KR102569566B1 - 저전압 직류변환장치 및 그 구동방법 - Google Patents

저전압 직류변환장치 및 그 구동방법 Download PDF

Info

Publication number
KR102569566B1
KR102569566B1 KR1020180083575A KR20180083575A KR102569566B1 KR 102569566 B1 KR102569566 B1 KR 102569566B1 KR 1020180083575 A KR1020180083575 A KR 1020180083575A KR 20180083575 A KR20180083575 A KR 20180083575A KR 102569566 B1 KR102569566 B1 KR 102569566B1
Authority
KR
South Korea
Prior art keywords
voltage
transformer
low voltage
converter
leakage inductance
Prior art date
Application number
KR1020180083575A
Other languages
English (en)
Other versions
KR20200009342A (ko
Inventor
김원곤
Original Assignee
현대모비스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대모비스 주식회사 filed Critical 현대모비스 주식회사
Priority to KR1020180083575A priority Critical patent/KR102569566B1/ko
Priority to US16/513,195 priority patent/US10978952B2/en
Priority to CN201910645666.5A priority patent/CN110739854B/zh
Priority to CN202111169527.3A priority patent/CN113839563A/zh
Publication of KR20200009342A publication Critical patent/KR20200009342A/ko
Priority to US17/185,421 priority patent/US11955273B2/en
Application granted granted Critical
Publication of KR102569566B1 publication Critical patent/KR102569566B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • H01F3/14Constrictions; Gaps, e.g. air-gaps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33573Full-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0064Magnetic structures combining different functions, e.g. storage, filtering or transformation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

본 발명에 따른 저전압 직류변환장치는, 고전압 배터리로부터 제공되는 고전압을 교류전압으로 변환하는 스위칭부, 코어 영역에 공극을 포함하고 턴비가 조정되어 상기 교류전압을 저전압으로 강압하는 변압기 및 상기 저전압을 정류하여 부하로 공급하는 전원 공급부를 포함한다.

Description

저전압 직류변환장치 및 그 구동방법{LOW VOLTAGE DC-DC CONVERTER AND DRIVING METHOD THEREOF}
본 발명은 저전압 직류변환장치 및 그 구동방법에 관한 것이다.
저전압 직류변환장치(Low-voltage DC-DC Converter, LDC)는 친환경 차량 내부에 실장되는 전장 부하들의 전원 공급 및 차량 저전압 보조 배터리의 충전을 담당하기 위하여 반드시 요구되는 전원공급 장치이다.
이러한 저전압 직류변환장치는 구현 방식에 따라 다양한 종류가 있으며, 대전력 변환에는 절연형의 스위칭 동작을 수행하는 풀-브릿지(Full-Bridge) 방식이 이용된다.
하지만, 종래의 저전압 직류변환장치는, 전력 스위칭 소자의 제어 스위칭 동작시 스위칭 전력 손실이 발생한다.
한편, 이러한 문제점을 해소하기 위하여 한국공개특허공보 특1998-040074호(발명의 명칭:영전압스위칭 직류-직류 강압형 컨버터)는 전력 스위칭 소자의 영전압 스위칭 기술을 개시하고 있다.
즉, 종래기술은 스위칭 전력 손실을 줄이기 위하여 영전압 스위칭 동작을 이용한다.
그러나 이러한 종래기술은 영전압 스위칭 동작을 보장하기 위하여 영전압 스위칭 인덕터를 추가로 설치해야 한다.
하지만, 영전압 스위칭 인덕터는 전력 스위칭 소자의 고속 스위칭 동작시 발열이 수반되므로, 방열판 등을 이용한 방열구조를 필요로 하게되고 이는 시스템 측면에서 많은 공간을 차지하게 된다.
본 발명의 실시예는 변압기 코어 영역에 공극을 추가하고 변압기의 턴비를 조정하여 제품의 재료비와 크기를 절감하고 전력밀도를 향상시킬 수 있는 저전압 직류변환장치 및 그 구동방법을 제공하는 것을 목적으로 한다.
다만, 본 실시예가 이루고자 하는 기술적 과제는 상기된 바와 같은 기술적 과제로 한정되지 않으며, 또 다른 기술적 과제들이 존재할 수 있다.
상술한 기술적 과제를 달성하기 위한 기술적 수단으로서, 본 발명의 제 1 측면에 따른 저전압 직류변환장치는 고전압 배터리로부터 제공되는 고전압을 교류전압으로 변환하는 스위칭부, 코어 영역에 공극을 포함하며, 조정된 턴비를 통해 상기 교류전압을 저전압으로 강압하는 변압기 및 상기 저전압을 정류하여 부하로 공급하는 전원 공급부를 포함한다.
상기 스위칭부는 풀-브릿지 방식으로 전력 스위칭 소자가 배치될 수 있다.
상기 턴비는 상기 변압기의 1차 입력 전류와 2차 입력 전류 및 자화전류에 기초하여 설정될 수 있다.
상기 코어 영역의 공극 및 턴비는 상기 스위칭부의 영전압 스위칭 동작을 위한 최소 인덕턴스값과 상기 변압기의 누설 인덕턴스값의 비교를 통하여 조정 될 수 있다.
상기 최소 인덕턴스값은 전력 스위칭 소자의 기생커패시턴스와 영전압 스위칭 인덕터에 저장되는 에너지에 기초하여 설정될 수 있다.
상기 누설 인덕턴스값은 상기 변압기의 1차측 누설 인덕턴스값과 1차측 턴비 및 1차측 회로저항에 기초하여 산출될 수 있다.
또한, 본 발명의 제 2 측면에 따른 저전압 직류변환장치의 구동방법은 고전압 배터리로부터 제공되는 고전압을 교류전압으로 변환하는 단계; 상기 교류전압을 코어 영역에 공극이 포함되고 턴비가 조정된 변압기를 이용하여 저전압으로 강압하는 단계 및 상기 저전압을 정류하여 부하로 공급하는 단계를 포함한다.
상기 고전압은 풀-브릿지 방식으로 배치된 전력 스위칭 소자를 통해 상기 교류전압으로 변환될 수 있다.
상기 턴비는 상기 변압기의 1차 입력 전류와 2차 입력 전류 및 자화전류에 기초하여 설정될 수 있다
상기 코어 영역의 공극 및 턴비는 전력 스위칭 소자의 영전압 스위칭 동작을 위한 최소 인덕턴스값과 상기 변압기의 누설 인덕턴스값의 비교를 통하여 조정 될 수 있다.
상기 최소 인덕턴스값은 상기 전력 스위칭 소자의 기생커패시턴스와 영전압 스위칭 인덕터에 저장되는 에너지에 기초하여 설정될 수 있다.
상기 누설 인덕턴스값은 상기 변압기의 1차측 누설 인덕턴스값과 1차측 턴비 및 1차측 회로저항에 기초하여 산출될 수 있다.
전술한 본 발명의 과제 해결 수단 중 어느 하나에 의하면, 변압기 코어 영역에 공극을 추가하고 턴비를 조정함으로써, 제품의 재료비와 크기를 절감할 수 있다.
또한 제품의 크기 절감에 따른 저전압 직류변환장치의 전력밀도 향상이 가능하다.
도 1은 종래 기술에 따른 풀-브릿지 방식의 저전압 직류변환장치를 설명하기 위한 도면이다.
도 2는 본 발명의 일 실시예에 따른 저전압 직류변환장치의 구성도이다.
도 3은 본 발명의 일 실시예에 따른 저전압 직류변환장치를 설명하기 위한 도면이다.
도 4는 본 발명의 일 실시예에 따른 저전압 직류변환장치의 변압기를 설명하기 위한 도면이다.
도 5는 본 발명의 일 실시예에 따른 저전압 직류변환장치의 구동방법의 순서도이다.
도 6은 본 발명의 일 실시예에 따른 저전압 직류변환장치의 변압기 설정방법의 순서도이다.
도 7은 종래기술 및 본 발명의 일 실시예에 따른 저전압 직류변환장치의 변압기의 내부 구조를 나타낸 도면이다.
도 8은 종래기술 및 본 발명의 일 실시예에 따른 저전압 직류변환장치의 출력 파형을 나타낸 도면이다
도 9는 종래기술 및 본 발명의 일 실시예에 따른 저전압 직류변환장치의 출력값을 나타낸 도면이다.
아래에서는 첨부한 도면을 참조하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시 할 수 있도록 본 발명의 실시예를 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였다.
한편, 본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다(comprise)" 및/또는 "포함하는(comprising)"은 언급된 구성소자, 단계, 동작 및/또는 소자가 하나 이상의 다른 구성소자, 단계 동작 및/또는 소자의 존재 또는 추가됨을 배제하지 않는다.
본 발명은 저전압 직류변환장치(100) 및 그 구동방법에 관한 것이다.
친환경 차량에서 저전압 직류변환장치는, 고전압의 메인 배터리에서 출력되는 고전압으로 저전압의 보조 배터리를 충전하고 차량 내부에 실장되는 각종 전장 부하들의 전원을 공급하기 위한 필수적인 장치이다. 그리고 대전력 변환에는 절연형의 스위칭 동작을 수행하는 풀-브릿지 방식이 이용된다.
이하에서는 도 1을 참조하여 종래의 저전압 직류변환장치의 동작을 설명한다.
도 1은 종래 기술에 따른 풀-브릿지 방식의 저전압 직류변환장치를 설명하기 위한 도면이다.
도 1에 도시된 바와 같이, 저전압 직류변환장치는 고전압 배터리(HV)를 입력전원으로 하여 전력 스위칭 소자(Q1, Q2, Q3, Q4)의 스위칭 동작을 통해 변압기(Tr)로 고전압 교류전력을 입력시킨다.
이때, 전력 스위칭 소자(Q1, Q2, Q3, Q4)의 스위칭 동작시 전력 손실이 발생하므로, 이러한 스위칭 전력 손실을 최소화하기 위하여 영전압 스위칭 동작을 이용한다.
영전압 스위칭 동작은 전력소자의 고속 스위칭 기법으로, 컨버터 분야의 고효율 달성에 기여하는 중요한 설계 요소이지만, 영전압 스위칭 인덕터(Lzvs)를 필요로 하게된다.
하지만, 영전압 스위칭 인덕터(Lzvs)는 전력 스위칭 소자(Q1, Q2, Q3, Q4)의 스위칭 동작시 발열을 수반하므로, 히트싱크 등을 이용한 방열구조나 이를 위한 냉각시스템이 요구되는데, 이는 시스템 측면에서 많은 공간을 차지하게 되어 제품 크기를 증가시킨다.
본 발명의 일 실시예는 상기와 같은 문제를 해소하기 위하여, 변압기(120)의 코어 영역에 공극을 추가하고 변압기(120)의 턴비를 조정해서 종래의 영전압 스위칭 인덕터를 대체하는 것을 특징으로 한다.
이하에서는 도 2 내지 도 4를 참조하여 본 발명의 일 실시예에 따른 저전압 직류변환장치(100)에 대하여 설명한다.
도 2는 본 발명의 일 실시예에 따른 저전압 직류변환장치(100)의 구성도이고, 도 3은 본 발명의 일 실시예에 따른 저전압 직류변환장치(100)를 설명하기 위한 도면이다. 도 4는 본 발명의 일 실시예에 따른 저전압 직류변환장치 (100)의 변압기(120)를 설명하기 위한 도면이다.
도 2에 도시된 바와 같이, 본 발명의 일 실시예에 따른 저전압 직류변환장치 (100)는 스위칭부(110), 변압기(120), 및 전원공급부(130)를 포함한다.
스위칭부(110)는 차량의 고전압 배터리로부터 제공되는 고전압을 교류전압으로 변환한다.
도 3를 참조하면, 스위칭부(110)에는 전력 스위칭 소자(Q1, Q2, Q3, Q4)가 풀-브릿지 방식으로 배치되어, 후술하는 누설 인덕턴스(Llk1)에 의해 영전압 스위칭 동작을 수행할 수 있다.
또한 스위칭부(110)에는 종래 기술에서 영전압 스위칭 동작을 위해 설치되는 인덕터(Lzvs)가 제거되고, 상술한 변압기(120)의 코어 영역의 공극 추가와 턴비 조정을 통하여 변압기(120)의 1차측 누설 인덕턴스(Llk1)로 대체함으로써 제품의 재료비를 절감하고 제품 사이즈를 감소시킬 수 있다. 또한 제품 사이즈를 감소시킴으로써 제품의 전력밀도를 향상시킬 수 있다.
변압기(120)는 스위칭부(110) 로부터 출력되는교류전압을 저전압으로 강압하여 전원 공급부(130)로 전달한다.
도 4를 참조하면, 변압기(120)는 코어 영역에 공극이 추가됨으로써, 수학식 1에 따라 자화 인덕턴스(Lm)가 감소된다.
[수학식 1]
여기에서 Lm은 변압기(120)의 자화인덕턴스, N1은 변압기(120) 1차측 턴비, Rc는 코어 영역의 자기저항, Rg는 공극의 자기저항을 의미한다.
본 발명의 일 실시예에 따른 변압기(120)의 코어는 자성체로써, 자성체가 고유하게 가지는 포화 특성을 상회하는 전류가 인가되어 코어가 포화되면 정상 기능을 할 수없으므로, 자화 전류를 감소시키기 위하여 변압기(120)의 턴비가 같이 고려된다.
따라서, 변압기(120)의 턴비 조정을 통하여 수학식 2에 의한 변압기(120) 자화전류(im) 감소 효과와 수학식 3에 의한 변압기(120) 1차측 누설인덕턴스 (Llk1) 증가 효과를 얻을 수 있다.
[수학식 2]
여기에서 im은 변압기(120) 자화전류, i1은 변압기(120) 1차 입력 전류, N1은 변압기(120) 1차측 턴비, N2는 변압기(120) 2차측 턴비, i2는 변압기(120) 2차 출력전류를 의미한다.
[수학식 3]
여기에서, Llk1은 변압기(120) 1차측 누설 인덕턴스값, N1은 변압기(120) 1차측 턴비, R1은 변압기(120) 1차 회로저항을 의미한다.
전원공급부(130)는 변압기(120)로부터 출력되는 저전압을 정류하여 부하로 공급한다.
이하에서는 도 5를 참조하여, 저전압 직류변환장치(100)의 구동방법을 설명한다.
도 5는 본 발명의 일 실시예에 따른 저전압 직류변환장치(100)의 구동방법의 순서도이다.
도 5을 참조한 저전압 직류변환장치(100)의 구동방법은, 우선 차량의 고전압 배터리로부터 제공되는 고전압을 교류전압으로 변환한다(S110).
이때, 본 발명의 일 실시예에 따르면, 차량의 고전압을 교류전압으로 변환하기 위하여 전력 스위칭 소자가 풀-브릿지 방식으로 배치될 수 있다.
다음으로, 교류전압을 코어 영역에 공극이 추가되고 턴비가 조정된 변압기(120)를 이용하여 저전압으로 강압한다.
이때, 변압기(120)의 코어 영역에 공극이 추가되고 턴비가 조정됨으로써 적용되는 구체적인 내용은 상술한 도 4 및 수학식 1 내지 수학식 3에서 설명하였으므로, 이하 생략하도록 한다.
최종적으로, 저전압을 정류하여 차량의 저전압 보조배터리 및 전장 부하로 공급한다(S130).
상술한 설명에서, 단계 S110 내지 S130은 본 발명의 구현예에 따라서, 추가적인 단계들로 더 분할되거나, 더 적은 단계들로 조합될 수 있다. 또한, 일부 단계는 필요에 따라 생략될 수도 있고, 단계 간의 순서가 변경될 수도 있다. 아울러, 기타 생략된 내용이라 하더라도 도 4에서 이미 기술된 내용은 도 5의 저전압 직류변환장치(100)의 구동방법에도 적용될 수 있다.
한편, 본 발명의 일 실시예에 따른 저전압 직류변환장치(100)의 변압기(120)는 도 6과 같은 방법으로 설정될 수 있다.
도 6은 본 발명의 일 실시예에 따른 저전압 직류변환장치(100)의 변압기(120) 설정방법의 순서도이다.
도 6을 참조하면, 우선 전압/전류 용량 및 기생커패시턴스를 고려하여 전력 스위칭 소자가 설정된다(S210).
다음으로, 영전압 스위칭 동작을 보장하기 위한 최소 인덕턴스(Lmin) 값을 설정한다(S220)
여기에서, 최소 인덕턴스값은 종래의 저전압 직류변환장치가 전력 스위칭 소자의 영전압 스위칭 동작을 보장하기 위해 가져야 했던 영전압 스위칭 인덕터의 최소 값을 의미하고, 전력 스위칭 소자의 기생커패시턴스가 영전압 스위칭 인덕터에 저장되는 에너지보다 작도록 설정된다.
다음으로, 본 발명의 일 실시예에 따라 변압기(120)의 턴비를 설정하고 공극을 조정한다(S230).
이때, 변압기(120)의 턴비 설정 및 코어 영역의 공극 조정에는 입력 전압 범위가 고려된다.
다음으로, 상술한 수학식 3을 이용하여 변압기(120)의 누설 인덕턴스(Llk1) 값을 산출한다(S240).
다음으로, 설정된 최소 인덕턴스(Lmin) 값과 산출된 누설 인덕턴스(Llk1) 값을 비교한다.(S250)
비교 결과 최소 인덕턴스(Lmin) 값이 누설 인덕턴스(Llk1) 값보다 작을 경우, 감소된 자화전류 및 자화 인덕턴스와 증가된 누설인덕턴스값을 포함하는 것을 조건으로 하는 변압기(120)를 제품에 적용하게 된다(S260).
반면, 최소 인덕턴스(Lmin) 값이 누설 인덕턴스(Llk1) 값보다 클 경우, 턴비를 설정하고 공극을 조정하는 단계(S230)를 재수행한다.
이하에서는 도 7 내지 도 9를 참조하여 종래기술 및 본 발명의 일 실시예에 따른 변압기(120)의 내부 구조와 변압기(120) 코어 영역의 공극 추가 및 턴비 조정에 따른 출력값 변화에 대하여 설명한다.
도 7은 종래기술 및 본 발명의 일 실시예에 따른 저전압 직류변환장치(100)의 변압기(120)의 내부 구조를 나타낸 도면이다.
도 7을 참조하면, 본 발명의 일 실시예는 종래기술에서 변압기(120)에 추가로 설치되는 영전압 스위칭 인덕터를 제거하고, 변압기(120)의 코어 영역에 공극을 추가하고 변압기(120)의 턴비를 조정함으로써 영전압 스위칭 인덕터를 대체할 수 있다. 이는 종래의 변압기 대비 부품 개수가 감소되어 제품의 재료비를 절감하고 제품 사이즈를 감소시킬 수 있다. 그리고 제품의 크기가 감소됨으로써 제품의 전력밀도를 향상시킬 수 있다.
도 8은 종래기술 및 본 발명의 일 실시예에 따른 저전압 직류변환장치(100)의 출력 파형을 나타낸 도면으로, 복수회 시행 결과 중 대비가 용이한 결과를 나타낸 것이다. 도 9는 종래기술 및 본 발명의 일 실시예에 따른 저전압 직류변환장치(100)의 출력값을 나타낸 도면이다.
도 8의 상단은 종래기술의 출력값을 파형으로 나타낸 것이고, 도 8의 하단은 본 발명의 실시예에 따라 변압기(120)의 코어 영역에 공극을 추가하고 턴비를 조정한 후의 출력값을 파형으로 나타낸 것이다.
본 발명의 일 실시예에 따르면, 턴비는 11:1:1로 조정될 수 있다.
도 9를 참조하면, 입력 전압 및 입력 전류는 같다. 자화 인덕턴스는 종래기술의 경우, 800μH 에서 본 발명의 실시예에 따라 변압기(120)의 코어 영역에 공극을 추가하고 턴비를 조정한 후 210μH으로 감소하였다. 그리고 변압기(120)의 누설 인덕턴스는 2.8μH에서 4.3μH으로 증가하였다.
시뮬레이션 결과, 자화 인덕턴스 감소에 따라 자화전류가 감소되어 저전압 직류변환장치(100)의 동작 성능은 기존 대비 동등 이상인 것으로 확인되며, 자화 전류 감소로 기존 대비 입력전류가 감소되어 시스템 효율 상승 효과를 기대할 수 있다. 또한, 변압기(120)의 듀티비에 대한 마진도 확보가 가능한 것으로 확인되었다.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.
본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
100: 저전압 직류변환장치 110: 스위칭부
120: 변압기 130: 전원공급부
Q1, Q2, Q3, Q4: 전력 스위칭 소자 Lzvs: 영전압 스위칭인덕터
C1, C2, C3, C4: 기생 커패시턴스 D1, D2: 정류 다이오드

Claims (12)

  1. 저전압 직류변환장치에 있어서,
    고전압 배터리로부터 제공되는 고전압을 교류전압으로 변환하는 스위칭부,
    코어 영역에 공극을 포함하며, 조정된 턴비를 통해 상기 교류전압을 저전압으로 강압하는 변압기 및
    상기 저전압을 정류하여 부하로 공급하는 전원 공급부를 포함하되,
    상기 스위칭부는, 상기 변압기의 누설 인덕턴스에 의해 영전압 스위칭 동작을 수행하고,
    상기 코어 영역의 공극 및 턴비는 상기 스위칭부의 영전압 스위칭 동작을 위한 최소 인덕턴스와 상기 변압기의 누설 인덕턴스의 비교를 통하여 조정 되는 것인 저전압 직류변환장치.
  2. 제 1 항에 있어서,
    상기 스위칭부는 풀-브릿지 방식으로 전력 스위칭 소자가 배치되는 것인 저전압 직류변환장치.
  3. 제 1 항에 있어서,
    상기 턴비는 상기 변압기의 1차 입력 전류와 2차 입력 전류 및 자화전류에 기초하여 설정되는 것인 저전압 직류변환장치.
  4. 삭제
  5. 제 1 항에 있어서,
    상기 최소 인덕턴스는 전력 스위칭 소자의 기생커패시턴스에 기초하여 설정되는 것인 저전압 직류변환장치.
  6. 제 1 항에 있어서,
    상기 누설 인덕턴스는 상기 변압기의 1차측 누설 인덕턴스와 1차측 턴비 및 1차측 회로저항에 기초하여 산출되는 것인 저전압 직류변환장치.
  7. 저전압 직류변환장치의 구동방법에 있어서,
    고전압 배터리로부터 제공되는 고전압을 교류전압으로 변환하는 단계;
    상기 교류전압을 코어 영역에 공극이 포함되고 턴비가 조정된 변압기를 이용하여 저전압으로 강압하는 단계;
    상기 저전압을 정류하여 부하로 공급하는 단계를 포함하되,
    상기 변환하는 단계는, 전력 스위칭 소자를 통해 상기 고전압을 변환하고,
    상기 전력 스위칭 소자는, 상기 변압기의 누설 인덕턴스에 의해 영전압 스위칭 동작을 수행하고,
    상기 변압기의 공극 및 턴비는 상기 전력 스위칭 소자의 영전압 스위칭 동작을 위한 최소 인덕턴스와 상기 변압기의 누설 인덕턴스의 비교를 통하여 조정되는 것인 저전압 직류변환장치의 구동방법.
  8. 제 7 항에 있어서,
    상기 고전압은 풀-브릿지 방식으로 배치된 전력 스위칭 소자를 통해 상기 교류전압으로 변환되는 것인 저전압 직류변환장치의 구동방법.
  9. 제 7 항에 있어서,
    상기 턴비는 상기 변압기의 1차 입력 전류와 2차 입력 전류 및 자화전류에 기초하여 설정되는 것인 저전압 직류변환장치의 구동방법.
  10. 삭제
  11. 제 7 항에 있어서,
    상기 최소 인덕턴스는 상기 전력 스위칭 소자의 기생커패시턴스에 기초하여 설정되는 것인 직류변환장치의 구동방법.
  12. 제 7 항에 있어서,
    상기 누설 인덕턴스는 상기 변압기의 1차측 누설 인덕턴스와 1차측 턴비 및 1차측 회로저항에 기초하여 산출되는 것인 저전압 직류변환장치의 구동방법.

KR1020180083575A 2018-07-18 2018-07-18 저전압 직류변환장치 및 그 구동방법 KR102569566B1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020180083575A KR102569566B1 (ko) 2018-07-18 2018-07-18 저전압 직류변환장치 및 그 구동방법
US16/513,195 US10978952B2 (en) 2018-07-18 2019-07-16 Low-voltage DC-DC converter including zero voltage switching and method of driving same
CN201910645666.5A CN110739854B (zh) 2018-07-18 2019-07-17 低压dc-dc变换器及其驱动方法
CN202111169527.3A CN113839563A (zh) 2018-07-18 2019-07-17 设置低压dc-dc变换器的变压器的气隙和匝数比的方法和设备
US17/185,421 US11955273B2 (en) 2018-07-18 2021-02-25 Low-voltage DC-DC converter including zero voltage switching and method of driving same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180083575A KR102569566B1 (ko) 2018-07-18 2018-07-18 저전압 직류변환장치 및 그 구동방법

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020200099975A Division KR20200097237A (ko) 2020-08-10 2020-08-10 저전압 직류변환장치 및 그 구동방법

Publications (2)

Publication Number Publication Date
KR20200009342A KR20200009342A (ko) 2020-01-30
KR102569566B1 true KR102569566B1 (ko) 2023-08-23

Family

ID=69161202

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180083575A KR102569566B1 (ko) 2018-07-18 2018-07-18 저전압 직류변환장치 및 그 구동방법

Country Status (3)

Country Link
US (2) US10978952B2 (ko)
KR (1) KR102569566B1 (ko)
CN (2) CN113839563A (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112467998B (zh) * 2020-10-14 2022-03-29 华南理工大学 一种能量密度可调整的多工作模式等离子体电源
CN114264863B (zh) * 2022-01-04 2023-08-22 超旸半导体(上海)有限公司 一种dc/dc变换器用限流值检测方法及检测装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140241012A1 (en) * 2011-07-07 2014-08-28 Danmarks Tekniske Universitet Isolated boost flyback power converter

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4914561A (en) * 1989-02-03 1990-04-03 Eldec Corporation Dual transformer device for power converters
KR100204495B1 (ko) 1996-11-28 1999-06-15 전주범 영전압스위칭 직류-직류 강압형 컨버터
US20060279966A1 (en) 2005-04-13 2006-12-14 International Rectifier Corp. Simple zero voltage switching full-bridge DC bus converters
KR100732612B1 (ko) * 2006-02-07 2007-06-27 학교법인 포항공과대학교 하이브리드 자동차용 고효율 강압형 직류-직류 컨버터
CN101355308B (zh) 2008-08-29 2010-07-21 浙江大学 一种磁集成的零电压零电流软开关全桥电路
CN101697453A (zh) 2009-10-22 2010-04-21 北京金自天正智能控制股份有限公司 一种产生高稳定度高压的***
EP2569857A2 (en) * 2010-05-10 2013-03-20 Enphase Energy, Inc. Lossless commutation during operation of a power converter
KR101457887B1 (ko) * 2012-12-28 2014-11-20 서울과학기술대학교 산학협력단 공진형 dc-dc 컨버터 및 이를 이용한 인터리빙 공진형 dc-dc 컨버터
KR101592650B1 (ko) * 2013-12-26 2016-02-11 현대모비스 주식회사 친환경 차량의 저전압 직류 변환 장치를 위한 멀티 전압 출력 제공 장치 및 방법
US9931951B2 (en) * 2014-06-13 2018-04-03 University Of Maryland Integrated dual-output grid-to-vehicle (G2V) and vehicle-to-grid (V2G) onboard charger for plug-in electric vehicles
KR20160110708A (ko) * 2015-03-11 2016-09-22 순천향대학교 산학협력단 풀-브리지 dc-dc 컨버터
FR3037453B1 (fr) * 2015-06-11 2017-06-02 Labinal Power Systems Convertisseur continu-continu pour le pilotage d'un onduleur de ventilateur d'aeronef, procede de commande et ventilateur associes
CN105140908B (zh) * 2015-09-29 2017-12-15 中国科学院电工研究所 用于光伏高压直流输电***的零电压软开关控制方法
KR101835528B1 (ko) 2016-01-25 2018-04-19 청주대학교 산학협력단 적층구조를 갖는 스위칭 전원장치
CN107294414B (zh) * 2016-04-08 2020-09-18 松下知识产权经营株式会社 电力变换装置
US10438739B2 (en) * 2016-05-04 2019-10-08 Toyota Motor Engineering & Manufacturing North America, Inc. Transformer with integrated leakage inductance
KR101903121B1 (ko) * 2016-05-23 2018-11-13 주식회사 이진스 전기자동차용 충전 및 전력변환 겸용 회로
US10298132B2 (en) * 2016-10-13 2019-05-21 Intersil Americas LLC Switching power supply for low step down conversion ratio with reduced switching losses

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140241012A1 (en) * 2011-07-07 2014-08-28 Danmarks Tekniske Universitet Isolated boost flyback power converter

Also Published As

Publication number Publication date
US20200028438A1 (en) 2020-01-23
CN110739854B (zh) 2022-04-26
US10978952B2 (en) 2021-04-13
US20210184581A1 (en) 2021-06-17
CN110739854A (zh) 2020-01-31
US11955273B2 (en) 2024-04-09
CN113839563A (zh) 2021-12-24
KR20200009342A (ko) 2020-01-30

Similar Documents

Publication Publication Date Title
He et al. Design of a 1-MHz high-efficiency high-power-density bidirectional GaN-based CLLC converter for electric vehicles
Tang et al. An integrated dual-output isolated converter for plug-in electric vehicles
Steigerwald et al. A comparison of high-power DC-DC soft-switched converter topologies
Zhao et al. An improved phase-shifted full-bridge converter with wide-range ZVS and reduced filter requirement
US9281752B2 (en) Resonant converters with synchronous rectifier feedback
Ren et al. Capacitor-clamped, three-level GaN-based DC–DC converter with dual voltage outputs for battery charger applications
Wu et al. Secondary-side phase-shift-controlled dual-transformer-based asymmetrical dual-bridge converter with wide voltage gain
Zou et al. 3.3 kW CLLC converter with synchronous rectification for plug-in electric vehicles
CN101494421B (zh) 开关电源装置
Das et al. A novel load adaptive ZVS auxiliary circuit for PWM three-level DC–DC converters
US9831790B2 (en) DC-to-DC converter
Ren et al. A 1-kV input SiC LLC converter with split resonant tanks and matrix transformers
Liu et al. Comparison of SiC MOSFETs and GaN HEMTs based high-efficiency high-power-density 7.2 kW EV battery chargers
Chen et al. Design and magnetics optimization of LLC resonant converter with GaN
US11955273B2 (en) Low-voltage DC-DC converter including zero voltage switching and method of driving same
Larico et al. Three-phase weinberg isolated DC–DC converter: analysis, design, and experimentation
Mohammadi et al. A ZVT bidirectional converter with coupled-filter-inductor and elimination of input current notches
Jin et al. Light load efficiency improvement of three phase CLLC resonant converter for on-board charger applications
Blinov et al. Snubberless boost full‐bridge converters: analysis of soft switching performance and limitations
Wang et al. A high-efficiency and high-power-density interleaved integrated buck-boost-LLC converter and its comprehensive optimal design method
Rana et al. A Voltage-Fed Soft-Switched Push–Pull Topology With Phase-Shifted Power Transfer Using Coupled LC Snubber
JP3882809B2 (ja) スイッチング電源装置
Shin et al. MagCap DC–DC converter utilizing GaN devices: Design consideration and quasi-resonant operation
Kim et al. Switched Mode Power Supply with High Isolation for High Voltage Applications
KR20200097237A (ko) 저전압 직류변환장치 및 그 구동방법

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right