KR102598338B1 - Manufacturing method of nano-microporous aluminum electrode foil for automotive electronics - Google Patents

Manufacturing method of nano-microporous aluminum electrode foil for automotive electronics Download PDF

Info

Publication number
KR102598338B1
KR102598338B1 KR1020227026212A KR20227026212A KR102598338B1 KR 102598338 B1 KR102598338 B1 KR 102598338B1 KR 1020227026212 A KR1020227026212 A KR 1020227026212A KR 20227026212 A KR20227026212 A KR 20227026212A KR 102598338 B1 KR102598338 B1 KR 102598338B1
Authority
KR
South Korea
Prior art keywords
foil
solution
anode foil
corrosion
nano
Prior art date
Application number
KR1020227026212A
Other languages
Korean (ko)
Other versions
KR20220160539A (en
Inventor
지엔중 왕
구이리 허
쉬에쥔 진
구이저우 왕
위 공
슈앙시 송
페이 시아오
Original Assignee
난통 하이싱 일렉트로닉스 리미티드 라이어빌러티 컴퍼니
난통 하이이 일렉트로닉스 컴퍼니 리미티드
쓰추안 중야 테크놀로지 컴퍼니
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 난통 하이싱 일렉트로닉스 리미티드 라이어빌러티 컴퍼니, 난통 하이이 일렉트로닉스 컴퍼니 리미티드, 쓰추안 중야 테크놀로지 컴퍼니 filed Critical 난통 하이싱 일렉트로닉스 리미티드 라이어빌러티 컴퍼니
Publication of KR20220160539A publication Critical patent/KR20220160539A/en
Application granted granted Critical
Publication of KR102598338B1 publication Critical patent/KR102598338B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/02Etching
    • C25F3/04Etching of light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G13/00Apparatus specially adapted for manufacturing capacitors; Processes specially adapted for manufacturing capacitors not provided for in groups H01G4/00 - H01G11/00
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F17/00Multi-step processes for surface treatment of metallic material involving at least one process provided for in class C23 and at least one process covered by subclass C21D or C22F or class C25
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/06Anodisation of aluminium or alloys based thereon characterised by the electrolytes used
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D11/00Electrolytic coating by surface reaction, i.e. forming conversion layers
    • C25D11/02Anodisation
    • C25D11/04Anodisation of aluminium or alloys based thereon
    • C25D11/12Anodising more than once, e.g. in different baths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • H01G9/045Electrodes or formation of dielectric layers thereon characterised by the material based on aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/055Etched foil electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Treatment Of Metals (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

본 발명은 자동차 전자용 나노 미세다공성 구조 알루미늄 전극박의 제조 방법을 개시하며, 부식 및 화성 두 부분을 포함한다. 부식 과정은 2차 전처리, 다단계 구멍 형성, 중간 처리, 다단계 구멍 확장, 후처리, 세척 및 열처리 등 단계를 포함하고; 화성 과정은 전처리, 다단계 화성, 인산 처리, 1차 보수 화성, 열처리, 2차 보수 화성, 건조 등 단계를 포함한다. 2차 전처리는 세척 효과를 보장하는 동시에 알루미늄박 표면의 부식 구멍 발생 부위를 충분히 노출시켜 후속 처리에서 무효 구멍 및 병렬 구멍의 생성을 방지할 수 있으며, 부식 구멍 크기와 분포가 더 균일해지고 표면 확장 효율을 향상시키며; 부식 과정에서 후처리 단계 및 열처리를 결합하여 부식 포일 표면에 한 층의 얇은 다공성 산화알루미늄 산화층을 생성함으로써 보관 및 운반 과정에서 침식 및 오염을 방지할 수 있고 화성 시 에너지 소모도 감소시킬 수 있다.The present invention discloses a method for manufacturing aluminum electrode foil with nano-microporous structure for automotive electronics, and includes two parts: corrosion and chemical conversion. The corrosion process includes secondary pretreatment, multi-step hole formation, intermediate treatment, multi-step hole expansion, post-treatment, cleaning and heat treatment, etc.; The chemical conversion process includes steps such as pretreatment, multi-stage conversion, phosphoric acid treatment, primary repair conversion, heat treatment, secondary repair conversion, and drying. The secondary pretreatment ensures the cleaning effect and sufficiently exposes the corrosion hole occurrence area on the aluminum foil surface, preventing the creation of void holes and parallel holes in subsequent processing, making the corrosion hole size and distribution more uniform and improving surface expansion efficiency. improves; By combining post-treatment steps and heat treatment in the corrosion process to create a thin porous aluminum oxide layer on the surface of the corrosion foil, erosion and contamination can be prevented during storage and transportation, and energy consumption during chemical conversion can also be reduced.

Description

자동차 전자용 나노 미세다공성 구조 알루미늄 전극박의 제조 방법Manufacturing method of nano-microporous aluminum electrode foil for automotive electronics

본 발명은 콘덴서 제조 기술분야에 관한 것으로, 구체적으로 자동차 전자용 나노 미세다공성 구조 알루미늄 전극박의 제조 방법에 관한 것이다.The present invention relates to the field of capacitor manufacturing technology, and specifically to a method of manufacturing aluminum electrode foil with nano-microporous structure for automotive electronics.

자동차 전자용 알루미늄 전해 콘덴서는 강한 신뢰성과 높은 안정성의 특성을 가질 필요가 있을 뿐만 아니라, 동시에 소형화 및 수축화의 발전 수요도 고려해야 한다. 알루미늄 전해 콘덴서의 정전용량은 양극박의 정전용량에 의해 결정된다. 따라서 일정한 용량을 갖는 콘덴서에서, 사용되는 양극박의 비정전용량이 높을수록 콘덴서의 부피가 더 작다. 더 큰 비표면적을 획득하기 위해, 알루미늄박 부식 방법은 매우 중요하다. 현재, 알루미늄박 제조 산업은 화학적 부식 방법을 사용하여 부식된 알루미늄박을 제조하는데, 부식 구멍의 크기와 분포를 제어할 수 없어 표면 확장 효율이 낮아지며 포일 취성이 높고 기계적 강도가 낮아 전극박의 용량 및 굽힘 성능에 직접적인 영향을 미친다. 동시에, 화성법으로 획득된 산화막 결정의 산화알루미늄은 함량이 낮고 유전 상수가 높지 않으며, 동시에 산화알루미늄막층에 대량의 결함이 존재하여 누설 전류가 비교적 크고, 화성 과정에서 전력 소모가 비교적 크며 비용이 많이 든다.Aluminum electrolytic capacitors for automotive electronics not only need to have strong reliability and high stability characteristics, but at the same time, the power generation demands for miniaturization and shrinkage must also be considered. The capacitance of an aluminum electrolytic capacitor is determined by the capacitance of the anode foil. Therefore, in a condenser with a certain capacity, the higher the specific capacitance of the anode foil used, the smaller the volume of the condenser. To obtain a larger specific surface area, the aluminum foil corrosion method is very important. Currently, the aluminum foil manufacturing industry uses chemical corrosion methods to produce corroded aluminum foil, which cannot control the size and distribution of corrosion holes, resulting in low surface expansion efficiency, high foil brittleness, and low mechanical strength, which reduces the capacity and capacity of the electrode foil. It has a direct effect on bending performance. At the same time, the aluminum oxide content of the oxide film crystal obtained by the chemical conversion method is low and the dielectric constant is not high. At the same time, there are a large number of defects in the aluminum oxide film layer, so the leakage current is relatively large, and the power consumption during the chemical conversion process is relatively large and expensive. .

알루미늄 전극박의 용량 및 강도를 향상시켜 부품의 중복 설계 및 소형화 요구를 충족시키고, 알루미늄박 누설 전류를 감소시켜 전해 콘덴서의 작동 수명을 향상시키기 위해, 당업자는 알루미늄박 부식 공정에 대해 탐색적 개선을 수행하였다.In order to improve the capacity and strength of aluminum electrode foil to meet the requirements for redundant design and miniaturization of components, and to improve the operating life of electrolytic capacitors by reducing aluminum foil leakage current, those skilled in the art have made exploratory improvements to the aluminum foil corrosion process. carried out.

중국 특허 CN 105350064 A에서는 고체 알루미늄 전해 콘덴서용 양극박의 부식 공정 방법을 개시하였고, 이는 전처리 후 염산, 황산 및 삼염화알루미늄의 혼합 용액에서 알루미늄박에 대해 교류 주파수 변환 부식을 수행한 후, 인산 또는 이의 산성염을 함유한 수용액에서 중간 처리하며, 다음 상이한 파형, 주파수에 따라 교류 주파수 변환 부식을 여러 차례 반복하고, 알루미늄박에 대해 다단계 구멍 확장 부식을 수행하며, 마지막에 화학적 세척을 수행하는 것이다. 상기 방법으로 얻은 알루미늄박의 구멍 확장 효과는 비교적 양호하고, 알루미늄박의 기계적 강도는 어느 정도 향상되지만 부식 구멍의 크기와 분포의 균일성은 더 개선될 필요가 있다.Chinese patent CN 105350064 A discloses a corrosion process method for an anode foil for a solid aluminum electrolytic capacitor, which involves performing alternating current frequency conversion corrosion on the aluminum foil in a mixed solution of hydrochloric acid, sulfuric acid, and aluminum trichloride after pretreatment, followed by phosphoric acid or its Intermediate treatment is carried out in an aqueous solution containing acid salts, then alternating current frequency conversion corrosion is repeated several times according to different waveforms and frequencies, multi-stage hole expansion corrosion is performed on the aluminum foil, and finally chemical cleaning is performed. The hole expansion effect of the aluminum foil obtained by the above method is relatively good, and the mechanical strength of the aluminum foil is improved to some extent, but the uniformity of the size and distribution of corrosion holes needs to be further improved.

본 발명의 목적은 종래의 기술에 존재하는 부족한 점을 극복하기 위해 자동차 전자용 나노 미세다공성 구조 알루미늄 전극박의 제조 방법을 제공하는 것으로, 전체 과정은 간단하고 에너지 소모가 낮으며 제조된 양극박은 비체적이 높고 기계적 강도가 양호하며 누설 전류가 낮고 사용 수명이 긴 등 장점을 갖고 있어 자동차 전자용 알루미늄 전해 콘덴서에 적용된다.The purpose of the present invention is to provide a method for manufacturing a nano-microporous structure aluminum electrode foil for automotive electronics in order to overcome the shortcomings existing in the conventional technology. The overall process is simple, energy consumption is low, and the manufactured anode foil is a non-porous material. It has advantages such as high electrical resistance, good mechanical strength, low leakage current, and long service life, so it is applied to aluminum electrolytic capacitors for automobile electronics.

본 발명의 기술적 해결수단은 하기와 같다.The technical solution of the present invention is as follows.

자동차 전자용 나노 미세다공성 구조 알루미늄 전극박의 제조 방법에 있어서, 주요하게 하기와 같은 단계를 포함한다.A method of manufacturing a nano-microporous aluminum electrode foil for automotive electronics mainly includes the following steps.

(1) 저압용 고순도 전자 알루미늄광박을 인산 용액에서 1차 전처리한 다음 염산과 황산의 혼합액에 침지하여 2차 전처리를 수행한다.(1) High-purity electronic aluminum foil for low pressure is first pretreated in a phosphoric acid solution and then secondarily pretreated by immersing it in a mixed solution of hydrochloric acid and sulfuric acid.

(2) 전처리된 양극박을 염산과 황산 혼합 용액에서 전기 부식시키고 다단계 주파수 변환을 수행하여 구멍을 형성한다.(2) The pretreated anode foil is electrically corroded in a mixed solution of hydrochloric acid and sulfuric acid, and a hole is formed by performing multi-step frequency conversion.

(3) 구멍이 형성된 양극박을 염산, 황산 및 옥살산의 혼합 용액에 침지하여 중간 처리를 수행한다.(3) Intermediate treatment is performed by immersing the anode foil with holes in a mixed solution of hydrochloric acid, sulfuric acid, and oxalic acid.

(4) 중간 처리된 양극박을 염산, 황산, 옥살산 및 인산 혼합 용액에서 전기 부식시켜 다단계 구멍 확장을 수행한다.(4) Multi-step hole expansion is performed by electrocorroding the intermediately treated anode foil in a mixed solution of hydrochloric acid, sulfuric acid, oxalic acid, and phosphoric acid.

(5) 양극박을 질산 용액에 침지하여 염화물 이온을 제거한다.(5) The anode foil is immersed in a nitric acid solution to remove chloride ions.

(6) 양극박을 순수에서 깨끗하게 세척한다.(6) Wash the anode foil thoroughly in pure water.

(7) 양극박을 아디픽산암모늄과 암모니아수 혼합 용액에 침지하여 후처리를 수행한다.(7) Post-treatment is performed by immersing the anode foil in a mixed solution of ammonium adipate and aqueous ammonia.

(8) 질소 가스 보호 하에, 기울기 가변 온도 열처리 기술을 사용하여 어닐링 처리를 수행한다.(8) Under nitrogen gas protection, annealing treatment is performed using gradient variable temperature heat treatment technology.

(9) 상기 단계에서 얻은 부식 포일을 아디픽산암모늄 용액에서 전처리한다.(9) The corrosion foil obtained in the above step is pretreated in ammonium adipate solution.

(10) 아디픽산암모늄 용액에 전기를 가하여 다단계 전기화학적 양극 산화를 수행한다.(10) Electricity is applied to the ammonium adipate solution to perform multi-step electrochemical anodic oxidation.

(11) 양극박을 인산 용액에 침지하여 처리한다.(11) The anode foil is treated by immersing it in a phosphoric acid solution.

(12) 양극박을 아디픽산암모늄과 인산이수소암모늄 혼합 용액에서 전기 산화시켜 1차 보수 화성을 수행한다.(12) First repair conversion is performed by electro-oxidizing the anode foil in a mixed solution of ammonium adipate and ammonium dihydrogen phosphate.

(13) 양극박에 대해 어닐링 열처리를 수행한다.(13) Annealing heat treatment is performed on the anode foil.

(14) 양극박을 인산이수소암모늄 용액에서 전기 산화시켜 2차 보수 화성을 수행한다.(14) Secondary repair conversion is performed by electro-oxidizing the anode foil in an ammonium dihydrogen phosphate solution.

(15) 양극박에 대해 건조 처리를 수행하여 자동차 전자용 나노 미세다공성 구조 알루미늄 전극박을 얻는다.(15) Drying treatment is performed on the anode foil to obtain a nano-microporous structure aluminum electrode foil for automotive electronics.

더 나아가, 단계 (1)에서, 1차 전처리액에 사용되는 인산 용액 농도는 1 내지 10 wt%이고 온도는 40 내지 65℃이며 반응 시간은 1 내지 6분이고; 2차 전처리액 중 염산 농도는 1 내지 10 wt%이며 황산 농도는 0.1 내지 2 wt%이고 온도는 45 내지 55℃이며 반응 시간은 1 내지 6분이다.Furthermore, in step (1), the concentration of the phosphoric acid solution used in the first pretreatment liquid is 1 to 10 wt%, the temperature is 40 to 65 ° C., and the reaction time is 1 to 6 minutes; The hydrochloric acid concentration in the secondary pretreatment solution is 1 to 10 wt%, the sulfuric acid concentration is 0.1 to 2 wt%, the temperature is 45 to 55°C, and the reaction time is 1 to 6 minutes.

더 나아가, 단계 (5)에서, 사용되는 질산 용액 농도는 50 내지 70 wt%이고 온도는 25 내지 40℃내에서 제어되며 반응 시간은 60 내지 360초이다.Furthermore, in step (5), the nitric acid solution concentration used is 50 to 70 wt%, the temperature is controlled within 25 to 40° C., and the reaction time is 60 to 360 seconds.

더 나아가, 단계 (7)에서, 암모니아수의 농도는 20 wt% 내지 28 wt%이고 아디픽산암모늄 농도는 0.1 내지 1%이며 반응 시간은 30 내지 120초이다.Furthermore, in step (7), the concentration of aqueous ammonia is 20 wt% to 28 wt%, the concentration of ammonium adipate is 0.1 to 1%, and the reaction time is 30 to 120 seconds.

더 나아가, 단계 (8)에서, 기울기 가변 온도 열처리를 수행할 때 1단 온도는 200 내지 300℃이고 1 내지 3분 동안 보온하며, 2단 온도는 300 내지 400℃이고 1 내지 3분 동안 보온하며, 3단 온도는 400 내지 550℃이고 0.5 내지 2분 동안 보온한다.Furthermore, in step (8), when performing the gradient variable temperature heat treatment, the first stage temperature is 200 to 300°C and kept warm for 1 to 3 minutes, and the second stage temperature is 300 to 400°C and kept warm for 1 to 3 minutes. , the temperature of the third stage is 400 to 550°C and kept warm for 0.5 to 2 minutes.

더 나아가, 단계 (13)에서, 어닐링 열처리는 마이크로파 가열법을 채택하고 전력은 10 내지 40 KW이며 가열 시간은 60 내지 240초이다.Furthermore, in step 13, the annealing heat treatment adopts microwave heating method, the power is 10 to 40 KW, and the heating time is 60 to 240 seconds.

종래의 기술에 비해, 본 발명은 하기와 같은 장점을 갖는다.Compared to the prior art, the present invention has the following advantages.

1. 본 발명에서 개시된 해결수단은 기존의 공정을 기반으로 개선된 것으로, 부식 단계에서 2차 전처리 과정을 거친 후, 세척 효과를 보장할 수 있을 뿐만 아니라, 알루미늄박 표면의 부식 구멍 발생 부위가 충분히 노출될 수 있도록 하여, 후속의 구멍 형성 및 구멍 확장 과정에서 무효 구멍 및 병렬 구멍의 생성을 방지하고, 부식 구멍 크기와 분포가 더 균일해지며 표면 확장 효율이 크게 향상되고 알루미늄박의 실제 비표면적이 커지도록 보장하며, 이를 기반으로 제조된 알루미늄 전해 콘덴서는 용량이 크고 현재 소형화, 수축화의 발전 수요에 부합된다.1. The solution disclosed in the present invention is an improvement based on the existing process, and not only ensures the cleaning effect after going through the secondary pretreatment process in the corrosion stage, but also ensures that the corrosion hole occurrence area on the surface of the aluminum foil is sufficiently removed. By allowing the subsequent hole formation and hole expansion process to be exposed, the creation of void holes and parallel holes is prevented, the corrosion hole size and distribution become more uniform, the surface expansion efficiency is greatly improved, and the actual specific surface area of the aluminum foil is reduced. It is guaranteed to be large, and the aluminum electrolytic capacitor manufactured based on this has a large capacity and meets the current demand for miniaturization and shrinkage.

2. 본 발명은 부식 과정에서 후처리 단계를 추가하여 열처리와 결합함으로써, 부식 포일 표면에 한 층의 얇은 다공성 산화알루미늄 산화층을 생성함으로써 보관 및 운반 과정에서 부식 포일 표면의 침식 및 오염을 방지할 수 있고 후속의 화성 과정에서 에너지 소모도 감소시킬 수 있다.2. The present invention adds a post-treatment step in the corrosion process and combines it with heat treatment, thereby creating a thin porous aluminum oxide layer on the surface of the corrosion foil, thereby preventing erosion and contamination of the surface of the corrosion foil during storage and transportation. It can also reduce energy consumption in the subsequent formation process.

3. 본 발명은 알루미늄박에 대해 구멍 확장 처리 및 세척을 수행한 후 기울기 가변 온도 열처리 기술을 사용하여 어닐링을 수행하였는데, 기울기 가변 온도 방법은 알루미늄 잔류 코어층의 유연성을 증가시켜 알루미늄박 기계적 강도를 향상시킴으로써 최종적으로 알루미늄 전해 콘덴서의 신뢰성 및 안정성을 강화시킬 수 있다.3. In the present invention, after performing hole expansion treatment and cleaning on the aluminum foil, annealing was performed using a gradient variable temperature heat treatment technology. The gradient variable temperature method increases the flexibility of the aluminum residual core layer to improve the mechanical strength of the aluminum foil. By improving this, the reliability and stability of the aluminum electrolytic capacitor can be ultimately strengthened.

4. 본 발명은 1차 보수 화성 및 2차 보수 화성 과정 중간에서 마이크로파 열처리를 이용한 어닐링 단계를 설계하였으며, 상기 단계는 산화막의 구조 특징에 대해 선택적 가열을 수행하여 결정 산화막의 전환율을 향상시킬 수 있어 누설 전류를 감소시키고, 제품의 사용 수명을 연장시키며, 본 발명에서 개시된 방법으로 제조된 전극 포일의 사용 수명은 20000시간에 달하고, 기존의 공정으로 제조된 알루미늄 전극박에 비해 질적으로 향상되었다.4. The present invention designed an annealing step using microwave heat treatment in the middle of the first and second repair forming processes, and this step can improve the conversion rate of the crystalline oxide film by selectively heating the structural characteristics of the oxide film. Leakage current is reduced, the service life of the product is extended, and the service life of the electrode foil manufactured by the method disclosed in the present invention reaches 20,000 hours, and is qualitatively improved compared to the aluminum electrode foil manufactured by the existing process.

도 1은 실시예 1에서 제조된 자동차 전자용 나노 미세다공성 구조 알루미늄 전극박의 주사 전자 현미경도이다.
도 2는 실시예 1에서 제조된 자동차 전자용 나노 미세다공성 구조 알루미늄 전극박의 성능 파라미터 통계도이다.
Figure 1 is a scanning electron microscope diagram of the aluminum electrode foil with nano-microporous structure for automotive electronics manufactured in Example 1.
Figure 2 is a statistical diagram of performance parameters of the aluminum electrode foil with nano-microporous structure for automotive electronics manufactured in Example 1.

본 발명의 기술적 해결수단은 아래에 도면과 함께 더 설명될 것이지만 이에 한정되지 않으며, 본 발명의 기술적 해결수단의 정신과 범위를 벗어나지 않는 한, 본 발명의 기술적 해결수단에 대한 모든 수정 또는 등가 교체는 모두 본 발명의 보호 범위에 포함되어야 한다.The technical solution of the present invention will be further explained with the drawings below, but is not limited thereto, and any modification or equivalent replacement to the technical solution of the present invention will be made as long as it does not depart from the spirit and scope of the technical solution of the present invention. must be included in the protection scope of the present invention.

실시예 1: 자동차 전자용 나노 미세다공성 구조 알루미늄 전극박의 제조 방법Example 1: Method for manufacturing nano-microporous aluminum electrode foil for automotive electronics

(1) 저압용 고순도 전자 알루미늄광박을 2 wt% 인산 용액에 넣고 55℃의 조건에서 3분 동안 반응시킨 후 꺼내어 1 wt% 염산과 0.5 wt% 황산의 혼합 용액에서 50℃의 조건에서 2분 동안 반응시켜, 전처리된 양극박을 얻는다.(1) Put high-purity electronic aluminum foil for low pressure into a 2 wt% phosphoric acid solution and react at 55°C for 3 minutes, then take it out and react in a mixed solution of 1 wt% hydrochloric acid and 0.5 wt% sulfuric acid at 50°C for 2 minutes. By reacting, a pretreated anode foil is obtained.

(2) 전처리된 양극박을 5.0 mol/L 염산과 0.2 mol/L 황산으로 조성된 혼합 용액에 넣어 30℃조건에서 전기 부식시키고, 3급 주파수 변환 구멍 형성을 수행하며, 1급 구멍 형성 전류 주파수는 60 Hz이고 2급 구멍 형성 전류 주파수는 45 Hz이며 3급 구멍 형성 전류 주파수는 30 Hz이다.(2) The pre-treated anode foil is placed in a mixed solution composed of 5.0 mol/L hydrochloric acid and 0.2 mol/L sulfuric acid and subjected to electrocorrosion at 30°C, forming third-class frequency conversion holes, and performing first-class hole formation current frequency. is 60 Hz, the second-class hole-forming current frequency is 45 Hz, and the third-class hole-forming current frequency is 30 Hz.

(3) 구멍이 형성된 양극박을 6.0 mol/L 염산, 0.14 mol/L 황산 및 0.07 mol/L 옥살산으로 조성된 혼합 용액에 넣고 85℃조건에서 180초 동안 침지하여 중간 처리를 수행한다.(3) Intermediate treatment is performed by placing the anode foil with holes in a mixed solution composed of 6.0 mol/L hydrochloric acid, 0.14 mol/L sulfuric acid, and 0.07 mol/L oxalic acid and immersing it for 180 seconds at 85°C.

(4) 중간 처리된 양극박을 5.0 mol/L 염산, 0.13 mol/L 황산, 0.07 mol/L 옥살산 및 0.05 mol/L 인산으로 조성된 혼합 용액에 넣고 30℃조건에서 전기 부식시켜 5급 구멍 확장을 수행한다.(4) The intermediately treated anode foil was placed in a mixed solution composed of 5.0 mol/L hydrochloric acid, 0.13 mol/L sulfuric acid, 0.07 mol/L oxalic acid, and 0.05 mol/L phosphoric acid and subjected to electrocorrosion at 30°C to expand grade 5 holes. Perform.

(5) 양극박을 26 wt% 질산 용액에 넣고 30℃조건에서 100초 동안 침지하여 염화물 이온을 제거한다.(5) Place the anode foil in a 26 wt% nitric acid solution and immerse it for 100 seconds at 30°C to remove chloride ions.

(6) 양극박을 순수에서 세척한다.(6) Wash the anode foil in pure water.

(7) 양극박을 26 wt% 암모니아수 및 0.2% 아디픽산암모늄 용액에 침지하여 45초 동안 후처리를 수행한다.(7) Post-processing is performed for 45 seconds by immersing the anode foil in 26 wt% aqueous ammonia and 0.2% ammonium adipate solution.

(8) 양극박을 질소 가스 보호 하에, 기울기 가변 온도 열처리 기술을 사용하여 어닐링 처리를 수행하며, 1단 온도 220℃로 3분 동안 보온하고, 2단 온도 380℃로 1.5분 동안 보온하며, 3단 온도 470℃로 1분 동안 보온하여 자동차 전자용 미세다공성 구조 부식 포일을 얻는다.(8) The anode foil is subjected to annealing treatment using gradient variable temperature heat treatment technology under nitrogen gas protection, the first stage is kept warm at a temperature of 220°C for 3 minutes, the second stage is kept warm at a temperature of 380°C for 1.5 minutes, 3 However, the microporous structural corrosion foil for automotive electronics is obtained by keeping the product warmed at 470°C for 1 minute.

(9) 부식 포일을 1 wt% 아디픽산암모늄 용액에 넣고 45℃조건에서 4분 동안 침지하여 전처리를 수행한다.(9) Pre-treatment is performed by placing the corrosion foil in a 1 wt% ammonium adipate solution and immersing it for 4 minutes at 45°C.

(10) 양극박을 8 wt% 아디픽산암모늄 용액에 넣고 45℃조건에서 전기를 가하여 4급 전기화학적 양극 산화를 수행한다.(10) The anode foil is placed in an 8 wt% ammonium adipate solution and electricity is applied at 45°C to perform quaternary electrochemical anodization.

(11) 양극박을 7 wt% 인산 용액에 넣고 55℃ 조건에서 2.5분 동안 침지하여 처리한다.(11) The anode foil is placed in a 7 wt% phosphoric acid solution and treated by immersing it for 2.5 minutes at 55°C.

(12) 양극박을 1.5 wt% 아디픽산암모늄 및 0.25 wt% 인산이수소암모늄으로 조성된 혼합 용액에 넣고 75℃조건에서 4분 동안 전기를 가하여 1차 보수 화성을 수행한다.(12) The anode foil is placed in a mixed solution composed of 1.5 wt% ammonium adipate and 0.25 wt% ammonium dihydrogen phosphate, and electricity is applied for 4 minutes at 75°C to perform first repair chemical conversion.

(13) 양극박에 대해 마이크로파 처리를 수행하며, 전력은 40 KW이고 가열 시간은 60초이다.(13) Microwave treatment is performed on the anode foil, the power is 40 KW, and the heating time is 60 seconds.

(14) 양극박을 1 wt% 인산이수소암모늄 용액에 넣고 75℃조건에서 4분 동안 전기를 가하여 2차 보수 화성을 수행한다.(14) Place the anode foil in a 1 wt% ammonium dihydrogen phosphate solution and apply electricity for 4 minutes at 75°C to perform secondary water repair.

(15) 300℃의 온도에서 양극박에 대해 건조 처리를 수행하여 자동차 전자용 나노 미세다공성 구조 알루미늄 전극박을 얻는다.(15) Drying treatment is performed on the anode foil at a temperature of 300° C. to obtain a nano-microporous structure aluminum electrode foil for automotive electronics.

얻은 나노 미세다공성 구조 알루미늄 전극박의 주사 전자 현미경도는 도 1에 도시된 바와 같고, 도면에서 알 수 있듯이, 얻은 알루미늄 전극 포일 상의 나노 미세다공성 구조는 규칙적이고 분포가 균일하며 구멍 직경 크기는 100 내지 400 nm이고, 균일성이 높으므로 전극 포일의 용량 및 굽힘 성능을 향상시키는데 도움이 된다.The scanning electron micrograph of the obtained nano-microporous structured aluminum electrode foil is as shown in Figure 1, and as can be seen from the figure, the nano-microporous structure on the obtained aluminum electrode foil is regular and uniform in distribution, and the pore diameter size ranges from 100 to 100. It is 400 nm and has high uniformity, which helps improve the capacity and bending performance of the electrode foil.

비교예: 기존 공정을 이용한 나노 미세다공성 구조 알루미늄 전극박의 제조 방법Comparative example: Manufacturing method of nano-microporous aluminum electrode foil using an existing process

(1) 저압용 고순도 전자 알루미늄광박을 5 wt% 수산화나트륨 용액에 넣고 45℃의 온도에서 5분 동안 반응시킨다.(1) Add high-purity electronic aluminum foil for low pressure to 5 wt% sodium hydroxide solution and react at 45°C for 5 minutes.

(2) 전처리된 양극박을 5.0 mol/L 염산과 0.2 mol/L 황산 혼합 용액에 넣고 30℃의 온도에서 전기 부식시키고, 3급 주파수 변환 구멍 형성을 수행하며, 1급 구멍 형성 전류 주파수는 60 Hz이고 2급 구멍 형성 전류 주파수는 45 Hz이며 3급 구멍 형성 전류 주파수는 30 Hz이다.(2) The pretreated anode foil is placed in a mixed solution of 5.0 mol/L hydrochloric acid and 0.2 mol/L sulfuric acid and subjected to electrocorrosion at a temperature of 30°C. Third-class frequency conversion hole formation is performed, and the first-class hole formation current frequency is 60. Hz, the second-class hole-forming current frequency is 45 Hz, and the third-class hole-forming current frequency is 30 Hz.

(3) 구멍이 형성된 양극박을 6.0 mol/L 염산, 0.14 mol/L 황산 및 0.07 mol/L 옥살산의 혼합 용액에 넣고 85℃의 온도에서 180초 동안 침지하여 중간 처리를 수행한다.(3) Intermediate treatment is performed by placing the anode foil with holes in a mixed solution of 6.0 mol/L hydrochloric acid, 0.14 mol/L sulfuric acid, and 0.07 mol/L oxalic acid and immersing it for 180 seconds at a temperature of 85°C.

(4) 중간 처리된 양극박을 5.0 mol/L 염산, 0.13 mol/L 황산, 0.07 mol/L 옥살산 및 0.05 mol/L 인산의 혼합 용액에 넣고 30℃조건에서 전기 부식시켜 5급 구멍 확장을 수행한다.(4) The intermediately treated anode foil was placed in a mixed solution of 5.0 mol/L hydrochloric acid, 0.13 mol/L sulfuric acid, 0.07 mol/L oxalic acid, and 0.05 mol/L phosphoric acid and subjected to electrocorrosion at 30°C to perform grade 5 hole expansion. do.

(5) 양극박을 순수에서 깨긋하게 세척한다.(5) Wash the anode foil thoroughly in pure water.

(6) 양극박을 470℃의 오븐에 넣고 7분 동안 어닐링 처리하여 부식 포일을 얻는다.(6) Place the anode foil in an oven at 470°C and anneale for 7 minutes to obtain a corrosion foil.

(7) 얻은 부식 포일을 1 wt% 아디픽산암모늄 용액에 넣고 45℃의 온도에서 4분 동안 침지하여 전처리를 수행한다.(7) Pre-treatment is performed by placing the obtained corrosion foil in a 1 wt% ammonium adipate solution and immersing it for 4 minutes at a temperature of 45°C.

(8) 얻은 양극박을 8 wt% 아디픽산암모늄 용액에 넣고 45℃의 온도에서 전기를 가하여 4급 전기화학적 양극 산화를 수행한다.(8) The obtained anode foil is placed in an 8 wt% ammonium adipate solution and electricity is applied at a temperature of 45°C to perform quaternary electrochemical anodization.

(9) 양극박을 7 wt% 인산 용액에 넣고 55℃의 온도에서 2.5분 동안 침지하여 처리한다.(9) The anode foil is placed in a 7 wt% phosphoric acid solution and treated by immersing it at a temperature of 55°C for 2.5 minutes.

(10) 양극박을 1.5 wt% 아디픽산암모늄 및 0.25 wt% 인산이수소암모늄으로 조성된 혼합 용액에 넣고 75℃의 온도에서 전기를 가하여 4분 동안 1차 보수 화성을 수행한다.(10) The anode foil is placed in a mixed solution composed of 1.5 wt% ammonium adipate and 0.25 wt% ammonium dihydrogen phosphate, and electricity is applied at a temperature of 75° C. to perform primary repair chemical conversion for 4 minutes.

(11) 양극박을 오븐에 넣고 450℃의 온도에서 2분 동안 어닐링 처리를 수행한다.(11) Place the anode foil in an oven and perform annealing treatment at a temperature of 450°C for 2 minutes.

(12) 양극박을 1 wt% 인산이수소암모늄 용액에 넣고 75℃의 온도에서 4분 동안 전기를 가하여 2차 보수 화성을 수행한다.(12) Place the anode foil in a 1 wt% ammonium dihydrogen phosphate solution and apply electricity for 4 minutes at a temperature of 75°C to perform secondary water repair.

(13) 300℃의 온도에서 양극박에 대해 건조 처리를 수행하여 자동차 전자용 나노 미세다공성 구조 알루미늄 전극박을 얻는다.(13) Drying treatment is performed on the anode foil at a temperature of 300° C. to obtain a nano-microporous structure aluminum electrode foil for automotive electronics.

실시예에 개시된 해결수단을 이용하여 제조된 알루미늄 전극 포일과 기존 공정(즉, 비교예에서 주어진 해결수단)에 의존하여 제조된 전극 포일의 성능 파라미터의 비교 결과는 도 2에 도시된 바와 같고, 도면에서 알 수 있듯이, 실시예에서 개시된 해결수단은 전극 포일의 비정전용량 및 기계적 강도를 효과적으로 향상시킬 수 있고, 누설 전류를 감소시킬 수 있으며, 제품의 사용 수명을 효과적으로 연장시킨다.The comparison results of the performance parameters of the aluminum electrode foil manufactured using the solution disclosed in the Example and the electrode foil manufactured depending on the existing process (i.e., the solution given in the Comparative Example) are as shown in FIG. 2, and FIG. As can be seen, the solutions disclosed in the examples can effectively improve the specific capacitance and mechanical strength of the electrode foil, reduce leakage current, and effectively extend the service life of the product.

이상의 설명은 본 발명의 실시예에 불과하며, 본 발명의 범위를 한정하려는 의도가 아니며, 본 발명의 명세서 및 도면의 내용으로 이루어진 등가 구조 또는 등가 프로세스 변환, 또는 다른 관련된 기술분야에 직접 또는 간접적으로 적용되는 경우도 모두 마찬가지로 본 발명의 청구보호범위 내에 포함된다.The above description is only an embodiment of the present invention, and is not intended to limit the scope of the present invention, and is not directly or indirectly related to an equivalent structure or equivalent process conversion made up of the contents of the specification and drawings of the present invention, or to other related technical fields. All applicable cases are likewise included within the scope of claim protection of the present invention.

Claims (6)

자동차 전자용 나노 미세다공성 구조 알루미늄 전극박의 제조 방법에 있어서,
(1) 알루미늄광박을 인산 용액에서 1차 전처리한 다음 염산과 황산의 혼합액에 침지하여 2차 전처리를 수행하여 전처리된 양극박을 얻는 단계;
(2) 전처리된 양극박을 염산과 황산 혼합 용액에서 전기 부식시키고 다단계 주파수 변환을 수행하여 구멍을 형성하는 단계;
(3) 구멍이 형성된 양극박을 염산, 황산 및 옥살산의 혼합 용액에 침지하여 중간 처리를 수행하는 단계;
(4) 중간 처리된 양극박을 염산, 황산, 옥살산 및 인산 혼합 용액에서 전기 부식시켜 다단계 구멍 확장을 수행하는 단계;
(5) 양극박을 질산 용액에 침지하여 염화물 이온을 제거하고, 이때 사용되는 질산 용액 농도는 50 내지 70 wt%이고 온도는 25 내지 40℃내에서 제어되며 반응 시간은 60 내지 360초인 단계;
(6) 양극박을 순수에서 세척하는 단계;
(7) 양극박을 아디픽산암모늄과 암모니아수 혼합 용액에 침지하여 후처리를 수행하는 단계;
(8) 질소 가스 보호 하에, 기울기 가변 온도 열처리 기술을 사용하여 어닐링 처리를 수행하여 부식 포일을 얻는 단계;
(9) 상기 단계에서 얻은 부식 포일을 아디픽산암모늄 용액에서 전처리하는 단계;
(10) 아디픽산암모늄 용액에 전기를 가하여 다단계 전기화학적 양극 산화를 수행하는 단계;
(11) 양극박을 인산 용액에 침지하여 처리하는 단계;
(12) 양극박을 아디픽산암모늄과 인산이수소암모늄 혼합 용액에서 전기 산화시켜 1차 보수 화성을 수행하는 단계;
(13) 양극박에 대해 어닐링 열처리를 수행하는 단계;
(14) 양극박을 인산이수소암모늄 용액에서 전기 산화시켜 2차 보수 화성을 수행하는 단계;
(15) 양극박에 대해 건조 처리를 수행하여 자동차 전자용 나노 미세다공성 구조 알루미늄 전극박을 얻는 단계;를 포함하는 것을 특징으로 하는 자동차 전자용 나노 미세다공성 구조 알루미늄 전극박의 제조 방법.
In the method of manufacturing nano-microporous aluminum electrode foil for automotive electronics,
(1) first pretreating aluminum foil in a phosphoric acid solution and then performing secondary pretreatment by immersing it in a mixed solution of hydrochloric acid and sulfuric acid to obtain a pretreated anode foil;
(2) electrocorroding the pretreated anode foil in a mixed solution of hydrochloric acid and sulfuric acid and performing multi-step frequency conversion to form holes;
(3) performing intermediate treatment by immersing the anode foil with holes in a mixed solution of hydrochloric acid, sulfuric acid, and oxalic acid;
(4) performing multi-step hole expansion by electrocorroding the intermediately treated anode foil in a mixed solution of hydrochloric acid, sulfuric acid, oxalic acid, and phosphoric acid;
(5) immersing the anode foil in a nitric acid solution to remove chloride ions, wherein the nitric acid solution concentration used is 50 to 70 wt%, the temperature is controlled within 25 to 40°C, and the reaction time is 60 to 360 seconds;
(6) washing the anode foil in pure water;
(7) performing post-treatment by immersing the anode foil in a mixed solution of ammonium adipate and aqueous ammonia;
(8) Under nitrogen gas protection, performing annealing treatment using gradient variable temperature heat treatment technology to obtain a corrosion foil;
(9) pre-treating the corrosion foil obtained in the above step in an ammonium adipate solution;
(10) applying electricity to the ammonium adipate solution to perform multi-step electrochemical anodic oxidation;
(11) treating the anode foil by immersing it in a phosphoric acid solution;
(12) performing first repair conversion by electro-oxidizing the anode foil in a mixed solution of ammonium adipate and ammonium dihydrogen phosphate;
(13) performing annealing heat treatment on the anode foil;
(14) performing secondary repair conversion by electro-oxidizing the anode foil in an ammonium dihydrogen phosphate solution;
(15) performing a drying treatment on the anode foil to obtain a nano-microporous structure aluminum electrode foil for automobile electronics; a method for manufacturing a nano-microporous structure aluminum electrode foil for automobile electronics, comprising:
제1항에 있어서,
단계 (1)에서, 1차 전처리액에 사용되는 인산 용액 농도는 1 내지 10 wt%이고 온도는 40 내지 65℃이며 반응 시간은 1 내지 6분이고; 2차 전처리액 중 염산 농도는 1 내지 10 wt%이며 황산 농도는 0.1 내지 2 wt%이고 온도는 45 내지 55℃이며 반응 시간은 1 내지 6분인 것을 특징으로 하는 자동차 전자용 나노 미세다공성 구조 알루미늄 전극박의 제조 방법.
According to paragraph 1,
In step (1), the concentration of the phosphoric acid solution used in the first pretreatment solution is 1 to 10 wt%, the temperature is 40 to 65 ° C., and the reaction time is 1 to 6 minutes; Nano-microporous structure aluminum electrode for automotive electronics, characterized in that the hydrochloric acid concentration in the secondary pretreatment solution is 1 to 10 wt%, the sulfuric acid concentration is 0.1 to 2 wt%, the temperature is 45 to 55 ° C., and the reaction time is 1 to 6 minutes. Method of manufacturing gourd.
삭제delete 제1항에 있어서,
단계 (7)에서, 암모니아수의 농도는 20 wt% 내지 28 wt%이고 아디픽산암모늄 농도는 0.1 내지 1%이며 반응 시간은 30 내지 120초인 것을 특징으로 하는 자동차 전자용 나노 미세다공성 구조 알루미늄 전극박의 제조 방법.
According to paragraph 1,
In step (7), the concentration of ammonia water is 20 wt% to 28 wt%, the ammonium adipate concentration is 0.1 to 1%, and the reaction time is 30 to 120 seconds. Manufacturing method.
제1항에 있어서,
단계 (8)에서, 기울기 가변 온도 열처리를 수행할 때 1단 온도는 200 내지 300℃이고 1 내지 3분 동안 보온하며, 2단 온도는 300 내지 400℃이고 1 내지 3분 동안 보온하며, 3단 온도는 400 내지 550℃이고 0.5 내지 2분 동안 보온하는 것을 특징으로 하는 자동차 전자용 나노 미세다공성 구조 알루미늄 전극박의 제조 방법.
According to paragraph 1,
In step (8), when performing gradient variable temperature heat treatment, the first stage temperature is 200 to 300°C and kept warm for 1 to 3 minutes, the second stage temperature is 300 to 400°C and kept warm for 1 to 3 minutes, and the third stage temperature is 300 to 400°C and kept warm for 1 to 3 minutes. A method of manufacturing a nano-microporous structure aluminum electrode foil for automotive electronics, characterized in that the temperature is 400 to 550 ℃ and kept warm for 0.5 to 2 minutes.
제1항에 있어서,
단계 (13)에서, 어닐링 열처리는 마이크로파 가열법을 채택하고 전력은 10 내지 40 KW이며 가열 시간은 60 내지 240초인 것을 특징으로 하는 자동차 전자용 나노 미세다공성 구조 알루미늄 전극박의 제조 방법.
According to paragraph 1,
In step (13), the annealing heat treatment adopts a microwave heating method, the power is 10 to 40 KW, and the heating time is 60 to 240 seconds. Method for manufacturing nano-microporous structure aluminum electrode foil for automotive electronics.
KR1020227026212A 2021-04-29 2022-02-22 Manufacturing method of nano-microporous aluminum electrode foil for automotive electronics KR102598338B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110473031 2021-04-29
CN202110583523.3 2021-05-27
CN202110583523.3A CN113026087B (en) 2021-04-29 2021-05-27 Preparation method of nano-microporous structure aluminum electrode foil for automobile electronics
PCT/CN2022/077206 WO2022247364A1 (en) 2021-04-29 2022-02-22 Method for preparing nano microporous structure aluminum electrode foil for automotive electronics

Publications (2)

Publication Number Publication Date
KR20220160539A KR20220160539A (en) 2022-12-06
KR102598338B1 true KR102598338B1 (en) 2023-11-06

Family

ID=76455934

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020227026212A KR102598338B1 (en) 2021-04-29 2022-02-22 Manufacturing method of nano-microporous aluminum electrode foil for automotive electronics

Country Status (3)

Country Link
KR (1) KR102598338B1 (en)
CN (1) CN113026087B (en)
WO (1) WO2022247364A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113026087B (en) * 2021-04-29 2021-08-10 南通海星电子股份有限公司 Preparation method of nano-microporous structure aluminum electrode foil for automobile electronics
CN113611539B (en) * 2021-07-13 2022-04-22 乳源县立东电子科技有限公司 Low-voltage soft-state corrosion anode aluminum foil and preparation method and application thereof
CN116426850B (en) * 2023-03-17 2023-10-27 广西广投正润新材料科技有限公司 Method for preparing high-cubic texture occupancy electronic aluminum foil based on microwave plasma sintering
CN116100027B (en) * 2023-04-04 2023-06-27 南通海星电子股份有限公司 Preparation method of laser scanning assisted laminated foil

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110517892A (en) * 2019-09-18 2019-11-29 南通海星电子股份有限公司 A kind of manufacturing method of solid-state aluminum electrolytic capacitor electrode foil
CN110783110A (en) * 2019-11-07 2020-02-11 南通海星电子股份有限公司 Method for manufacturing electrode foil for solid-state capacitor
CN111613446A (en) * 2020-06-05 2020-09-01 南通海星电子股份有限公司 Formation treatment method of high-water-resistance low-pressure aluminum foil

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100511517C (en) * 2005-06-06 2009-07-08 肇庆华锋电子铝箔有限公司 Variable frequency corrosion method of low-voltage anode foil for electrolytic capacitor
JP4002291B2 (en) * 2005-08-29 2007-10-31 三菱アルミニウム株式会社 Pit generation etching method
CN100524558C (en) * 2006-11-06 2009-08-05 乳源瑶族自治县东阳光化成箔有限公司 A low-voltage anode foil used for aluminium electrolytic capacitor and its manufacturing method
CN101651049A (en) * 2009-06-24 2010-02-17 吴江飞乐天和电子材料有限公司 Method for increasing specific volume of electrode foil of low-voltage aluminum electrolytic capacitor
CN101707142B (en) * 2009-11-18 2011-09-07 横店集团东磁股份有限公司 Formation method for increasing hydration-proof performance of electrode foil for aluminum electrolytic capacitor
CN102212861B (en) * 2011-04-21 2012-09-12 日丰(清远)电子有限公司 Electrolyte for melting aluminum foil of anode of capacitor and aluminum foil melting method
CN102324323B (en) * 2011-07-12 2013-04-24 乳源瑶族自治县东阳光化成箔有限公司 Manufacturing method of medium-high pressure chemical foil
CN102983008A (en) * 2012-11-28 2013-03-20 广西贺州市桂东电子科技有限责任公司 Ultrahigh voltage anode foil corrosion method for aluminum electrolytic capacitor
CN105350064A (en) * 2015-12-03 2016-02-24 扬州宏远电子有限公司 Corrosion process method of anode foil for solid aluminum electrolytic capacitor
CN105469990B (en) * 2015-12-22 2018-08-21 东莞市久制电子有限公司 A kind of high water system high stability electrolyte for aluminum electrolytic capacitor and preparation method thereof
CN105513803A (en) * 2015-12-24 2016-04-20 南通海星电子股份有限公司 Manufacturing method of low-voltage electrode foil for high-temperature capacitor
CN105551805B (en) * 2016-01-18 2018-01-12 南通海星电子股份有限公司 The middle processing method of medium-high voltage aluminum electrolytic capacitor electrode foil
CN105788866A (en) * 2016-04-10 2016-07-20 江苏荣生电子有限公司 Middle-and-high-voltage electrode foil manufacturing method based on combination of electrochemical corrosion and chemical corrosion
CN107591247A (en) * 2017-08-30 2018-01-16 南通海星电子股份有限公司 A kind of low contact resistance low-voltage aluminum electrolytic capacitor electrode foil corrosion method
CN108486645B (en) * 2018-03-19 2020-09-22 南通海星电子股份有限公司 Corrosion method of low-voltage electrode foil of surface mount type aluminum electrolytic capacitor
CN108396367B (en) * 2018-05-31 2020-09-22 南通海星电子股份有限公司 Method for manufacturing medium-high voltage corrosion foil for aluminum electrolytic capacitor
CN109023474A (en) * 2018-07-27 2018-12-18 南通海星电子股份有限公司 A kind of manufacturing method of electrode foil feed liquid and high-intensitive low-pressure chemical synthesis foil
CN109183116B (en) * 2018-09-06 2020-07-17 南通海星电子股份有限公司 Preparation of a catalyst containing TiO2Pretreatment process of dielectric layer electronic aluminum foil
CN109628976A (en) * 2018-12-20 2019-04-16 宝兴县华锋储能材料有限公司 A kind of low middle piezoelectricity pole foil chemical synthesizing method improving mechanical strength
CN110233051B (en) * 2019-06-19 2021-03-30 南通海星电子股份有限公司 Method for manufacturing electrode foil for high-water-content aluminum electrolytic capacitor
CN113026087B (en) * 2021-04-29 2021-08-10 南通海星电子股份有限公司 Preparation method of nano-microporous structure aluminum electrode foil for automobile electronics

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110517892A (en) * 2019-09-18 2019-11-29 南通海星电子股份有限公司 A kind of manufacturing method of solid-state aluminum electrolytic capacitor electrode foil
CN110783110A (en) * 2019-11-07 2020-02-11 南通海星电子股份有限公司 Method for manufacturing electrode foil for solid-state capacitor
CN111613446A (en) * 2020-06-05 2020-09-01 南通海星电子股份有限公司 Formation treatment method of high-water-resistance low-pressure aluminum foil

Also Published As

Publication number Publication date
CN113026087B (en) 2021-08-10
CN113026087A (en) 2021-06-25
KR20220160539A (en) 2022-12-06
WO2022247364A1 (en) 2022-12-01

Similar Documents

Publication Publication Date Title
KR102598338B1 (en) Manufacturing method of nano-microporous aluminum electrode foil for automotive electronics
CN106653373B (en) A kind of aluminium electrolutic capacitor Waste Acid From Hua Cheng Foil and its production technology
CN109609991B (en) Formed foil, preparation method and application thereof
KR102317276B1 (en) Method for manufacturing electrode foil for surface mount aluminum electrolytic capacitors
JP6768088B2 (en) Etching method of electrode foil for low-voltage aluminum electrolytic capacitors with low contact resistance
CN101777432A (en) Forming process of anode foils for extra-high voltage aluminium electrolytic capacitors
CN111613446B (en) Formation treatment method of high-water-resistance low-pressure aluminum foil
CN109378218B (en) Method for manufacturing high-stability low-voltage aluminum electrolytic capacitor formed foil
CN112117128B (en) High-specific-volume and high-strength medium-high voltage corrosion electrode foil and preparation method and application thereof
CN107488871B (en) The hair engaging aperture caustic solution of aluminium foil and the manufacturing method of etched foil
CN113628888B (en) Preparation method of corrosion aluminum foil with high consistency of hole length
CN109554746B (en) Method for manufacturing high-pressure high-specific-volume corrosion foil
CN114724859B (en) Preparation process of polyimide-aluminum composite foil
CN112853456B (en) Method for manufacturing high-pressure high-specific-volume corrosion foil
CN109786113A (en) A kind of aluminium electrolutic capacitor Waste Acid From Hua Cheng Foil and its production technology
CN113436891A (en) Method for inducing medium-high voltage anode foil to uniformly corrode and form pores by adopting nano pits after anodic oxidation
WO2023236573A1 (en) Method for preparing high-specific-volume low-voltage electrode foil for automotive electronics
CN114808076A (en) Preparation method of electrode foil with good bending performance
CN113192754A (en) Control method of aluminum formed foil voltage withstanding value for aluminum electrolytic capacitor
CN110195232B (en) Method for corroding anode foil for stroboscopic lamp capacitor
CN115172054B (en) Medium-high voltage anodic oxidation pretreatment method, aluminum foil and aluminum electrolytic capacitor
CN112941592A (en) Low-voltage formed foil production process for aluminum electrolytic capacitor
CN111441079A (en) Perforated pretreatment process for corrosion foil
CN113106518B (en) Method for manufacturing low-voltage formed foil for solid aluminum electrolytic capacitor
CN111748834B (en) Preparation method of electrode foil for aluminum electrolytic capacitor and electrode foil

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant