KR102626088B1 - Manufacturing method of conductive polyurethane non-woven fabric using electrospinning and natural products - Google Patents

Manufacturing method of conductive polyurethane non-woven fabric using electrospinning and natural products Download PDF

Info

Publication number
KR102626088B1
KR102626088B1 KR1020220054181A KR20220054181A KR102626088B1 KR 102626088 B1 KR102626088 B1 KR 102626088B1 KR 1020220054181 A KR1020220054181 A KR 1020220054181A KR 20220054181 A KR20220054181 A KR 20220054181A KR 102626088 B1 KR102626088 B1 KR 102626088B1
Authority
KR
South Korea
Prior art keywords
water
mixing
electrospinning
polyurethane
nonwoven fabric
Prior art date
Application number
KR1020220054181A
Other languages
Korean (ko)
Other versions
KR20230154586A (en
Inventor
신은주
안수빈
이선희
Original Assignee
동아대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동아대학교 산학협력단 filed Critical 동아대학교 산학협력단
Priority to KR1020220054181A priority Critical patent/KR102626088B1/en
Publication of KR20230154586A publication Critical patent/KR20230154586A/en
Application granted granted Critical
Publication of KR102626088B1 publication Critical patent/KR102626088B1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/4358Polyurethanes
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • D04H1/4309Polyvinyl alcohol
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/10Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyurethanes
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/16Physical properties antistatic; conductive

Abstract

본 발명은 전기방사와 천연물을 이용한 전도성 폴리우레탄 부직포의 제조방법에 관한 것으로, 케스터오일을 사용하여 수분산 폴리우레탄을 제조하는 수분산폴리우레탄제조단계, 상기 수분산폴리우레탄제조단계를 통해 제조된 수분산 폴리우레탄에 폴리비닐알코올 수용액을 혼합하는 폴리비닐알코올혼합단계, 상기 폴리비닐알코올혼합단계를 통해 제조된 혼합물에 수분산 전도성 고분자를 혼합하는 전도성고분자혼합단계 및 상기 전도성고분자혼합단계를 통해 제조된 혼합물을 전기방사하여 부직포로 제조하는 전기방사단계로 이루어진다.
상기의 과정을 통해 제조되는 전도성 폴리우레탄 부직포는 우수한 기계적 물성과 전도성 물질의 탈락없이 우수한 전기전도도를 나타낼 뿐만 아니라, 천연물이 함유되어 생체적합성이 우수하다.
The present invention relates to a method of manufacturing a conductive polyurethane nonwoven fabric using electrospinning and natural products, including a water-dispersed polyurethane manufacturing step of producing water-dispersed polyurethane using castor oil, and a water-dispersed polyurethane manufacturing step manufactured through the water-dispersed polyurethane manufacturing step. Manufactured through a polyvinyl alcohol mixing step of mixing water-dispersed polyurethane with an aqueous polyvinyl alcohol solution, a conductive polymer mixing step of mixing a water-dispersed conductive polymer into the mixture prepared through the polyvinyl alcohol mixing step, and the conductive polymer mixing step. It consists of an electrospinning step in which the mixture is electrospun to produce a nonwoven fabric.
The conductive polyurethane nonwoven fabric manufactured through the above process not only exhibits excellent mechanical properties and excellent electrical conductivity without falling off the conductive material, but also has excellent biocompatibility due to the inclusion of natural products.

Description

전기방사와 천연물을 이용한 전도성 폴리우레탄 부직포의 제조방법 {MANUFACTURING METHOD OF CONDUCTIVE POLYURETHANE NON-WOVEN FABRIC USING ELECTROSPINNING AND NATURAL PRODUCTS}Method for manufacturing conductive polyurethane nonwoven fabric using electrospinning and natural products {MANUFACTURING METHOD OF CONDUCTIVE POLYURETHANE NON-WOVEN FABRIC USING ELECTROSPINNING AND NATURAL PRODUCTS}

본 발명은 전기방사와 천연물을 이용한 전도성 폴리우레탄 부직포의 제조방법에 관한 것으로, 더욱 상세하게는 우수한 기계적 물성과 전도성 물질의 탈락없이 우수한 전기전도도를 나타낼 뿐만 아니라, 천연물이 함유되어 생체적합성이 우수한 부직포를 제공하는 전기방사와 천연물을 이용한 전도성 폴리우레탄 부직포의 제조방법에 관한 것이다.The present invention relates to a method of manufacturing a conductive polyurethane nonwoven fabric using electrospinning and natural products, and more specifically, to a nonwoven fabric that not only exhibits excellent mechanical properties and excellent electrical conductivity without falling off the conductive material, but also has excellent biocompatibility due to the inclusion of natural products. It relates to a method of manufacturing conductive polyurethane nonwoven fabric using electrospinning and natural products.

일반적으로 폴리우레탄은 주 사슬의 반복 단위 속에 우레탄 결합(-NHCOO-)을 가지는 고분자 화합물의 총칭으로서, 내마모성, 내약품성, 내용제성이 좋을 뿐만 아니라 내노화성과 산소에 대한 안정성이 뛰어나 폴리우레탄 폼, 폴리우레탄 고무, 접착제, 합성섬유, 도료 등으로 많이 쓰이고, 플라스틱 제조 시에도 사용될 수 있다. 폴리우레탄은 일반적으로 자체적으로 가수분해성과 생분해성 등의 분해 특성을 가지고 있다. 그러나 그 분해특성이 매우 미약하여 폴리우레탄 제품을 사용한 후 폐기시 완전 분해되지 않고 부분 분해되어 반영구적으로 존재하거나 분해에 오랜 시간이 소요되어 환경오염의 원인이 된다는 문제점이 있었다.In general, polyurethane is a general term for polymer compounds that have a urethane bond (-NHCOO-) in the repeating unit of the main chain. It not only has good wear resistance, chemical resistance, and solvent resistance, but also has excellent aging resistance and stability against oxygen, such as polyurethane foam, It is widely used in polyurethane rubber, adhesives, synthetic fibers, paints, etc., and can also be used in plastic manufacturing. Polyurethane generally has its own decomposition properties such as hydrolysis and biodegradability. However, its decomposition characteristics are very weak, so when discarding polyurethane products after use, there is a problem in that they do not completely decompose but partially decompose and exist semi-permanently, or decomposition takes a long time, causing environmental pollution.

상기의 문제점을 해소하기 위해 수분산 폴리우레탄이 개발되고 있으나, 종래에 수분산 폴리우레탄의 경우 원료물질로 석유계의 디올, 디이소시아네이트 및 사슬확장제가 사용되어 친환경적이지 못하며, 합성과정에서 인체에 유해한 촉매제나 점도조절제가 사용되고, 물성이 좋지 않기 때문에 응용범위가 제한적이며, 물성보완을 위해 흑연이나 탄소나노튜브 등의 나노입자가 혼합되어 생분해성이 낮아지는 문제점이 있었다.Water-dispersed polyurethane is being developed to solve the above problems. However, in the case of conventional water-dispersed polyurethane, petroleum-based diol, diisocyanate, and chain extender are used as raw materials, so it is not environmentally friendly and is harmful to the human body during the synthesis process. Because catalysts or viscosity regulators are used and the physical properties are not good, the scope of application is limited, and nanoparticles such as graphite or carbon nanotubes are mixed to supplement the physical properties, which has the problem of lowering biodegradability.

한편, 종래에 폴리우레탄을 이용한 전도성 부직포의 제조는 폴리우레탄을 방사하여 부직포로 제조한 후에, 부직포의 표면에 전도성 물질을 코팅하거나 전도성 물질에 부직포를 침지하는 과정으로 제조되었는데, 이러한 전도성 부직포의 제조방법은 외력이나 마모에 의해 전도성 물질이 쉽게 박리 또는 탈락되어 전기전도도가 오랜기간 유지되지 못하며, 전도성 물질이 부직포 조직의 내부로 침투하여 부직포의 유연성을 저하시키는 문제점이 있었다.Meanwhile, conventionally, the production of conductive non-woven fabric using polyurethane was made by spinning polyurethane to make a non-woven fabric, and then coating the surface of the non-woven fabric with a conductive material or dipping the non-woven fabric in a conductive material. This method has the problem that the conductive material is easily peeled off or falls off due to external force or abrasion, so electrical conductivity cannot be maintained for a long time, and the conductive material penetrates into the inside of the non-woven fabric tissue, reducing the flexibility of the non-woven fabric.

대한민국 특허등록 제10-1891813호(2018.08.20.)Republic of Korea Patent Registration No. 10-1891813 (2018.08.20.) 대한민국 특허등록 제10-2077426호(2020.02.07.)Republic of Korea Patent Registration No. 10-2077426 (2020.02.07.)

본 발명의 목적은 우수한 기계적 물성과 전도성 물질의 탈락없이 우수한 전기전도도를 나타낼 뿐만 아니라, 천연물이 함유되어 생체적합성이 우수한 부직포를 제공하는 전기방사와 천연물을 이용한 전도성 폴리우레탄 부직포의 제조방법에 관한 것이다.The purpose of the present invention is to provide a nonwoven fabric that not only exhibits excellent mechanical properties and excellent electrical conductivity without falling off the conductive material, but also contains natural products and has excellent biocompatibility. It relates to a method of manufacturing a conductive polyurethane nonwoven fabric using electrospinning and natural products. .

본 발명의 목적은 케스터오일을 사용하여 수분산 폴리우레탄을 제조하는 수분산폴리우레탄제조단계, 상기 수분산폴리우레탄제조단계를 통해 제조된 수분산 폴리우레탄에 폴리비닐알코올 수용액을 혼합하는 폴리비닐알코올혼합단계, 상기 폴리비닐알코올혼합단계를 통해 제조된 혼합물에 수분산 전도성 고분자를 혼합하는 전도성고분자혼합단계 및 상기 전도성고분자혼합단계를 통해 제조된 혼합물을 전기방사하여 부직포로 제조하는 전기방사단계로 이루어지는 것을 특징으로 하는 전기방사와 천연물을 이용한 전도성 폴리우레탄 부직포의 제조방법을 제공함에 의해 달성된다.The purpose of the present invention is to produce a water-dispersed polyurethane using castor oil, a water-dispersed polyurethane manufacturing step, and a polyvinyl alcohol mixing aqueous polyvinyl alcohol solution with the water-dispersed polyurethane prepared through the water-dispersed polyurethane manufacturing step. A mixing step, a conductive polymer mixing step of mixing a water-dispersed conductive polymer into the mixture prepared through the polyvinyl alcohol mixing step, and an electrospinning step of electrospinning the mixture prepared through the conductive polymer mixing step to produce a nonwoven fabric. This is achieved by providing a method for manufacturing a conductive polyurethane nonwoven fabric using electrospinning and natural products, which is characterized in that:

본 발명의 바람직한 특징에 따르면, 상기 수분산폴리우레탄제조단계는 케스터오일과 디메틸올부탄산을 교반하면서 이소포론디이소시아네이트를 적하하여 교반하는 원료혼합단계, 상기 원료혼합단계를 통해 제조된 혼합물에 아세톤을 혼합하고 합성하는 우레탄합성단계, 상기 우레탄합성단계를 통해 합성된 우레탄을 냉각한 후에 트리에틸아민을 혼합하여 중화하는 중화단계, 상기 중화단계를 통해 중화된 우레탄에 증류수를 투입하고 교반하는 증류수교반단계 및 상기 증류수교반단계를 통해 증류수가 혼합된 우레탄에 함유된 아세톤을 제거하는 아세톤제거단계로 이루어지는 것으로 한다.According to a preferred feature of the present invention, the water-dispersed polyurethane manufacturing step includes a raw material mixing step of dropping isophorone diisocyanate while stirring castor oil and dimethylolbutanoic acid and stirring, and acetone is added to the mixture prepared through the raw material mixing step. A urethane synthesis step of mixing and synthesizing, a neutralization step of cooling the urethane synthesized through the urethane synthesis step and then neutralizing it by mixing triethylamine, and a distilled water stirring step of adding distilled water to the urethane neutralized through the neutralization step and stirring it. and an acetone removal step of removing acetone contained in urethane mixed with distilled water through the distilled water stirring step.

본 발명의 더 바람직한 특징에 따르면, 상기 원료혼합단계는 케스터오일 100 중량부에 디메틸올부탄산 10 내지 30 중량부를 75 내지 80℃의 온도와 200 내지 300rpm의 속도로 교반하면서 이소포론디이소시아네이트 50 내지 80 중량부를 적하하여 이루어지는 것으로 한다.According to a more preferred feature of the present invention, the raw material mixing step is performed by mixing 10 to 30 parts by weight of dimethylolbutanoic acid with 100 parts by weight of castor oil and stirring 50 to 80 parts by weight of isophorone diisocyanate at a temperature of 75 to 80 ° C. and a speed of 200 to 300 rpm. This is done by dropping parts by weight.

본 발명의 더욱 바람직한 특징에 따르면, 상기 우레탄합성단계는 상기 원료혼합단계를 통해 제조된 혼합물에 함유된 케스터오일 100 중량부 대비 아세톤 100 내지 500 중량부를 혼합하고 200 내지 300rpm의 속도로 60 내지 120분 동안 교반하여 이루어지는 것으로 한다.According to a more preferred feature of the present invention, in the urethane synthesis step, 100 to 500 parts by weight of acetone is mixed with 100 parts by weight of castor oil contained in the mixture prepared through the raw material mixing step, and the mixture is performed at a speed of 200 to 300 rpm for 60 to 120 minutes. This is done by stirring for a while.

본 발명의 더욱 더 바람직한 특징에 따르면, 상기 중화단계는 상기 우레탄합성단계를 통해 합성된 우레탄을 40 내지 50℃의 온도로 냉각한 후에 트리에틸아민을 혼합하고 300 내지 400rpm의 속도로 30 내지 60분 동안 교반하여 이루어지는 것으로 한다.According to an even more preferred feature of the present invention, in the neutralization step, the urethane synthesized through the urethane synthesis step is cooled to a temperature of 40 to 50 ° C., then mixed with triethylamine and performed at a speed of 300 to 400 rpm for 30 to 60 minutes. This is done by stirring for a while.

본 발명의 더욱 더 바람직한 특징에 따르면, 상기 수분산 폴리우레탄은 하드 세그먼트의 함량이 50 내지 60%인 것으로 한다.According to an even more preferred feature of the present invention, the water-dispersible polyurethane has a hard segment content of 50 to 60%.

본 발명의 더욱 더 바람직한 특징에 따르면, 상기 폴리비닐알코올혼합단계는 상기 수분산폴리우레탄제조단계를 통해 제조된 수분산 폴리우레탄 100 중량부에 폴리비닐알코올 수용액 200 내지 300 중량부를 혼합하여 이루어지는 것으로 한다.According to an even more preferred feature of the present invention, the polyvinyl alcohol mixing step is performed by mixing 200 to 300 parts by weight of an aqueous polyvinyl alcohol solution with 100 parts by weight of the water-dispersed polyurethane prepared through the water-dispersed polyurethane manufacturing step. .

본 발명의 더욱 더 바람직한 특징에 따르면, 상기 전도성고분자혼합단계는 상기 폴리비닐알코올혼합단계를 통해 제조된 혼합물 100 중량부에 수분산 전도성 고분자 50 내지 70 중량부를 혼합하여 이루어지는 것으로 한다.According to an even more preferred feature of the present invention, the conductive polymer mixing step is performed by mixing 50 to 70 parts by weight of the water-dispersed conductive polymer with 100 parts by weight of the mixture prepared through the polyvinyl alcohol mixing step.

본 발명의 더욱 더 바람직한 특징에 따르면, 상기 전도성 고분자는 폴리(3,4-에틸렌디옥시티오펜)/폴리(4-스티렌설포네이트)로 이루어지는 것으로 한다.According to an even more preferred feature of the present invention, the conductive polymer is made of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate).

본 발명의 더욱 더 바람직한 특징에 따르면, 상기 전기방사단계는 21 내지 23V의 전압에서 1.2 내지 1.5mL/h의 방사속도로 20 내지 22G의 니들을 통해 14 내지 16cm의 거리에서 이루어지는 것으로 한다.According to an even more preferred feature of the present invention, the electrospinning step is carried out at a distance of 14 to 16 cm through a 20 to 22G needle at a spinning speed of 1.2 to 1.5 mL/h at a voltage of 21 to 23 V.

본 발명에 따른 전기방사와 천연물을 이용한 전도성 폴리우레탄 부직포의 제조방법은 우수한 기계적 물성과 전도성 물질의 탈락없이 우수한 전기전도도를 나타낼 뿐만 아니라, 천연물이 함유되어 생체적합성이 우수한 부직포를 제공하는 탁월한 효과를 나타낸다.The method of manufacturing a conductive polyurethane nonwoven fabric using electrospinning and natural products according to the present invention not only exhibits excellent mechanical properties and excellent electrical conductivity without dropping the conductive material, but also has the excellent effect of providing a nonwoven fabric with excellent biocompatibility due to the inclusion of natural products. indicates.

도 1은 본 발명에 따른 전기방사와 천연물을 이용한 전도성 폴리우레탄 부직포의 제조방법을 나타낸 순서도이다.
도 2는 본 발명에서 진행되는 수분산폴리우레탄제조단계를 나타낸 순서도이다.
도 3은 제조예 1 내지 4의 수분산 폴리우레탄으로 제조된 부직포를 주사전자현미경(SEM)으로 촬영하여 나타낸 사진이다.
도 4는 본 발명의 실시예 1 내지 3 및 비교예 1에서 전기방사 전에 혼합물의 점도를 측정하여 나타낸 그래프이다.
도 5는 본 발명의 실시예 1 내지 3 및 비교예 1을 통해 제조된 부직포를 주사전자현미경(SEM)으로 촬영하여 나타낸 사진이다.
도 6은 본 발명의 실시예 1 내지 3 및 비교예 1을 통해 제조된 부직포의 인장강도를 측정하여 나타낸 그래프이다.
도 7은 본 발명의 실시예 1 내지 3 및 비교예 1을 통해 제조된 부직포의 열분해특성을 측정하여 나타낸 그래프이다.
도 8은 본 발명의 실시예 1 내지 3 및 비교예 1을 통해 제조된 부직포의 전기적특성을 측정하여 나타낸 그래프이다.
도 9는 본 발명의 실시예 2를 통해 제조된 부직포의 생체적합성을 측정하여 나타낸 사진이다.
도 10은 본 발명의 실시예 2를 통해 제조된 부직포의 생체적합성을 측정하여 나타낸 그래프이다.
Figure 1 is a flowchart showing a method of manufacturing a conductive polyurethane nonwoven fabric using electrospinning and natural products according to the present invention.
Figure 2 is a flowchart showing the water-dispersed polyurethane manufacturing steps performed in the present invention.
Figure 3 is a photograph showing the nonwoven fabric made from water-dispersed polyurethane of Preparation Examples 1 to 4 taken with a scanning electron microscope (SEM).
Figure 4 is a graph showing the viscosity of the mixture measured before electrospinning in Examples 1 to 3 and Comparative Example 1 of the present invention.
Figure 5 is a photograph showing the nonwoven fabric manufactured through Examples 1 to 3 and Comparative Example 1 of the present invention taken with a scanning electron microscope (SEM).
Figure 6 is a graph showing the measured tensile strength of nonwoven fabrics manufactured through Examples 1 to 3 and Comparative Example 1 of the present invention.
Figure 7 is a graph showing the thermal decomposition characteristics of nonwoven fabrics manufactured through Examples 1 to 3 and Comparative Example 1 of the present invention.
Figure 8 is a graph showing the measured electrical properties of nonwoven fabrics manufactured through Examples 1 to 3 and Comparative Example 1 of the present invention.
Figure 9 is a photograph showing the biocompatibility of the nonwoven fabric manufactured through Example 2 of the present invention.
Figure 10 is a graph showing the biocompatibility of the nonwoven fabric manufactured in Example 2 of the present invention.

이하에는, 본 발명의 바람직한 실시예와 각 성분의 물성을 상세하게 설명하되, 이는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 발명을 용이하게 실시할 수 있을 정도로 상세하게 설명하기 위한 것이지, 이로 인해 본 발명의 기술적인 사상 및 범주가 한정되는 것을 의미하지는 않는다.Below, preferred embodiments of the present invention and the physical properties of each component are described in detail, but are intended to be described in detail so that those skilled in the art can easily practice the invention. This does not mean that the technical idea and scope of the present invention are limited.

본 발명에 따른 전기방사와 천연물을 이용한 전도성 폴리우레탄 부직포의 제조방법은 케스터오일을 사용하여 수분산 폴리우레탄을 제조하는 수분산폴리우레탄제조단계(S101), 상기 수분산폴리우레탄제조단계(S101)를 통해 제조된 수분산 폴리우레탄에 폴리비닐알코올 수용액을 혼합하는 폴리비닐알코올혼합단계(S103), 상기 폴리비닐알코올혼합단계(S103)를 통해 제조된 혼합물에 수분산 전도성 고분자를 혼합하는 전도성고분자혼합단계(S105) 및 상기 전도성고분자혼합단계(S105)를 통해 제조된 혼합물을 전기방사하여 부직포로 제조하는 전기방사단계(S107)로 이루어진다.The method for producing a conductive polyurethane nonwoven using electrospinning and natural products according to the present invention includes a water-dispersed polyurethane manufacturing step (S101) of producing water-dispersed polyurethane using caster oil, and the water-dispersed polyurethane manufacturing step (S101). A polyvinyl alcohol mixing step (S103) of mixing an aqueous polyvinyl alcohol solution with the water-dispersible polyurethane prepared through the polyvinyl alcohol mixing step (S103), and a conductive polymer mixing of mixing the water-dispersed conductive polymer with the mixture prepared through the polyvinyl alcohol mixing step (S103). It consists of a step (S105) and an electrospinning step (S107) in which the mixture prepared through the conductive polymer mixing step (S105) is electrospun to produce a nonwoven fabric.

상기 수분산폴리우레탄제조단계(S101)는 케스터오일을 사용하여 수분산 폴리우레탄을 제조하는 단계로, 케스터오일과 디메틸올부탄산을 교반하면서 이소포론디이소시아네이트를 적하하여 교반하는 원료혼합단계(S201), 상기 원료혼합단계(S201)를 통해 제조된 혼합물에 아세톤을 혼합하고 합성하는 우레탄합성단계(S203), 상기 우레탄합성단계(S203)를 통해 합성된 우레탄을 냉각한 후에 트리에틸아민을 혼합하여 중화하는 중화단계(S205), 상기 중화단계(S205)를 통해 중화된 우레탄에 증류수를 투입하고 교반하는 증류수교반단계(S207) 및 상기 증류수교반단계(S207)를 통해 증류수가 혼합된 우레탄에 함유된 아세톤을 제거하는 아세톤제거단계(S209)로 이루어지는 것이 바람직하다.The water-dispersed polyurethane manufacturing step (S101) is a step of manufacturing water-dispersed polyurethane using castor oil, and is a raw material mixing step (S201) in which isophorone diisocyanate is added dropwise while stirring castor oil and dimethylolbutanoic acid. , a urethane synthesis step (S203) in which acetone is mixed and synthesized in the mixture prepared through the raw material mixing step (S201), and the urethane synthesized through the urethane synthesis step (S203) is cooled and then neutralized by mixing triethylamine. A neutralization step (S205), a distilled water stirring step (S207) of adding distilled water to the urethane neutralized through the neutralization step (S205) and stirring, and acetone contained in urethane mixed with distilled water through the distilled water stirring step (S207). It is preferable to perform an acetone removal step (S209) to remove.

상기 원료혼합단계(S201)는 케스터오일과 디메틸올부탄산을 교반하면서 이소포론디이소시아네이트를 적하하여 교반하는 단계로, The raw material mixing step (S201) is a step of dropping isophorone diisocyanate while stirring castor oil and dimethylolbutanoic acid,

상기 원료혼합단계는 케스터오일 100 중량부에 디메틸올부탄산 10 내지 30 중량부를 75 내지 80℃의 온도와 200 내지 300rpm의 속도로 교반하면서 이소포론디이소시아네이트 50 내지 80 중량부를 적하하여 이루어지데, 캐스터오일을 사용하기 때문에 우수한 생체적합성을 나타내는 부직포를 제공할 수 있다.The raw material mixing step is performed by dropping 10 to 30 parts by weight of dimethylolbutanoic acid to 100 parts by weight of castor oil and 50 to 80 parts by weight of isophorone diisocyanate while stirring at a temperature of 75 to 80 ° C. and a speed of 200 to 300 rpm. By using , it is possible to provide a nonwoven fabric that exhibits excellent biocompatibility.

이때, 상기의 케스터오일, 디메틸올부탄산 및 이소포론디이소시아네이트의 교반은 질소주입구(nitrogen inlet), 기계식 교반기(chanical stirrer) 및 컨덴서(condenser)가 장착된 4구 플라스크에서 이루어질 수 있다.At this time, the stirring of castor oil, dimethylolbutanoic acid, and isophorone diisocyanate can be performed in a four-necked flask equipped with a nitrogen inlet, mechanical stirrer, and condenser.

상기 우레탄합성단계(S203)는 상기 원료혼합단계(S201)를 통해 제조된 혼합물에 아세톤을 혼합하고 합성하는 단계로, 상기 원료혼합단계(S201)를 통해 제조된 혼합물에 함유된 케스터오일 100 중량부 대비 아세톤 100 내지 500 중량부를 혼합하고 200 내지 300rpm의 속도로 60 내지 120분 동안 교반하여 이루어지는데, 상기 아세톤은 한번에 일시적으로 첨가하는 것보다는 우레탄의 합성과정이나 상기의 중화단계에서 혼합물의 점도 등을 관찰하면서 투입하는 것이 바람직하다. The urethane synthesis step (S203) is a step of mixing and synthesizing acetone with the mixture prepared through the raw material mixing step (S201). 100 parts by weight of castor oil contained in the mixture prepared through the raw material mixing step (S201) This is done by mixing 100 to 500 parts by weight of acetone and stirring for 60 to 120 minutes at a speed of 200 to 300 rpm. Rather than adding the acetone temporarily at once, it is used to adjust the viscosity of the mixture during the synthesis of urethane or in the neutralization step. It is advisable to inject while observing.

상기 우레탄합성단계(S203)에서 아세톤의 함량을 조절하여 합성되는 우레탄의 점도와 입자크기를 조절할 수 있다.In the urethane synthesis step (S203), the viscosity and particle size of the synthesized urethane can be adjusted by adjusting the acetone content.

상기 중화단계(S205)는 상기 우레탄합성단계(S203)를 통해 합성된 우레탄을 냉각한 후에 트리에틸아민을 혼합하여 중화하는 단계로, 상기 우레탄합성단계(S203)를 통해 합성된 우레탄을 40 내지 50℃의 온도로 냉각한 후에, 상기 우레탄에 함유된 케스터오일 100 중량부 대비 트리에틸아민 7 내지 40 중량부를 혼합하고 300 내지 400rpm의 속도로 30 내지 60분 동안 교반하는 과정으로 이루어진다.The neutralization step (S205) is a step of cooling the urethane synthesized through the urethane synthesis step (S203) and then neutralizing it by mixing triethylamine. The urethane synthesized through the urethane synthesis step (S203) is neutralized by 40 to 50%. After cooling to a temperature of ℃, 7 to 40 parts by weight of triethylamine are mixed with 100 parts by weight of castor oil contained in the urethane and stirred at a speed of 300 to 400 rpm for 30 to 60 minutes.

상기 증류수교반단계(S207)는 상기 중화단계(S205)를 통해 중화된 우레탄에 증류수를 투입하고 교반하는 단계로, 상기 중화단계(S205)를 통해 트리에틸아민으로 중화된 우레탄을 550 내지 650rpm의 속도로 교반하면서 우레탄에 함유된 케스터오일 100 중량부 대비 증류수 800 내지 900 중량부를 혼합하고 100 내지 150분 동안 교반하는 과정으로 이루어진다.The distilled water stirring step (S207) is a step of adding distilled water to the urethane neutralized through the neutralization step (S205) and stirring the urethane neutralized with triethylamine through the neutralization step (S205) at a speed of 550 to 650 rpm. It consists of mixing 800 to 900 parts by weight of distilled water with 100 parts by weight of castor oil contained in urethane while stirring and stirring for 100 to 150 minutes.

상기 아세톤제거단계(S209)는 상기 증류수교반단계(S207)를 통해 증류수가 혼합된 우레탄에 함유된 아세톤을 제거하는 단계로, 상기 증류수교반단계(S207)를 통해 증류수가 혼합된 우레탄에 함유된 아세톤을 진공건조기를 이용하여 제거하는 과정으로 이루어지는데, 상기의 과정을 통해 아세톤이 제거된 우레탄은 하드 세그먼트(Hard Segment)가 50 내지 60%이며, 폴리우레탄의 질량농도가 18.5 내지 19%인 음이온성 수분산 폴리우레탄 분산액으로 제조된다.The acetone removal step (S209) is a step of removing acetone contained in urethane mixed with distilled water through the distilled water stirring step (S207), and the acetone contained in urethane mixed with distilled water through the distilled water stirring step (S207). It consists of a process of removing using a vacuum dryer. The urethane from which the acetone has been removed through the above process has a hard segment of 50 to 60% and an anionic polyurethane mass concentration of 18.5 to 19%. It is manufactured from water-based polyurethane dispersion.

상기 폴리비닐알코올혼합단계(S103)는 상기 수분산폴리우레탄제조단계(S101)를 통해 제조된 수분산 폴리우레탄에 폴리비닐알코올 수용액을 혼합하는 단계로, 상기 수분산폴리우레탄제조단계(S101)를 통해 제조된 수분산 폴리우레탄 100 중량부에 폴리비닐알코올 수용액 200 내지 300 중량부를 혼합하여 이루어진다.The polyvinyl alcohol mixing step (S103) is a step of mixing an aqueous polyvinyl alcohol solution with the water-dispersed polyurethane prepared through the water-dispersed polyurethane manufacturing step (S101). It is made by mixing 200 to 300 parts by weight of an aqueous polyvinyl alcohol solution with 100 parts by weight of water-dispersed polyurethane prepared through.

상기와 같이 폴리비닐알코올 수용액이 함유되면, 상기 수분산폴리우레탄제조단계(S101)를 통해 제조된 수분산 폴리우레탄의 점도가 낮아져 전기방사를 통해 부직포로 제조될 수 있는데, 상기 폴리비닐 알코올 수용액의 함량이 200 중량부 미만이면 수분산 폴리우레탄의 점도가 지나치게 높아 전기방사의 효율성이 저하되거나 전기장사장치의 노즐이 막히는 현상이 발생하며, 상기 폴리비닐 알코올 수용액의 함량이 300 중량부를 초과하게 되면 수분산 폴리우레탄의 점도가 지나치게 낮아져 전기방사를 통해 부직포를 제조할 수 없다.When the polyvinyl alcohol aqueous solution is contained as described above, the viscosity of the water-dispersed polyurethane prepared through the water-dispersed polyurethane manufacturing step (S101) is lowered and it can be manufactured into a non-woven fabric through electrospinning. The polyvinyl alcohol aqueous solution If the content is less than 200 parts by weight, the viscosity of the water-dispersed polyurethane is too high, which reduces the efficiency of electrospinning or causes the nozzle of the electric spinning device to become clogged. If the content of the polyvinyl alcohol aqueous solution exceeds 300 parts by weight, the water The viscosity of dispersed polyurethane is so low that nonwoven fabric cannot be manufactured through electrospinning.

이때, 상기 폴리비닐 알코올 수용액은 질량농도가 11 내지 13%인 것을 사용하는 것이 바람직하다.At this time, it is preferable to use the polyvinyl alcohol aqueous solution having a mass concentration of 11 to 13%.

상기 전도성고분자혼합단계(S105)는 상기 폴리비닐알코올혼합단계(S103)를 통해 제조된 혼합물에 수분산 전도성 고분자를 혼합하는 단계로, 상기 폴리비닐알코올혼합단계(S103)를 통해 제조된 혼합물 100 중량부에 수분산 전도성 고분자 50 내지 70 중량부를 혼합하여 이루어지는데, 상기와 같이 수분산 전도성 고분자를 혼합하게 되면 전도성 물질의 탈락없이 우수한 전기전도도를 나타내는 부직포를 제공할 수 있다.The conductive polymer mixing step (S105) is a step of mixing a water-dispersed conductive polymer with the mixture prepared through the polyvinyl alcohol mixing step (S103). 100 weight of the mixture prepared through the polyvinyl alcohol mixing step (S103) It is made by mixing 50 to 70 parts by weight of a water-dispersed conductive polymer. When the water-dispersed conductive polymer is mixed as described above, it is possible to provide a nonwoven fabric that exhibits excellent electrical conductivity without the conductive material falling off.

상기 수분산 전도성 고분자의 함량이 50 중량부 미만이면 상기의 효과가 미미하며, 상기 수분산 전도성 고분자의 함량이 70 중량부를 초과하게 되면 상기의 효과는 크게 향상되지 않으면서 혼합물의 점도가 지나치게 증가하여 전기방사 공정의 효율성이 저하되며, 노즐 막힘 현상 등이 발생할 수 있다.If the content of the water-dispersed conductive polymer is less than 50 parts by weight, the above effect is minimal, and if the content of the water-dispersed conductive polymer exceeds 70 parts by weight, the above effect is not significantly improved and the viscosity of the mixture increases excessively. The efficiency of the electrospinning process decreases, and nozzle clogging may occur.

이때, 상기 수분산 전도성 고분자는 질량농도가 1 내지 1.2%인 것을 사용하는 것이 바람직하며, 상기 전도성 고분자는 폴리(3,4-에틸렌디옥시티오펜)/폴리(4-스티렌설포네이트)(PEDOT/PSS)로 이루어지는 것이 더욱 바람직하다.At this time, it is preferable to use the water-dispersed conductive polymer having a mass concentration of 1 to 1.2%, and the conductive polymer is poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) (PEDOT/ PSS) is more preferable.

상기 전기방사단계(S107)는 상기 전도성고분자혼합단계(S105)를 통해 제조된 혼합물을 전기방사하여 부직포로 제조하는 단계로, 상기 전도성고분자혼합단계(S105)를 통해 제조된 혼합물을 전기방사장치에 투입하고 21 내지 23V의 전압에서 1.2 내지 1.5mL/h의 방사속도로 20 내지 22G의 니들을 통해 14 내지 16cm의 거리에서 전기방사하여 부직포로 제조하는 것이 바람직하다.The electrospinning step (S107) is a step of electrospinning the mixture prepared through the conductive polymer mixing step (S105) to produce a nonwoven fabric. The mixture prepared through the conductive polymer mixing step (S105) is placed in an electrospinning device. It is preferable to produce a non-woven fabric by electrospinning at a distance of 14 to 16 cm through a 20 to 22 G needle at a spinning rate of 1.2 to 1.5 mL/h at a voltage of 21 to 23 V.

상기의 과정을 통해 제조되는 부직포는 300 내지 500 나노미터의 굵기를 나타내며, 0.105×10-6 내지 0.395×10-5 S/cm의 전도성을 나타낸다.The nonwoven fabric manufactured through the above process has a thickness of 300 to 500 nanometers and a conductivity of 0.105 × 10 -6 to 0.395 × 10 -5 S/cm.

이하에서는, 본 발명에 따른 전기방사와 천연물을 이용한 전도성 폴리우레탄 부직포의 제조방법 및 그 제조방법으로 제조된 전도성 폴리우레탄 부직포의 물성을 실시예를 들어 설명하기로 한다.Hereinafter, the method for manufacturing a conductive polyurethane nonwoven fabric using electrospinning and natural products according to the present invention and the physical properties of the conductive polyurethane nonwoven fabric manufactured by the method will be described using examples.

<제조예 1> 수분산 폴리우레탄의 제조 <Preparation Example 1> Preparation of water-dispersed polyurethane

질소 주입구, 기계식 교반기 및 컨덴서가 구비된 4구 플라스크에 케스터오일 22.497g과 디메틸올부탄산 3.00g를 넣고 250rpm으로 78℃에서 교반하면서 이소포론디이소시아네이트 13.04g을 적하한 후에, 아세톤 40.086g을 혼합하고 250rpm의 속도로 90분 동안 교반하여 우레탄을 합성하고, 상기 합성된 우레탄을 40℃로 냉각한 후에 트리에틸아민 2.03g을 혼합하고 30분 동안 350rpm으로 교반하여 중화하고, 중화된 우레탄을 600rpm의 속도로 교반하면서 증류수 187.5mL를 투입하고 120분 동안 교반한 후에 진공건조기(DAIHAN Scientific, KOREA)를 이용하여 아세톤을 제거하는 과정을 통해 하드 세그먼트의 함량이 44%인 음이온성 수분산 폴리우레탄을 제조하였다.Add 22.497 g of castor oil and 3.00 g of dimethylolbutanoic acid to a four-necked flask equipped with a nitrogen inlet, mechanical stirrer, and condenser, add 13.04 g of isophorone diisocyanate dropwise while stirring at 78°C at 250 rpm, and then mix with 40.086 g of acetone. Urethane was synthesized by stirring at a speed of 250 rpm for 90 minutes, the synthesized urethane was cooled to 40°C, mixed with 2.03 g of triethylamine and stirred at 350 rpm for 30 minutes to neutralize, and the neutralized urethane was stirred at a speed of 600 rpm. While stirring, 187.5 mL of distilled water was added, stirred for 120 minutes, and acetone was removed using a vacuum dryer (DAIHAN Scientific, KOREA) to prepare anionic water-dispersed polyurethane with a hard segment content of 44%. .

<제조예 2><Production Example 2>

상기 제조예 1과 동일하게 진행하되, 디메틸올부탄산 5.10g, 이소포론디이소시아네이트 16.11g, 트리에틸아민 1.60을 사용하여 하드 세그먼트의 함량이 50%인 음이온성 수분산 폴리우레탄을 제조하였다.Anionic water-dispersed polyurethane with a hard segment content of 50% was prepared in the same manner as in Preparation Example 1, using 5.10 g of dimethylolbutanoic acid, 16.11 g of isophorone diisocyanate, and 1.60 g of triethylamine.

<제조예 3><Production Example 3>

상기 제조예 1과 동일하게 진행하되, 디메틸올부탄산 5.32g, 이소포론디이소시아네이트 17.72g, 트리에틸아민 3.85을 사용하여 하드 세그먼트의 함량이 55%인 음이온성 수분산 폴리우레탄을 제조하였다.Anionic water-dispersed polyurethane with a hard segment content of 55% was prepared in the same manner as in Preparation Example 1, using 5.32 g of dimethylolbutanoic acid, 17.72 g of isophorone diisocyanate, and 3.85 triethylamine.

<제조예 4><Production Example 4>

상기 제조예 1과 동일하게 진행하되, 디메틸올부탄산 6.39g, 이소포론디이소시아네이트 17.72g, 트리에틸아민 8.60을 사용하여 하드 세그먼트의 함량이 59%인 음이온성 수분산 폴리우레탄을 제조하였다.Anionic water-dispersed polyurethane with a hard segment content of 59% was prepared in the same manner as in Preparation Example 1, using 6.39 g of dimethylolbutanoic acid, 17.72 g of isophorone diisocyanate, and 8.60 triethylamine.

상기 제조예 1 내지 4를 통해 제조된 수분산 폴리우레탄을 전기방사장치에 각각 투입하고, 22V의 전압에서 1.35mL/h의 방사속도로 21G의 니들을 통해 15cm의 거리에서 방사하여 부직포를 제조한 후에, 제조된 부직포를 주사전자현미경(SEM)으로 촬영하여 부직포의 평균지름과 조직상태를 아래 표 1 및 도 3에 나타내었다.The water-dispersed polyurethane prepared through Preparation Examples 1 to 4 was put into an electrospinning device, and spun at a distance of 15 cm through a 21 G needle at a spinning speed of 1.35 mL/h at a voltage of 22 V to produce a nonwoven fabric. Later, the manufactured nonwoven fabric was photographed with a scanning electron microscope (SEM), and the average diameter and tissue state of the nonwoven fabric are shown in Table 1 and Figure 3 below.

<표 1><Table 1>

상기 표 1 및 아래 도 3에 나타낸 것처럼, 상기 제조예 3 내지 4를 통해 제조된 수분산 폴리우레탄은 하드 세그먼트의 함량이 55%와 59%를 나타내며, 부직포의 조직이 우수하고, 평균지름이 양호한 것을 알 수 있으며, 특히 제조예 3을 통해 제조된 수분산 폴리우레탄을 사용하여 제조된 부직포의 조직이 가장 우수한 것을 알 수 있다.As shown in Table 1 and Figure 3 below, the water-dispersed polyurethane prepared through Preparation Examples 3 to 4 has a hard segment content of 55% and 59%, an excellent nonwoven fabric structure, and a good average diameter. It can be seen that the texture of the nonwoven fabric manufactured using the water-dispersed polyurethane prepared through Preparation Example 3 is the best.

<실시예 1><Example 1>

상기 제조예 3을 통해 제조된 수분산 폴리우레탄(질량농도 18.9%) 100 중량부에 폴리비닐알코올 수용액(질량농도 12%) 250 중량부를 혼합하고 150rpm의 속도로 10분 동안 교반하여 혼합물을 제조한 후에, 제조된 혼합물 100 중량부에 수분산 전도성 고분자(질량농도가 1.09%인 PEDOT/PSS) 54.28 중량부를 혼합하고 150rpm의 속도로 10분 동안 교반한 후에, 전기방사장치에 투입하고 22V의 전압에서 1.5mL/h의 방사속도로 21G의 니들을 통해 15cm의 거리에서 방사하여 전도성 폴리우레탄 부직포를 제조하였다.A mixture was prepared by mixing 250 parts by weight of aqueous polyvinyl alcohol solution (mass concentration 12%) with 100 parts by weight of water-dispersed polyurethane (mass concentration 18.9%) prepared through Preparation Example 3 and stirring for 10 minutes at a speed of 150 rpm. Afterwards, 54.28 parts by weight of water-dispersed conductive polymer (PEDOT/PSS with a mass concentration of 1.09%) was mixed with 100 parts by weight of the prepared mixture, stirred for 10 minutes at a speed of 150 rpm, and then put into an electrospinning device and spun at a voltage of 22 V. Conductive polyurethane nonwoven fabric was manufactured by spinning at a distance of 15 cm through a 21G needle at a spinning speed of 1.5 mL/h.

<실시예 2><Example 2>

상기 실시예 1과 동일하게 진행하되, 수분산 전도성 고분자 60 중량부를 혼합하고 1.3mL/h의 방사속도로 방사하여 전도성 폴리우레탄 부직포를 제조하였다.Proceeding in the same manner as Example 1, 60 parts by weight of water-dispersed conductive polymer was mixed and spun at a spinning speed of 1.3 mL/h to prepare a conductive polyurethane nonwoven fabric.

<실시예 3><Example 3>

상기 실시예 1과 동일하게 진행하되, 수분산 전도성 고분자 66 중량부를 혼합하고, 1.2mL/h의 방사속도로 방사하여 전도성 폴리우레탄 부직포를 제조하였다.Proceeding in the same manner as in Example 1, 66 parts by weight of water-dispersed conductive polymer was mixed and spun at a spinning speed of 1.2 mL/h to prepare a conductive polyurethane nonwoven fabric.

<비교예 1><Comparative Example 1>

상기 제조예 3을 통해 제조된 수분산 폴리우레탄(질량농도 18.9%) 100 중량부에 폴리비닐알코올 수용액(질량농도 12%) 333 중량부를 혼합하고 150rpm의 속도로 10분 동안 교반하여 혼합물을 제조한 후에, 제조된 혼합물 100 중량부에 수분산 전도성 고분자(질량농도가 1.09%인 PEDOT/PSS) 38.46 중량부를 혼합하고 150rpm의 속도로 10분 동안 교반한 후에, 전기방사장치에 투입하고 22V의 전압에서 1.5mL/h의 방사속도로 21G의 니들을 통해 15cm의 거리에서 방사하여 전도성 폴리우레탄 부직포를 제조하였다.A mixture was prepared by mixing 333 parts by weight of aqueous polyvinyl alcohol solution (mass concentration 12%) with 100 parts by weight of water-dispersed polyurethane (mass concentration 18.9%) prepared through Preparation Example 3 and stirring for 10 minutes at a speed of 150 rpm. Afterwards, 38.46 parts by weight of water-dispersed conductive polymer (PEDOT/PSS with a mass concentration of 1.09%) was mixed with 100 parts by weight of the prepared mixture, stirred for 10 minutes at a speed of 150 rpm, and then put into an electrospinning device and spun at a voltage of 22 V. Conductive polyurethane nonwoven fabric was manufactured by spinning at a distance of 15 cm through a 21G needle at a spinning speed of 1.5 mL/h.

상기 실시예 1 내지 3 및 비교예 1에서 전기방사 전에 혼합물의 점도를 측정하여 아래 도 4에 나타내었다.In Examples 1 to 3 and Comparative Example 1, the viscosity of the mixture was measured before electrospinning and is shown in Figure 4 below.

아래 도 4에 나타낸 것처럼, 본 발명의 실시예 1 내지 3의 과정에서 제조된 혼합물은 전기방사장치에 적합한 점도를 나타낸 반면, 비교예 1의 과정에서 제조되는 혼합물은 점도가 지나치게 높아 전기방사에 적합하지 않은 것을 알 수 있다.As shown in Figure 4 below, the mixture prepared in the process of Examples 1 to 3 of the present invention showed a viscosity suitable for electrospinning apparatus, while the mixture prepared in the process of Comparative Example 1 had an excessively high viscosity and was not suitable for electrospinning. You can see that it wasn't done.

또한, 상기 실시예 1 내지 3 및 비교예 1을 통해 제조된 부직포를 주사전자현미경(SEM)으로 촬영하여 부직포의 평균지름과 조직상태를 아래 표 2 및 도 5에 나타내었다.In addition, the nonwoven fabrics manufactured through Examples 1 to 3 and Comparative Example 1 were photographed with a scanning electron microscope (SEM), and the average diameter and tissue state of the nonwoven fabrics are shown in Table 2 and Figure 5 below.

<표 2><Table 2>

상기 표 2 및 아래 도 5에 나타낸 것처럼, 본 발명의 실시예 1 내지 3을 통해 제조된 부직포는 조직이 우수하고, 평균지름이 양호한 것을 알 수 있다.As shown in Table 2 and Figure 5 below, it can be seen that the nonwoven fabrics manufactured through Examples 1 to 3 of the present invention have excellent texture and good average diameter.

반면, 비교예 1을 통해 제조된 부직포는 평균지름이 지나치게 두꺼울 뿐만 아니라, 부직포의 조직이 제대로 형성되지 못한 것을 알 수 있다.On the other hand, it can be seen that the nonwoven fabric manufactured through Comparative Example 1 not only had an excessively thick average diameter, but also the structure of the nonwoven fabric was not properly formed.

또한, 상기 실시예 1 내지 3 및 비교예 1을 통해 제조된 부직포의 인장강신도를 측정하여 아래 표 3 및 도 6에 나타내었다.In addition, the tensile strength of the nonwoven fabrics manufactured through Examples 1 to 3 and Comparative Example 1 were measured and shown in Table 3 and Figure 6 below.

<표 3><Table 3>

상기 표 3 및 아래 도 6에 나타낸 것처럼, 본 발명의 실시예 1 내지 3을 통해 제조된 부직포는 우수한 인장강신도를 나타내는 것을 알 수 있다.As shown in Table 3 and Figure 6 below, it can be seen that the nonwoven fabrics manufactured through Examples 1 to 3 of the present invention exhibit excellent tensile strength.

또한, 상기 실시예 1 내지 3 및 비교예 1을 통해 제조된 부직포의 열분해특성을 측정하여 아래 도 7에 나타내었다.In addition, the thermal decomposition characteristics of the nonwoven fabrics manufactured through Examples 1 to 3 and Comparative Example 1 were measured and shown in Figure 7 below.

아래 도 7에 나타낸 것처럼, 본 발명의 실시예 1 내지 3을 통해 제조된 부직포는 비교예 1을 통해 제조된 부직포에 비해 300℃이상에서부터 우수한 열분해특성을 나타내는 것을 알 수 있다.As shown in Figure 7 below, it can be seen that the nonwoven fabric manufactured through Examples 1 to 3 of the present invention exhibits excellent thermal decomposition characteristics from 300°C or higher compared to the nonwoven fabric manufactured through Comparative Example 1.

또한, 상기 실시예 1 내지 3 및 비교예 1을 통해 제조된 부직포의 전기적특성을 측정하여 아래 표 4 및 도 8에 나타내었다.In addition, the electrical properties of the nonwoven fabrics manufactured through Examples 1 to 3 and Comparative Example 1 were measured and shown in Table 4 and Figure 8 below.

<표 4><Table 4>

상기 표 4 및 아래 도 8에 나타낸 것처럼, 본 발명의 실시예 1 내지 3을 통해 제조된 부직포는 우수한 전기적특성을 나타내는 것을 알 수 있다.As shown in Table 4 and Figure 8 below, it can be seen that the nonwoven fabrics manufactured through Examples 1 to 3 of the present invention exhibit excellent electrical properties.

또한, 상기 실시예 2를 통해 제조된 부직포의 생체적합성을 측정하여 아래 도 9 내지 10에 나타내었다.In addition, the biocompatibility of the nonwoven fabric prepared through Example 2 was measured and shown in Figures 9 and 10 below.

특히, 아래 도 9에 나타낸 것처럼, 피부세포를 상기 실시예 2를 통해 제조된 부직포의 상부면에 개재한 상태에서 세포배양기에 투입하고 7일 동안 세포의 배양상태를 세포배양 형미경으로 관찰한 결과, 사멸하는 세포(붉은색으로 표기)는 매우 적으면서, 배양이 원활하게 진행되는 것을 알 수 있다.In particular, as shown in Figure 9 below, skin cells were placed on the upper surface of the nonwoven fabric prepared in Example 2 and placed in a cell incubator, and the culture state of the cells was observed under a cell culture microscope for 7 days. , it can be seen that the culture progresses smoothly with very few dying cells (indicated in red).

또한, 도 10에 대조군은 일반 폴리우레탄 부직포를 이용하여 측정한 결과이다.Additionally, the control group in Figure 10 shows the results measured using a general polyurethane nonwoven fabric.

아래 도 9 내지 10에 나타낸 것처럼, 본 발명의 실시예 2를 통해 제조된 부직포는 우수한 셍체적합성을 나타내는 것을 알 수 있다.As shown in Figures 9 to 10 below, it can be seen that the nonwoven fabric manufactured through Example 2 of the present invention exhibits excellent dimensional compatibility.

따라서, 본 발명에 따른 전기방사와 천연물을 이용한 전도성 폴리우레탄 부직포의 제조방법은 우수한 기계적 물성과 전도성 물질의 탈락없이 우수한 전기전도도를 나타낼 뿐만 아니라, 천연물이 함유되어 생체적합성이 우수한 부직포를 제공한다.Therefore, the method of manufacturing a conductive polyurethane nonwoven fabric using electrospinning and natural products according to the present invention not only exhibits excellent mechanical properties and excellent electrical conductivity without dropping the conductive material, but also provides a nonwoven fabric with excellent biocompatibility due to the inclusion of natural products.

이상에서 본 발명은 실시예를 중심으로 상세히 설명되었지만 본 발명의 기술사상 범위 내에서 다양한 변형 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속함은 당연한 것이다.In the above, the present invention has been described in detail focusing on the embodiments, but it is obvious to those skilled in the art that various changes and modifications are possible within the technical scope of the present invention, and it is natural that such changes and modifications fall within the scope of the appended patent claims.

S101 ; 수분산폴리우레탄제조단계
S103 ; 폴리비닐알코올혼합단계
S105 ; 전도성고분자혼합단계
S107 ; 전기방사단계
S201 ; 원료혼합단계
S203 ; 우레탄합성단계
S205 ; 중화단계
S207 ; 증류수교반단계
S209 ; 아세톤제거단계
S101 ; Water dispersion polyurethane manufacturing steps
S103 ; Polyvinyl alcohol mixing step
S105 ; Conductive polymer mixing step
S107 ; Electrospinning stage
S201 ; Raw material mixing stage
S203 ; Urethane synthesis stage
S205 ; neutralization stage
S207 ; Distilled water stirring step
S209 ; Acetone removal step

Claims (10)

케스터오일을 사용하여 수분산 폴리우레탄을 제조하는 수분산폴리우레탄제조단계;
상기 수분산폴리우레탄제조단계를 통해 제조된 수분산 폴리우레탄에 폴리비닐알코올 수용액을 혼합하는 폴리비닐알코올혼합단계;
상기 폴리비닐알코올혼합단계를 통해 제조된 혼합물에 수분산 전도성 고분자를 혼합하는 전도성고분자혼합단계; 및
상기 전도성고분자혼합단계를 통해 제조된 혼합물을 전기방사하여 부직포로 제조하는 전기방사단계;로 이루어지며,
상기 수분산폴리우레탄제조단계는 케스터오일과 디메틸올부탄산을 교반하면서 이소포론디이소시아네이트를 적하하여 교반하는 원료혼합단계;
상기 원료혼합단계를 통해 제조된 혼합물에 아세톤을 혼합하고 합성하는 우레탄합성단계;
상기 우레탄합성단계를 통해 합성된 우레탄을 냉각한 후에 트리에틸아민을 혼합하여 중화하는 중화단계;
상기 중화단계를 통해 중화된 우레탄에 증류수를 투입하고 교반하는 증류수교반단계; 및
상기 증류수교반단계를 통해 증류수가 혼합된 우레탄에 함유된 아세톤을 제거하는 아세톤제거단계;로 이루어지고,
상기 원료혼합단계는 케스터오일 100 중량부에 디메틸올부탄산 10 내지 30 중량부를 75 내지 80℃의 온도와 200 내지 300rpm의 속도로 교반하면서 이소포론디이소시아네이트 50 내지 80 중량부를 적하하여 이루어지는 것을 특징으로 하는 전기방사와 천연물을 이용한 전도성 폴리우레탄 부직포의 제조방법.
A water-dispersed polyurethane manufacturing step of producing water-dispersed polyurethane using castor oil;
A polyvinyl alcohol mixing step of mixing an aqueous polyvinyl alcohol solution with the water-dispersed polyurethane prepared through the water-dispersed polyurethane manufacturing step;
A conductive polymer mixing step of mixing a water-dispersed conductive polymer into the mixture prepared through the polyvinyl alcohol mixing step; and
It consists of an electrospinning step of electrospinning the mixture prepared through the conductive polymer mixing step to produce a nonwoven fabric,
The water-dispersed polyurethane manufacturing step includes a raw material mixing step of dropping isophorone diisocyanate while stirring castor oil and dimethylolbutanoic acid;
A urethane synthesis step of mixing acetone with the mixture prepared through the raw material mixing step and synthesizing it;
A neutralization step of cooling the urethane synthesized through the urethane synthesis step and then neutralizing it by mixing it with triethylamine;
A distilled water stirring step of adding distilled water to the urethane neutralized through the neutralization step and stirring it; and
It consists of an acetone removal step of removing acetone contained in urethane mixed with distilled water through the distilled water stirring step,
The raw material mixing step is characterized in that 50 to 80 parts by weight of isophorone diisocyanate is added dropwise to 100 parts by weight of castor oil while stirring 10 to 30 parts by weight of dimethylolbutanoic acid at a temperature of 75 to 80 ° C. and a speed of 200 to 300 rpm. Method for manufacturing conductive polyurethane nonwoven fabric using electrospinning and natural products.
삭제delete 삭제delete 청구항 1에 있어서,
상기 우레탄합성단계는 상기 원료혼합단계를 통해 제조된 혼합물에 함유된 케스터오일 100 중량부 대비 아세톤 100 내지 500 중량부를 혼합하고 200 내지 300rpm의 속도로 60 내지 120분 동안 교반하여 이루어지는 것을 특징으로 하는 전기방사와 천연물을 이용한 전도성 폴리우레탄 부직포의 제조방법.
In claim 1,
The urethane synthesis step is characterized by mixing 100 to 500 parts by weight of acetone with respect to 100 parts by weight of castor oil contained in the mixture prepared through the raw material mixing step and stirring for 60 to 120 minutes at a speed of 200 to 300 rpm. Method for manufacturing conductive polyurethane nonwoven fabric using yarn and natural products.
청구항 1에 있어서,
상기 중화단계는 상기 우레탄합성단계를 통해 합성된 우레탄을 40 내지 50℃의 온도로 냉각한 후에 트리에틸아민을 혼합하고 300 내지 400rpm의 속도로 30 내지 60분 동안 교반하여 이루어지는 것을 특징으로 하는 전기방사와 천연물을 이용한 전도성 폴리우레탄 부직포의 제조방법.
In claim 1,
The neutralization step is electrospinning, wherein the urethane synthesized through the urethane synthesis step is cooled to a temperature of 40 to 50° C., mixed with triethylamine, and stirred at a speed of 300 to 400 rpm for 30 to 60 minutes. and a method of manufacturing conductive polyurethane nonwoven fabric using natural products.
청구항 1에 있어서,
상기 수분산 폴리우레탄은 하드 세그먼트의 함량이 50 내지 60%인 것을 특징으로 하는 전기방사와 천연물을 이용한 전도성 폴리우레탄 부직포의 제조방법.
In claim 1,
A method of manufacturing a conductive polyurethane nonwoven fabric using electrospinning and natural products, characterized in that the water-dispersed polyurethane has a hard segment content of 50 to 60%.
청구항 1에 있어서,
상기 폴리비닐알코올혼합단계는 상기 수분산폴리우레탄제조단계를 통해 제조된 수분산 폴리우레탄 100 중량부에 폴리비닐알코올 수용액 200 내지 300 중량부를 혼합하여 이루어지는 것을 특징으로 하는 전기방사와 천연물을 이용한 전도성 폴리우레탄 부직포의 제조방법.
In claim 1,
The polyvinyl alcohol mixing step is a conductive poly using electrospinning and natural products, characterized in that it is achieved by mixing 200 to 300 parts by weight of an aqueous polyvinyl alcohol solution with 100 parts by weight of the water-dispersed polyurethane prepared through the water-dispersed polyurethane manufacturing step. Method for manufacturing urethane nonwoven fabric.
청구항 1에 있어서,
상기 전도성고분자혼합단계는 상기 폴리비닐알코올혼합단계를 통해 제조된 혼합물 100 중량부에 수분산 전도성 고분자 50 내지 70 중량부를 혼합하여 이루어지는 것을 특징으로 하는 전기방사와 천연물을 이용한 전도성 폴리우레탄 부직포의 제조방법.
In claim 1,
The conductive polymer mixing step is a method of producing a conductive polyurethane nonwoven fabric using electrospinning and natural products, characterized in that it is achieved by mixing 50 to 70 parts by weight of a water-dispersed conductive polymer with 100 parts by weight of the mixture prepared through the polyvinyl alcohol mixing step. .
청구항 8에 있어서,
상기 전도성 고분자는 폴리(3,4-에틸렌디옥시티오펜)/폴리(4-스티렌설포네이트)로 이루어지는 것을 특징으로 하는 전기방사와 천연물을 이용한 전도성 폴리우레탄 부직포의 제조방법.
In claim 8,
A method of manufacturing a conductive polyurethane nonwoven fabric using electrospinning and natural products, wherein the conductive polymer is made of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate).
청구항 1에 있어서,
상기 전기방사단계는 21 내지 23V의 전압에서 1.2 내지 1.5mL/h의 방사속도로 20 내지 22G의 니들을 통해 14 내지 16cm의 거리에서 이루어지는 것을 특징으로 하는 전기방사와 천연물을 이용한 전도성 폴리우레탄 부직포의 제조방법.
In claim 1,
The electrospinning step is a conductive polyurethane nonwoven fabric using electrospinning and natural products, characterized in that it is carried out at a distance of 14 to 16 cm through a needle of 20 to 22 G at a spinning rate of 1.2 to 1.5 mL / h at a voltage of 21 to 23 V. Manufacturing method.
KR1020220054181A 2022-05-02 2022-05-02 Manufacturing method of conductive polyurethane non-woven fabric using electrospinning and natural products KR102626088B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220054181A KR102626088B1 (en) 2022-05-02 2022-05-02 Manufacturing method of conductive polyurethane non-woven fabric using electrospinning and natural products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220054181A KR102626088B1 (en) 2022-05-02 2022-05-02 Manufacturing method of conductive polyurethane non-woven fabric using electrospinning and natural products

Publications (2)

Publication Number Publication Date
KR20230154586A KR20230154586A (en) 2023-11-09
KR102626088B1 true KR102626088B1 (en) 2024-01-16

Family

ID=88748094

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220054181A KR102626088B1 (en) 2022-05-02 2022-05-02 Manufacturing method of conductive polyurethane non-woven fabric using electrospinning and natural products

Country Status (1)

Country Link
KR (1) KR102626088B1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101891813B1 (en) 2016-08-01 2018-08-24 (주)크린앤사이언스 Conductive non-woven fabric and its manufacturing method
KR102077426B1 (en) 2019-07-01 2020-04-08 최철수 Manufacturing method for thin conductive nonwoven fabric and thin conductive nonwoven fabric manufactured using the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
논문1
논문2

Also Published As

Publication number Publication date
KR20230154586A (en) 2023-11-09

Similar Documents

Publication Publication Date Title
US8455088B2 (en) Spun nanofiber, medical devices, and methods
EP3279373B1 (en) Silicone-modified polyurethane-based fiber and method for manufacturing same
CN108264755B (en) Preparation method of graphene-carbon nanotube/waterborne polyurethane composite material
US20070009570A1 (en) Method for preparing porous polymer scaffold for tissue engineering using gel spinning molding technique
CN108884597B (en) Organosilicon-modified polyurethane fiber and process for producing the same
US9321208B2 (en) Nanofibers with excellent biodegradability and biocompatibility and method for producing the same
JP7333922B2 (en) Fiber, fiber laminate structure, spinning solution for electrospinning, and method for producing fiber
CN108866822B (en) Preparation method and application of multi-stage oriented porous superfine electrospinning composite fiber membrane
CN110592947A (en) Preparation method of polyhydroxyalkanoate/polydopamine composite electrospinning membrane and electrospinning membrane
He et al. Solvent-free thermocuring electrospinning to fabricate ultrathin polyurethane fibers with high conductivity by in situ polymerization of polyaniline
Zhang et al. Fabrication of a high-toughness polyurethane/fibroin composite without interfacial treatment and its toughening mechanism
Zhang et al. Preparation of polyamide 6/CeO2 composite nanofibers through electrospinning for biomedical applications
KR100953366B1 (en) Nano fiber for tissue regeneration and fabrication method thereof
KR102626088B1 (en) Manufacturing method of conductive polyurethane non-woven fabric using electrospinning and natural products
Bonakdar et al. Highly porous biobased membranes via electrospinning of PBS and CTAB
CN113430828B (en) Fiber product and preparation method thereof
Misran et al. Preparation and characterisation of electrospun composite nanofibre polyvinyl alcohol/nanofibrillated cellulose isolated from oil palm empty fruit bunches
CN109943974B (en) Preparation method of nerve conduit material based on polyhydroxyalkanoate/gelatin electrospun nanofiber
TWI627201B (en) Aqueous-based polyurethane colloid dispersion, aqueous-based polyurethane micelle electrospun fiber and process for making the same
CN104452107A (en) High-elasticity PHA porous fiber material and preparing method thereof
Ou et al. Preparation of antibacterial PHBV/GO nanocomposite membranes via electrospinning
US20220169779A1 (en) Material for medical use and method for producing same
Cho et al. On use of cellulose nanowhisker to enhance the physical properties of electrospun biopolyurethane
KR20060008084A (en) Hydrophilic synthetic and natural polyester nanofiber, wound dressing and manufacturing method using that
CN115874355A (en) Fluoride-free waterproof moisture permeable nanofiber membrane and preparation method thereof

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant