KR102624767B1 - Dissimilar metal supported catalyst for preparation of aromatic compounds by dehydroaromatization of ethane, and Method for preparing aromatic compounds using the same - Google Patents

Dissimilar metal supported catalyst for preparation of aromatic compounds by dehydroaromatization of ethane, and Method for preparing aromatic compounds using the same Download PDF

Info

Publication number
KR102624767B1
KR102624767B1 KR1020180142656A KR20180142656A KR102624767B1 KR 102624767 B1 KR102624767 B1 KR 102624767B1 KR 1020180142656 A KR1020180142656 A KR 1020180142656A KR 20180142656 A KR20180142656 A KR 20180142656A KR 102624767 B1 KR102624767 B1 KR 102624767B1
Authority
KR
South Korea
Prior art keywords
ethane
reaction
aromatic compounds
catalyst
supported catalyst
Prior art date
Application number
KR1020180142656A
Other languages
Korean (ko)
Other versions
KR20200058088A (en
Inventor
이관영
이병진
김도희
Original Assignee
고려대학교 산학협력단
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단, 서울대학교산학협력단 filed Critical 고려대학교 산학협력단
Priority to KR1020180142656A priority Critical patent/KR102624767B1/en
Publication of KR20200058088A publication Critical patent/KR20200058088A/en
Application granted granted Critical
Publication of KR102624767B1 publication Critical patent/KR102624767B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • B01J23/6525Molybdenum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/02Monocyclic hydrocarbons
    • C07C15/04Benzene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/02Monocyclic hydrocarbons
    • C07C15/06Toluene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/02Monocyclic hydrocarbons
    • C07C15/067C8H10 hydrocarbons
    • C07C15/08Xylenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/76Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation of hydrocarbons with partial elimination of hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
    • C07C2523/56Platinum group metals
    • C07C2523/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tatalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/652Chromium, molybdenum or tungsten
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

본 발명은 에탄의 탈수소방향족화 반응에 의한 방향족 화합물 제조용 이종금속 담지 촉매 및 이를 이용한 방향족 화합물의 제조방법에 관한 것이다.
본 발명에 따른 이종금속 담지 촉매는 제올라이트 담지체에 산화 몰리브데늄(MoO3), 산화 텅스텐(WO3) 등의 금속이 담지된 촉매에 백금(Pt), 니켈(Ni) 등의 금속을 추가 도입함으로써 보다 낮은 반응 온도에서 탄화 몰리브데늄 또는 탄화 텅스텐의 형성을 유도하고, 이를 통해 에탄을 반응물로 한 탈수소방향족화 반응 시 탈수소화 반응을 촉진함으로써 방향족 화합물의 생산 수율을 크게 향상시킬 수 있다.
The present invention relates to a heterogeneous metal supported catalyst for producing aromatic compounds by dehydraromatization of ethane and a method for producing aromatic compounds using the same.
The heterogeneous metal supported catalyst according to the present invention adds metals such as platinum (Pt) and nickel (Ni) to a catalyst in which metals such as molybdenum oxide (MoO 3 ) and tungsten oxide (WO 3 ) are supported on a zeolite support. By introducing it, the formation of molybdenum carbide or tungsten carbide can be induced at a lower reaction temperature, thereby promoting the dehydrogenation reaction during the dehydroaromatization reaction using ethane as a reactant, thereby greatly improving the production yield of aromatic compounds.

Description

에탄의 탈수소방향족화 반응에 의한 방향족 화합물 제조용 이종금속 담지 촉매 및 이를 이용한 방향족 화합물의 제조방법{Dissimilar metal supported catalyst for preparation of aromatic compounds by dehydroaromatization of ethane, and Method for preparing aromatic compounds using the same}Dissimilar metal supported catalyst for preparation of aromatic compounds by dehydroaromatization of ethane, and Method for preparing aromatic compounds using the same}

본 발명은 에탄의 탈수소방향족화 반응에 의한 방향족 화합물 제조용 이종금속 담지 촉매 및 이를 이용한 방향족 화합물의 제조방법에 관한 것이다.The present invention relates to a heterogeneous metal supported catalyst for producing aromatic compounds by dehydraromatization of ethane and a method for producing aromatic compounds using the same.

벤젠, 톨루엔, 자일렌으로 대표되는 방향족 화합물은 산업적으로 매우 중요한 화합물로 화학제품의 중간 생성물, 용매, 고분자의 원료 등으로 활용되고 있다. 2012년 벤젠은 약 4,000만 톤, 톨루엔은 1,400만 톤 생산되었고, 이들에 대한 수요는 전 세계 GDP의 증가율에 따라 35%에서 40%의 증가율을 나타낼 것으로 예측되고 있다.Aromatic compounds, represented by benzene, toluene, and xylene, are industrially very important compounds and are used as intermediate products for chemical products, solvents, and raw materials for polymers. In 2012, approximately 40 million tons of benzene and 14 million tons of toluene were produced, and demand for them is expected to increase by 35% to 40% depending on the growth rate of global GDP.

이처럼 고부가 가치를 가지는 방향족 화합물은 현재 대부분 원유에 의존한 나프타(Naphtha)의 촉매 개질 공정에 의해 생산되고 있고 일부는 열분해 공정 및 수첨 탈알킬화 공정을 통해서 생산되고 있다. 하지만, 이러한 원유 의존적인 생산 공정은 급격한 유가의 변동 및 한정된 원유의 매장량에 의해 상당한 영향을 받을 수 있다는 점에서 한계가 존재한다. 따라서, 이러한 원유 의존적 생산 방식에 벗어난 새로운 원료 기반의 방향족 화합물 생산 기술이 필요하다.Currently, most aromatic compounds with high added value are produced through the catalytic reforming process of naphtha, which relies on crude oil, and some are produced through the thermal decomposition process and hydrodealkylation process. However, this crude oil-dependent production process has limitations in that it can be significantly affected by rapid fluctuations in oil prices and limited reserves of crude oil. Therefore, a new raw material-based aromatic compound production technology that breaks away from this crude oil-dependent production method is needed.

한편, 최근에는 수평시추법, 수압파쇄법과 같은 셰일가스 채굴기술의 발전으로 인해 셰일가스 채굴단가가 낮아지고 있어 세계 에너지 시장에 중대한 변화를 일으키고 있다. 이러한 셰일가스를 비롯한 천연가스는 약 85%의 메탄과 10%의 에탄, 그리고 프로판 등의 경질 탄화수소로 구성되어 있다. 셰일가스를 비롯한 천연가스의 막대한 매장량을 고려할 때, 이들로부터 고부가 가치의 화합물을 합성하는 것은 산업적으로도 매우 중요하다고 할 것인바, 최근에는 상기 천연가스에 포함된 성분들로부터 올레핀, 방향족 화합물과 같은 고부가 가치의 화합물을 합성하는 기술에 대한 연구가 집중적으로 연구되고 있다.Meanwhile, recent developments in shale gas mining technologies such as horizontal drilling and hydraulic fracturing have led to lower shale gas mining costs, causing significant changes in the global energy market. Natural gas, including shale gas, is composed of approximately 85% methane, 10% ethane, and light hydrocarbons such as propane. Considering the enormous reserves of natural gas, including shale gas, it is very important industrially to synthesize compounds of high added value from them. Recently, components such as olefins and aromatic compounds from the natural gas have been discovered. Research on technologies for synthesizing high-value compounds is being intensively conducted.

천연가스를 구성하는 성분 중 두 번째로 높은 비중을 차지하는 에탄을 활용하여 방향족 화합물을 생산하는 에탄의 탈수소방향족화 반응은 메탄의 탈수소방향족화반응과 반응 메커니즘적으로 비슷하지만, 메탄보다 열역학적으로 덜 안정한 에탄을 활용하기 때문에 기존의 메탄의 탈수소방향족화 반응에 비하여 낮은 온도 조건에서, 더 높은 수율의 방향족 화합물의 확보할 수 있다는 장점 있다. 에탄의 탈수소방향족화반응은 크게 에탄의 탈수소화반응을 통한 반응물의 활성화 (activation)와 활성화된 성분의 올리고머화 (oligomerization) 및 방향족화 반응 (aromatization)으로 구성되어 있다.The dehydroaromatization reaction of ethane, which produces aromatic compounds using ethane, which accounts for the second highest proportion of natural gas components, is similar in reaction mechanism to the dehydroaromatization reaction of methane, but is thermodynamically less stable than methane. Because ethane is used, it has the advantage of being able to secure a higher yield of aromatic compounds under lower temperature conditions compared to the existing dehydroaromatization reaction of methane. The dehydroaromatization reaction of ethane largely consists of activation of the reactant through the dehydrogenation reaction of ethane, and oligomerization and aromatization of the activated component.

이러한 반응에 사용되는 촉매로서, 현재까지 몰리브데늄 (molybdenum, Mo), 갈륨 (gallium, Ga) 등이 담지된 HZSM-5 제올라이트 기반의 촉매가 에탄의 탈수소방향족화 반응에 많이 이용되어왔으나, 만족할만한 수준의 방향족 화합물 수율을 보여주지 못한다는 점에서 한계가 존재한다.As a catalyst used in this reaction, the HZSM-5 zeolite-based catalyst supported with molybdenum (Mo), gallium (Ga), etc. has been widely used for the dehydroaromatization reaction of ethane, but is not satisfactory. There is a limitation in that it does not provide a satisfactory level of aromatic compound yield.

본 발명은 전술한 문제점을 해결하기 위해 안출된 것으로서, 본 발명에서는 산화 몰리브데늄(MoO3), 산화 텅스텐(WO3) 등의 금속이 담지된 촉매에 백금(Pt), 니켈(Ni) 등을 추가 도입함으로써 탈수소방향족화 반응의 활성종인 탄화 몰리브데늄 또는 탄화 텅스텐의 형성을 촉진하고, 이를 통해 방향족 화합물의 생산 수율을 향상시킬 수 있는 이종금속 담지 촉매 및 이를 이용하여 방향족 화합물을 제조하는 방법을 제공하고자 한다.The present invention was developed to solve the above-described problems. In the present invention, platinum (Pt), nickel (Ni), etc. are added to a catalyst carrying metals such as molybdenum oxide (MoO 3 ) and tungsten oxide (WO 3 ). A heterogeneous metal-supported catalyst that promotes the formation of molybdenum carbide or tungsten carbide, which is an active species in the dehydroaromatization reaction, and thereby improves the production yield of aromatic compounds by additionally introducing a heterogeneous metal-supported catalyst and a method of producing aromatic compounds using the same We would like to provide.

본 발명은 상기 과제를 해결하기 위하여,In order to solve the above problems, the present invention

제올라이트 담지체; 상기 제올라이트 담지체에 담지되고, 산화 몰리브데늄(MoO3) 및 산화 텅스텐(WO3)으로 이루어진 군으로부터 선택되는 1종 이상의 제1 금속(A); 및 상기 제올라이트 담지체에 담지되고, 백금(Pt) 및 니켈(Ni)로 이루어진 군으로부터 선택되는 1종 이상의 제2 금속(B);을 포함하고, 에탄의 탈수소방향족화 반응에 의한 방향족 화합물 제조에 이용되는 것을 특징으로 하는 이종금속 담지 촉매를 제공한다.Zeolite support; At least one first metal (A) supported on the zeolite support and selected from the group consisting of molybdenum oxide (MoO 3 ) and tungsten oxide (WO 3 ); and at least one second metal (B) supported on the zeolite support and selected from the group consisting of platinum (Pt) and nickel (Ni), and used for producing aromatic compounds by dehydroaromatization of ethane. Provided is a heterogeneous metal supported catalyst characterized in that it is used.

본 발명에 따르면, 상기 제올라이트 담지체 100 중량부를 기준으로 상기 제1 금속 1 내지 5 중량부가 담지될 수 있다.According to the present invention, 1 to 5 parts by weight of the first metal may be supported based on 100 parts by weight of the zeolite support.

본 발명에 따르면, 상기 제올라이트 담지체 100 중량부를 기준으로 상기 제2 금속 0.5 내지 2.5 중량부가 담지될 수 있다.According to the present invention, 0.5 to 2.5 parts by weight of the second metal may be supported based on 100 parts by weight of the zeolite support.

본 발명에 따르면, 상기 산화 몰리브데늄(MoO3) 또는 상기 산화 텅스텐(WO3)은 에탄의 탈수소방향족화 반응이 진행되면서 탄화 몰리브데늄(Mo2C) 또는 탄화 텅스텐(WC)으로 전환될 수 있다.According to the present invention, the molybdenum oxide (MoO 3 ) or the tungsten oxide (WO 3 ) is converted into molybdenum carbide (Mo 2 C) as the dehydroaromatization reaction of ethane progresses. Or it can be converted to tungsten carbide (WC).

본 발명에 따르면, 상기 제올라이트 담지체는 HZSM-5, ZSM-5, MCM-22 및 MCM-41로 이루어진 군에서 선택될 수 있다.According to the present invention, the zeolite carrier may be selected from the group consisting of HZSM-5, ZSM-5, MCM-22, and MCM-41.

본 발명에 따르면, 상기 제올라이트 담지체의 Si/Al 비율은 15 내지 140일 수 있다.According to the present invention, the Si/Al ratio of the zeolite support may be 15 to 140.

또한, 본 발명은 상기 과제를 해결하기 위하여,In addition, in order to solve the above problems, the present invention

상기 이종금속 담지 촉매하에서, 에탄을 반응물로 탈수소화방향족화 반응을 수행하는 단계;를 포함하는 방향족 화합물의 제조방법을 제공한다.It provides a method for producing an aromatic compound, including the step of performing a dehydrogenation aromatization reaction with ethane as a reactant in the presence of the heterogeneous metal supported catalyst.

본 발명에 따르면, 상기 반응은 이종금속 담지 촉매가 충진된 컬럼을 포함하는 기체상 반응기에서 수행될 수 있다.According to the present invention, the reaction can be performed in a gas phase reactor including a column packed with a heterogeneous metal supported catalyst.

본 발명에 따르면, 반응물로 아르곤 가스를 더 포함할 수 있다.According to the present invention, argon gas may be further included as a reactant.

본 발명에 따르면, 상기 반응은 600 내지 800 ℃에서 수행될 수 있다.According to the present invention, the reaction can be carried out at 600 to 800 °C.

본 발명에 따르면, 상기 방향족 화합물은 상기 방향족 화합물은 벤젠, 톨루엔, 자일렌, 나프탈렌 및 코트로 이루어진 군에서 선택되는 1종 이상일 수 있다.According to the present invention, the aromatic compound may be at least one selected from the group consisting of benzene, toluene, xylene, naphthalene, and cote.

본 발명에 따른 이종금속 담지 촉매는 제올라이트 담지체에 산화 몰리브데늄(MoO3), 산화 텅스텐(WO3) 등의 금속이 담지된 촉매에 백금(Pt), 니켈(Ni) 등의 금속을 추가 도입함으로써 보다 낮은 반응 온도에서 탄화 몰리브데늄 또는 탄화 텅스텐의 형성을 유도하고, 이를 통해 에탄을 반응물로 한 탈수소방향족화 반응 시 탈수소화 반응을 촉진함으로써 방향족 화합물의 생산 수율을 크게 향상시킬 수 있다.The heterogeneous metal supported catalyst according to the present invention adds metals such as platinum (Pt) and nickel (Ni) to a catalyst in which metals such as molybdenum oxide (MoO 3 ) and tungsten oxide (WO 3 ) are supported on a zeolite support. By introducing it, the formation of molybdenum carbide or tungsten carbide can be induced at a lower reaction temperature, thereby promoting the dehydrogenation reaction during the dehydroaromatization reaction using ethane as a reactant, thereby greatly improving the production yield of aromatic compounds.

도 1은 본 발명의 비교예 및 실시예에 따라 제조된 촉매의 XRD패턴을 나타낸 그래프이다.
도 2는 본 발명의 비교예 및 실시예에 따라 제조된 촉매의 에탄의 활성화 온도를 측정하기 위한 C2H6-TPR의 프로파일을 나타낸 그래프이다.
도 3은 본 발명의 비교예 및 실시예에 따라 제조된 촉매를 이용하여 탈수소방향족화 반응을 수행시 가스크로마토그래피를 통해 분석된 가스의 조성을 이용하여 반응물인 에탄의 전환율 및 생성물인 방향족 화합물의 수율을 계산한 결과를 나타낸 것이다.
도 4는 본 발명의 비교예 및 실시예에 따라 제조된 촉매를 이용하여 탈수소방향족화 반응을 수행시 가스크로마토그래피를 통해 분석된 가스의 조성을 이용하여 생성물인 방향족 화합물의 선택도를 계산한 결과를 나타낸 것이다.
도 5는 본 발명의 비교예 및 실시예에 따라 제조된 촉매와 상기 촉매를 이용하여 에탄의 탈수소방향족화 반응을 수행한 후의 촉매에 대하여 Mo 3d 오비탈에 대한 XPS 분석 그래프를 나타낸 것이다.
도 6은 본 발명의 비교예 및 실시예에 따라 제조된 촉매를 이용하여 에탄의 탈수소방향족화 반응을 수행한 후의 촉매에 대하여 TPO (temperature-programmed oxidation) 분석을 진행하고 그 프로파일을 나타낸 것이다.
Figure 1 is a graph showing the XRD pattern of a catalyst prepared according to comparative examples and examples of the present invention.
Figure 2 is a graph showing the profile of C 2 H 6 -TPR for measuring the activation temperature of ethane of catalysts prepared according to Comparative Examples and Examples of the present invention.
Figure 3 shows the conversion rate of ethane as a reactant and the yield of the aromatic compound as a product using the composition of the gas analyzed through gas chromatography when performing a dehydroaromatization reaction using a catalyst prepared according to comparative examples and examples of the present invention. It shows the result of calculating .
Figure 4 shows the results of calculating the selectivity of the aromatic compound as a product using the composition of the gas analyzed through gas chromatography when performing a dehydroaromatization reaction using a catalyst prepared according to comparative examples and examples of the present invention. It is shown.
Figure 5 shows an XPS analysis graph for Mo 3d orbitals for the catalyst prepared according to Comparative Examples and Examples of the present invention and the catalyst after performing the dehydroaromatization reaction of ethane using the catalyst.
Figure 6 shows the profile of TPO (temperature-programmed oxidation) analysis performed on the catalyst after performing the dehydraromatization reaction of ethane using the catalyst prepared according to the comparative examples and examples of the present invention.

이하, 본 발명을 더욱 구체적으로 설명하기로 한다.Hereinafter, the present invention will be described in more detail.

본 발명은 에탄의 탈수소방향족화 반응에 의한 방향족 화합물 제조용 이종금속 담지 촉매에 관한 것으로서, 본 발명에서서는 제올라이트 담지체에 산화 몰리브데늄(MoO3), 산화 텅스텐(WO3) 등의 금속이 담지된 촉매에 백금(Pt), 니켈(Ni) 등의 금속을 추가 도입함으로써 탈수소화 반응 촉진을 통해 탄화 몰리브데늄 또는 탄화 텅스텐의 형성을 촉진하고, 이를 통해 방향족 화합물의 생산 수율을 향상시킬 수 있는 이종금속 담지 촉매를 제공하고자 한다.The present invention relates to a heterogeneous metal-supported catalyst for the production of aromatic compounds through the dehydraromatization reaction of ethane. In the present invention, metals such as molybdenum oxide (MoO 3 ) and tungsten oxide (WO 3 ) are supported on a zeolite support. By adding metals such as platinum (Pt) and nickel (Ni) to the catalyst, the formation of molybdenum carbide or tungsten carbide can be promoted through dehydrogenation reaction, thereby improving the production yield of aromatic compounds. The aim is to provide a catalyst supported on heterogeneous metals.

이를 위해, 본 발명은 제올라이트 담지체; 상기 제올라이트 담지체에 담지되고, 산화 몰리브데늄(MoO3) 및 산화 텅스텐(WO3)으로 이루어진 군으로부터 선택되는 1종 이상의 제1 금속(A); 및 상기 제올라이트 담지체에 담지되고, 백금(Pt) 및 니켈(Ni)로 이루어진 군으로부터 선택되는 1종 이상의 제2 금속(B);을 포함하고, 에탄의 탈수소방향족화 반응에 의한 방향족 화합물 제조에 이용되는 것을 특징으로 하는 이종금속 담지 촉매를 제공한다.For this purpose, the present invention includes a zeolite carrier; At least one first metal (A) supported on the zeolite support and selected from the group consisting of molybdenum oxide (MoO 3 ) and tungsten oxide (WO 3 ); and at least one second metal (B) supported on the zeolite support and selected from the group consisting of platinum (Pt) and nickel (Ni), and used for producing aromatic compounds by dehydroaromatization of ethane. Provided is a heterogeneous metal supported catalyst characterized in that it is used.

이때, 상기 제1 금속 및 제2 금속은 제올라이트 담지체에 담지할 수 있는 방법이라면 반드시 이에 제한되는 것은 아니지만, 초기 젖음법에 의해 담지되는 것이 바람직하다.At this time, the first metal and the second metal are preferably supported on the zeolite carrier by an initial wetting method, although this is not necessarily limited to any method that can be supported.

또한, 상기 제1 금속은 상기 제올라이트 담지체 100 중량부를 기준으로 1 내지 5 중량부의 함량으로 담지되는 것이 바람직하다.In addition, the first metal is preferably supported in an amount of 1 to 5 parts by weight based on 100 parts by weight of the zeolite support.

또한, 상기 제2 금속은 상기 제올라이트 담지체 100 중량부를 기준으로 0.5 내지 2.5 중량부의 함량으로 담지되는 것이 바람직하다. 상기 제2 금속의 함량이 상기 하한치 미만이면 에탄의 탈수소방향족화 반응시 탈수소화 반응 향상 효과가 미미하여 에탄의 전환율 및 생성물(방향족 화합물)의 수율이 낮아질 수 있고, 상기 상한치를 초과하면 반응물의 전환율 및 생성물의 수율이 더이상 상승하지 않는다는 문제가 있다.In addition, the second metal is preferably supported in an amount of 0.5 to 2.5 parts by weight based on 100 parts by weight of the zeolite support. If the content of the second metal is less than the lower limit, the effect of improving the dehydrogenation reaction during the dehydroaromatization reaction of ethane may be minimal, which may lower the conversion rate of ethane and the yield of the product (aromatic compound), and if it exceeds the upper limit, the conversion rate of the reactants and There is a problem that the yield of the product does not increase anymore.

본 발명에서 사용되는 제올라이트는 촉매 담지체로서 통상적으로 사용되는 것으로, 예를 들어 HZSM-5, ZSM-5, MCM-22, MCM-41으로 이루어진 군에서 선택될 수 있다.The zeolite used in the present invention is commonly used as a catalyst carrier, and may be selected from the group consisting of, for example, HZSM-5, ZSM-5, MCM-22, and MCM-41.

또한, 상기 제올라이트 담지체의 Si/Al 비율은 15 내지 140인 것이 바람직하다.Additionally, the Si/Al ratio of the zeolite support is preferably 15 to 140.

또한, 본 발명은 전술한 상기 이종금속 담지 촉매하에서, 에탄을 반응물로 탈수소화방향족화 반응을 수행하는 단계;를 포함하는 방향족 화합물의 제조방법을 제공한다.In addition, the present invention provides a method for producing an aromatic compound, including the step of performing a dehydrogenation aromatization reaction with ethane as a reactant in the presence of the heterogeneous metal supported catalyst described above.

상기 탈수소방향족화 반응은 상기 이종금속 담지 촉매가 충진된 컬럼을 포함하는 기체상 반응기, 예를 들어 고정층 기상 반응기에서 수행되는 것이 바람직하다.The dehydraromatization reaction is preferably performed in a gas phase reactor, for example, a fixed bed gas phase reactor, including a column filled with the heterogeneous metal supported catalyst.

상기 탈수소방향족화 반응시 반응물에는 에탄 외에 아르곤 가스가 더 포함될 수 있다.During the dehydroaromatization reaction, the reactant may further include argon gas in addition to ethane.

상기 탈수소방향족화 반응은 600 내지 800 ℃에서 수행되는 것이 바람직하다.The dehydraromatization reaction is preferably performed at 600 to 800 °C.

상기 탈수소방향족화 반응에 따른 생성물인 방향족 화합물은 벤젠, 톨루엔, 자일렌, 나프탈렌 및 코트로 이루어진 군에서 선택되는 1종 이상일 수 있다.The aromatic compound that is a product of the dehydraromatization reaction may be one or more selected from the group consisting of benzene, toluene, xylene, naphthalene, and coat.

또한 하기 실시예와 같이 본 발명에 따른 이종금속 담지 촉매 하에서 에탄을 반응물로 사용하여 수행되는 탈수소방향족화 반응은 에탄과 아르곤의 부피비가 1:1이고, 4,500 ml/h·gcat의 GHSV, 600℃의 반응온도, 1시간의 반응 조건하에서 수행되는 것이 가장 바람직하다.In addition, as shown in the following examples, the dehydroaromatization reaction performed using ethane as a reactant under a heterogeneous metal supported catalyst according to the present invention has a volume ratio of ethane and argon of 1:1, and a GHSV of 4,500 ml/h·g cat , 600 It is most preferable to carry out the reaction at a reaction temperature of ℃ and a reaction time of 1 hour.

이하에서는 바람직한 실시예 등을 들어 본 발명을 더욱 상세하게 설명한다. 그러나 이들 실시예 등은 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이에 의하여 제한되지 않는다는 것은 당업계의 통상의 지식을 가진 자에게 자명할 것이다.Hereinafter, the present invention will be described in more detail, including preferred embodiments. However, these examples are for illustrating the present invention in more detail, and it will be apparent to those skilled in the art that the scope of the present invention is not limited thereto.

비교예Comparative example . . 몰리브데늄이Molybdenum 담지된supported 제올라이트 촉매의 제조 Preparation of zeolite catalyst

먼저, 0.055 g의 헵타몰리브덴산 암모늄 테트라 하이드레이트 ((NH4)6Mo7O24·4H2O)를 증류수에 용해시킨 후, 프로톤 양이온을 가진 HZSM-5 제올라이트 담지체 1.0 g에 초기젖음법으로 담지하고 110℃에서 12시간 동안 건조시켜, 담지체 중량 대비 3 중량%의 몰리브데늄을 담지시켰다. 건조 후 일반 공기 조건하에서 5℃/min으로 승온하고 500℃에서 4시간 동안 소성시켜서 몰리브데늄이 담지된 제올라이트 촉매(Mo/HZSM-5)를 제조하였다. First, 0.055 g of ammonium heptamolybdate tetrahydrate ((NH 4 ) 6 Mo 7 O 24 4H 2 O) was dissolved in distilled water, and then applied to 1.0 g of HZSM-5 zeolite support with proton cations by the initial wetting method. It was supported and dried at 110°C for 12 hours to support 3% by weight of molybdenum based on the weight of the carrier. After drying, the temperature was raised at 5°C/min under normal air conditions and calcined at 500°C for 4 hours to prepare a zeolite catalyst (Mo/HZSM-5) carrying molybdenum.

실시예Example . 산화 . Oxidation 몰리브데늄molybdenum 및 백금이 and platinum 담지된supported 제올라이트 촉매의 제조 Preparation of zeolite catalyst

먼저, 0.055 g의 헵타몰리브덴산 암모늄 테트라 하이드레이트 ((NH4)6Mo7O24·4H2O)를 증류수에 용해시킨 후, 프로톤 양이온을 가진 HZSM-5 제올라이트 담지체 1.0 g에 초기젖음법으로 담지하고 110℃에서 12시간 동안 건조시켜, 담지체 중량 대비 3 중량%의 몰리브데늄을 담지시켰다. 0.01 g의 테트라아민 플래티늄 나이트레이트 ((Pt(NH3)4)(NO3)2)을 증류수에 용해시킨 용액을 이용하여 담지체 중량 대비 0.5 중량%의 백금을 초기젖음법을 이용하여 담지시켰다. 이후 110℃에서 12 시간 동안 건조 후 일반 공기 조건하에서 5℃/min으로 승온하고 500℃에서 4시간 동안 소성시켜서 산화 몰리브데늄 및 백금이 담지된 제올라이트 촉매(Mo-Pt/HZSM-5)를 제조하였다.First, 0.055 g of ammonium heptamolybdate tetrahydrate ((NH 4 ) 6 Mo 7 O 24 4H 2 O) was dissolved in distilled water, and then applied to 1.0 g of HZSM-5 zeolite support with proton cations by the initial wetting method. It was supported and dried at 110°C for 12 hours to support 3% by weight of molybdenum based on the weight of the carrier. Using a solution of 0.01 g of tetraamine platinum nitrate ((Pt(NH 3 ) 4 )(NO 3 ) 2 ) dissolved in distilled water, 0.5% by weight of platinum based on the weight of the carrier was supported using the initial wetting method. . After drying at 110°C for 12 hours, the temperature was raised at 5°C/min under normal air conditions and calcined at 500°C for 4 hours to prepare a zeolite catalyst (Mo-Pt/HZSM-5) supported with molybdenum oxide and platinum. did.

실험예Experiment example 1. One. XRDXRD 패턴 분석 pattern analysis

도 1은 본 발명의 비교예 및 실시예에 따라 제조된 촉매의 XRD패턴을 나타낸 그래프이다.Figure 1 is a graph showing the XRD pattern of a catalyst prepared according to comparative examples and examples of the present invention.

이를 통해 비교예 및 실시예에 따른 촉매 모두 결정성을 가지는 ZSM-5의 패턴이 두드러지게 나타남을 확인하였다. 또한, 활성금속으로 담지된 산화 몰리브데늄의 경우 지지체 상에 고르게 잘 분산되어 있기 때문에 이에 대한 뚜렷한 peak가 관측되지 않았으며, 실시예에서 첨가된 백금 또한, 높은 분산도로 인하여 뚜렷한 peak이 관측되지 않음을 확인하였다.Through this, it was confirmed that the pattern of ZSM-5, which has crystallinity, was prominent in both the catalysts according to Comparative Examples and Examples. In addition, in the case of molybdenum oxide supported as an active metal, no clear peak was observed because it was evenly and well dispersed on the support, and platinum added in the examples also did not have a clear peak observed due to its high dispersion. was confirmed.

실험예Experiment example 2. 2. CC 22 HH 66 -- TPRTPR (temperature-programmed (temperature-programmed redcutionredcution ))

도 2는 본 발명의 비교예 및 실시예에 따라 제조된 촉매의 에탄의 활성화 온도를 측정하기 위한 C2H6-TPR의 프로파일을 나타낸 그래프이다.Figure 2 is a graph showing the profile of C 2 H 6 -TPR for measuring the activation temperature of ethane of catalysts prepared according to Comparative Examples and Examples of the present invention.

이를 통해 비교예에 따라 제조된 Mo/HZSM-5 촉매는 약 400도 부근에서 에탄의 활성화가 시작되는 반면, 실시예에 따라 제조된 백금이 첨가된 Mo-Pt/HZSM-5 촉매의 경우 에탄의 활성화 온도가 약 250도 부근으로서 에탄이 활성화되는 온도가 감소하는 것을 확인하였으며, 이는 백금의 첨가로 인하여 에탄의 탈수소화 반응이 촉진되었기 때문임을 확인하였다.Through this, in the Mo/HZSM-5 catalyst prepared according to the comparative example, activation of ethane begins at around 400 degrees, whereas in the case of the platinum-added Mo-Pt/HZSM-5 catalyst prepared according to the example, the activation of ethane begins. It was confirmed that the activation temperature of ethane decreased as the activation temperature was around 250 degrees, and this was confirmed to be because the addition of platinum promoted the dehydrogenation reaction of ethane.

실험예Experiment example 3. 에탄의 탈수소방향족화 반응을 통한 방향족 화합물의 생산 3. Production of aromatic compounds through dehydraromatization reaction of ethane

상기 제조된 비교예 및 실시예에 따른 촉매들을 이용하여 각각 에탄의 탈수소방향족화 반응을 수행하여 방향족 화합물을 생산하였다. 구체적으로, 상기 비교예 및 실시예에 따라 제조된 촉매 0.1 g을 6.35 mm 외경을 가진 고정층 기상 반응기에 각각 충진한 후, 초고순도 아르곤 가스(99.999%)의 분위기하에서 반응온도인 600℃로 승온시켰다. 반응온도에 도달하면 아르곤 가스를 에탄:아르곤의 부피비가 1:10인 반응가스로 변경한 후 반응 가스를 10 ml/min로 흐르게 하여 반응을 1시간 동안 진행하였다. 고정층 반응기의 촉매층을 통과한 반응물 및 생성물은 230℃로 유지된 상태로 가스 크로마토그래피에 직결(on-line)로 연결되어 주입되었다. 가스크로마토그래피를 통해 분석된 가스의 조성을 이용하여 반응물인 에탄의 전환율 및 생성물인 방향족 화합물의 선택도와 수율을 계산하였으며, 그 결과를 하기 도 3 및 도 4에 나타내었다.Dehydroaromatization of ethane was performed using the catalysts according to the comparative examples and examples prepared above, respectively, to produce aromatic compounds. Specifically, 0.1 g of the catalyst prepared according to the comparative examples and examples were charged into each fixed bed gas phase reactor with an outer diameter of 6.35 mm, and then the temperature was raised to the reaction temperature of 600°C in an atmosphere of ultra-high purity argon gas (99.999%). . When the reaction temperature was reached, the argon gas was changed to a reaction gas with a volume ratio of ethane:argon of 1:10, and then the reaction gas was flowed at 10 ml/min and the reaction proceeded for 1 hour. The reactants and products that passed through the catalyst layer of the fixed bed reactor were maintained at 230°C and were injected directly into the gas chromatograph (on-line). The conversion rate of ethane as a reactant and the selectivity and yield of aromatic compounds as products were calculated using the composition of the gas analyzed through gas chromatography, and the results are shown in Figures 3 and 4 below.

측정 결과, 백금이 담지되지 않은 비교예에 따른 촉매의 경우 약 18.1%의 에탄 전환율, 5.6%의 방향족화합물 수율을 나타낸 반면, 본 발명에 따라 백금이 추가 담지된 촉매의 경우 에탄의 전환율이 25.9%로 비교예 대비 약 1.43 배 증가하였으며, 방향족 화합물의 수율은 약 8.8%로 비교예 대비 약 1.57 배 증가하는 것을 확인하였다. 또한, 본 발명에 따라 백금이 추가 담지된 촉매의 경우 백금이 담지되지 않은 촉매에 비해 방향족 화합물에 대한 선택도는 크게 변하지 않은 반면, 코크에 대한 선택도는 18.1%에서 13.7%로 감소하였다. 결과적으로 백금이 추가 담지된 Mo-Pt/HZSM-5 촉매에서 방향족 화합물의 생산 수율이 크게 증가함을 확인하였다.As a result of the measurement, the catalyst according to the comparative example without platinum showed an ethane conversion rate of about 18.1% and an aromatic compound yield of 5.6%, while the catalyst additionally supported with platinum according to the present invention showed an ethane conversion rate of 25.9%. It was confirmed that the yield of aromatic compounds increased by about 1.43 times compared to the comparative example, and the yield of aromatic compounds was about 8.8%, which was about 1.57 times higher than the comparative example. In addition, in the case of the catalyst additionally supported with platinum according to the present invention, the selectivity to aromatic compounds did not change significantly compared to the catalyst without platinum, while the selectivity to coke decreased from 18.1% to 13.7%. As a result, it was confirmed that the production yield of aromatic compounds greatly increased in the Mo-Pt/HZSM-5 catalyst additionally supported with platinum.

실험예Experiment example 4. 기존 온도보다 낮은 온도에서 탄화 4. Carbonization at a lower temperature than the existing temperature 몰리브데늄의of molybdenum 형성 formation

도 5는 본 발명의 비교예 및 실시예에 따라 제조된 촉매와 상기 촉매를 이용하여 에탄의 탈수소방향족화 반응을 수행한 후의 촉매에 대하여 Mo 3d 오비탈에 대한 XPS 분석 그래프를 나타낸 것이다. Figure 5 shows an XPS analysis graph for Mo 3d orbitals for the catalyst prepared according to Comparative Examples and Examples of the present invention and the catalyst after performing the dehydroaromatization reaction of ethane using the catalyst.

도 6은 본 발명의 비교예 및 실시예에 따라 제조된 촉매를 이용하여 에탄의 탈수소방향족화 반응을 수행한 후의 촉매에 대하여 TPO (temperature-programmed oxidation) 분석을 진행하고 그 프로파일을 나타낸 것이다.Figure 6 shows the profile of TPO (temperature-programmed oxidation) analysis performed on the catalyst after performing the dehydraromatization reaction of ethane using the catalyst prepared according to the comparative examples and examples of the present invention.

도 5를 통해 환원 분위기인 반응물 에탄의 조건에서 몰리브네늄의 환원이 일어나는 것을 확인하였다. 특히, 기존의 Mo/HZSM-5 촉매의 경우 반응 전 MoO3로 존재하는 산화 몰리브데늄이 반응 후 MoO2로의 부분적인 환원만이 일어난 것으로 확인된 반면, 백금이 담지된 Mo-Pt/HZSM-5 촉매의 경우 반응 전 MoO3로 존재하는 산화 몰리브데늄이 반응 후 Mo0의 몰리브데늄 금속과 Mo2C의 탄화 몰리브데늄으로의 환원이 일어난 것을 확인하였다.Through Figure 5, it was confirmed that the reduction of molybnenium occurred under the conditions of the reactant ethane, which is a reducing atmosphere. In particular, in the case of the existing Mo/HZSM-5 catalyst, it was confirmed that molybdenum oxide, which existed as MoO 3 before the reaction, was only partially reduced to MoO 2 after the reaction, whereas platinum-supported Mo-Pt/HZSM- In the case of catalyst 5, it was confirmed that molybdenum oxide, which existed as MoO 3 before the reaction, was reduced to molybdenum metal of Mo 0 and molybdenum carbide of Mo 2 C after the reaction.

한편, TPO 분석 결과는 탄화 몰리브데늄과 관련있는 LT-type 탄소와 촉매의 비활성화를 유발하는 코크와 관련있는 HT-type 탄소로 구분할 수 있는데, 도 6에 나타난 바와 같이 기존의 Mo/HZSM-5 촉매의 반응 후에는 주로 HT-type의 탄소로 구성되어 있는 반면, 백금이 첨가된 Mo-Pt/HZSM-5 촉매의 경우 LT-type의 탄소가 확연히 증가하였고 이는 본 발명에 따라 백금이 첨가된 Mo-Pt/HZSM-5 촉매의 경우 탈수소방향족화 반응 과정을 통해 탄화 몰리브데늄이 형성된다는 것을 명확하게 설명한다.Meanwhile, the TPO analysis results can be divided into LT-type carbon related to molybdenum carbide and HT-type carbon related to coke that causes deactivation of the catalyst. As shown in Figure 6, the existing Mo/HZSM-5 After the reaction of the catalyst, it is mainly composed of HT-type carbon, whereas in the case of the Mo-Pt/HZSM-5 catalyst to which platinum was added, LT-type carbon was significantly increased, which is consistent with the Mo-Pt/HZSM-5 catalyst to which platinum was added according to the present invention. -In the case of the Pt/HZSM-5 catalyst, it is clearly explained that molybdenum carbide is formed through the dehydroaromatization reaction process.

Claims (11)

제올라이트 담지체;
상기 제올라이트 담지체에 담지된 산화 몰리브데늄(MoO3) 및 백금(Pt);을 포함하고,
상기 산화 몰리브데늄(MoO3)은 에탄의 탈수소방향족화 반응이 진행되면서 탄화 몰리브데늄(Mo2C)으로 전환되는 것을 특징으로 하는 에탄의 탈수소방향족화 반응에 의한 방향족 화합물 제조용 이종금속 담지 촉매.
Zeolite support;
Includes molybdenum oxide (MoO 3 ) and platinum (Pt) supported on the zeolite support,
The molybdenum oxide (MoO 3 ) is converted to molybdenum carbide (Mo 2 C) as the dehydraromatization reaction of ethane progresses. A heterogeneous metal-supported catalyst for the production of aromatic compounds by the dehydroaromatization reaction of ethane. .
제1항에 있어서,
상기 제올라이트 담지체 100 중량부를 기준으로 상기 산화 몰리브데늄 1 내지 5 중량부가 담지되는 것을 특징으로 하는 이종금속 담지 촉매.
According to paragraph 1,
A heterogeneous metal supported catalyst, characterized in that 1 to 5 parts by weight of molybdenum oxide is supported based on 100 parts by weight of the zeolite support.
제1항에 있어서,
상기 제올라이트 담지체 100 중량부를 기준으로 상기 백금 0.5 내지 2.5 중량부가 담지되는 것을 특징으로 하는 이종금속 담지 촉매.
According to paragraph 1,
A heterogeneous metal supported catalyst, characterized in that 0.5 to 2.5 parts by weight of platinum is supported based on 100 parts by weight of the zeolite support.
삭제delete 제1항에 있어서,
상기 제올라이트 담지체는 HZSM-5, ZSM-5, MCM-22 및 MCM-41로 이루어진 군에서 선택되는 것을 특징으로 하는 이종금속 담지 촉매.
According to paragraph 1,
A heterogeneous metal supported catalyst, characterized in that the zeolite support is selected from the group consisting of HZSM-5, ZSM-5, MCM-22, and MCM-41.
제1항에 있어서,
상기 제올라이트 담지체의 Si/Al 비율은 15 내지 140인 것을 특징으로 하는 이종금속 담지 촉매.
According to paragraph 1,
A heterogeneous metal supported catalyst, characterized in that the Si/Al ratio of the zeolite support is 15 to 140.
제1항에 따른 이종금속 담지 촉매하에서, 에탄을 반응물로 탈수소화방향족화 반응을 수행하는 단계;를 포함하는 방향족 화합물의 제조방법.A method for producing an aromatic compound comprising: performing a dehydrogenation aromatization reaction using ethane as a reactant in the presence of a heterogeneous metal supported catalyst according to claim 1. 제7항에 있어서,
상기 반응은 이종금속 담지 촉매가 충진된 컬럼을 포함하는 기체상 반응기에서 수행되는 것을 특징으로 하는 방향족 화합물의 제조방법.
In clause 7,
A method for producing an aromatic compound, characterized in that the reaction is performed in a gas phase reactor including a column filled with a heterogeneous metal supported catalyst.
제7항에 있어서,
반응물로 아르곤 가스를 더 포함하는 것을 특징으로 하는 방향족 화합물의 제조방법.
In clause 7,
A method for producing an aromatic compound, characterized in that it further includes argon gas as a reactant.
제7항에 있어서,
상기 반응은 600 내지 800 ℃에서 수행되는 것을 특징으로 하는 방향족 화합물의 제조방법.
In clause 7,
A method for producing an aromatic compound, characterized in that the reaction is carried out at 600 to 800 ° C.
제7항에 있어서,
상기 방향족 화합물은 벤젠, 톨루엔, 자일렌, 나프탈렌 및 코트로 이루어진 군에서 선택되는 1종 이상인 것을 특징으로 하는 방향족 화합물의 제조방법.
In clause 7,
A method for producing an aromatic compound, characterized in that the aromatic compound is at least one selected from the group consisting of benzene, toluene, xylene, naphthalene, and coat.
KR1020180142656A 2018-11-19 2018-11-19 Dissimilar metal supported catalyst for preparation of aromatic compounds by dehydroaromatization of ethane, and Method for preparing aromatic compounds using the same KR102624767B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180142656A KR102624767B1 (en) 2018-11-19 2018-11-19 Dissimilar metal supported catalyst for preparation of aromatic compounds by dehydroaromatization of ethane, and Method for preparing aromatic compounds using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180142656A KR102624767B1 (en) 2018-11-19 2018-11-19 Dissimilar metal supported catalyst for preparation of aromatic compounds by dehydroaromatization of ethane, and Method for preparing aromatic compounds using the same

Publications (2)

Publication Number Publication Date
KR20200058088A KR20200058088A (en) 2020-05-27
KR102624767B1 true KR102624767B1 (en) 2024-01-12

Family

ID=70911242

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180142656A KR102624767B1 (en) 2018-11-19 2018-11-19 Dissimilar metal supported catalyst for preparation of aromatic compounds by dehydroaromatization of ethane, and Method for preparing aromatic compounds using the same

Country Status (1)

Country Link
KR (1) KR102624767B1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100924975B1 (en) 2003-11-27 2009-11-04 네스테 오일 오와이제이 Catalyst and method for the preparation thereof
KR101621307B1 (en) * 2014-09-05 2016-05-17 한국화학연구원 Zeolite catalyst for the synthesis of mixture of benzene, toluene, ethylbenzene, xylene (BTEX)and middle distillate from poly aromatic hydrocarbons and Its preparation method
KR101862683B1 (en) 2016-12-15 2018-07-04 서울대학교산학협력단 Preparation of Metal Oxide Catalyst Supported on Microporous and Mesoporous HZSM-5 for Co-aromatization of Methane and Propane, and Production Method of BTX Using Said Catalyst

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100924975B1 (en) 2003-11-27 2009-11-04 네스테 오일 오와이제이 Catalyst and method for the preparation thereof
KR101621307B1 (en) * 2014-09-05 2016-05-17 한국화학연구원 Zeolite catalyst for the synthesis of mixture of benzene, toluene, ethylbenzene, xylene (BTEX)and middle distillate from poly aromatic hydrocarbons and Its preparation method
KR101862683B1 (en) 2016-12-15 2018-07-04 서울대학교산학협력단 Preparation of Metal Oxide Catalyst Supported on Microporous and Mesoporous HZSM-5 for Co-aromatization of Methane and Propane, and Production Method of BTX Using Said Catalyst

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Stability of Fe and Zn Promoted Mo/ZSM-5 Catalysts for Ethane Dehydroaromatization in Cyclic Operation Mode, Energy Fuels, 07 Jun 2018*

Also Published As

Publication number Publication date
KR20200058088A (en) 2020-05-27

Similar Documents

Publication Publication Date Title
CN105102407B (en) Method and the catalyst that wherein uses of the paraffin conversion into alkene
US6239057B1 (en) Catalyst for the conversion of low carbon number aliphatic hydrocarbons to higher carbon number hydrocarbons, process for preparing the catalyst and process using the catalyst
Wong et al. Methane and ethane activation without adding oxygen: promotional effect of W in Mo-W/HZSM-5
AU2009235497B2 (en) Method for the dehydroaromatisation of mixtures containing methane by regenerating the corresponding catalysts that are devoid of precious metal
EP1874713A2 (en) Method for selective hydrogenation of acetylene to ethylene
KR102472062B1 (en) Catalyst compositions comprising CON-type zeolites and ZSM-5-type zeolites, methods of making and using such compositions
Zhu et al. Butene catalytic cracking to propene and ethene over potassium modified ZSM-5 catalysts
CN111517906B (en) Hydrocarbon conversion process using metal carbide nanomaterial catalyst
EP2215038B1 (en) Process for producing light olefins from synthesis gas using dual sequential bed reactor
CN109926087B (en) Zeolite supported catalyst for light alkane dehydrogenation and preparation method thereof
KR20160131377A (en) Catalysts for ethanol dehydration and production method of ethylene using same
KR102624767B1 (en) Dissimilar metal supported catalyst for preparation of aromatic compounds by dehydroaromatization of ethane, and Method for preparing aromatic compounds using the same
KR102496524B1 (en) Dissimilar metal supported catalyst for preparation of aromatic compounds by dehydroaromatization of methane and Method for preparing aromatic compounds using the same
KR102295224B1 (en) Catalyst for Dehydroaromatization of Methane and Production Method of BTX from Methane Using Said Catalyst
KR102496526B1 (en) Dissimilar metal supported catalyst for preparation of aromatic compounds by the co-dehydroaromatization of methane and C2-C4 alkane compounds, and Method for preparing aromatic compounds using the same
KR20190010815A (en) preparation method of aromatic compound using methane dehydroaromatization
US6462247B1 (en) Toluene disproportionation process
EP3551329A1 (en) Process for preparing a molybdenum-platinum-based catalyst for the synthesis of benzene by transalkylation
CA3043870A1 (en) Hydrocarbon conversion catalyst system
US20210275995A1 (en) Dissimilar metal-supported catalyst for the production of aromatics by methane dehydroaromatization and method for producing aromatics using the same
CA3044683C (en) Upgrading ethane-containing light paraffins streams
EP3303269B1 (en) Process for the selective hydrogenation of acetylene to ethylene
US11872544B2 (en) Modified ZSM-5 catalyst for converting light hydrocarbons to liquid fuels
KR20230086593A (en) Dissimilar metal supported catalyst for preparation of aromatic compounds by dehydroaromatization, and Method for preparing aromatic compounds using the same
JP7018174B2 (en) Method for producing aromatic hydrocarbons

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant