KR102622635B1 - Composite Active Material for Secondary Battery Comprising Lithium Cobalt Oxide and Lithium Transition Metal Oxide Being Activated at High Voltage and Method of Manufacturing the Same - Google Patents

Composite Active Material for Secondary Battery Comprising Lithium Cobalt Oxide and Lithium Transition Metal Oxide Being Activated at High Voltage and Method of Manufacturing the Same Download PDF

Info

Publication number
KR102622635B1
KR102622635B1 KR1020160053791A KR20160053791A KR102622635B1 KR 102622635 B1 KR102622635 B1 KR 102622635B1 KR 1020160053791 A KR1020160053791 A KR 1020160053791A KR 20160053791 A KR20160053791 A KR 20160053791A KR 102622635 B1 KR102622635 B1 KR 102622635B1
Authority
KR
South Korea
Prior art keywords
active material
composite active
lithium
metal oxide
precursor
Prior art date
Application number
KR1020160053791A
Other languages
Korean (ko)
Other versions
KR20170124202A (en
Inventor
이보람
박성빈
박영욱
조치호
허혁
정왕모
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to KR1020160053791A priority Critical patent/KR102622635B1/en
Publication of KR20170124202A publication Critical patent/KR20170124202A/en
Application granted granted Critical
Publication of KR102622635B1 publication Critical patent/KR102622635B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/446Initial charging measures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Abstract

본 발명은 리튬 코발트 산화물 및 4.4V 이상의 전압에서 활성화되는 리튬 금속 산화물을 포함하고,
상기 리튬 금속 산화물의 80% 이상은 복합체 활물질의 입자 중심으로부터 표면까지의 평균 거리(r)를 기준으로, 입자 중심으로부터 0.6r 내지 r의 범위 내에 존재하는 것을 특징으로 하는 복합체 활물질에 관한 것이다.
The present invention includes lithium cobalt oxide and lithium metal oxide activated at a voltage of 4.4 V or higher,
It relates to a composite active material, wherein more than 80% of the lithium metal oxide is present within a range of 0.6r to r from the center of the particle, based on the average distance (r) from the center of the particle to the surface of the composite active material.

Description

리튬 코발트 산화물과 고전압에서 활성화되는 리튬 금속 산화물을 포함하는 이차전지용 복합체 활물질 및 이의 제조 방법 {Composite Active Material for Secondary Battery Comprising Lithium Cobalt Oxide and Lithium Transition Metal Oxide Being Activated at High Voltage and Method of Manufacturing the Same}Composite active material for secondary batteries comprising lithium cobalt oxide and lithium metal oxide activated at high voltage and method of manufacturing the same {Composite Active Material for Secondary Battery Comprising Lithium Cobalt Oxide and Lithium Transition Metal Oxide Being Activated at High Voltage and Method of Manufacturing the Same}

본 발명은 리튬 코발트 산화물 및 4.4V 이상의 전압에서 활성화되고, 입자 중심으로부터 표면측에 위치하는 리튬 금속 산화물을 포함하는 복합체 활물질 및 이의 제조 방법에 관한 것이다.The present invention relates to a composite active material comprising lithium cobalt oxide and lithium metal oxide activated at a voltage of 4.4 V or higher and located from the center of the particle to the surface, and a method for producing the same.

모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서 이차전지의 수요가 급격히 증가하고 있고, 그러한 이차전지 중 높은 에너지 밀도와 작동 전위를 나타내고, 사이클 수명이 길며, 자기방전율이 낮은 리튬 이차전지가 상용화되어 널리 사용되고 있다.As technology development and demand for mobile devices increase, the demand for secondary batteries as an energy source is rapidly increasing. Among such secondary batteries, lithium secondary batteries exhibit high energy density and operating potential, long cycle life, and low self-discharge rate. has been commercialized and is widely used.

또한, 환경문제에 대한 관심이 커짐에 따라 대기오염의 주요 원인의 하나인 가솔린 차량, 디젤 차량 등 화석연료를 사용하는 차량을 대체할 수 있는 전기자동차, 하이브리드 전기자동차에 대한 연구가 많이 진행되고 있다. 이러한 전기자동차, 하이브리드 전기자동차 등의 동력원으로는 주로 니켈 수소금속 이차전지가 사용되고 있지만, 높은 에너지 밀도와 방전 전압의 리튬 이차전지를 사용하는 연구가 활발히 진행되고 있으며, 일부 상용화 단계에 있다.In addition, as interest in environmental issues grows, much research is being conducted on electric vehicles and hybrid electric vehicles that can replace vehicles that use fossil fuels such as gasoline vehicles and diesel vehicles, which are one of the main causes of air pollution. . Nickel hydride metal secondary batteries are mainly used as a power source for such electric vehicles and hybrid electric vehicles, but research on using lithium secondary batteries with high energy density and discharge voltage is actively underway, and some are in the commercialization stage.

현재 리튬 이차전지의 양극재로는 LiCoO2, 삼성분계 활물질 (NMC/NCA), LiMnO4, LiFePO4 등이 사용되고 있다. 이중에서 LiCoO2의 경우 코발트의 가격이 고가이고, 삼성분계 활물질에 비해 동일 전압에서 용량이 낮은 문제가 있어, 이차전지의 고용량화를 위한 삼성분계 활물질의 사용량이 점차 늘어나고 있다.Currently, LiCoO 2 , ternary active material (NMC/NCA), LiMnO 4 , LiFePO 4 , etc. are used as cathode materials for lithium secondary batteries. Among these, in the case of LiCoO 2 , the price of cobalt is high and the capacity is lower at the same voltage compared to ternary active materials, so the use of ternary active materials to increase the capacity of secondary batteries is gradually increasing.

다만, LiCoO2의 경우, 높은 압연밀도 등 제반 물성이 우수하고, 높은 사이클 특성 등 전기화학적 특성이 우수하여 현재까지도 다수 사용되고 있다. 그러나, LiCoO2는 충방전 전류량이 약 150 mAh/g 정도로 낮으며, 4.3V 이상의 전압에서는 결정구조가 불안정하고, 전해액과의 반응에 의한 발화의 위험성을 가지고 있다.However, in the case of LiCoO 2 , it is widely used to this day because it has excellent physical properties such as high rolling density and excellent electrochemical properties such as high cycle characteristics. However, LiCoO 2 has a low charge/discharge current of about 150 mAh/g, its crystal structure is unstable at voltages of 4.3 V or higher, and there is a risk of ignition due to reaction with the electrolyte solution.

특히, 고용량 이차전지를 개발하기 위한 고전압 적용 시에는, LiCoO2의 Li 사용량이 늘어나게 되면서 표면 불안정 및 구조 불안정의 가능성이 상승하는 문제가 있다.In particular, when applying high voltage to develop a high-capacity secondary battery, there is a problem that the possibility of surface instability and structural instability increases as the amount of Li used in LiCoO 2 increases.

따라서, 고전압에서도 안정적으로 사용할 수 있는 리튬 코발트 산화물에 기반한 양극 활물질 개발의 필요성이 높은 실정이다.Therefore, there is a high need to develop a positive electrode active material based on lithium cobalt oxide that can be stably used even at high voltage.

본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하는 것을 목적으로 한다.The purpose of the present invention is to solve the above problems of the prior art and technical problems that have been requested in the past.

구체적으로, 본 발명의 목적은 리튬 코발트 산화물을 포함하여, 압연 밀도를 비롯한 기타 제반 물성이 우수하면서도, 4.4V 이상의 전압에서 활성화되는 리튬 금속 산화물을 표면측에 포함하여 입자의 표면 안전성을 향상시키고, 부반응을 억제시키면서도 고용량을 발휘하는 복합체 활물질을 제공하는 것이다.Specifically, the purpose of the present invention is to improve the surface stability of the particles by including lithium cobalt oxide, which has excellent rolling density and other physical properties, and including lithium metal oxide activated at a voltage of 4.4 V or more on the surface side, The goal is to provide a composite active material that exhibits high capacity while suppressing side reactions.

본 발명의 목적은 또한, 상기 복합체 활물질의 제조 방법과, 상기 복합체 활물질을 포함함으로써 고용량이면서도 수명특성이 우수한 이차전지를 제공하는 것이다.Another object of the present invention is to provide a method for manufacturing the composite active material and a secondary battery with high capacity and excellent lifespan characteristics by including the composite active material.

이러한 목적을 달성하기 위한 본 발명에 따른 활물질 복합체는, 리튬 코발트 산화물 및 4.4V 이상의 전압에서 활성화되는 리튬 금속 산화물을 포함하고,The active material complex according to the present invention for achieving this purpose includes lithium cobalt oxide and lithium metal oxide activated at a voltage of 4.4 V or more,

상기 리튬 금속 산화물의 80% 이상은 복합체 활물질의 입자 중심으로부터 표면까지의 평균 거리(r)를 기준으로, 입자 중심으로부터 0.6r 내지 r의 범위 내에 존재하는 것을 특징으로 한다.More than 80% of the lithium metal oxide is characterized in that it exists within a range of 0.6r to r from the particle center, based on the average distance (r) from the particle center to the surface of the composite active material.

즉, 본 발명에 따른 활물질 복합체는 리튬 코발트 산화물을 포함하여, 높은 압연 밀도를 가지면서도, 표면측에 4.4V 이상의 전압에서 활성화되는 리튬 금속 산화물을 포함하는 바, 수명 특성과 용량 특성이 우수한 이차전지를 제공하는 이점이 있다.That is, the active material composite according to the present invention includes lithium cobalt oxide, has a high rolling density, and includes lithium metal oxide on the surface that is activated at a voltage of 4.4 V or more, resulting in a secondary battery with excellent lifespan characteristics and capacity characteristics. There is an advantage in providing.

일반적인 리튬 금속 산화물은 리튬 전이금속 산화물인 리튬 코발트 산화물을 포함하나, 본 발명에 따른 리튬 금속 산화물은, 4.4V 이상의 전압에서 활성화되는 리튬 금속 산화물로서, 리튬 코발트 산화물을 제외한다.General lithium metal oxide includes lithium cobalt oxide, which is a lithium transition metal oxide, but the lithium metal oxide according to the present invention is a lithium metal oxide activated at a voltage of 4.4 V or more and excludes lithium cobalt oxide.

상기 4.4V 이상의 전압에서 활성화되는 리튬 금속 산화물은, 저전압에서는 전기적으로 불활성 상태이며, 4.4V 이상의 고전압에서는 리튬 이온이 방출되면서 용량에 기여하며, 고전압에서도 안정적으로 충전용량을 제공할 수 있도록 조력한다.Lithium metal oxide, which is activated at a voltage of 4.4V or higher, is electrically inactive at low voltages, and lithium ions are released at high voltages of 4.4V or higher, contributing to capacity and helping to provide stable charging capacity even at high voltages.

이러한 리튬 금속 산화물은 복합체 활물질에서 주로 표면측에 위치하는 바, 리튬 금속 산화물의 80% 이상은 복합체 활물질의 입자 중심으로부터 표면까지의 평균 거리(r)를 기준으로, 입자 중심으로부터 0.6r 내지r의 범위 내에 존재한다.This lithium metal oxide is mainly located on the surface of the composite active material, and more than 80% of the lithium metal oxide is 0.6r to r from the particle center based on the average distance (r) from the particle center of the composite active material to the surface. exists within range.

상기 범위를 벗어나, 리튬 금속 산화물이 활물질 복합체 내에 고르게 분포되어 있거나, 0.6r 미만인 입자 중심부에 상기 리튬 금속 산화물이 주로 위치하는 경우, 리튬 코발트 산화물의 표면 안전성을 증대시키는 효과를 얻기 어려울 수 있다.Outside of the above range, if the lithium metal oxide is evenly distributed within the active material composite or is mainly located in the center of the particle with less than 0.6r, it may be difficult to obtain the effect of increasing the surface safety of the lithium cobalt oxide.

같은 이유로, 상기 리튬 금속 산화물의 70% 이상은 0.7r 내지 r의 범위 내에 존재할 수 있다.For the same reason, more than 70% of the lithium metal oxide may be present in the range of 0.7r to r.

상기 리튬 금속 산화물은 복합체 활물질의 표면측에 위치하는 것이면 그 형태는 특별히 제한되지 않는다. 예를 들어, 일부는 복합체 활물질 입자의 외면에, 나머지 일부는 복합체 활물질 입자의 내면에 존재할 수도 있고, 활물질 입자의 내면에서 리튬 코발트 산화물과 농도 구배를 이루도록 존재할 수도 있으며, 층을 이루도록 존재할 수도 있다.The form of the lithium metal oxide is not particularly limited as long as it is located on the surface of the composite active material. For example, some may exist on the outer surface of the composite active material particle, and the remaining part may exist on the inner surface of the composite active material particle, or may exist to form a concentration gradient with lithium cobalt oxide on the inner surface of the active material particle, or may exist to form a layer.

하나의 구체적인 예에서, 상기 리튬 금속 산화물은 복합체 활물질 내에서 복수의 아일랜드(island)형 도메인들을 형성하고 있을 수 있다.In one specific example, the lithium metal oxide may form a plurality of island-type domains within the composite active material.

즉, 본 발명에 따른 복합체 활물질은 리튬 코발트 산화물에, 4.4V이상의 전압에서 활성화되는 상기 리튬 금속 산화물이 혼입되어 표면 측에 도메인들을 형성한 구조일 수 있으며, 상기 도메인들은 복합체 활물질 내에서 반드시 일체로 존재할 필요는 없다.That is, the composite active material according to the present invention may have a structure in which the lithium metal oxide activated at a voltage of 4.4 V or more is mixed with lithium cobalt oxide to form domains on the surface, and the domains are necessarily integral within the composite active material. It doesn't have to exist.

또한, 복합체 활물질에 포함되어 있는 상기 리튬 금속 산화물은 중심으로부터 0.6r 내지 r의 범위 내에 주로 존재하는 것이면 복합체 활물질의 내면 또는 외면 어디에도 존재할 수 있으며, 일부는 복합체 활물질 입자의 표면에 존재 할 수 있다.In addition, the lithium metal oxide contained in the composite active material may be present anywhere on the inner or outer surface of the composite active material as long as it mainly exists within the range of 0.6r to r from the center, and some may be present on the surface of the composite active material particle.

따라서, 상기 리튬 금속 산화물의 적어도 일부는 복합체 활물질의 입자 표면에 존재할 수도 있다.Accordingly, at least a portion of the lithium metal oxide may exist on the particle surface of the composite active material.

이때, 상기 복합체 활물질의 입자 표면에 존재하는 리튬 금속 산화물은 복합체 활물질의 입자 표면의 전체 또는 일부에 코팅층을 형성하고 있을 수 있다.At this time, the lithium metal oxide present on the surface of the particle of the composite active material may form a coating layer on all or part of the surface of the particle of the composite active material.

한편, 상기 리튬 금속 산화물은 복합체 활물질의 전체 몰(mol) 기준으로 0.01 몰% 내지 30 몰%로 포함되어 있을 수 있고, 상세하게는 5 몰% 내지 25 몰%, 더욱 상세하게는 7 몰% 내지 20 몰%로 포함되어 있을 수 있다.Meanwhile, the lithium metal oxide may be contained in an amount of 0.01 mol% to 30 mol% based on the total mole (mol) of the composite active material, specifically 5 mol% to 25 mol%, and more specifically 7 mol% to 7 mol%. It may be contained at 20 mol%.

상기 범위를 벗어나, 4.4V 이상의 전압에서 활성화되는 상기 리튬 금속 산화물의 함량이 지나치게 많은 경우에는, 저전압 범위에서 상대적으로 불활성 상태가 지속되어 용량을 오히려 저하시키고, 상대적으로 리튬 코발트 산화물의 양이 줄어들어, 리튬 코발트 산화물의 장점인 높은 압연밀도 등을 기대할 수 없으므로 바람직하지 않다.Outside the above range, if the content of the lithium metal oxide activated at a voltage of 4.4 V or higher is too high, the relatively inactive state continues in the low voltage range, which actually reduces the capacity, and the amount of lithium cobalt oxide is relatively reduced, It is not desirable because the advantages of lithium cobalt oxide, such as high rolling density, cannot be expected.

반대로, 상기 리튬 금속 산화물의 함량이 지나치게 적은 경우에는 고전압 범위에서의 용량 증대 효과와, 표면측에 위치하는 상기 리튬 금속 산화물의 표면 안정화 효과를 기대하기 어려우므로 바람직하지 않다.Conversely, if the content of the lithium metal oxide is too small, it is difficult to expect the capacity increase effect in the high voltage range and the surface stabilization effect of the lithium metal oxide located on the surface, which is not desirable.

상술한 바와 같이, 리튬 코발트 산화물은 압연밀도가 높고 코팅력 등의 제반 물성이 우수한 이점을 가지고 있으나, 고전압에서 표면 구조가 붕괴되고, 전해액과의 부반응으로 가스가 발생하는 등의 문제점 또한 가지고 있다.As described above, lithium cobalt oxide has the advantage of high rolling density and excellent physical properties such as coating power, but it also has problems such as the surface structure collapsing at high voltage and gas generation due to a side reaction with the electrolyte solution.

본 발명에 따른 복합체 활물질은 표면측에 4.4V 이상의 전압에서 활성화되는 상기 리튬 금속 산화물을 포함하고, 상기 리튬 금속 산화물은 활성화 이후 안정한 층상구조를 가지는 바, 리튬 코발트 산화물이 포함되어 있는 복합체 활물질의 표면 안정성을 증대시키는 효과가 있다.The composite active material according to the present invention includes the lithium metal oxide activated at a voltage of 4.4 V or more on the surface, and the lithium metal oxide has a stable layered structure after activation, so the surface of the composite active material containing lithium cobalt oxide It has the effect of increasing stability.

상기 리튬 코발트 산화물은 하기 화학식 1로 표현되는 화합물을 포함하고 있을 수 있다:The lithium cobalt oxide may contain a compound represented by the following Chemical Formula 1:

Li1+x(Co1-yM'y)1-xO2 (1)Li 1+x (Co 1-y M' y ) 1-x O 2 (1)

상기 식에서,In the above equation,

M'는 Mn, Ni, Al, Mg, Ti, Sn, Zn, Cu 및 Ru으로 이루어진 군에서 선택되는 하나 이상이고;M' is one or more selected from the group consisting of Mn, Ni, Al, Mg, Ti, Sn, Zn, Cu and Ru;

-0.03≤x≤0.1;-0.03≤x≤0.1;

0≤y≤0.2이다.0≤y≤0.2.

또한, 4.4V 이상의 전압에서 활성화되는 상기 리튬 금속 산화물은 하기 화학식 2로 표현되는 화합물을 포함하고 있을 수 있다:Additionally, the lithium metal oxide activated at a voltage of 4.4 V or higher may contain a compound represented by the following formula (2):

Li2M"O3 (2)Li 2 M"O 3 (2)

상기 식에서, In the above equation,

M"는 Mn, Ti, Sn, Zr, Ru, Ir 및 Pt로 이루어진 군에서 선택되는 하나 이상이다. M" is one or more selected from the group consisting of Mn, Ti, Sn, Zr, Ru, Ir, and Pt.

특히, 상기 M"이 Mn인 경우, 상기 리튬 금속 산화물은 Li2MnO3으로 표시되는 리튬 망간 산화물이며, 상기 Li2MnO3의 일부는 4.4V 이상의 고전압을 인가하는 경우, 리튬 이온이 방출되고, 망간 4가 양이온이 망간 3가 양이온으로 환원되면서 하기와 같이 안정한 구조로 상이 변환된다.In particular, when M" is Mn, the lithium metal oxide is lithium manganese oxide represented by Li 2 MnO 3 , and a portion of the Li 2 MnO 3 releases lithium ions when a high voltage of 4.4 V or more is applied, As the manganese tetravalent cation is reduced to the manganese trivalent cation, the phase is converted to a stable structure as shown below.

Li2MnO3 → LiMnO2 Li 2 MnO 3 → LiMnO 2

이에 따라, 상기 복합체 활물질은 고전압에서 안정적인 충전 용량을 가지고, 안정한 표면 구조를 얻는다.Accordingly, the composite active material has a stable charging capacity at high voltage and obtains a stable surface structure.

한편, 상기 복합체 활물질은 FeKα 방사선을 조사하여 측정된 X-선 분말 회절 (powder X-Ray Diffraction)의 2θ - intensity 그래프 상에서,On the other hand, the composite active material is measured by irradiating FeKα radiation. On the 2θ-graph of X-ray powder diffraction (powder X-Ray Diffraction),

2θ축의 23도 내지 24도의 범위 내에 위치하는 제 1 피크와, 상기 제 1 피크 보다 상대적으로 작고 26도 내지 29도의 범위 내에 위치하는 제 2 피크가 나타난다.A first peak located within the range of 23 to 24 degrees of the 2θ axis and a second peak that is relatively smaller than the first peak and located within the range of 26 to 29 degrees appear.

구체적으로, 상기 제 2 피크의 최대 높이는, 제 1 피크의 최대 높이를 기준으로 2% 내지 10%일 수 있다.Specifically, the maximum height of the second peak may be 2% to 10% based on the maximum height of the first peak.

일반적인 리튬 코발트 산화물은 2θ축의 23도 내지 24도의 범위 내에서 강한 피크가 나타난다. 본 발명에 따른 복합체 활물질은 약 70% 이상의 리튬 코발트 산화물을 포함하므로, 2-theta-scale, 즉 2θ - intensity 그래프 상에서 23도 내지 24도의 범위 내에 위치하는 제 1 피크가 나타난다.General lithium cobalt oxide shows a strong peak within the range of 23 to 24 degrees on the 2θ axis. Since the composite active material according to the present invention contains about 70% or more of lithium cobalt oxide, a first peak located in the range of 23 to 24 degrees on the 2-theta-scale, that is, 2θ-intensity graph, appears.

또한, 본 발명에 따른 복합체 활물질은 4.4V에서 활성화되는 리튬 금속 산화물을 소정량 포함하는 바, 2-theta-scale에서 제 1 피크 보다는 상대적으로 작고, 26 도 내지 29도 범위 내에 위치하는 제 2 피크가 나타난다. 상기 제 2 피크가 나타나는 경우, 상기 리튬 금속 산화물은 구체적으로 리튬 망간 산화물일 수 있다.In addition, the composite active material according to the present invention contains a predetermined amount of lithium metal oxide activated at 4.4V, and the second peak is relatively smaller than the first peak on the 2-theta-scale and is located in the range of 26 to 29 degrees. appears. When the second peak appears, the lithium metal oxide may specifically be lithium manganese oxide.

한편 분말 XRD에 사용되는, 상기 FeKα 방사선의 전압 및 전류는 각각 10kV 내지 50kV 및 10mA 내지 50mA 범위 내일 수 있으나, 특별히 제한되는 것은 아니다.Meanwhile, the voltage and current of the FeKα radiation used in powder XRD may be in the range of 10kV to 50kV and 10mA to 50mA, respectively, but are not particularly limited.

본 발명은 또한, 상기 복합체 활물질을 제조하는 방법을 제공한다.The present invention also provides a method for producing the composite active material.

상기 제조 방법은,The manufacturing method is,

(i) 코발트 전구체, 망간 전구체, 및 리튬 전구체를 각각 준비하는 과정;(i) a process of preparing a cobalt precursor, a manganese precursor, and a lithium precursor, respectively;

(ii) 상기 코발트 전구체, 망간 전구체, 및 리튬 전구체를 혼합하는 과정; 및(ii) mixing the cobalt precursor, manganese precursor, and lithium precursor; and

(iii) 상기 과정(ii)의 혼합물을 소성하는 과정;(iii) calcining the mixture of process (ii);

을 포함하는 것을 특징으로 한다.It is characterized by including.

구체적으로 상기 과정 (i)에서는, 코발트 전구체와 리튬 전구체, 및 망간 전구체를 각각 준비한다.Specifically, in process (i), a cobalt precursor, a lithium precursor, and a manganese precursor are each prepared.

상기 리튬 전구체는 LiOH 또는 LiCO3일 수 있으나 특별히 제한되는 것은 아니다. 상기 망간 전구체는 탄산염, 황산염, 또는 질산혐의 형태일 수 있고, 상기 코발트 전구체 또한 탄산염, 황산염, 또는 질산염일 수 있다.The lithium precursor may be LiOH or LiCO 3 but is not particularly limited. The manganese precursor may be in the form of carbonate, sulfate, or nitrate, and the cobalt precursor may also be in the form of carbonate, sulfate, or nitrate.

다음으로, 상기 과정 (ii)에서는, 상기 제조된 코발트 전구체, 망간 전구체, 및 리튬 전구체를 혼합한다.Next, in process (ii), the prepared cobalt precursor, manganese precursor, and lithium precursor are mixed.

이때, 상기 망간 전구체와 코발트 전구체는 몰(mol) 기준으로 1 : 2.3 내지 1 : 99의 비율로 혼합될 수 있고, 상기 망간 전구체 및 코발트 전구체와, 리튬 전구체는 몰 기준(Mn+Co : Li)으로 1 : 1.01 내지 1 : 1.3의 비율로 혼합될 수 있다.At this time, the manganese precursor and the cobalt precursor may be mixed at a ratio of 1:2.3 to 1:99 on a mole basis, and the manganese precursor, cobalt precursor, and lithium precursor may be mixed on a molar basis (Mn+Co:Li) It can be mixed at a ratio of 1:1.01 to 1:1.3.

이후, 상기 과정 (iii)에서는, 상기 과정(ii)의 혼합물을 소성한다.Then, in process (iii), the mixture of process (ii) is fired.

상기 과정(iii)의 소성은 850℃ 내지 1200℃의 온도에서 수행될 수 있고, 상세하게는 900℃ 내지 1100℃의 온도에서 수행될 수 있다.The firing of process (iii) may be performed at a temperature of 850°C to 1200°C, and in particular, may be performed at a temperature of 900°C to 1100°C.

또한, 상기 과정(iii)의 소성은 8시간 내지 12시간 동안 수행될 수 있다,Additionally, the firing of process (iii) may be performed for 8 to 12 hours.

즉, 본 발명에 따른 복합체 활물질 제조 방법은 코발트 전구체, 리튬 전구체와, 4.4V 이상의 전압에서 활성화 되는 리튬 금속 산화물의 금속 전구체 - 예를 들어, 망간 전구체 - 를 각각 제조한 후에 혼합 및 소성되므로, 물성의 차이에 의해, 4.4V 이상의 전압에서 활성화 되는 리튬 금속 산화물 이 복합체 활물질의 표면쪽에 주로 위치하게 된다.That is, in the method for producing a composite active material according to the present invention, a cobalt precursor, a lithium precursor, and a metal precursor of lithium metal oxide activated at a voltage of 4.4 V or higher - for example, a manganese precursor - are each produced and then mixed and fired, so the physical properties Due to the difference, lithium metal oxide, which is activated at a voltage of 4.4 V or higher, is mainly located on the surface of the composite active material.

상기 표면쪽에 주로 위치하는 리튬 금속 산화물은, 고전압에서 리튬 코발트 산화물의 표면을 안정화시키고, 리튬 코발트 산화물의 우수한 물성을 가지므로, 본 발명에 따른 복합체 활물질은 수명 특성 기타 전기화학적 성능이 우수한 이차전지를 제공한다.The lithium metal oxide mainly located on the surface stabilizes the surface of the lithium cobalt oxide at high voltage and has excellent physical properties of lithium cobalt oxide, so the composite active material according to the present invention provides a secondary battery with excellent lifespan characteristics and other electrochemical performance. to provide.

이에, 본 발명은 상기 복합체 활물질, 도전재, 및 바인더를 포함하는 슬러리를 집전체에 도포하여 제조되는 것을 특징으로 하는 양극을 제공한다.Accordingly, the present invention provides a positive electrode that is manufactured by applying a slurry containing the composite active material, a conductive material, and a binder to a current collector.

상기 양극 집전체는 일반적으로 3 ㎛ 내지 300 ㎛의 두께로 제조되며, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되지 않는다. 예를 들어, 스테인레스 스틸, 알루미늄, 니켈, 티타늄, 및 알루미늄이나 스테인레스 스틸의 표면에 카본, 니켈, 티타늄 또는 은으로 표면처리 한 것 중에서 선택되는 하나를 사용할 수 있고, 상세하게는 알루미늄이 사용될 수 있다. 집전체는 그것의 표면에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 가능하다.The positive electrode current collector is generally manufactured to a thickness of 3 ㎛ to 300 ㎛, and is not particularly limited as long as it has high conductivity without causing chemical changes in the battery. For example, one selected from stainless steel, aluminum, nickel, titanium, and surface treatment of aluminum or stainless steel with carbon, nickel, titanium, or silver may be used. In particular, aluminum may be used. . The current collector can increase the adhesion of the positive electrode active material by forming fine irregularities on its surface, and can be in various forms such as films, sheets, foils, nets, porous materials, foams, and non-woven materials.

상기 도전재는 통상적으로 양극 활물질을 포함한 혼합물 전체 중량을 기준으로 0.1 중량% 내지 30 중량%로 첨가된다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.The conductive material is typically added in an amount of 0.1% to 30% by weight based on the total weight of the mixture including the positive electrode active material. These conductive materials are not particularly limited as long as they have conductivity without causing chemical changes in the battery, and examples include graphite such as natural graphite or artificial graphite; Carbon black such as carbon black, acetylene black, Ketjen black, channel black, furnace black, lamp black, and summer black; Conductive fibers such as carbon fiber and metal fiber; Metal powders such as carbon fluoride, aluminum, and nickel powder; Conductive whiskeys such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives may be used.

상기 바인더는 활물질 복합체와 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 활물질을 포함하는 혼합물 전체 중량을 기준으로 0.1 중량% 내지 30 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌-부타디엔 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.The binder is a component that assists in the bonding of the active material composite and the conductive material and the bonding to the current collector, and is usually added in an amount of 0.1% to 30% by weight based on the total weight of the mixture containing the positive electrode active material. Examples of such binders include polyvinylidene fluoride, polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, and polyethylene. , polypropylene, ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene-butadiene rubber, fluorine rubber, and various copolymers.

상기 슬러리는, 필요에 따라 충진제를 더 포함할 수도 있다. 상기 충진제는 전극의 팽창을 억제하는 성분으로서, 당해 전지에 화학적 변화를 유발하지 않으면서 섬유상 재료라면 특별히 제한되는 것은 아니며, 예를 들어, 폴리에틸렌, 폴리프로필렌 등의 올리핀계 중합제; 유리섬유, 탄소섬유 등의 섬유상 물질이 사용될 수 있다.The slurry may further include fillers, if necessary. The filler is a component that suppresses the expansion of the electrode, and is not particularly limited as long as it is a fibrous material that does not cause chemical changes in the battery. For example, olipine polymerizers such as polyethylene and polypropylene; Fibrous materials such as glass fiber and carbon fiber may be used.

본 발명은 또한, 상기 양극과, 음극, 분리막, 및 전해액을 포함하는 이차전지를 제공한다.The present invention also provides a secondary battery including the positive electrode, negative electrode, separator, and electrolyte solution.

상기 음극은, 음극 활물질과, 필요에 따라 도전재, 바인더, 충진제와 같은 상기 첨가물들을 하나 또는 둘 이상 포함하는 음극 슬러리를 집전체에 도포하여 제조된다.The negative electrode is manufactured by applying a negative electrode slurry containing a negative electrode active material and, if necessary, one or more of the above additives such as a conductive material, binder, and filler to a current collector.

음극 활물질로는, 예를 들어, 천연 흑연, 인조 흑연, 팽창 흑연, 탄소섬유, 난흑연화성 탄소, 카본 블랙, 카본나노튜브, 플러렌, 활성탄 등의 탄소 및 흑연재료; 리튬과 합금이 가능한 Al, Si, Sn, Ag, Bi, Mg, Zn, In, Ge, Pb, Pd, Pt, Ti 등의 금속 및 이러한 원소를 포함하는 화합물; 금속 및 그 화합물과 탄소 및 흑연재료의 복합물; 실리콘 등의 규소 함유 화합물; 리튬 함유 질화물; 등을 사용할 수 있지만, 이들만으로 한정되는 것은 아니다.Examples of negative electrode active materials include carbon and graphite materials such as natural graphite, artificial graphite, expanded graphite, carbon fiber, non-graphitizable carbon, carbon black, carbon nanotubes, fullerene, and activated carbon; Metals such as Al, Si, Sn, Ag, Bi, Mg, Zn, In, Ge, Pb, Pd, Pt, and Ti, which can be alloyed with lithium, and compounds containing these elements; Complexes of metals and their compounds with carbon and graphite materials; Silicon-containing compounds such as silicon; lithium-containing nitride; etc. can be used, but are not limited to these.

상기 분리막은 당업계에서 통상적으로 사용되는 폴리올레핀 계열의 필름일 수 있고, 예를 들어, 고밀도 폴리에틸렌, 저밀도 폴리에틸렌, 선형저밀도 폴리에틸렌, 초고분자량 폴리에틸렌, 폴리프로필렌, 폴리에틸렌테레프탈레이트 (polyethyleneterephthalate), 폴리부틸렌테레프탈레이트 (polybutyleneterephthalate), 폴리에스테르 (polyester), 폴리아세탈 (polyacetal), 폴리아미드(polyamide), 폴리카보네이트 (polycarbonate), 폴리이미드 (polyimide), 폴리에테르에테르케톤 (polyetheretherketone), 폴리에테르설폰 (polyethersulfone), 폴리페닐렌옥사이드 (polyphenyleneoxide), 폴리페닐렌설파이드로 (polyphenylenesulfidro), 폴리에틸렌나프탈렌 (polyethylenenaphthalene) 및 이들의 혼합체로 이루어진 군으로부터 선택된 하나 이상으로 이루어진 시트일 수 있다.The separator may be a polyolefin-based film commonly used in the industry, for example, high-density polyethylene, low-density polyethylene, linear low-density polyethylene, ultra-high molecular weight polyethylene, polypropylene, polyethyleneterephthalate, and polybutylene terephthalate. Phthalate, polyester, polyacetal, polyamide, polycarbonate, polyimide, polyetheretherketone, polyethersulfone, It may be a sheet made of one or more materials selected from the group consisting of polyphenyleneoxide, polyphenylenesulfidro, polyethylenenaphthalene, and mixtures thereof.

상기 분리막은, 서로 동일한 물질로 이루어진 것일 수 있지만, 이에 한정되는 것은 아니고, 전지셀의 안전성, 에너지 밀도, 및 전반적인 성능에 따라서, 서로 상이한 물질로 이루어질 수 있음은 물론이다.The separators may be made of the same materials, but are not limited to this, and of course, they may be made of different materials depending on the safety, energy density, and overall performance of the battery cell.

상기 분리막의 기공 크기 및 기공도는 특별한 제한이 없으나, 기공도는 10% 내지 95% 범위, 기공 크기(직경)는 0.1 ㎛내지 50 ㎛일 수 있다. 기공 크기 및 기공도가 각각 0.1 ㎛ 및 10% 미만인 경우에는 저항층으로 작용하게 되며, 기공 크기 및 기공도가 50 ㎛ 및 95%를 초과할 경우에는 기계적 물성을 유지하기가 어렵게 된다. There is no particular limitation on the pore size and porosity of the separator, but the porosity may range from 10% to 95% and the pore size (diameter) may range from 0.1 ㎛ to 50 ㎛. If the pore size and porosity are less than 0.1 ㎛ and 10%, respectively, it acts as a resistance layer, and if the pore size and porosity exceed 50 ㎛ and 95%, it becomes difficult to maintain mechanical properties.

상기 전해액은 리튬염 함유 비수 전해질일 수 있고, 상기 리튬염 함유 비수 전해질은 비수 전해질과 리튬염으로 이루어져 있으며, 상기 비수 전해질로는 비수계 유기용매, 유기 고체 전해질, 무기 고체 전해질 등이 사용되지만 이들만으로 한정되는 것은 아니다.The electrolyte may be a lithium salt-containing non-aqueous electrolyte, and the lithium salt-containing non-aqueous electrolyte consists of a non-aqueous electrolyte and a lithium salt. Non-aqueous organic solvents, organic solid electrolytes, inorganic solid electrolytes, etc. are used as the non-aqueous electrolyte. It is not limited to just that.

상기 비수계 유기용매로는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카르보네이트, 에틸렌 카르보네이트, 부틸렌 카르보네이트, 디메틸 카르보네이트, 디에틸 카르보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라히드록시푸란, 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카르보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.Examples of the non-aqueous organic solvent include N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, and gamma. -Butylo lactone, 1,2-dimethoxy ethane, tetrahydroxyfuran, 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxorane, formamide, dimethylformamide, dioxoren, acetonitrile , nitromethane, methyl formate, methyl acetate, phosphoric acid triester, trimethoxy methane, dioxorane derivatives, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbonate derivatives, Aprotic organic solvents such as tetrahydrofuran derivatives, ether, methyl propionate, and ethyl propionate can be used.

상기 유기 고체 전해질로는, 예를 들어, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(agitation lysine), 폴리에스테르 설파이드, 폴리비닐 알코올, 폴리 불화 비닐리덴, 이온성 해리기를 포함하는 중합제 등이 사용될 수 있다.The organic solid electrolyte includes, for example, polyethylene derivatives, polyethylene oxide derivatives, polypropylene oxide derivatives, phosphoric acid ester polymers, poly agitation lysine, polyester sulfide, polyvinyl alcohol, poly vinylidene fluoride, ion A polymerization agent containing a dissociative group may be used.

상기 무기 고체 전해질로는, 예를 들어, Li3N, LiI, Li5NI2, Li3N-LiI-LiOH, LiSiO4, LiSiO4-LiI-LiOH, Li2SiS3, Li4SiO4, Li4SiO4-LiI-LiOH, Li3PO4-Li2S-SiS2 등의 Li의 질화물, 할로겐화물, 황산염 등이 사용될 수 있다.Examples of the inorganic solid electrolyte include Li 3 N, LiI, Li 5 NI 2 , Li 3 N-LiI-LiOH, LiSiO 4 , LiSiO 4 -LiI-LiOH, Li 2 SiS 3 , Li 4 SiO 4 , Nitride, halide, sulfate, etc. of Li such as Li 4 SiO 4 -LiI-LiOH, Li 3 PO 4 -Li 2 S-SiS 2 may be used.

상기 리튬염은 상기 비수 전해질에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10Cl10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, (CF3SO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4 페닐 붕산 리튬, 이미드 등이 사용될 수 있다.The lithium salt is a material that is easily soluble in the non-aqueous electrolyte, for example, LiCl, LiBr, LiI, LiClO 4 , LiBF 4 , LiB 10 Cl 10 , LiPF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiAsF 6 , LiSbF 6 , LiAlCl 4 , CH 3 SO 3 Li, (CF 3 SO 2 ) 2 NLi, lithium chloroborane, lithium lower aliphatic carboxylate, lithium 4-phenyl borate, imide, etc. can be used.

또한, 비수 전해질에는 충방전 특성, 난연성 등의 개선을 목적으로, 예를 들어, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄 등이 첨가될 수도 있다. 경우에 따라서는, 불연성을 부여하기 위하여, 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함시킬 수도 있고, 고온 보존 특성을 향상시키기 위하여 이산화탄산 가스를 더 포함시킬 수도 있으며, FEC(Fluoro-Ethylene Carbonate), PRS(Propene sultone) 등을 더 포함시킬 수 있다.In addition, non-aqueous electrolytes include, for example, pyridine, triethyl phosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphoric acid triamide, etc. for the purpose of improving charge/discharge characteristics, flame retardancy, etc. Nitrobenzene derivatives, sulfur, quinone imine dyes, N-substituted oxazolidinone, N,N-substituted imidazolidine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxy ethanol, aluminum trichloride, etc. may be added. there is. In some cases, halogen-containing solvents such as carbon tetrachloride and ethylene trifluoride may be further included to provide incombustibility, and carbon dioxide gas may be further included to improve high-temperature preservation characteristics, and FEC (Fluoro-Ethylene Carbonate), PRS (Propene sultone), etc. can be further included.

하나의 구체적인 예에서, LiPF6, LiClO4, LiBF4, LiN(SO2CF3)2 등의 리튬염을, 고유전성 용매인 EC 또는 PC의 환형 카보네이트와 저점도 용매인 DEC, DMC 또는 EMC의 선형 카보네이트의 혼합 용매에 첨가하여 리튬염 함유 비수 전해질을 제조할 수 있다.In one specific example, lithium salts such as LiPF 6 , LiClO 4 , LiBF 4 , LiN(SO 2 CF 3 ) 2 , and the like are mixed with cyclic carbonate of EC or PC as a high dielectric solvent and DEC, DMC or EMC as a low viscosity solvent. A non-aqueous electrolyte containing lithium salt can be prepared by adding it to a mixed solvent of linear carbonate.

본 발명은 또한, 상기 이차전지를 포함하는 전지팩 및 이러한 전지팩을 포함하는 디바이스를 제공한다.The present invention also provides a battery pack including the secondary battery and a device including this battery pack.

상기 디바이스는, 예를 들어, 노트북 컴퓨터, 넷북, 태블릿 PC, 휴대폰, MP3, 웨어러블 전자기기, 파워 툴(power tool), 전기자동차(Electric Vehicle, EV), 하이브리드 전기자동차(Hybrid Electric Vehicle, HEV), 플러그-인 하이브리드 전기자동차(Plug-in Hybrid Electric Vehicle, PHEV), 전기 자전거(E-bike), 전기 스쿠터(E-scooter), 전기 골프 카트(electric golf cart), 또는 전력저장용 시스템일 수 있지만, 이들만으로 한정되지 않음은 물론이다.The devices include, for example, laptop computers, netbooks, tablet PCs, mobile phones, MP3 devices, wearable electronic devices, power tools, electric vehicles (EV), and hybrid electric vehicles (HEV). , it can be a Plug-in Hybrid Electric Vehicle (PHEV), an electric bicycle (E-bike), an electric scooter (E-scooter), an electric golf cart, or a power storage system. However, it is of course not limited to these alone.

이러한 디바이스의 구조 및 제작 방법은 당업계에 공지되어 있으므로, 본 명세서에서는 그에 대한 자세한 설명을 생략한다.Since the structure and manufacturing method of such a device are known in the art, detailed description thereof is omitted in this specification.

상기에서 설명한 바와 같이, 본 발명에 따른 복합체 활물질은 리튬 코발트 산화물과, 4.4V 이상의 전압에서 활성화되고, 주로 표면측에 존재하는 리튬 금속 산화물을 포함하는 바, 고전압에서도 안정적인 충전 용량을 가지면서도, 복합체 활물질 입자의 표면 안정성이 증대되는 바, 수명특성이 향상된 이차전지를 제공하는 효과가 있다.As described above, the composite active material according to the present invention includes lithium cobalt oxide and lithium metal oxide, which is activated at a voltage of 4.4 V or higher and mainly exists on the surface, and has a stable charging capacity even at high voltage, while the composite As the surface stability of the active material particles is increased, there is an effect of providing a secondary battery with improved lifespan characteristics.

도 1은 실시예 1에 따른 복합체 활물질의 X-선 분말 회절의 2θ - intensity 그래프이다;
도 2는 실시예 4에 따른 복합체 활물질의 X-선 분말 회절의 2θ - intensity 그래프이다;
도 3은 비교예 1에 따른 활물질의 X-선 분말 회절의 2θ - intensity 그래프이다; 및
도 4는 실험예 3에 따른 상온 수명 특성을 나타낸 그래프이다.
1 is a 2θ-intensity graph of X-ray powder diffraction of the composite active material according to Example 1;
Figure 2 is a 2θ - intensity graph of X-ray powder diffraction of the composite active material according to Example 4;
Figure 3 is a 2θ-intensity graph of X-ray powder diffraction of the active material according to Comparative Example 1; and
Figure 4 is a graph showing room temperature life characteristics according to Experimental Example 3.

이하에서는, 본 발명에 따른 실시예를 참조하여 설명하지만, 이는 본 발명의 더욱 용이한 이해를 위한 것으로, 본 발명의 범주가 그것에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described with reference to embodiments, but this is for easier understanding of the present invention, and the scope of the present invention is not limited thereto.

양극 활물질 제조Cathode active material manufacturing

<실시예 1><Example 1>

Co3O4와, MnCO3, Li2CO3를 몰비로 Co/Mn = 8/2, Li/(Co+Mn) = 1.2/1이 되도록 건식 혼합한 후, 노에서 1000℃에서 10시간 동안 소성하여, 표면 쪽에 Li2MnO3가 위치하는 0.2Li2MnO3 - 0.8LiCoO2 복합체 활물질을 제조하였다.After dry mixing Co 3 O 4 , MnCO 3 and Li 2 CO 3 at a molar ratio of Co/Mn = 8/2 and Li/(Co+Mn) = 1.2/1, they were heated in a furnace at 1000°C for 10 hours. By firing, a 0.2Li 2 MnO 3 - 0.8LiCoO 2 composite active material with Li 2 MnO 3 located on the surface was prepared.

<실시예 2><Example 2>

Co/Mn = 7/3, Li/(Co+Mn) = 1.3/1이 되도록 혼합한 것을 제외하고는, 실시예 1과 동일한 방법으로 복합체 활물질을 제조하였다.A composite active material was prepared in the same manner as in Example 1, except that it was mixed so that Co/Mn = 7/3 and Li/(Co+Mn) = 1.3/1.

<실시예 3><Example 3>

Co/Mn = 9/1, Li/(Co+Mn) = 1.1/1이 되도록 혼합한 것을 제외하고는, 실시예 1과 동일한 방법으로 복합체 활물질을 제조하였다.A composite active material was prepared in the same manner as in Example 1, except that it was mixed so that Co/Mn = 9/1 and Li/(Co+Mn) = 1.1/1.

<실시예 4><Example 4>

Co/Mn = 9.6/0.4, Li/(Co+Mn) = 1.04/1이 되도록 혼합한 것을 제외하고는, 실시예 1과 동일한 방법으로 복합체 활물질을 제조하였다.A composite active material was prepared in the same manner as in Example 1, except that it was mixed so that Co/Mn = 9.6/0.4 and Li/(Co+Mn) = 1.04/1.

<실시예 5><Example 5>

Co/Mn = 9.8/0.2, Li/(Co+Mn) = 1.02/1이 되도록 혼합한 것을 제외하고는, 실시예 1과 동일한 방법으로 복합체 활물질을 제조하였다.A composite active material was prepared in the same manner as in Example 1, except that it was mixed so that Co/Mn = 9.8/0.2 and Li/(Co+Mn) = 1.02/1.

<비교예 1><Comparative Example 1>

Co3O4와, Li2CO3를 몰비로 Li/Co = 1/1이 되도록 건식 혼합한 후, 노에서 1000℃에서 10시간 동안 소성하여, LiCoO2 활물질을 제조하였다.Co 3 O 4 and Li 2 CO 3 were dry mixed at a molar ratio of Li/Co = 1/1, and then calcined in a furnace at 1000°C for 10 hours to prepare LiCoO 2 active material.

<참고예 1><Reference Example 1>

Co/Mn = 5/5, Li/(Co+Mn) = 1.5/1이 되도록 혼합한 것을 제외하고는, 실시예 1과 동일한 방법으로 활물질 복합체를 제조하였다.An active material composite was prepared in the same manner as Example 1, except that it was mixed so that Co/Mn = 5/5 and Li/(Co+Mn) = 1.5/1.

XRD 그래프XRD graph

<실험예 1><Experimental Example 1>

실시예 1, 4 및 비교예 1에서 제조된 활물질에 FeKα 방사선을 조사하여 측저정된 X-선 분말 회절 (powder X-Ray Diffraction) 그래프 (2-theta-scale)를 도 1 내지 도 3에 각각 나타내었다.X-ray powder diffraction (2-theta-scale) graphs measured by irradiating FeKα radiation to the active materials prepared in Examples 1, 4, and Comparative Example 1 are shown in Figures 1 to 3, respectively indicated.

도 1을 참조하면, 2θ축의 23도 내지 24도의 범위 내에 위치하는 제 1 피크와, 26도 내지 29도의 범위 내에 위치하는 제 2 피크가 나타난다. 제 1 피크는 제 2 피크와 비교하여 상대적으로 크며, 제 2 피크의 최대 높이를 기준으로 약 27 배의 최대 높이를 가진다.Referring to Figure 1, a first peak located within the range of 23 degrees to 24 degrees of the 2θ axis and a second peak located within a range of 26 degrees to 29 degrees appear. The first peak is relatively large compared to the second peak, and has a maximum height of about 27 times that of the second peak.

도 1과 비교하여, 도 2 및 도 3을 참조하면, 실시예 4 및 비교예 1은 26도 내지 29도의 범위 내에 위치하는 제 2 피크가 나타나지 않음을 확인할 수 있다.Compared to Figure 1, referring to Figures 2 and 3, it can be seen that Example 4 and Comparative Example 1 do not have a second peak located within the range of 26 degrees to 29 degrees.

비교예 1은 리튬 망간 산화물을 포함하지 않으며, 실시예 4는 지나치게 적은 양의 망간을 사용함으로써, 형성되는 리튬 망간 산화물의 양이 적어, 상기 제 2 피크가 나타나지 않는다. 또한 그 결과, 비교예 1 또는 실시예 4는 표면에 충분한 양의 리튬 망간 산화물을 포함하지 않으므로, 실시예 1과 같은 표면 안정화 효과가 떨어질 것을 예상할 수 있다.Comparative Example 1 does not contain lithium manganese oxide, and Example 4 uses an excessively small amount of manganese, so the amount of lithium manganese oxide formed is small, and the second peak does not appear. Additionally, as a result, Comparative Example 1 or Example 4 does not contain a sufficient amount of lithium manganese oxide on the surface, so it can be expected that the surface stabilization effect like Example 1 will be poor.

한편, 도 1 내지 도 3의 활물질 모두 23도 내지 24도의 범위 내에서 강한 피크를 가지므로, 공통적으로 리튬 코발트 산화물을 포함한다.Meanwhile, all of the active materials in FIGS. 1 to 3 have strong peaks within the range of 23 to 24 degrees, and therefore commonly include lithium cobalt oxide.

이차전지 제조Secondary battery manufacturing

실시예와 비교예, 참고예에서 제조된 활물질과, PVdF 바인더, 천연 흑연 도전재를, 중량비로 96 : 2 : 2 (양극 활물질: 바인더: 도전재)가 되도록 NMP에 잘 섞어 준 후 20 ㎛ 두께의 Al 호일에 도포한 후 130℃에서 건조하여 양극을 제조하였다. 음극으로는 리튬 호일을 사용하고, EC : DMC : DEC = 1 : 2 : 1 인 용매에 1M의 LiPF6가 들어있는 전해액을 사용하여 이차전지를 제조하였다.The active materials prepared in Examples, Comparative Examples, and Reference Examples, PVdF binder, and natural graphite conductive material were mixed well with NMP so that the weight ratio was 96:2:2 (positive electrode active material: binder: conductive material), and then 20 ㎛ thick. A positive electrode was manufactured by applying it to Al foil and drying it at 130°C. A secondary battery was manufactured using lithium foil as a negative electrode and an electrolyte solution containing 1M LiPF 6 in a solvent of EC:DMC:DEC = 1:2:1.

초기 충방전 용량 및 효율Initial charge/discharge capacity and efficiency

<실험예 2><Experimental Example 2>

상기 제조된 이차전지를, 3.0-4.55V로 1회 충방전하여, 초기 충방전 용량과 효율을 측정하여, 하기 표 1에 나타내었다.The manufactured secondary battery was charged and discharged once at 3.0-4.55V, and the initial charge and discharge capacity and efficiency were measured, and are shown in Table 1 below.

초기 충전 용량(mAh/g)Initial charge capacity (mAh/g) 초기 방전 용량(mAh/g)Initial discharge capacity (mAh/g) 초기 효율(%)Initial efficiency (%) 실시예 1Example 1 223223 208208 9393 실시예 2Example 2 228228 194194 8585 실시예 3Example 3 218218 207207 9595 실시예 4Example 4 215215 206206 9696 실시예 5Example 5 214214 206206 9696 비교예 1Comparative Example 1 213213 206206 9797 참고예 1Reference example 1 248248 185185 7474

상기 표 1을 참조하면, 고전압에서 활성화되는 리튬 망간 산화물을 다량 포함할수록, 초기 충전 용량은 증가하지만 비가역 용량도 함께 증가하여, 초기 효율이 감소하는 것을 알 수 있다.Referring to Table 1 above, it can be seen that as the amount of lithium manganese oxide activated at high voltage is included, the initial charge capacity increases, but the irreversible capacity also increases, and the initial efficiency decreases.

구체적으로, 참고예 1은 고전압 범위에서 리튬을 비가역적으로 방출하는 리튬 망간 산화물과, 저전압 범위에서 리튬을 가역적으로 방출하는 리튬 코발트 산화물을 동일한 비율로 포함하므로, 초기 충전 용량은 높으나, 초기 방전 용량이 떨어지는 단점이 있다.Specifically, Reference Example 1 contains lithium manganese oxide, which irreversibly releases lithium in the high voltage range, and lithium cobalt oxide, which reversibly releases lithium in the low voltage range, in the same ratio, so the initial charge capacity is high, but the initial discharge capacity is high. There is a downside to this.

실시예 1은 상기 리튬 망간 산화물을 적정 수준으로 포함하는 바, 리튬 코발트 산화물로 이루어진 비교예 1 보다는 떨어지지만 90%를 넘는 초기 효율을 유지한다.Example 1 contains the lithium manganese oxide at an appropriate level and maintains an initial efficiency of over 90%, although it is lower than Comparative Example 1 consisting of lithium cobalt oxide.

수명 특성life characteristics

<실험예 3><Experimental Example 3>

상기 제조된 이차전지를, 상온에서 3.0-4.55V로 50회 충방전하고, 용량 유지율을 측정하여, 하기 표 2에 나타내고, 실시예 1과 비교예 1의 상온 수명 특성 그래프를 도 4에 나타내었다.The manufactured secondary battery was charged and discharged 50 times at 3.0-4.55V at room temperature, and the capacity retention rate was measured. It is shown in Table 2 below, and the room temperature lifespan characteristic graph of Example 1 and Comparative Example 1 is shown in FIG. 4. .

수명특성(%)Life characteristics (%) 실시예 1Example 1 89.989.9 실시예 2Example 2 87.287.2 실시예 3Example 3 87.987.9 실시예 4Example 4 82.582.5 실시예 5Example 5 81.981.9 비교예 1Comparative Example 1 80.480.4 참고예 1Reference example 1 87.787.7

상기 표 2를 참조하면, 실시예 1 내지 5와, 참고예 1의 경우, 리튬 망간 산화물이 리튬 코발트 산화물의 표면 안정성에 기여하여, 4.55V의 고전압 조건에서도 높은 용량 유지율을 가지며, 상세하게는 81.9% 이상의 용량 유지율을 가지는 것을 확인할 수 있다.Referring to Table 2, in Examples 1 to 5 and Reference Example 1, lithium manganese oxide contributes to the surface stability of lithium cobalt oxide and has a high capacity retention rate even under a high voltage condition of 4.55V, specifically 81.9 It can be confirmed that it has a capacity maintenance rate of more than %.

실시예 1 내지 5를 비교하면, 리튬 망간 산화물이 극소량 포함되어 있는 실시예 4 및 5는 82.5% 이하의 용량 유지율을 가지므로, 복합체 활물질의 표면 안정화가 충분히 진행되지 않았음을 알 수 있다. 따라서, 표면쪽에 주로 위치하는 상기 리튬 망간 산화물은 5 몰% 내지 25 몰%, 상세하게는 7 몰% 내지 20 몰%로 포함되는 것이 더욱 바람직하다.Comparing Examples 1 to 5, Examples 4 and 5, which contained a very small amount of lithium manganese oxide, had a capacity retention rate of 82.5% or less, indicating that surface stabilization of the composite active material did not sufficiently progress. Therefore, it is more preferable that the lithium manganese oxide, which is mainly located on the surface, is contained in an amount of 5 mol% to 25 mol%, specifically 7 mol% to 20 mol%.

한편, 참고예 1은 과량의 리튬 망간 산화물을 포함하여, 낮은 초기 효율을 보였으나, 비교예 1 보다는 높은 용량 유지율을 보이나 실시예 1과 비교 결과, 수명 특성이 오히려 감소되었음을 확인할 수 있다.On the other hand, Reference Example 1 contained an excessive amount of lithium manganese oxide and showed low initial efficiency, but showed a higher capacity maintenance rate than Comparative Example 1. However, as a result of comparison with Example 1, it was confirmed that the lifespan characteristics were rather reduced.

도 4를 참조하면, 실시예 1의 복합체 활물질을 포함하는 이차전지는, 비교예 1의 활물질을 포함하는 이차전지 보다 낮은 초기 효율을 가지나, 사이클이 진행됨에 따라, 높은 용량 유지율이 나타나는 바, 수명 특성이 개선됨을 확인할 수 있다.Referring to FIG. 4, the secondary battery containing the composite active material of Example 1 has lower initial efficiency than the secondary battery containing the active material of Comparative Example 1, but as the cycle progresses, a high capacity maintenance rate is shown, resulting in a longer lifespan. It can be seen that the characteristics are improved.

이상 본 발명의 실시예를 참조하여 설명하였지만, 본 발명이 속한 분야에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본 발명의 범주 내에서 다양한 응용 및 변형을 행하는 것이 가능할 것이다.Although the present invention has been described with reference to embodiments of the present invention, those skilled in the art will be able to make various applications and modifications within the scope of the present invention based on the above contents.

Claims (25)

리튬 코발트 산화물 및 4.4V 이상의 전압에서 활성화되는 리튬 금속 산화물을 포함하고,
상기 리튬 금속 산화물의 80% 이상은 복합체 활물질의 입자 중심으로부터 표면까지의 평균 거리(r)를 기준으로, 입자 중심으로부터 0.6r 내지 r의 범위 내에 존재하고,
상기 리튬 금속 산화물은 하기 화학식 2로 표현되는 화합물을 포함하고,
상기 복합체 활물질은 FeKα 방사선을 조사하여 측정된 X-선 분말 회절 (powder X-Ray Diffraction)의 2θ - intensity 그래프 상에서,
2θ축의 23도 내지 24도의 범위 내에 위치하는 제 1 피크와, 상기 제 1 피크 보다 상대적으로 작고 26도 내지 29도의 범위 내에 위치하는 제 2 피크가 나타나는 것을 특징으로 하는 복합체 활물질.
Li2M"O3 (2)
상기 식에서,
M"는 Mn, Ti, Sn, Zr, Ru, Ir 및 Pt로 이루어진 군에서 선택되는 하나 이상이다.
Contains lithium cobalt oxide and lithium metal oxide activated at a voltage of 4.4 V or higher,
More than 80% of the lithium metal oxide exists within a range of 0.6r to r from the particle center, based on the average distance (r) from the particle center to the surface of the composite active material,
The lithium metal oxide includes a compound represented by the following formula (2),
On the 2θ-intensity graph of X-ray powder diffraction (powder X-Ray Diffraction) measured by irradiating FeKα radiation, the composite active material is:
A composite active material characterized in that a first peak located within the range of 23 to 24 degrees of the 2θ axis and a second peak that is relatively smaller than the first peak and located within the range of 26 to 29 degrees appear.
Li 2 M"O 3 (2)
In the above equation,
M" is one or more selected from the group consisting of Mn, Ti, Sn, Zr, Ru, Ir, and Pt.
제 1 항에 있어서, 상기 리튬 금속 산화물의 70% 이상은 0.7r 내지 r의 범위 내에 존재하는 것을 특징으로 하는 복합체 활물질The composite active material of claim 1, wherein more than 70% of the lithium metal oxide is present in the range of 0.7r to r. 제 1 항에 있어서, 상기 리튬 금속 산화물은 복합체 활물질 내에서 복수의 아일랜드(island)형 도메인들을 형성하고 있는 것을 특징으로 하는 복합체 활물질.The composite active material according to claim 1, wherein the lithium metal oxide forms a plurality of island-type domains within the composite active material. 제 1 항에 있어서, 상기 리튬 금속 산화물의 적어도 일부는 복합체 활물질의 입자 표면에 존재하는 것을 특징으로 하는 복합체 활물질.The composite active material according to claim 1, wherein at least a portion of the lithium metal oxide is present on the surface of the particles of the composite active material. 제 4 항에 있어서, 상기 복합체 활물질의 입자 표면에 존재하는 리튬 금속 산화물은 복합체 활물질의 입자 표면의 전체 또는 일부에 코팅층을 형성하고 있는 것을 특징으로 하는 복합체 활물질.The composite active material according to claim 4, wherein the lithium metal oxide present on the particle surface of the composite active material forms a coating layer on all or part of the particle surface of the composite active material. 제 1 항에 있어서, 상기 리튬 금속 산화물은 복합체 활물질의 전체 몰(mol) 기준으로 0.01 몰% 내지 30 몰%로 포함되어 있는 것을 특징으로 하는 복합체 활물질.The composite active material according to claim 1, wherein the lithium metal oxide is contained in an amount of 0.01 mol% to 30 mol% based on the total moles (mol) of the composite active material. 제 1 항에 있어서, 상기 리튬 금속 산화물은 복합체 활물질의 전체 몰 기준으로 5 몰% 내지 25 몰%로 포함되어 있는 것을 특징으로 하는 복합체 활물질.The composite active material according to claim 1, wherein the lithium metal oxide is contained in an amount of 5 mol% to 25 mol% based on the total moles of the composite active material. 제 1 항에 있어서, 상기 리튬 금속 산화물은 복합체 활물질의 전체 몰 기준으로 7 몰% 내지 20 몰%로 포함되어 있는 것을 특징으로 하는 복합체 활물질.The composite active material according to claim 1, wherein the lithium metal oxide is contained in an amount of 7 mol% to 20 mol% based on the total moles of the composite active material. 제 1 항에 있어서, 상기 리튬 코발트 산화물은 하기 화학식 1로 표현되는 화합물을 포함하는 것을 특징으로 하는 복합체 활물질:
Li1+x(Co1-yM'y)1-xO2 (1)
상기 식에서,
M'는 Mn, Ni, Al, Mg, Ti, Sn, Zn, Cu 및 Ru으로 이루어진 군에서 선택되는 하나 이상이고;
-0.03≤x≤0.1;
0≤y≤0.2이다.
The composite active material according to claim 1, wherein the lithium cobalt oxide includes a compound represented by the following formula (1):
Li 1+x (Co 1-y M' y ) 1-x O 2 (1)
In the above equation,
M' is one or more selected from the group consisting of Mn, Ni, Al, Mg, Ti, Sn, Zn, Cu and Ru;
-0.03≤x≤0.1;
0≤y≤0.2.
삭제delete 제 1 항에 있어서, 상기 M"는 Mn인 것을 특징으로 하는 복합체 활물질.The composite active material according to claim 1, wherein M" is Mn. 삭제delete 제 1 항에 있어서, 상기 제 2 피크의 최대 높이는, 제 1 피크의 최대높이를 기준으로 2% 내지 10%인 것을 특징으로 하는 복합체 활물질.The composite active material according to claim 1, wherein the maximum height of the second peak is 2% to 10% based on the maximum height of the first peak. 제 1 항에 있어서, 상기 FeKα 방사선의 전압 및 전류는 각각 10kV 내지 50kV 및 10mA 내지 50mA 범위 내인 것을 특징으로 하는 복합체 활물질.The composite active material according to claim 1, wherein the voltage and current of the FeKα radiation are in the range of 10kV to 50kV and 10mA to 50mA, respectively. 제 1 항에 따른 복합체 활물질을 제조하는 방법으로서,
(i) 코발트 전구체, 망간 전구체, 및 리튬 전구체를 각각 준비하는 과정;
(ii) 상기 코발트 전구체, 망간 전구체, 및 리튬 전구체를 혼합하는 과정; 및
(iii) 상기 과정(ii)의 혼합물을 소성하는 과정;
을 포함하며,
상기 망간 전구체와 코발트 전구체는 몰(mol) 기준으로 1 : 2.3 내지 1 : 9의 비율을 가지며, 상기 망간 전구체 및 코발트 전구체와, 리튬 전구체는 몰 기준(Mn+Co : Li)으로 1 : 1.01 내지 1 : 1.3의 비율을 갖도록 혼합되는 것을 특징으로 하는 복합체 활물질의 제조 방법.
A method for producing the composite active material according to claim 1,
(i) a process of preparing a cobalt precursor, a manganese precursor, and a lithium precursor, respectively;
(ii) mixing the cobalt precursor, manganese precursor, and lithium precursor; and
(iii) calcining the mixture of process (ii);
Includes,
The manganese precursor and the cobalt precursor have a ratio of 1:2.3 to 1:9 on a molar basis, and the manganese precursor and cobalt precursor and the lithium precursor have a ratio of 1:1.01 to 1:01 on a molar basis (Mn+Co:Li). A method of producing a composite active material, characterized in that mixing to have a ratio of 1:1.3.
제 15 항에 있어서, 상기 리튬 전구체는 LiOH 또는 Li2CO3인 것을 특징으로 하는 복합체 활물질의 제조 방법.The method of claim 15, wherein the lithium precursor is LiOH or Li 2 CO 3 . 제 15 항에 있어서, 상기 망간 전구체는 탄산염, 황산염, 또는 질산염인 것을 특징으로 하는 복합체 활물질의 제조 방법.The method of claim 15, wherein the manganese precursor is carbonate, sulfate, or nitrate. 삭제delete 삭제delete 제 15 항에 있어서, 상기 과정(iii)의 소성은 850℃ 내지 1200℃의 온도에서 수행되는 것을 특징으로 하는 복합체 활물질의 제조 방법.The method of manufacturing a composite active material according to claim 15, wherein the sintering in step (iii) is performed at a temperature of 850°C to 1200°C. 제 15 항에 있어서, 상기 과정(iii)의 소성은 8시간 내지 12시간 동안 수행되는 것을 특징으로 하는 복합체 활물질의 제조 방법.The method of manufacturing a composite active material according to claim 15, wherein the calcination in step (iii) is performed for 8 to 12 hours. 제 1 항에 따른 복합체 활물질, 도전재, 및 바인더를 포함하는 슬러리를 집전체에 도포하여 제조되는 것을 특징으로 하는 양극.A positive electrode manufactured by applying a slurry containing the composite active material according to claim 1, a conductive material, and a binder to a current collector. 제 22 항에 따른 양극, 음극, 분리막, 및 전해액을 포함하는 것을 특징으로 하는 이차전지.A secondary battery comprising the anode, cathode, separator, and electrolyte according to claim 22. 제 23 항에 따른 이차전지를 포함하는 것을 특징으로 하는 전지팩.A battery pack comprising a secondary battery according to claim 23. 제 24 항에 따른 전지팩을 포함하는 것을 특징으로 하는 디바이스.A device comprising a battery pack according to claim 24.
KR1020160053791A 2016-05-02 2016-05-02 Composite Active Material for Secondary Battery Comprising Lithium Cobalt Oxide and Lithium Transition Metal Oxide Being Activated at High Voltage and Method of Manufacturing the Same KR102622635B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160053791A KR102622635B1 (en) 2016-05-02 2016-05-02 Composite Active Material for Secondary Battery Comprising Lithium Cobalt Oxide and Lithium Transition Metal Oxide Being Activated at High Voltage and Method of Manufacturing the Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160053791A KR102622635B1 (en) 2016-05-02 2016-05-02 Composite Active Material for Secondary Battery Comprising Lithium Cobalt Oxide and Lithium Transition Metal Oxide Being Activated at High Voltage and Method of Manufacturing the Same

Publications (2)

Publication Number Publication Date
KR20170124202A KR20170124202A (en) 2017-11-10
KR102622635B1 true KR102622635B1 (en) 2024-01-08

Family

ID=60386739

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160053791A KR102622635B1 (en) 2016-05-02 2016-05-02 Composite Active Material for Secondary Battery Comprising Lithium Cobalt Oxide and Lithium Transition Metal Oxide Being Activated at High Voltage and Method of Manufacturing the Same

Country Status (1)

Country Link
KR (1) KR102622635B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11495796B2 (en) 2018-11-14 2022-11-08 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, method of preparing the same and rechargeable lithium battery including the same
US11757092B2 (en) 2018-11-15 2023-09-12 Samsung Sdi Co., Ltd. Positive active material for rechargeable lithium battery, method of preparing the same and rechargeable lithium battery including the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102751481A (en) * 2012-02-14 2012-10-24 中国科学院福建物质结构研究所 Li2MnO3 and LiCoO2 composite anode material

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013002457A1 (en) * 2011-06-27 2013-01-03 주식회사 에코프로 Positive electrode active material, electrode including the positive electrode active material, and lithium electrochemical battery
KR101449558B1 (en) * 2012-08-22 2014-10-13 한국과학기술연구원 Cathode active materials for lithiumsecondary battery and preparation method thereof
KR101666384B1 (en) * 2013-09-30 2016-10-14 주식회사 엘지화학 Cathode Active Material for High Voltage Lithium Secondary Battery and Lithium Secondary Battery Comprising the Same
KR101762480B1 (en) * 2014-09-11 2017-07-27 주식회사 엘지화학 Positive electrode material for lithium secondary battery and method for manufacturing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102751481A (en) * 2012-02-14 2012-10-24 中国科学院福建物质结构研究所 Li2MnO3 and LiCoO2 composite anode material

Also Published As

Publication number Publication date
KR20170124202A (en) 2017-11-10

Similar Documents

Publication Publication Date Title
JP6515116B2 (en) Lithium-nickel based positive electrode active material, method of manufacturing the same, and lithium secondary battery including the same
US11078089B2 (en) Lithium composite oxide, positive electrode active material and lithium secondary battery comprising the same
KR102500085B1 (en) Positive Electrode Active Material Comprising Lithium Rich Lithium Manganese-based Oxide with Coating layer Comprising Lithium-Deficiency Transition Metal Oxide and Positive Electrode Comprising the Same
KR102095930B1 (en) Positive Electrode Active Material Comprising High-voltage Lithium Cobalt Oxide Having Doping element for Lithium Secondary Battery and Method of Manufacturing the Same
US10868309B2 (en) Positive electrode active material particle including core containing lithium cobalt oxide and coating layer containing boron and fluorine, and preparation method thereof
US20160181593A1 (en) Cathode active material and lithium secondary battery including the same, and method of manufacturing cathode active material
CN107799733B (en) Positive electrode active material for secondary battery, method for preparing same, and positive electrode and lithium secondary battery comprising same
US10217997B2 (en) Positive electrode active material and lithium secondary battery including the same
JP6566584B2 (en) Lithium secondary battery manufacturing method and lithium secondary battery manufactured using the same
TWI525044B (en) Lithium manganese-based oxide and cathode active material including the same
KR20180009911A (en) Positive Electrode Active Material Comprising High-voltage Lithium Cobalt Oxide for Lithium Secondary Battery and Method of Manufacturing the Same
KR20140025102A (en) Cathode active material for lithium secondary battery and manufacturing method thereof
KR101239620B1 (en) Positive Active Material for Secondary Battery of Improved Rate Capability
KR102147364B1 (en) Metal Doped-Positive Active Material for High Voltage
KR102582049B1 (en) Positive Electrode Active Material Particle Comprising Core Having Lithium Cobalt Oxide and Coordination Polymer Coating Layer Having Ligand Compound and Method of Manufacturing the Same
JP7225415B2 (en) METHOD FOR MANUFACTURING POSITIVE ACTIVE MATERIAL FOR SECONDARY BATTERY
KR102622635B1 (en) Composite Active Material for Secondary Battery Comprising Lithium Cobalt Oxide and Lithium Transition Metal Oxide Being Activated at High Voltage and Method of Manufacturing the Same
US10128502B2 (en) Positive electrode active material and lithium secondary battery including the same
KR102498342B1 (en) Positive Electrode Active Material Comprising Lithium Rich Lithium Manganese-based Oxide and Lithium Tungsten Compound, or Additionally Tungsten Compound and Positive Electrode for Lithium Secondary Battery Comprising the Same
CN104412424B (en) Positive electrode active material for secondary battery having enhanced life characteristics and method for preparing same
CN109314238B (en) Metal-doped positive electrode active material for high voltage
KR20200107843A (en) Lithium secondary battery
US9761864B2 (en) Cathode active material for high voltage lithium secondary battery and lithium secondary battery including the same
KR20140025103A (en) Cathode active material for lithium secondary battery and manufacturing method thereof
KR20180085969A (en) Electrode Active Material Comprising Lithium Transition Metal Oxide Having Domain Structure therein

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant