopore surface area)의 비율이 약 1.9 : 1로 마이크로포어(micropore)의 표면적이 메조포어(mesopore)의 표면적에 비해 약 1.9배 가량 넓은 것으로 확인되었다. 분말 활성탄(PAC)의 Smic/SBET는 0.92로 측정되었고, Smeso/SBET는 0.07로 측정되어, Smic와 Smeso의 비율이 약 13:1로 마이크로포어 표면적이 메조포어 표면적에 비해 약 13배 가량 넓은 것으로 확인되었다. 이를 뒷받침하는 결과로, 표면 활성화된 탄화 폴리아닐린(ACP) 및 분말 활성탄(PAC)의 기공 크기에 따른 기공 부피의 분포를 측정한 결과를 도 3에 나타내었다.In addition, the S mic /S BET of surface-activated carbonized polyaniline (ACP) was measured to be 0.63, and the S meso /S BET was measured to be 0.34, so the ratio of S mic (micropore surface area) and S meso (mesopore surface area) is approximately. It was confirmed that the surface area of the micropore was 1.9:1, which was approximately 1.9 times larger than the surface area of the mesopore. The S mic /S BET of powdered activated carbon (PAC) was measured to be 0.92, and the S meso /S BET was measured to be 0.07, so the ratio of S mic to S meso is about 13:1, and the micropore surface area is larger than the mesopore surface area. It was confirmed to be about 13 times wider. In support of this, the results of measuring the distribution of pore volume according to the pore size of surface-activated carbonized polyaniline (ACP) and powdered activated carbon (PAC) are shown in Figure 3.

아울러, 실시예 1에서 제조된 표면 활성화된 탄화 폴리아닐린(ACP)을 주사전자현미경(Scanning Electrone Microscope; SEM) 분석을 통해 이미지화한 결과, 표면 활성화된 탄화 폴리아닐린(ACP)은 중합(polymerization)된 후 서로 결합을 유지하며 3차원 네트워크 구조를 이루어 넓은 비표면적 및 다양한 기공(pore) 크기를 보유하고 있음이 확인되었다(도 4).In addition, as a result of imaging the surface-activated carbonized polyaniline (ACP) prepared in Example 1 through scanning electron microscope (SEM) analysis, the surface-activated carbonized polyaniline (ACP) was polymerized and then adhered to each other. It was confirmed that it maintains bonding and forms a three-dimensional network structure, and has a wide specific surface area and various pore sizes (Figure 4).

실시예 3: 표면 활성화된 탄화 폴리아닐린의 시간에 따른 벤젠 및 톨루엔 흡착 제거 성능 측정Example 3: Measurement of benzene and toluene adsorption and removal performance of surface-activated carbonized polyaniline over time

상기 실시예 1에서 제조된 표면 활성화된 탄화 폴리아닐린(ACP)과 분말 활성탄(PAC)의 시간에 따른 수중 벤젠 및 톨루엔 흡착 제거 실험을 수행하였으며, 그 비교 결과를 도 5에 나타내었다. 흡착 제거 성능값은 하기 [계산식 1]에 의하여 계산하였다.An experiment was conducted on the adsorption and removal of benzene and toluene in water over time for the surface-activated carbonized polyaniline (ACP) and powdered activated carbon (PAC) prepared in Example 1, and the comparative results are shown in FIG. 5. The adsorption removal performance value was calculated according to [Equation 1] below.

[계산식 1] [Calculation Formula 1]

qe : 흡착 용량(mol/g)q e : Adsorption capacity (mol/g)

C0 : 유기물 용액의 초기 농도(mg/L)C 0 : Initial concentration of organic solution (mg/L)

Ce : 평형 농도(mol/L)C e : Equilibrium concentration (mol/L)

M : 반응에 주입된 흡착제의 질량(mg)M: Mass of adsorbent injected into the reaction (mg)

V : 유기물 용액의 부피(L)V: Volume of organic solution (L)

표면 활성화된 탄화 폴리아닐린(ACP)과 분말 활성탄(PAC)의 반응 시간에 따른 흡착 제거 실험 조건으로, pH 6의 중성 조건에서 0.1 g/L의 흡착제 주입량으로 최대 360분까지 테스트가 수행되었으며, 벤젠은 초기 농도 180 mg/L, 톨루엔은 초기 농도 90 mg/L 조건에서 수행하였다.As an experimental condition for adsorption removal according to the reaction time of surface-activated carbonized polyaniline (ACP) and powdered activated carbon (PAC), tests were conducted up to 360 minutes with an adsorbent dosage of 0.1 g/L under neutral conditions of pH 6, and benzene was The test was performed at an initial concentration of 180 mg/L and toluene at an initial concentration of 90 mg/L.

실험 결과, 벤젠 및 톨루엔 모두 표면 활성화된 탄화 폴리아닐린(ACP)이 분말 활성탄(PAC)에 비해 더 빠르게 흡착 평형에 도달하는 경향을 보이는 것으로 확인되으며, 이에 분말 활성탄(PAC)과 비교하여 메조포어의 비율이 더 높은 표면 활성화된 탄화 폴리아닐린(ACP)이 흡착 속도가 더 빠르고 우수한 것으로 확인되었다(도 5).As a result of the experiment, it was confirmed that surface-activated carbonized polyaniline (ACP) for both benzene and toluene tended to reach adsorption equilibrium more quickly than powdered activated carbon (PAC), and that the A higher percentage of surface-activated carbonized polyaniline (ACP) was found to have a faster and better adsorption rate (Figure 5).

실시예 4: 표면 활성화된 탄화 폴리아닐린의 농도에 따른 벤젠 및 톨루엔 흡착 제거 성능 측정Example 4: Measurement of benzene and toluene adsorption and removal performance depending on the concentration of surface-activated carbonized polyaniline

상기 실시예 1에서 제조된 표면 활성화된 탄화 폴리아닐린(ACP)과 분말 활성탄(PAC)의 농도에 따른 수중 벤젠 및 톨루엔 흡착 제거 실험을 수행하였으며, 그 비교 결과를 도 6에 나타내었다. 흡착제의 최대 흡착량(qmax)은 Langmuir 흡착 모델을 통하여 예측하였으며, 하기 [계산식 2]에 의하여 계산하였다.An experiment was conducted on the adsorption and removal of benzene and toluene in water depending on the concentration of the surface-activated carbonized polyaniline (ACP) and powdered activated carbon (PAC) prepared in Example 1, and the comparative results are shown in FIG. 6. The maximum adsorption amount (q max ) of the adsorbent was predicted through the Langmuir adsorption model and calculated using the following [Equation 2].

[계산식 2] [Calculation Formula 2]

qmax : 최대 단층 흡착 용량(mg/g)q max : maximum monolayer adsorption capacity (mg/g)

KL : Langmuir 상수(L/mg)K L : Langmuir constant (L/mg)

Ce : 평형 농도(mol/L)C e : Equilibrium concentration (mol/L)

상기 실험 결과, 벤젠에 대한 분말 활성탄(PAC)의 qmax값은 508.2 mg/g, 표면 활성화된 탄화 폴리아닐린(ACP)의 qmax값은 2052.0 mg/g로 확인되었으며, 톨루엔에 대한 분말 활성탄(PAC)의 qmax값은 106.2 mg/g, 표면 활성화된 탄화 폴리아닐린(ACP)의 qmax값은 370.4 mg/g로 확인되었다.As a result of the above experiment, the q max value of powdered activated carbon (PAC) for benzene was confirmed to be 508.2 mg/g, the q max value for surface activated carbonized polyaniline (ACP) was confirmed to be 2052.0 mg/g, and the q max value for powdered activated carbon (PAC) for toluene was confirmed to be 508.2 mg/g. ) was confirmed to have a q max value of 106.2 mg/g, and the q max value of surface-activated carbonized polyaniline (ACP) was confirmed to be 370.4 mg/g.

실시예 5: 표면 활성화된 탄화 폴리아닐린의 재사용 성능 측정Example 5: Measurement of reuse performance of surface-activated carbonized polyaniline

상기 실시예 1에서 제조된 표면 활성화된 탄화 폴리아닐린(ACP)의 재사용(recycling) 성능을 분석하기 위하여, 실시예 3 및 4의 흡착 제거 성능 실험을 동일한 방법으로 반복 진행하였으며, 그 결과를 도 7에 나타내었다.In order to analyze the recycling performance of the surface-activated carbonized polyaniline (ACP) prepared in Example 1, the adsorption and removal performance experiments of Examples 3 and 4 were repeated in the same manner, and the results are shown in Figure 7. indicated.

구체적으로, 상기 실시예 3 및 4와 동일한 방법으로 표면 활성화된 탄화 폴리아닐린(ACP)과 분말 활성탄(PAC)의 시간 또는 농도에 따른 수중 벤젠 및 톨루엔 흡착 제거 실험을 수행한 후, 벤젠의 끓는점(80.1℃) 및 톨루엔의 끓는점(110.6℃) 보다 높은 120℃의 온도에서 탈착 과정을 거친 다음, 다시 흡착 제거 실험을 반복 수행하였다. 총 5회의 재사용을 수행한 결과, 분말 활성탄(PAC)는 처음 성능보다 약 64.3% 저하된 성능을 보여 재사용 효율이 매우 낮았으나, 실시예 1에서 제조된 표면 활성화된 탄화 폴리아닐린(ACP)는 처음 성능보다 약 12.3% 가량의 성능 저하를 나타내어 재사용 효율이 우수한 것으로 확인되었다.Specifically, after performing an experiment for adsorption and removal of benzene and toluene in water according to time or concentration of surface-activated carbonized polyaniline (ACP) and powdered activated carbon (PAC) in the same manner as Examples 3 and 4, the boiling point of benzene (80.1 ℃) and a desorption process at a temperature of 120 ℃, which is higher than the boiling point of toluene (110.6 ℃), and then the adsorption and removal experiment was repeated again. As a result of a total of 5 reuses, the powdered activated carbon (PAC) showed a performance decrease of about 64.3% compared to the initial performance, showing very low reuse efficiency, but the surface-activated carbonized polyaniline (ACP) prepared in Example 1 showed the initial performance. It was confirmed that the reuse efficiency was excellent, showing a performance decrease of about 12.3%.

본 명세서는 본 발명의 기술 분야에서 통상의 지식을 가진 자가 충분히 인식하고 유추할 수 있는 내용은 그 상세한 기재를 생략하였으며, 본 명세서에 기재된 구체적인 예시들 이외에 본 발명의 기술적 사상이나 필수적 구성을 변경하지 않는 범위 내에서 보다 다양한 변형이 가능하다. 따라서 본 발명은 본 명세서에서 구체적으로 설명하고 예시한 것과 다른 방식으로도 실시될 수 있으며, 이는 본 발명의 기술 분야에 통상의 지식을 가진 자이면 이해할 수 있는 사항이다.This specification omits detailed description of content that can be sufficiently recognized and inferred by a person skilled in the technical field of the present invention, and does not change the technical idea or essential structure of the present invention other than the specific examples described in this specification. A variety of modifications are possible within the scope of Accordingly, the present invention may be practiced in ways other than those specifically described and exemplified in this specification, which can be understood by those skilled in the art.

Claims (10)

a) 폴리아닐린(polyaniline; PANI)을 탄화(carbonization)시키는 단계;
b) 상기 a) 단계에서 수득한 탄화 폴리아닐린(carbonized polyaniline; CP)을 수산화 칼륨(potassium hydroxide; KOH) 수용액과 혼합하고 건조시키는 단계; 및
c) 상기 b) 단계에서 수득한 탄화 폴리아닐린 및 수산화 칼륨 혼합 건조물(CP/KOH)을 질소(Nitrogen; N2) 조건 하에서 500 내지 900℃로 열처리하여, 표면 활성화된 탄화 폴리아닐린(activated carbonized polyaniline; ACP)을 수득하는 단계; 를 포함하며,
상기 단계를 통해 제조되는 표면 활성화된 탄화 폴리아닐린은 기공 직경이 2 내지 50 nm인 메조포어(mesopore)의 표면적 : 기공 직경이 0 초과 2 nm 이하인 마이크로포어(micropore)의 표면적 비가 1 : 1 내지 1 : 5인, 휘발성 유기 화합물 흡착제의 제조방법.
a) carbonizing polyaniline (PANI);
b) mixing the carbonized polyaniline (CP) obtained in step a) with an aqueous potassium hydroxide (KOH) solution and drying it; and
c) The dried mixture of carbonized polyaniline and potassium hydroxide (CP/KOH) obtained in step b) is heat-treated at 500 to 900° C. under nitrogen (N 2 ) conditions to produce surface activated carbonized polyaniline (ACP). ) Obtaining; Includes,
The surface-activated carbonized polyaniline prepared through the above step has a ratio of the surface area of mesopores with a pore diameter of 2 to 50 nm to the surface area of micropores with a pore diameter of 2 nm or less of 1:1 to 1: 5, Manufacturing method of volatile organic compound adsorbent.
제 1 항에 있어서, 상기 a) 단계의 폴리아닐린은 아닐린(aniline), 증류수 및 피트산(phytic acid)을 혼합한 제1 용액; 및 과황산암모늄(ammonium persulfate) 및 증류수를 혼합한 제2 용액을 혼합하여 제조된 것인, 휘발성 유기 화합물 흡착제의 제조방법.The method of claim 1, wherein the polyaniline in step a) is a first solution containing aniline, distilled water, and phytic acid; A method for producing a volatile organic compound adsorbent, which is prepared by mixing a second solution of ammonium persulfate and distilled water. 제 1 항에 있어서, 상기 a) 단계는 폴리아닐린을 동결건조시킨 후, 질소 조건 하에 200 내지 700℃의 온도 조건에서 탄화시키는 것인, 휘발성 유기 화합물 흡착제의 제조방법.The method of claim 1, wherein in step a), polyaniline is freeze-dried and then carbonized at a temperature of 200 to 700° C. under nitrogen conditions. 제 1 항에 있어서, 상기 b) 단계는 탄화 폴리아닐린 : 수산화 칼륨 수용액의 중량비가 1 : 1.5 내지 1 : 5가 되도록 혼합한 후 건조시키는 것인, 휘발성 유기 화합물 흡착제의 제조방법.The method for producing a volatile organic compound adsorbent according to claim 1, wherein in step b), the carbonized polyaniline:potassium hydroxide aqueous solution is mixed at a weight ratio of 1:1.5 to 1:5 and then dried. 제 1 항에 있어서, 상기 b) 단계는 탄화 폴리아닐린을 수산화 칼륨 수용액과 혼합한 후, 40 내지 80℃의 온도 조건 하에 진공 건조시키는 것인, 휘발성 유기 화합물 흡착제의 제조방법.The method of claim 1, wherein in step b), the carbonized polyaniline is mixed with an aqueous potassium hydroxide solution and then dried under vacuum under temperature conditions of 40 to 80°C. 제 1 항에 있어서, 상기 c) 단계에서 수득한 표면 활성화된 탄화 폴리아닐린을 pH 6 내지 8이 되도록 증류수로 세척하고, 40 내지 80℃의 온도 조건 하에 진공 건조한 후 분말화하는 d) 단계를 더 포함하는, 휘발성 유기 화합물 흡착제의 제조방법.The method of claim 1, further comprising step d) of washing the surface-activated carbonized polyaniline obtained in step c) with distilled water to pH 6 to 8, vacuum drying under temperature conditions of 40 to 80° C., and powdering the surface-activated carbonized polyaniline to a pH of 6 to 8. Method for producing a volatile organic compound adsorbent. 제 1 항 내지 제6 항 중 어느 하나의 항에 따른 제조방법에 의하여 제조된, 표면 활성화된 탄화 폴리아닐린(activated carbonized polyaniline; ACP)을 포함하고,
상기 표면 활성화된 탄화 폴리아닐린은 기공 직경이 2 내지 50 nm인 메조포어(mesopore)의 표면적 : 기공 직경이 0 초과 2 nm 이하인 마이크로포어(micropore)의 표면적 비가 1 : 1 내지 1 : 5인, 휘발성 유기 화합물 흡착제.
Comprising surface-activated carbonized polyaniline (ACP) produced by the production method according to any one of claims 1 to 6,
The surface-activated carbonized polyaniline is a volatile organic material having a ratio of the surface area of mesopores with a pore diameter of 2 to 50 nm to the surface area of micropores with a pore diameter of 2 nm or less of 1:1 to 1:5. Compound adsorbent.
제 7 항에 있어서, 상기 표면 활성화된 탄화 폴리아닐린은 77.35K에서 N2 흡·탈착 조건 하에서 BET 표면적 분석한 결과 값이 1,500 내지 3,500 m2/g 범위 내인, 휘발성 유기 화합물 흡착제.The volatile organic compound adsorbent according to claim 7, wherein the surface-activated carbonized polyaniline has a BET surface area analysis value in the range of 1,500 to 3,500 m 2 /g under N 2 adsorption/desorption conditions at 77.35 K. 삭제delete 제 7 항에 있어서, 상기 표면 활성화된 탄화 폴리아닐린은 3차원 네트워크 구조를 가지며, 수중 벤젠 및 톨루엔 중 적어도 1종 이상에 대한 흡착 제거능을 가지는, 휘발성 유기 화합물 흡착제.The volatile organic compound adsorbent according to claim 7, wherein the surface-activated carbonized polyaniline has a three-dimensional network structure and has an adsorption and removal ability for at least one of benzene and toluene in water.
KR1020210137228A 2021-10-15 2021-10-15 Adsorbent for removing volatile organic compounds comprising activated carbonized polyaniline and method for preparing thereof KR102626324B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210137228A KR102626324B1 (en) 2021-10-15 2021-10-15 Adsorbent for removing volatile organic compounds comprising activated carbonized polyaniline and method for preparing thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210137228A KR102626324B1 (en) 2021-10-15 2021-10-15 Adsorbent for removing volatile organic compounds comprising activated carbonized polyaniline and method for preparing thereof

Publications (2)

Publication Number Publication Date
KR20230054525A KR20230054525A (en) 2023-04-25
KR102626324B1 true KR102626324B1 (en) 2024-01-17

Family

ID=86101465

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210137228A KR102626324B1 (en) 2021-10-15 2021-10-15 Adsorbent for removing volatile organic compounds comprising activated carbonized polyaniline and method for preparing thereof

Country Status (1)

Country Link
KR (1) KR102626324B1 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103189135B (en) * 2010-10-29 2015-01-14 Lg化学株式会社 Adsorbent of volatile organic compounds and adsorption method using thereof

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
Cristina Della Pina et al, Polyaniline (PANI): an innovative support for sampling and removal of VOCs in air matrices, Journal of Hazardous Materials 344, 308~315쪽, 2017.10.12.온라인 공개
Fei Ji et al, Scalable Synthesis of Uniform Nanosized ~ for Rapid Ion and Molecule Adsorption, ACS Appl. Mater. Interfaces 2018, 10, 30, 25429~25437쪽, 2018.7.20.발행
John W.F.To et al, Ultrahigh Surface Area Three-Dimensional Porous ~ Polymeric Molecular Framework, ACS Cent. Sci. 2015, 1, 2, 68~76쪽, Supporting Information(SI) 1~22쪽, 2015.5.18.발행*
Xiuquan Li et al, Adsorption materials for volatile organic compounds ~ for VOCs adsorption process: A review, Separation and Purification Technology 235, 116213, 2019.10.15.온라인 공개
Yang Guo et al, Mechanistic effects of graphitization degrees ~ and theoretical perspective, Journal of Environmental Chemical Engineering 10 (6), 108985, 2022.11.17.온라인 공개
Z.K.Chowdhury et al., Activated Carbon, American Water Works Association, 2013, 123~125쪽
장진석 등, 탄소섬유의 KOH 활성화와 휘발성유기화합물(VOC)의 흡착특성, 한국재료학회지, 9 (4), 1999.4 발행*

Also Published As

Publication number Publication date
KR20230054525A (en) 2023-04-25

Similar Documents

Publication Publication Date Title
Jang et al. Rice straw-based biochar beads for the removal of radioactive strontium from aqueous solution
Jafari et al. Adsorptive removal of toluene and carbon tetrachloride from gas phase using Zeolitic Imidazolate Framework-8: Effects of synthesis method, particle size, and pretreatment of the adsorbent
Hassan et al. Production of activated carbons from waste carpets and its application in methylene blue adsorption: Kinetic and thermodynamic studies
Gupta et al. A comparative investigation on adsorption performances of mesoporous activated carbon prepared from waste rubber tire and activated carbon for a hazardous azo dye—Acid Blue 113
Wang et al. Uptake of Pb (II) and U (VI) ions from aqueous solutions by the ZSM-5 zeolite
Hofman et al. Adsorbents obtained from waste tires for NO2 removal under dry conditions at room temperature
Karimnezhad et al. Adsorption of benzene and toluene from waste gas using activated carbon activated by ZnCl 2
Dai et al. Nitrobenzene-adsorption capacity of carbon materials released during the combustion of woody biomass
Zhang et al. Analog synthesis of artificial humic substances for efficient removal of mercury
CN111606405A (en) Method for degrading organic pollutants in water by activating peracetic acid through nitrogen-doped carbon material
Song et al. Comparison for adsorption of tetracycline and cefradine using biochar derived from seaweed Sargassum sp
Lian et al. Adsorptive removal of hydrophobic organic compounds by carbonaceous adsorbents: A comparative study of waste-polymer-based, coal-based activated carbon, and carbon nanotubes
Pourmand et al. Preparation of nanoporous graphene via nanoporous zinc oxide and its application as a nanoadsorbent for benzene, toluene and xylenes removal
Saeed et al. Heavy metals capture from water sludge by kenaf fibre activated carbon in batch adsorption
Takam et al. Insight into the removal process mechanism of pharmaceutical compounds and dyes on plasma-modified biomass: the key role of adsorbate specificity
Manirajah et al. Evaluation of Low Cost-Activated Carbon Produced from Waste Tyres Pyrolysis for Removal of 2-Chlorophenol.
KR102626324B1 (en) Adsorbent for removing volatile organic compounds comprising activated carbonized polyaniline and method for preparing thereof
Pathan et al. Nanoporous carbon synthesized from grass for removal and recovery of hexavalent chromium
CN115624952A (en) Novel carbon material and preparation method and application thereof
Gorbounov et al. Impact of production pathway on nanoporosity of carbonaceous sorbents for CO 2 adsorption
Phey et al. Application of regenerated spent bleaching earth as an adsorbent for the carbon dioxide adsorption by gravimetric sorption system
Al-Amrani et al. Influence of hydrophilicity/hydrophobicity on adsorption/desorption of sulfanilic acid using amine-modified silicas and granular activated carbon
Sadegh Hassani et al. Comparable study of 4-chlorophenol removal from petrochemical wastewater using mesoporous and microporous carbons: Equilibrium and kinetics investigations
Shakil et al. Synthesis and application of carboxymethyl cellulose-graphene oxide composite for the mitigation of Pb2+ and Cd2+ from aqueous solution
CN106861624A (en) A kind of preparation method of the porous carbon of adsorbable organic dyestuff in wastewater

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant