KR102538039B1 - 반도체 발광소자용 지지 기판을 제조하는 방법 - Google Patents

반도체 발광소자용 지지 기판을 제조하는 방법 Download PDF

Info

Publication number
KR102538039B1
KR102538039B1 KR1020220044923A KR20220044923A KR102538039B1 KR 102538039 B1 KR102538039 B1 KR 102538039B1 KR 1020220044923 A KR1020220044923 A KR 1020220044923A KR 20220044923 A KR20220044923 A KR 20220044923A KR 102538039 B1 KR102538039 B1 KR 102538039B1
Authority
KR
South Korea
Prior art keywords
substrate
semiconductor
insert
light emitting
emitting device
Prior art date
Application number
KR1020220044923A
Other languages
English (en)
Other versions
KR20220054551A (ko
Inventor
안상정
Original Assignee
웨이브로드 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180062279A external-priority patent/KR102387087B1/ko
Application filed by 웨이브로드 주식회사 filed Critical 웨이브로드 주식회사
Priority to KR1020220044923A priority Critical patent/KR102538039B1/ko
Publication of KR20220054551A publication Critical patent/KR20220054551A/ko
Application granted granted Critical
Publication of KR102538039B1 publication Critical patent/KR102538039B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02428Structure
    • H01L21/0243Surface structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Led Devices (AREA)
  • Led Device Packages (AREA)

Abstract

본 개시는 반도체 발광소자용 지지 기판을 제조하는 방법에 있어서, 제1 면 및 제2 면에 대향하는 제2 면을 가지는 제1 기판을 준비하는 단계; 제1 면으로부터 제2 면 측을 향하는 홈을 형성하는 단계; 홈에 인서트를 삽입 및 고정시켜 제1 기판을 관통하는 통로를 형성하는 단계;로서, 통로는 방열 통로 및 전기 통로 중 적어도 하나로 기능하는, 통로를 형성하는 단계;를 포함하는 것을 특징으로 하는 반도체 소자용 지지 기판을 제조하는 방법에 관한 것이다.

Description

반도체 발광소자용 지지 기판을 제조하는 방법{METHOD OF MANUFACTURING SUPPORTING SUBSTRATE FOR SEMICONDUCTOR LIGHT EMITTIN DEVICE}
본 개시(Disclosure)는 전체적으로 반도체 발광소자용 지지 기판 및 이를 제조하는 방법에 관한 것으로, 특히 전기적 패스 및/또는 열적 패스가 형성된 반도체 발광소자용 지지 기판 및 이를 제조하는 방법에 관한 것이다. 반도체 발광소자는 전자와 정공의 재결합을 통해 빛을 생성하는 반도체 광소자를 의미하며, 3족 질화물 반도체 발광소자를 예로 들 수 있다. 3족 질화물 반도체는 Al(x)Ga(y)In(1-x-y)N(0≤x≤1, 0≤y≤1, 0≤x+y≤1)로 된 화합물로 이루어진다. 이외에도 적색 발광에 사용되는 GaAs계 반도체 발광소자 등을 예로 들 수 있다.
여기서는, 본 개시에 관한 배경기술이 제공되며, 이들이 반드시 공지기술을 의미하는 것은 아니다(This section provides background information related to the present disclosure which is not necessarily prior art).
도 1은 미국 등록특허공보 제7,262,436호에 제시된 반도체 발광소자 칩의 일 예를 나타내는 도면으로서, 반도체 발광소자 칩은 기판(100), 기판(100) 위에 성장되는 n형 반도체층(300), n형 반도체층(300) 위에 성장되는 활성층(400), 활성층(400) 위에 성장되는 p형 반도체층(500), p형 반도체층(500) 위에 형성되며 기판(100) 측으로 빛을 반사시키기 위한 3층으로 된 전극(901,902,903), 그리고 식각되어 노출된 제1 반도체층(300) 위에 본딩 패드로 기능하는 전극(800)을 포함한다. 전극(901)은 반사막으로 기능하며, 전극(902)은 베리어(barrier)로 기능하고, 전극(903)은 외부 전극과의 본딩을 원활히 하는 기능을 한다. 이러한 형태의 반도체 발광소자 칩은 전극(800) 및 전극(903)이 SMD 타입 패키지, PCB(Printed Circuit Board), COB(Chip-on Board), 서브마운트 등에 (와이어 본딩에 의하지 않고) 직접 연결되는 형태이며, 플립 칩(Flip Chip)이라 일컫는다.
도 2는 일본 공개특허공보 제2006-120913호에 제시된 반도체 발광소자 칩의 일 예를 나타내는 도면으로서, 반도체 발광소자 칩은 기판(100), 기판(100) 위에 성장되는 버퍼층(200), 버퍼층(200) 위에 성장되는 n형 반도체층(300), n형 반도체층(300) 위에 성장되는 활성층(400), 활성층(400) 위에 성장되는 p형 반도체층(500), p형 반도체층(500) 위에 형성되며 전류 확산 기능을 하는 투광성 도전막(600), 투광성 도전막(600) 위에 형성되는 p측 본딩 패드(700) 그리고 식각되어 노출된 n형 반도체층(300) 위에 형성되는 n측 본딩 패드(800)를 포함한다. 그리고 투광성 도전막(600) 위에는 분포 브래그 리플렉터(900; DBR: Distributed Bragg Reflector)와 금속 반사막(904)이 구비되어 있다. n형 반도체층(300)과 p형 반도체층(500)은 각각 복수의 층으로 구성될 수 있으며, 바람직하지는 않지만 버퍼층(200)과 투광성 도전막(600)은 생략될 수 있고, n형 반도체층(300)과 p형 반도체층(500)의 위치는 서로 바뀔 수 있다.
도 3은 국제 공개특허공보 WO2014/014298호에 제시된 반도체 발광소자 칩의 일 예를 나타내는 도면으로서, 반도체 발광소자 칩은 기판(100), 기판(100) 위에 성장되는 버퍼층(200), 버퍼층(200) 위에 성장되는 n형 반도체층(300), n형 반도체층(300) 위에 성장되는 활성층(400), 활성층(400) 위에 성장되는 p형 반도체층(500), p형 반도체층(500) 위에 형성되며 전류 확산 기능을 하는 투광성 도전막(600), 투광성 도전막(600) 위에 형성되며 활성층(400)에서 생성된 빛을 반사하도록 형성된 비도전성 반사막(900; 예: DBR), 비도전성 반사막(900) 위에 형성되는 전극(700)과 전극(800)을 포함한다. 전극(700)과 전극(800)은 각각 도통부(710)와 도통부(810)를 통해 n형 반도체층(300)과 p형 반도체층(500)과 전기적으로 연통(electrical communication)한다.
도 4는 일본 공개특허공보 제2001-358371호에 도시된 반도체 발광소자의 일 예를 나타내는 도면으로서, 반도체 발광소자 칩은 기판(100), 기판(100) 위에 성장되는 n형 반도체층(300), n형 반도체층(300) 위에 성장되는 활성층(400), 활성층(400) 위에 성장되는 p형 반도체층(500), p형 반도체층(500) 위에 형성되는 p측 전극(700) 그리고 식각되어 노출된 n형 반도체층(300) 위에 형성되는 n측 전극(800)을 포함한다. 전극(700)과 전극(800) 사이에는 절연막(9)이 구비되어 있다. 반도체 발광소자는 반도체 발광소자 칩에 더하여, 몸체(1), 몸체(1)에 형성된 리드 프레임(2,3), 리드 프레임(2,3) 위에서 공동(4)을 형성하는 몰드부(5) 그리고 반도체 발광소자 칩을 둘러싸는 봉지제(1000)를 포함한다. 봉지제(1000)에는 형광체, 광산란제 등이 포함될 수 있다. 전극(700,800)은 접합층(7)을 통해 리드 프레임(2,3)에 고정된다. 전극(700,800)과 리드 프레임(2,3)의 전기적 연결에는 스터드 범프를 이용한 접합, 도전 접착제를 이용한 접합, 솔더링을 이용한 접합, 유테틱 본딩 등의 방법이 이용될 수 있으며, 특별한 제한이 있는 것은 아니다.
도 5는 종래의 반도체 발광소자의 다른 예를 나타내는 도면으로서, 반도체 발광소자 칩의 기판(100)이 리드 프레임(2)에 고정된 상태에서 와이어(8)를 이용하여, 리드 프레임(2,3)과 전기적으로 연결된 형태의 반도체 발광소자가 제시되어 있다. 와이어 본딩을 이용하는 경우에, 소자내에 열이 발생해도, 복수의 반도체층(300,400,500)과 리드 프레임(2,3) 사이에 기판(100)이 존재하므로 반도체로 된 복수의 반도체층(300,400,500)과 금속으로 된 리드 프레임(2,3) 사이에 열팽창의 차이가 있어도, 복수의 반도체층(300,400,500)의 크랙 또는 깨짐을 방지할 수 있다. 일반적으로 이러한 형태의 칩을 래터럴 칩(Lateral Chip)이라 일컫는다. 예를 들어, 3족 질화물 반도체 발광소자의 경우에, 복수의 반도체층(300,400,500)의 전체 두께는 10㎛이하이며, 기판(100; 예: 사파이어)의 두께는 80~150㎛인 것이 일반적이다.
도 4로 돌아가서, 반도체 발광소자 칩이 플립 칩 본딩된 경우에, 복수의 반도체층(300,400,500)이 리드 프레임(2,3)을 직접 마주하게 되며, 발열로 인해 금속으로 된 리드 프레임(2,3)이 팽창되면, 복수의 반도체층(300,400,500)에 크랙 또는 깨짐이 발생할 가능성이 높아지게 된다. 또한 최근에는 래터럴 칩에 비해 고전류로 구동이 가능한 플립 칩의 사용이 확대되고 있으며, 고전류 즉, 고전력(high power)을 사용하는 칩의 경우에, 소자내 발열량이 많아 복수의 반도체층(300,400,500)의 크랙 또는 깨짐이 문제가 될 가능성이 더욱 커지고 있다 하겠다.
도 19는 종래의 반도체 발광소자의 일 예를 나타내는 도면으로서, 3족 질화물 반도체 발광소자가 예시되어 있다. 3족 질화물 반도체 발광소자는 기판(100), 기판(100) 위에 성장되며 제1 도전성을 제1 반도체층(300; 예: Si 도핑된 GaN), 제1 반도체층(300) 위에 성장되며 전자와 정공의 재결합을 이용하여 빛을 생성하는 활성층(400; 예: InGaN/(In)GaN 다중양자우물구조), 활성층(400) 위에 성장되며 제1 도전성과 다른 제2 도전성을 가지는 제2 반도체층(500; 예: Mg 도핑된 GaN), 제2 반도체층(500) 위에 형성되는 전극(700), 제2 반도체층(500)과 활성층(400)이 메사식각되어 노출된 제1 반도체층(300) 위에 형성되는 전극(800), 그리고 보호막(900)을 포함한다. 보호막(900)은 이산화규소와 같은 물질로 형성되며, 생략될 수도 있다. 바람직하게는, 반도체층(300,400,500)의 막질 향상을 위한 버퍼층(200)과, 원활한 전류 확산을 위한 전류 확산 전극(600; 예: ITO)이 구비된다. 제1 반도체층(300; 예: Si 도핑된 GaN)과 제2 반도체층(500; 예: Mg 도핑된 GaN)의 위치는 바뀔 수 있다.
도 20은 미국특허 제5,008,718호에 제시된 수직형 반도체 발광소자의 일 예를 나타내는 도면으로서, 반도체 발광소자는 제1 도전성을 가지는 반도체층(300), 전자와 정공의 재결합을 통해 빛을 생성하는 활성층(400), 제1 도전성과 다른 제2 도전성을 가지는 반도체층(500), 성장 기판이 제거된 측에 형성된 전극(800), 반도체층(500)에 전류를 공급하는 한편 반도체층(300,400,500)을 지지하는 지지 기판(S), 그리고 지지 기판(S)에 형성된 전극(700)을 포함한다. 전극(800)은 와이어 본딩을 이용해 외부와 전기적으로 연결된다.
도 21은 미국 등록특허공보 제8,008,683호에 제시된 반도체 발광소자의 일 예를 나타내는 도면으로서, 반도체 발광소자는 제1 도전성을 가지는 반도체층(300), 전자와 정공의 재결합을 통해 빛을 생성하는 활성층(400), 제1 도전성과 다른 제2 도전성을 가지는 반도체층(500)을 포함한다. 전류는 제1 반도체층(300)과 전기적으로 연통하는 전극 또는 전기적 연결(810)과, 제2 반도체층(500)과 전기적으로 연통하는 전극(700)에 의해 공급된다. 전극 또는 전기적 연결(810)은 비아 홀(H)을 통해 제1 반도체층(300)과 전기적으로 연결되어, 보호막 또는 절연층(910)에 의해 타 반도체층(400,500)과 전기적으로 절연되어 있다. 전극(700)은 전류 확산 전극 또는 금속 반사막(610; 예: TIO, Ag, Al)을 통해 제2 반도체층(500)과 전기적으로 연결되어 있다. 전극(700)은 와이어 본딩을 이용해 외부와 전기적으로 연결된다. 다만, 도 2에 도시된 반도체 발광소자와 달리, 전극(800; 도 2 참조)이 제1 반도체층(300) 위에 형성되어 있지 않으므로, 전극(800)에 의한 광 흡수를 방지하고, 와이어에 의한 광 흡수를 줄일 수 있게 된다.
도 22는 종래의 반도체 발광소자의 또 다른 예를 나타내는 도면으로서, 반도체 발광소자는 기판(100), 제1 도전성을 가지는 반도체층(300), 전자와 정공의 재결합을 통해 빛을 생성하는 활성층(400), 제1 도전성과 다른 제2 도전성을 가지는 반도체층(500), 전극(700), 그리고 전극(800)을 구비한다. 전극(700)은 활성층(400)에서 생성된 빛을 기판(100) 측으로 반사하는 반사막(예: Ag/Ni/Au의 적층)으로 되어 있다. 반도체 발광소자는 와이어를 이용하지 않고, 전극 패턴(1010,1020)을 구비하는 배선 기판(1000)에 접합층(7,7)을 이용하여 플립칩(Flip Chip) 본딩되어 있다.
도 23은 종래의 반도체 발광소자의 또 다른 예를 나타내는 도면으로서, 도 4에 도시된 반도체 발광소자와 동일한 구성을 가지지만, 기판(100; 도 4 참조)이 제거되어 있는 점에서 차이를 가진다. 그러나 이러한 형태의 반도체 발광소자는 와이어 본딩을 없애기는 하였지만, 전극(700,800)을 배선 기판(1000)에 결합한 다음에, 기판(100)을 제거하는 TFFC(Thin Flim Flip Chip) 기술로서, 고도의 칩 레벨 기술 수준을 보여주는 것이기는 하지만, 웨이퍼 레벨에서 기판(100)을 제거하는 기술이 쉽지 않음(복수의 반도체층(300,400,500)의 깨짐 없이 기판(100)을 제거하는 것이 쉽지 않음)을 보여주는 것이기도 하다.
이에 대하여 '발명의 실시를 위한 구체적인 내용'의 후단에 기술한다.
여기서는, 본 개시의 전체적인 요약(Summary)이 제공되며, 이것이 본 개시의 외연을 제한하는 것으로 이해되어서는 아니된다(This section provides a general summary of the disclosure and is not a comprehensive disclosure of its full scope or all of its features).
본 개시에 따른 일 태양에 의하면(According to one aspect of the present disclosure), 반도체 소자용 지지 기판을 제조하는 방법에 있어서, 제1 면 및 제2 면에 대향하는 제2 면을 가지는 제1 기판을 준비하는 단계; 제1 면으로부터 제2 면 측을 향하는 홈을 형성하는 단계; 홈에 인서트를 삽입 및 고정시켜 제1 기판을 관통하는 통로를 형성하는 단계;로서, 통로는 방열 통로 및 전기 통로 중 적어도 하나로 기능하는, 통로를 형성하는 단계;를 포함하는 것을 특징으로 하는 반도체 소자용 지지 기판을 제조하는 방법이 제공된다.
이에 대하여 '발명의 실시를 위한 구체적인 내용'의 후단에 기술한다.
도 1은 미국 등록특허공보 제7,262,436호에 제시된 반도체 발광소자 칩의 일 예를 나타내는 도면,
도 2는 일본 공개특허공보 제2006-120913호에 제시된 반도체 발광소자 칩의 일 예를 나타내는 도면,
도 3은 국제 공개특허공보 WO2014/014298호에 제시된 반도체 발광소자 칩의 일 예를 나타내는 도면,
도 4는 일본 공개특허공보 제2001-358371호에 도시된 반도체 발광소자의 일 예를 나타내는 도면,
도 5는 종래의 반도체 발광소자의 다른 예를 나타내는 도면,
도 6 및 도 7은 본 개시에 따라 반도체 소자용 지지 기판을 제조하는 방법의 일 예를 나타내는 도면,
도 8 및 도 9는 본 개시에 따라 반도체 장치를 제조하는 방법의 일 예를 나타내는 도면,
도 10은 본 개시에 따라 반도체 소자용 지지 기판을 제조하는 방법의 다른 일 예를 나타내는 도면,
도 11 및 도 12는 본 개시에 따라 반도체 장치를 제조하는 방법의 또 다른 일 예를 나타내는 도면,
도 13은 본 개시에 따라 반도체 장치를 제조하는 방법의 또 다른 일 예를 나타내는 도면,
도 14는 본 개시에 따라 반도체 장치를 제조하는 방법의 또 다른 일 예를 나타내는 도면,
도 15는 본 개시에 따른 반도체 장치의 또 다른 일 예를 나타내는 도면,
도 16은 본 개시에 따른 반도체 장치를 제조하는 방법의 또 다른 일 예를 나타내는 도면,
도 17은 본 개시에 따른 반도체 장치를 제조하는 방법의 또 다른 일 예를 나타내는 도면,
도 18은 본 개시에 따른 반도체 장치를 제조하는 방법의 또 다른 일 예를 나타내는 도면,
도 19는 종래의 반도체 발광소자의 일 예를 나타내는 도면,
도 20은 미국특허 제5,008,718호에 제시된 수직형 반도체 발광소자의 일 예를 나타내는 도면,
도 21은 미국 등록특허공보 제8,008,683호에 제시된 반도체 발광소자의 일 예를 나타내는 도면,
도 22는 종래의 반도체 발광소자의 또 다른 예를 나타내는 도면,
도 23은 종래의 반도체 발광소자의 또 다른 예를 나타내는 도면,
도 24는 본 개시에 따른 반도체 소자용 지지 기판의 또 다른 일 예 및 이를 제조하는 방법의 일 예를 나타내는 도면,
도 25는 본 개시에 따른 반도체 소자용 지지 기판을 제조하는 방법의 또 다른 일 예를 나타내는 도면.
이하, 본 개시를 첨부된 도면을 참고로 하여 자세하게 설명한다(The present disclosure will now be described in detail with reference to the accompanying drawing(s)).
도 6 및 도 7은 본 개시에 따라 반도체 소자용 지지 기판을 제조하는 방법의 일 예를 나타내는 도면으로서, 도 6에 도시된 바와 같이, 제1 기판(10)을 준비한다. 제1 기판(10)은 제1 면(11), 제2 면(12) 및 제1 면(11)과 제2 면(12)을 이어주는 측면(13)을 구비한다. 다음으로, 제1 면(11) 측에서 홈(14)을 형성한다. 홈(14)의 형상에 특별한 제한이 있는 것은 아니며, 원형, 다각형, 슬릿, 트렌치(trench) 등의 형태를 가질 수 있다. 즉, 길게 이어진 형태 또는 독립된 오목부의 형태를 가질 수 있다. 다음으로, 홈(14)에 도전부(15)를 형성한다. 바람직하게는, 도전부(15)에 도전 패드(16)를 형성한다. 도전부(15)와 도전 패드(16)는 별도의 공정으로 형성되어도 좋고, 하나의 공정으로 형성되어도 좋다.
다음으로, 도 7에 도시된 바와 같이, 제2 기판(17)을 결합층(18)을 이용하여 제1 기판(10)에 결합한다. 다음으로, 제2 면(12) 측에서 연마 등을 통해 제1 기판(10)의 두께를 감소시킨다. 바람직하게는 도전부(15)에 도전 패드(19)를 형성한다. 제2 기판(17)이 제1 기판(10)에 직접 접착될 수 있는 물성을 가진다면, 결합층(18)은 생략될 수 있다. 필요에 따라, 도전 패드(19)를 형성하기 전 또는 후에, 제1 기판(10)에 반사층 또는 절연층(12a)을 형성할 수 있다.
도 8 및 도 9는 본 개시에 따라 반도체 장치를 제조하는 방법의 일 예를 나타내는 도면으로서, 반도체 발광소자를 예로 하여 설명한다. 도 8에 도시된 바와 같이, 반도체 발광소자 칩(20)을 제1 기판(10)에 고정한다. 반도체 발광소자 칩(20)은 성장 기판(21; 예: Al2O3), 제1 도전성을 가지는 제1 반도체층(22; 예: n형 GaN), 제1 도전성과 다른 제2 도전성을 가지는 제2 반도체층(23; 예: p형 GaN), 제1 반도체층(22)과 제2 반도체층(23) 사이에 개재되며 전자와 정공의 재결합을 통해 빛을 생성하는 활성층(24; 예: InGaN/(In)(Al)GaN 다중양자우물구조), 그리고 제1 반도체층(22)과 제2 반도체층(23) 각각에 전기적으로 연결되는 제1 전극(25) 및 제2 전극(26)을 구비한다. 반도체 발광소자 칩(20)은 도 1 내지 도 3에 도시된 반도체 발광소자 칩 중의 하나일 수 있으며, 플립 칩의 형태라면, 특별한 제한을 가지는 것은 아니다. 제1 전극(25)과 제2 전극(26)은 대응하는 도전부(15)에 고정된다. 도전부(15)는 전기적 통로 및 열적 통로로서 기능한다. 바람직하게는, 반도체 발광소자 칩(20)을 덮도록 봉지제(27)를 형성한다. 봉지제(27)가 형광체 및/또는 광산란제를 포함할 수 있음은 물론이다. 바람직하게는, 봉지제(27)의 일부를 제거하여 봉지제(27)의 측면이 노출되도록 한다. 이는 후술할 절단 공정에 도움을 주거나, 봉지제(27)가 반도체 발광소자 칩(20)의 형상을 따르게 하는 등을 위함이다. 봉지제(27)의 제거에는 커팅, Sawing 등의 방법이 사용될 수 있다. 또한 봉지제(27)로 반도체 발광소자 칩(20)을 덮기 전에, 제거될 봉지제(27)의 형태를 따라 틀을 미리 제1 기판(10)에 놓은 후, 봉지제(27)를 형성하는 방법도 사용할 수 있다. 각각의 전극(25,26)에 하나씩의 도전부(15)가 대응될 수도 있지만, 하나의 전극이 복수의 도전부(15)와 결합될 수 있음은 물론이다. 전극(25,26)과 도전부(15) 또는 전극(25,26)과 도전 패드(19)는 정렬된 후, 열압착을 통해 본딩될 수 있다.
다음으로, 도 9에 도시된 바와 같이, 제2 기판(17)이 제1 기판(10)으로부터 분리되어 있다. 다음으로, 반도체 발광소자 칩(20)을 포함하도록 제1 기판(10)을 절단한다. 바람직하게는, 레이저(28)를 제1 기판(10) 내부로 조사하여 크랙(29)을 형성한 다음, 브레이킹 공정을 통해, 제1 기판(10)을 절단함으로써, 반도체 발광소자 칩(20) 및 봉지제(27)에 기계적, 화학적 및/또는 열적 손상을 줄여서, 제1 기판(10)을 절단할 수 있게 된다. 쏘잉과 같이 기계적인 절단 방법을 사용하는 경우에, 제2 기판(17)을 제1 기판(10)으로부터 분리하지 않고, 제1 기판(10)을 절단하는 것도 가능하다, 제2 기판(17)을 함께 절단하는 것도 가능하지만, 제1 기판(10)만 절단한 후 제2 기판(17)을 제거하는 것이 공정상 이점을 가진다. 제2 기판(17)을 제1 기판(10)으로부터 분리하는 과정에서, 결합층(18)을 에칭 등의 방법으로 제거함으로써, 양자를 분리하는 것도 가능하다. 도 9에 제시된 예에서, 제1 기판(10)의 제2 면(12)의 일부가 노출되어 있으며, 도전 패드(19)를 포함한 도전부(15)는 봉지제(27)에 의해 덮혀 있다.
도 10은 본 개시에 따라 반도체 소자용 지지 기판을 제조하는 방법의 다른 일 예를 나타내는 도면으로서, 제1 기판(10)에 제2 기판(17)을 결합하기 전에, 먼저 제1 기판(10)을 관통하도록 홈(14)을 형성하고, 다음으로 도전부(15)를 형성한 다음, 결합층(18)을 이용하여, 제1 기판(10)에 제2 기판(17)을 결합한다. 이후의 과정은 동일하다. 바람직하게는 도전부(15)의 적어도 일측에 도전 패드(16,19)가 형성되어 있다. 제1 기판(10)을 관통하지 않도록 홈(14)을 형성한 다음, 도전부(15)를 형성하고, 연마를 통해, 홈(14)이 제1 기판(10)을 관통한 형태를 가지도록 하는 것도 가능하다.
도 11 및 도 12는 본 개시에 따라 반도체 장치를 제조하는 방법의 또 다른 일 예를 나타내는 도면으로서, 반도체 발광소자를 예로 하여 설명한다. 도 11에 도시된 바와 같이, 제1 기판(10)에 반도체 발광소자 칩(20)을 고정하고, 다음으로, 봉지제(27)를 형성하기에 앞서, 반도체 발광소자 칩(20) 옆에 댐(30)을 먼저 형성한다. 다음으로, 봉지제(27)로 반도체 발광소자 칩(20)을 덮는다. 댐(30)은 반사막 등으로 기능한다.
다음으로, 도 12에 도시된 바와 같이, 댐(30)의 전부를 제거나 댐(30)의 일부를 제거한다. 댐(30)을 포토리지스터(PSR)와 같은 물질로와 같은 물질로 형성함으로써, 쉽게 패턴닝하는 한편, 쉽게 제거하는 것이 가능하다. 쏘잉 공정을 통해 댐(30)의 일부를 남기는 것이 가능하다. 또한 댐(30)을 반사막 기능을 갖는 백색 유기물(TiO2, SiO2 성분 포함)로 형성하는 것도 가능하다.
도 13은 본 개시에 따라 반도체 장치를 제조하는 방법의 또 다른 일 예를 나타내는 도면으로서, 반도체 발광소자를 예로 하여 설명한다. 제2 기판(17)을 제1 기판(10)으로부터 분리하기에 앞서, 성장 기판(10)을 복수의 반도체층(22,23,24)으로부터 분리한다. 바람직하게는, 제1 전극(25)과 제2 전극(26) 사이의 공간이 절연체(31)로 메워져있다. 더욱 바람직하게는, 제2 반도체층과(23)과 제1 기판(10)이 마주하는 공간 전체가 메워져있다. 이 공간을 메우는 과정은 반도체 발광소자 칩(20)을 제조하는 과정에서 이루어지거나, 반도체 발광소자 칩(20)을 제1 전극(10)에 고정하기에 앞서서 행해질 수 있다. 또한, 제1 반도체층과(22) 상부에 투명한 접착제를 이용하여 직접 또는 간접적으로 형광체 및/또는 광산란제를 포함한 구조물(도시 생략)을 형성하는 것도 가능하다.
도 14는 본 개시에 따라 반도체 장치를 제조하는 방법의 또 다른 일 예를 나타내는 도면으로서, 반도체 발광소자를 예로 하여 설명한다. 도 8에서와 같이 제1 기판(10)에 낱개의 반도체 발광소자 칩(20)이 고정되는 것이 아니라, 제1 기판(10)에 복수의 반도체 발광소자 칩(20a,20b,20c,20d)이 하나의 성장 기판(21)을 통해 고정된다. 복수의 반도체 발광소자 칩(20a,20b,20c,20d)이 서로 배선을 통해 병렬, 직렬 또는 직병렬로 연결되어 있을 수 있음은 물론이다.
도 15는 본 개시에 따른 반도체 장치의 또 다른 일 예를 나타내는 도면으로서, 반도체 발광소자를 예로 하여 설명한다. 도 15에 도시된 반도체 발광소자는 도 6 내지 도 9에 제시된 방법에 따라 만들어진 반도체 발광소자(A)에 더하여, 도전부(15,15)가 결합되는 리드 프레임(2,3)과 반도체 발광소자(A)를 둘러싸는 봉지제(1000) 그리고 봉지제(1000)를 수용하는 몰드부(5)를 선택적으로 더 포함한다.
도 16은 본 개시에 따른 반도체 장치를 제조하는 방법의 또 다른 일 예를 나타내는 도면으로서, 반도체 발광소자를 예로 하여 설명한다. 도 8에 제시된 반도체 소자와 달리, 성장 기판으로서, 3족 질화물 반도체, 즉, Al(x)Ga(y)In(1-x-y)N (0≤x≤1, 0≤y≤1, 0≤x+y≤1)로 된 성장 기판(21a; 예: GaN)이 사용된 예가 제시되어 있다. GaN 기판을 이용하는 반도체 소자의 경우에, 고출력, 저동작전압, 저발열 등을 특징으로 하지만, 사파이어 기판에 비해 여전히 고가여서, 원가 절감을 위해 칩 사이즈를 축소할 필요가 있으며, 칩의 크랙킹, 전극 크기로 인한 칩 크기 축소의 한계, 전류밀도 상승으로 인한 고발열 등의 문제를 야기할 수 있다. 한편, GaN의 열팽창 계수가 5.56ppm이므로, 종래의 금속(Cu, Al)으로 된 리드 프레임에 탑재되는 경우(예를 들어, Cu로 된 리드 프레임의 열팽창 계수가 16ppm이다), 3족 질화물 반도체로 된 성장 기판을 사용하는 반도체 칩과 지지 기판 간에 열팽창 계수의 차이로 인한 다양한 기계적 문제를 야기할 가능성이 높다. 도 6 내지 도 15에 걸쳐서 제시된 본 개시에 따른 반도체 소자용 지지 기판을 사용함으로써, 이러한 문제점을 해소하는 것이 가능하다. 또한 반도체 칩을 파지할 때, 발생하는 반도체 칩의 손상도 지지 기판을 이용함으로써 방지할 수 있게 된다. 바람직하게는 제1 기판(10)의 재질을 성장 기판(21a)의 재질과 열팽창 계수의 차이가 작은 재질(바람직하게는, 2ppm)로 선정함으로써, 열팽창 계수의 차이로 인해 발생할 있는 다양한 기계적 및 열적 결함을 해소하는 것이 가능하다. 예를 들어, 성장 기판(21a)이 GaN(5.56ppm)인 경우에, 세라믹 AlN(4.8ppm)를 제1 기판(10)으로 선정함으로써, 양자 간 열팽창 계수의 차이를 2ppm이내, 더욱 바람직하게는 1ppm 이내로 하는 것이 가능해진다. Al2O3 세라믹의 열팽창 계수가 6.9~7.5ppm이므로 제1 기판(10)으로 적용 가능하다. 동일 부호에 대한 설명은 제외하며, 도 7에 제시된 것과 같이, 반사층 또는 절연층(12a)이 양 전극(25,26) 사이에 구비될 수 있음은 물론이다.
도 17은 본 개시에 따른 반도체 장치를 제조하는 방법의 또 다른 일 예를 나타내는 도면으로서, 반도체 발광소자를 예로 하여 설명한다. 성장 기판(21a)을 이용한 수직형 칩이 제1 기판(10)에 탑재되어 있다. 제2 전극(26)이 제2 반도체층(23)에 전기적으로 연결되어 있으며, 제2 전극(26)은 와이어를 통해 도전 패드(19-1) 및 도전부(15-1)에 전기적으로 연결되어 있고, 제1 반도체층(22)은 성장 기판(21a)을 통해 도전 패드(19-2) 및 도전부(15-2)에 전기적 연결되어 있다. 성장 기판(21a)의 하부에 별도의 전극(제1 전극(25)에 해당)이 구비될 수 있으며, 성장 기판(21a)과 수직형 칩은 통상의 방법을 통해 고정될 수 있다. 동일 부호에 대한 설명을 생략한다.
도 18은 본 개시에 따른 반도체 장치를 제조하는 방법의 또 다른 일 예를 나타내는 도면으로서, 반도체 발광소자를 예로 하여 설명한다. 성장 기판(21a)을 이용한 레터럴 칩이 제1 기판(10)에 탑재되어 있다. 제1 전극(25)은 제1 반도체층(22)에 전기적으로 연결되어 있으며, 제2 전극(26)은 제2 반도체층(23)에 전기적으로 연결되어 있다. 제1 전극(25)은 와이어를 통해 도전 패드(19-2) 및 도전부(15-2)에 전기적으로 연결되어 있고, 제2 전극(26)은 와이어를 통해 도전 패드(19-1) 및 도전부(15-1)에 전기적으로 연결되어 있다. 바람직하게는 도전 패드(19-3) 및 도전부(15-3)가 추가로 구비되어, 반도체 칩으로부터의 방열 통로로 기능한다. 성장 기판(21a)이 도통가능한 경우에, 도전 패드(19-3)와 성장 기판(21a) 사이에 별도의 절연층이 구비될 수 있으며, 도전 패드(19-3)를 비도전성 물질로 대체하는 것도 가능하다.
도 24는 본 개시에 따른 반도체 소자용 지지 기판의 또 다른 일 예 및 이를 제조하는 방법의 일 예를 나타내는 도면으로서, 반도체 소자용 지지 기판으로서 제1 기판(10)은 제1 면(11) 및 제1 면(11)에 대향하는 제2 면(12), 제1 면(11)으로부터 제1 기판(10) 내부로 뻗어 있는 홈(14), 그리고 홈(14)내에 삽입되어 고정되는 인서트(33)를 포함한다. 인서트(33)는 열적 통로 또는 방열 통로(thermal pass or heat-dissipating pass) 및/또는 전기 통로(electrical pass)로 기능하며, 전기 통로로서의 기능을 가질 때, 도전부(15)와 동일하게 역할한다. 홈(14)은 레이저 드릴링(Laser Ablation)에 의해 형성될 수 있으며, 이외에도 습식 에칭(Chemical Wet Etching), 건식 에칭(Dry Etching), 샌드 블라스팅(Sand Blasting), 초음파 드릴링(Ultra Sound Drilling) 등에 의해 형성될 수 있다. 홈(14)의 형상은 특별히 제한되지 않지만, 원형으로 형성될 수 있으며, 그 폭은 500㎚~500㎛인 것이 바람직하다. 폭이 500㎚ 미만인 경우에, 인서트(33)를 삽입하기가 쉽지 않은 문제점이 있으며, 폭이 500㎛를 초과하는 경우에, 제조의 과정에서 크랙이 발생할 가능성이 높아지는 문제점이 있다. 홈(14)의 갯수는 반도체 소자 당 한 개 이상인 것으로 족하고, 특히 전기 통로로 기능하는 경우에, 반도체 발광소자의 전극의 수에 대응하는 수 이상의 갯수를 가지는 것이 바람직하고, 홈(14)의 간격 및 깊이는 제1 기판(10) 위에 제조되는 소자의 종류에 따라 달라질 수 있으며, 홈(14)이 제1 면(11)으로부터 제2 면(12)까지 이어져서 제1 기판(10)을 관통할 수 있음은 물론이다.
전술한 예에서, 도전부(15)가 주로 도금을 통해 형성되지만, 도금 금속 자체가 열팽창을 하는 문제점이 있고, 좁고 긴 형상의 홈(14)에서 도금 물질이 조밀하게 형성되기는 쉽지 않아 불량 이슈를 만들어 후속 공정의 복잡성을 야기해 제조상의 고비용 문제를 만들고 있어, 이를 개선할 필요가 있다. 전해도금을 예로 들면, 도금 물질(예: 구리)을 (+)극에 두고, 도금 대상을 (-)극으로 하여, 도금 대상에서 도금 물질을 환원 반응시킴으로써, 도전부(15)가 형성되는데, 이러한 방식으로는 조밀하게 도전부(15)를 구성하는데 한계가 있다.
본 개시에서는 막대(rod) 또는 와이어(wire) 형태의 물질(substances)로 인서트(33)를 구성함으로써, 이러한 문제점을 해소한다. ㎛-스케일의 와이어(예: Nickel wire, Cobalt Wire, Iron Wire)가 출시되고 있으며(이는 구글 검색을 통해 쉽게 찾아볼 수 있다.), 이러한 와이어를 홈(14)의 깊이에 맞게 컷팅하여 막대 형태의 인서트(33)를 만들 수 있다. 한편, 니켈, 코발트, 철 등은 강자성(ferromagnetism)을 띠는 금속 물질이므로, 막대 형상의 인서트(33)를 제1 면(11) 위에 둔 상태에서, 제2 면(12) 측에서 자석(도시 생략)을 이동시킴으로써, 인서트(33)를 홈(14)에 삽입하는 것이 가능하다. 자석을 이용하여 인서트(33)를 홈(14)에 삽입하는 기술은 미국 등록특허공보 제3,736,651호 등에 개시되어 있다. 자석을 이용하여 인서트(33)를 홈(14)에 삽입하는 경우에, 인서트(33)는 Ni, Co, Fe와 같은 강자성 물질 또는 이들 중의 하나를 포함하는 강자성 합금으로 이루어지는 것이 바람직하다. 고체상의 막대로 인서트(33)를 구성함으로써 즉, 도금을 통해 형성된 도전부(15)에 비해 조밀하게 형성된 형태로 인서트(33)를 구성함으로써, 열팽창을 억제하는 한편, 열전도율 및 전기전도율을 향상시킬 수 있게 된다. 이를 통해, 반도체 소자의 크랙, 반도체 소자와 지지 기판 간 분리(접합이 떨어짐) 등을 해소할 수 있게 된다. 막대 형태의 인서트(33)는 전체가 강자성체로 구성되어도 좋고, 그 일부가 강자성체로 구성되어도 좋고, 표면이 Ag, Au, Cu와 같은 상자성(paramagnetism) 물질로 코팅되어 있어도 좋다.
또한 고체상 막대 형태의 인서트(33)를 직접 홈(14)에 삽입하는 대신에, 액체상의 연속적으로 이어진 물질을 홈(14)에 삽입하여 인서트(33)를 형성하는 것도 가능하다. 이를 위하여, 도 5에 도시된 바와 같이, 반도체 소자와 리드 프레임(2,3)을 전기적으로 연결하는 와이어(8)의 본딩에 이용되는 와이어 본딩법 및 와이어 본더가 이용될 수 있다. 와이어 본딩법 및 와이어 본더는 반도체 분야에서 널리 사용되고 있는 것으로서 추가적인 설명은 생략한다. 와이어 본딩을 이용함으로써, 조밀하게 배치된 홈(14)에, 저비용으로 연속적으로 이어진 액체상 와이어 형태의 인서트(33)를 홈(14)에 삽입하는 것이 가능해진다. 이러한 형태의 인서트(33)는 와이어 본딩에 적합한 Au, Au 합금, Ag, Ag 합금, Cu, Cu-합금, Al, Al-합금 등으로 이루어질 수 있다.
또한 인서트(33)는 고반사성 및/또는 고방열 특성을 가지는 금속 파우더 및/또는 합금 파우더, 고방열 특성을 가지는 세라믹 파우더(예: AlN, BN, SiC, AlSiC), 또는 이들과 유기 바인더를 혼합물을 홈(14)에 삽입한 후 열처리함으로써 형성될 수 있다. 이러한 물질을 홈(14)에 삽입하는 데는 봉지제의 도포에 이용되는 디스펜서(dispenser)가 이용될 수 있다. 이 경우, 후술할 고정 물질(34)을 별도로 사용하지 않고, 인서트(33)를 홈(14)에 고정할 수 있는 이점을 가지며, 제1 면(11)을 연마하는 후속 공정을 생략할 수도 있다. 고반사성 및 고방열 물질로는 Al, Ag, Rh, Pt, Pd, Au, Cr, Ni, Mo, Ti, Cu으로 된 금속 또는 적어도 이들 중 1가지 금속 이상을 결합한 합금을 예로 들 수 있다.
도금 또는 PVD법 등에 의하지 않고, 인서트(33)를 형성하는 경우에, 인서트(33)를 홈(14)에 고정하거나 홈(14)을 메울(filling) 필요가 있다. 이를 위해, 홈(14)에 인서트(33)를 삽입하기 전 또는 후에 고정 물질(34)을 형성한다. 도 24에, 인서트(33)를 삽입한 후에 고정 물질(34)을 형성하는 과정을 나타내었다. 고정 물질(34)을 도포(예: 스핀 코팅)하고, 건조 또는 열처리함으로써, 인서트(33)를 홈(14)에 삽입 및 고정할 수 있게 된다. 이러한 고정 물질(34)로 SOC(Spin-on-Glass), BCB(Benzocyclobutene), PR(Photoresist), Epoxy-based Polymers, Silicone, Parylene, SU-8 등의 유기물계 저 유전 물질(low k dielectric)이 이용될 수 있다. 또한 고정 물질(34) 경우, 유기물계 저 유전 물질 이외에도 효과적인 열 방출을 꾀하기 위해 점성이 있는 액상 물질에 열전도도가 높은 금속, 합금, 세라믹 분말 입자 형태를 포함한 페이스트(paste) 형태를 갖는 물질도 바람직하다.
이와는 별도로 Al, Ag, Rh, DBR(distributed Brag reflector), ODR(omni directional reflector)와 같은 고반사성 및/또는 고열전도성 물질(35)을 홈(14)에 먼저 형성하고, 인서트(33)와 SOG와 같은 고정 물질(34)을 홈(14)에 삽입한 후, 열처리함으로써, 인서트(33)를 홈(14)에 고정하는 것도 가능하다.
한편, 고전력, 고온 및 고압 환경에서 반도체 소자(전력 소자 및 반도체 광소자(반도체 발광소자, 반도체 수광소자) 등))와 함께 제1 기판(10)이 사용되는 경우에, 제1 기판(10)의 재질에 따라 기생정전용량이 생겨 누설 전류가 흐를 수 있으며, 제1 기판(10)과 인서트(33) 간의 열팽창계수(CTE) 차이로 인해서 제1 기판(10) 깨지는 현상(Crack)이 쉽게 일어날 수 있다. 이러한 문제점은 고정 물질(34)로 SOC(Spin-on-Glass), BCB(Benzocyclobutene), PR(Photoresist), Epoxy-based Polymers, Silicone, Parylene, SU-8 등의 유기물계 저 유전 물질(low k dielectric)을 사용함으로써, 일부 개선할 수 있지만, 제1 기판(10)의 물질로서, 고출력 및 고온, 고압 환경에서 사용가능한 1500℃ 이상의 녹는점을 갖는 전기절연성 산화물(Oxide; Al2O3, ZnO), 전기절연성 질화물(Nitride; AlN, Si3N4, GaN, AlGaN), 전기절연성 탄화물(Carbide; SiC, AlSiC)의 단결정(single crystalline), 다결정(poly crystalline), 소결 공정을 거쳐 만들어진 복합체(sintered composite)를 이용함으로써, 제1 기판(10)의 전기절연성을 통해 기생정전용량 발생 및 누설 전류를 방지하고, 높은 녹는점을 통해 고온에서도 안정적인 물성을 유지할 수 있게 되어, 인서트(33)와 고정 물질(34)로서 다양한 재질을 사용할 수 있는 이점을 가지게 된다.
또한 단결정인 또는 투광성을 가지는 제1 기판(10)을 이용하는 경우에, 도 9에 제시된 것과 같이, 레이저를 제1 기판(10)의 내부에 조사하여, 절단하는 이점을 가질 수 있게 된다.
도 25에 도시된 바와 같이, 인서트(33)를 홈(14)에 삽입하기에 앞서, 고정 물질(34)을 먼저 홈(14)에 형성하는 것도 가능하다. 이러한 방법의 이점은 레이저 드릴링 등에 의해 형성되는 홈(14)의 거친 표면을 덮은 상태에서 인서트(33)를 삽입할 수 있어, 인서트(33)의 삽입을 용이하게 할 수 있다는 것이다. 이후 인서트(33)가 삽입되고, 건조 또는 열처리를 통해, 인서트(33)가 고정 물질(34)과 함께 홈(14)에 고정될 수 있다. 이 경우에도 고정 물질(34)은 전술한 물질들로 구성될 수 있지만, 이들에 접합성을 가지는 금속 물질을 추가하여 도포함으로써, 건조 또는 열처리 이전에 (또는 열처리를 생략하고) 인서트(33)의 고정 및 와이어 본딩을 용이하게 할 수 있다. 접합성 금속 물질을 직접 증착하는 것도 가능하다. 도 25에 도시된 예에 있어서, 고정 물질(34)을 형성한 후에, 인서트(33)를 삽입하기에 앞서, 홈(14) 내부에 형성된 고정 물질(34)을 남겨두고, 제1 면(11) 위에 존재하는 고정 물질(34)을 미리 제거하는 것도 가능하다. 이 경우에, 인서트(33) 삽입 후 열처리를 통해 접합성 금속 물질과 인서트(33)의 고정을 강화할 수 있음은 물론이다. 세라믹 파우더를 이용하는 경우에도, 고정 물질(34)을 홈(14)에 먼저 삽입할 수 있음도 물론이며, 접합성 금속 물질 및/또는 고반사성 물질(35)의 증착 공정/고정 물질(34)의 형성 공정/인서트(33)의 삽입 공정의 순서가 적절히 바뀔 수 있음도 물론이다(예: 접합성 금속 물질 및/또는 고반사성 물질(35)의 증착 공정 -> 인서트(33)의 삽입 공정 -> 고정 물질(34)의 형성 공정).
접합성을 가지는 물질은 예를 들어, 300℃ 이하의 녹는점을 갖는 저융점 금속 Sn, In, Zn, Ga 이들 중 적어도 1종 이상 포함한 합금 또는 페이스트로 이루어질 수 있으며, 5㎛ 이하의 미세립자 형태를 갖는 powder 저융점 금속 및/또는 고융점 금속 및/또는 유기 바인더(binder) 등을 균일한 점성 혼합물로 제조한 다음 dispensing하고 열처리함으로써 형성될 수 있다.
고정 물질(34) 및/또는 고반사성 물질(35)을 먼저 홈(14)에 삽입함으로써, 홈(14)의 크기를 드릴링과 별도로 조절할 수 있게 되어, ㎛-스케일 단위에서 이루어지는 인서트(33)의 삽입 공정에 있어서, 정밀성을 부여할 수 있는 이점도 가진다. 즉, 홈(14)의 크기를 드릴링과 별도로 스핀 코팅, 증착 등의 방법으로 정밀하게 조절할 수 있게 된다.
도 24로 다시 돌아와서, 홈(14)에 인서트(33)와 고정 물질(34)이 삽입되고 고정된 후에, 필요에 따라, 제1 면(11) 측에서 제1 기판(10)의 일부가 제거될 수 있다. 이러한 제거 공정을 통해, 제1 면(11) 위에 위치하는 고정 물질(34)이 제거되고, 인서트(33)와 홈(14)의 높이가 동일해질 수 있다. 이러한 제거는 연마(polishing)를 통해 이루어질 수 있다.
필요에 따라, 인서트(33)에 반도체 소자와의 안정적인 전기적 및/또는 물리적 접촉을 위해 패드(16; 전기 통로로 기능하는 경우에 도전 패드)가 구비될 수 있다. 마찬가지로, 도 7에 도시된 바와 같이, 연마를 거쳐 제2 면(12) 측에도 패드(19; 전기 통로로 기능하는 경우에 도전 패드)가 구비될 수 있다. 앞선 여러 공정들에 있어서, 제1 면(11) 측에 도 7에 도시된 바와 같은 제2 기판(17)이 사용될 수 있음은 물론이다(제2 면(12) 측에 제2 기판(17)을 구비할 수 있음도 물론이다). 고정 물질(34)의 형성 없이, 패드(16) 및/또는 패드(19)가 인서트(33)를 홈(14)에 고정하는 것도 가능하다.
도 24 및 도 25에 제시된 지지 기판의 재질로서, 고출력 및 고온, 고압 환경에서 사용가능한 1500℃ 이상의 녹는점을 갖는 전기절연성 산화물(Oxide; Al2O3, ZnO), 전기절연성 질화물(Nitride; AlN, Si3N4, GaN, AlGaN), 전기절연성 탄화물(Carbide; SiC, AlSiC)의 단결정(single crystalline), 다결정(poly crystalline), 소결 공정을 거쳐 만들어진 복합체(sintered composite)가 특히 적합하며, 이는 지지되는 반도체 소자의 물질 구성, 열팽창 계수, 요구되는 전기적 및 방열적 사양 등에 의해 결정될 수 있다. 고출력 및 고온 고압 환경에서 사용가능한 1500℃ 이상의 녹는점을 갖는 전기절연성 기판을 이용함으로써, 인서트(33)가 전기 통로로 기능하는 경우에, 인서트(33) 간의 발생된 기생정전용량으로 인해 기판(예: 실리콘 기판)을 통한 전기 누설 등에 대한 염려없이 지지 기판을 제조하는 것이 가능해진다. 참고로, 실리콘이 1414℃, Al2O3가 2040℃, AlN가 2200℃, SiC가 2500℃, Si3N4가 1900℃ 정도의 녹는점을 가진다.
한편, 막대 형상의 인서트(33)와 고정 물질(34)을 함께 혼합한 상태로 제1 기판(10)에 도포하여, 자석을 통해 인서트(33)를 홈(14)에 삽입함으로써, 인서트(33)가 제1 면(11) 및 홈(14)으로부터 이탈하는 것을 확실히 방지할 수 있게 된다. 예를 들어, 인서트(33)가 홈(14)에 삽입된 후, 스핀 코팅을 통해 고정 물질(34)을 도포하는 것에, 이 회전에 의해 인서트(33)가 제1 면(11) 또는 홈(14)으로부터 이탈할 수 있는데, 이를 방지할 수 있게 된다.
본 개시의 다양한 실시 형태에 대하여 설명한다.
(1) 반도체 발광소자를 제조하는 방법에 있어서, 제1 면 및 제1 면에 대향하는 제2 면을 가지며, 제1 면 측으로부터 제2 면 측으로 향하는 제1 홈 및 제2 홈을 가지고, 제1 홈 및 제2 홈 각각에 도전부가 형성되어 열팽창시 제1 홈 및 제2 홈이 각각의 도전부의 열팽창을 제한할 수 있는 제1 기판을 준비하는 단계; 제1 면 측에서 결합층을 통해 제1 기판에 제2 기판을 결합하는 단계; 그리고, 성장 기판, 성장 기판에 성장되는 복수의 반도체층으로서, 제1 도전성을 가지는 제1 반도체층, 제1 도전성과 다른 제2 도전성을 가지는 제2 반도체층, 제1 반도체층과 제2 반도체층 사이에 개재되며 전자와 정공의 재결합을 통해 빛을 생성하는 활성층을 가지는 복수의 반도체층, 그리고 제1 반도체층과 제2 반도체층 각각에 전기적으로 연결되는 제1 전극 및 제2 전극을 가지는 반도체 발광소자 칩을 제2 면 측에서 제1 기판에 고정하는 단계;로서, 제1 전극 및 제2 전극 각각을 제1 홈의 도전부와 제2 홈의 도전부에 고정하는 단계;를 포함하는 것을 특징으로 하는 반도체 발광소자를 제조하는 방법.
제1 기판(10)은 세라믹 기판, Al2O3 결정 기판, AlN 결정 기판, HTCC, LTCC, Al2O3 혼합물 또는 세라믹, Al2O3-ZrO2 혼합물 또는 세라믹, AlN 혼합물 또는 세라믹 등으로 이루어질 수 있다.
도전부(15)를 홈(14)에 위치시킴으로써, 주로 금속 재질로 이루어지는 도전부(15)의 열팽창을 억제할 수 있다.
제1 기판(10)의 두께는 10㎛이상 2000㎛인 것이 좋다. 너무 얇으면 지지 기판으로 역할하기가 쉽지 않기 때문이다. 바람직하게는 30㎛에서 500㎛의 두께를 가진다. 너무 두꺼우면 이후 연마 공정 등에서 불필요한 공정 시간을 초래한다.
예를 들어, 홈(14)은 30㎛ 폭을 가질 수 있으며, 그 길이는 전극(25,26)의 길이에 따라 달라질 수 있다. 하나의 전극(25)이 복수의 홈(14)에 대응할 수 있음은 물론이다. 홀(hole) 형태를 가지는 경우에, 한변의 길이가 200㎛ 이하인 것이 적절하다. 홈(14)은 30㎛이상 200㎛이하의 폭을 가지는 것이 바람직하다. 지나치게 작으면 방열 특성이 나빠지고, 지나치게 커지면, 제1 기판(10)이 깨질 수 있다. 기본적으로 홈(14)의 크기를 전극(25,26)의 형상에 따라 달라질 수 있다. 예를 들어, 홈(14)의 깊이가 연마된 후의 제1 기판(10)의 두께보다 10% 정도 크게 되도록 형성할 수 있다.
도전 패드(16)를 포함하는 도전부(15)는 예를 들어, E-Beam, Sputter를 이용하여 씨앗층(seed layer)을 형성한 다음, 도금을 통해 형성할 수 있다. 도금 물질로는 Cu, Ni, Au, Ag, In, Sn 등을 예로 들 수 있다. Ag, Cu계 전도성 paste를 이용하는 것도 가능하다. 이외에도, Graphite, CNT, AlN, SiC가 포함된 전기전도성 paste를 이용할 수 있다. 도전 패드(16)는 Au, Ag, Pt, Pd, Cu, Ni, Cr, Sn, In, Zn, Ti, TiW 중의 어느 하나 또는 이들의 조합으로 형성할 수 있으며, 이들 물질을 이용하여 복수의 층으로 형성될 수 있고, 도전부(15)와 함께 또는 별도로 형성하는 것이 가능하다. 또한 도전 패드(16)를 Ag, Cu계 전도성 페이스트로 형성하는 것도 가능하다. 도전부(15) 및/또는 도전 패드(16)를 제1 기판(10)과 제2 기판(17)을 결합한 다음 형성할 수 있음은 물론이다. 한편, 도금을 통해 통해 1차적으로 도전부(15)의 일부를 형성한 다음, 남은 부분은 도전성 페이스트로 채우는 방법을 채택할 수 있다. 이는 도금 금속의 경우에 작은 전기저항을 가진다는 이점이 있지만, 도금 금속 자체가 열팽창을 하는 문제점이 있으므로, 도전성 페이스트과 함께 사용함으로써, 높은 전기전도도와 열팽창 억제를 함께 고려하기 위함이다.
제2 기판(17)은 전기 절연성 물질로 형성할 수 있으며, 예를 들어, 유리, 사파이어, Al2O3 혼합물, Al2O3-ZrO2 혼합물, AlN 혼합물, 실리콘, 산화물 세라믹 등을 이용할 수 있다. 제2 기판(17)을 결합층(18)을 통해 제1 기판(10)에 결합할 수도 있지만, 제1 기판(10)에 제2 기판(17)을 증착 등의 방법으로 형성하는 방법도 있다. 이렇게 형성된 제2 기판(17)은 에칭을 통해 제거될 수 있다. 제2 기판(17)을 제1 기판(10)과 동일한 물질로 형성함으로써, 양자간 열팽창 계수를 맞출 수 있다. 예를 들어, 제1 기판(10)과 제2 기판(17) 모두를 사파이어로 형성할 수 있다.
바람직하게는, 반도체 발광소자 칩(20)은 동일한 간격을 두고 고정된다.
제1 전극(25)과 제2 전극(26) 사이에는 절연체가 구비될 수 있으며, thermo-set 또는 thermo-plastic 레진을 포함하고, phenol resin, epoxy resin, BT resin, PPA, Silicon resin 등으로 이루어질 수 있다.
(2) 고정하는 단계에 앞서, 제1 기판이 제2 기판에 고정된 상태에서 제1 기판의 두께를 감소시키는 단계;를 포함하는 것을 특징으로 하는 반도체 발광소자를 제조하는 방법.
(3) 감소된 제1 기판의 두께는 30㎛이상 500㎛이하인 것을 특징으로 하는 반도체 발광소자를 제조하는 방법. 너무 얇으며 지지 기능을 하기 쉽지 않고, 너무 두꺼우면 절단 공정 등에서 어려움을 야기하고, 또한 도 15에서와 같이 패키지에 수용하기가 어려워질 수 있다.
(4) 고정하는 단계에 앞서, 제2 면 측에서 도전부에 도전 패드를 형성하는 단계;를 더 포함하는 것을 특징으로 하는 반도체 발광소자를 제조하는 방법.
도전 패드(19)는 도금 또는 증착을 통해서 형성될 수 있다. 도전 패드(19)는 Au, Ag, Pt, Pd, Cu, Ni, Cr, Sn, In, Zn, Ti, TiW 중의 어느 하나 또는 이들의 조합으로 형성할 수 있으며, 이들 물질을 이용하여 복수의 층으로 형성될 수 있다. 또한 도전 패드(16)를 Ag, Cu계 전도성 페이스트로 형성하는 것도 가능하다. 도전 패드(19) 사이의 제1 기판(10)에는 반사층 또는 절연층(12a)을 구비할 수 있다. 반사층(12a)으로 기능하는 경우에, 반사율이 높은 Ag, Al, Rh, Cr, Ti, TiW, Au, DBR, OBR 으로 형성할 수 있다. 절연층(12a)으로 기능하는 경우에, SiO2, TiO2, ZrO2, Al2O3, DBR, SOG(Spin On Gel), Epoxy, resin 등으로 형성할 수 있다. 반사층 또는 절연층(12a)이 양쪽의 위치하는 도전 패드(19)에 대한 절연층으로 기능하는 경우에, 도전 패드(19)의 높이보다 절연층(12a)의 높이가 더 높은 것이 바람직하다.
(5) 제2 면 측에서, 반도체 발광소자 칩을 덮도록 봉지제를 형성하는 단계;를 더 포함하는 것을 특징으로 하는 반도체 발광소자를 제조하는 방법.
봉지제는 형광체 및/또는 광산란제를 포함할 수 있으며, 단층 또는 다층으로 구성될 수 있고, 각각의 층은 투명하거나, 종류를 달리하는 형광체 등을 함유할 수 있다.
(6) 봉지제를 형성하는 단계는 봉지제의 측면을 노출하는 과정을 포함하는 것을 특징으로 하는 반도체 발광소자를 제조하는 방법.
예를 들어, 레이저, 다이싱, 커팅 공정 등을 통하여 봉지제(27)를 일부 제거할 수 있다.
(7) 제2 기판을 제1 기판으로부터 분리하는 단계;를 더 포함하는 것을 특징으로 하는 것을 특징으로 하는 반도체 발광소자를 제조하는 방법.
폴리싱, 습식에칭 등을 이용하여 제2 기판(17)을 제거하는 것도 가능하며, 결합층(18) 또는 제2 기판(17)이 빛에 반응하는 물질로 이루어진 경우에, 광학적인 방법(빛)으로 제거하는 것도 가능하다.
(8) 분리하는 단계는 결합층을 제거하는 과정을 포함하는 것을 특징으로 하는 반도체 발광소자를 제조하는 방법.
결합층(18)으로 테이프를 이용할 수 있다. 또한, 금속, 산화물, 질화물 등을 증착한 다음, 이를 에칭을 통해 제거하는 방식으로 결합층(18)을 구성할 수 있다. 결합층(18)을 열 박리, 열-화학 분해, 광-화학 분해, 광-열-화합 분해가능한 물지로 형성하는 것도 가능하다.
(9) 반도체 발광소자 칩을 포함하도록 제1 기판을 절단하는 단계;를 더 포함하는 것을 특징으로 하는 반도체 발광소자를 제조하는 방법.
봉지제(27) 내에 반드시 하나의 반도체 발광소자 칩(20)이 놓일 필요는 없으며, 복수의 반도체 발광소자 칩(20)이 봉지제(27) 내에 구비될 수 있다. 복수의 반도체 발광소자 칩(20)이 반드시 동일한 색을 발광해야 하는 것은 아니며, 청색, 녹색, 자외선 등 다양한 색을 발광할 수 있다. 또한 ESD 보호소자를 함께 구비하는 것도 가능하다.
절단에는 Laser Ablation, Dicing Saw 등이 이용될 수 있다.
(10) 절단하는 단계에 앞서, 제1 기판 내부에 크랙을 발생시키는 단계;를 더 포함하는 것을 특징으로 하는 반도체 발광소자를 제조하는 방법.
소위 Stealth Laser를 이용하여 크랙을 형성할 수 있다.
(11) 도전부의 제1 면 측 및 도전부의 제2 면 측 중 적어도 하나에 도전 패드가 형성되어 있는 것을 특징으로 하는 반도체 발광소자를 제조하는 방법.
(12) 제1 전극 또는 제2 전극에 복수의 도전부가 고정되는 것을 특징으로 하는 반도체 발광소자를 제조하는 방법.
(13) 제2 면 측에서, 반도체 발광소자 칩을 덮도록 봉지제를 형성하는 단계; 그리고, 반도체 발광소자 칩을 포함하도록 제1 기판을 절단하는 단계;를 더 포함하며, 절단 후 제1 기판의 제2 면의 일부가 봉지제 없이 노출되어 있는 것을 특징으로 하는 반도체 발광소자를 제조하는 방법.
노출될 영역의 길이는 100㎛를 넘지 않는 것이 적절하다. 지나치게 넓으면 재료의 손실이 많아지고, Stealth Laser를 이용하는 경우에, 칩 간 거리가 30㎛ 정도면 공정이 가능하다.
(14) 제1 기판을 준비하는 단계에서, 도전부의 제1 면 측 및 도전부의 제2 면 측 중 적어도 하나에 도전 패드가 형성되는 것을 특징으로 하는 반도체 발광소자를 제조하는 방법.
(15) 제2 면 측에서, 반도체 발광소자 칩을 덮도록 봉지제를 형성하는 단계;를 더 포함하며, 봉지제를 형성하는 단계에 앞서, 제2 면 측에서 제1 기판에 반도체 발광소자 칩 옆에 댐을 형성하는 단계;를 더 포함하는 것을 특징으로 하는 반도체 발광소자를 제조하는 방법.
댐(30)은 PR 및 Dry film을 활용할 수 있다. 반사막으로 기능하도록 할 수 있으며, EMC, White Silicone, TiO2가 포함된 Silicone 등을 활용할 수 있다.
(16) 반도체 소자용 지지 기판을 제조하는 방법에 있어서, 제1 면 및 제2 면에 대향하는 제2 면을 가지는 제1 기판을 준비하는 단계; 제1 면으로부터 제2 면 측을 향하는 홈을 형성하는 단계; 홈에 인서트를 삽입 및 고정시켜 제1 기판을 관통하는 통로를 형성하는 단계;로서, 통로는 방열 통로 및 전기 통로 중 적어도 하나로 기능하는, 통로를 형성하는 단계;를 포함하는 것을 특징으로 하는 반도체 소자용 지지 기판을 제조하는 방법.
(17) 인서트는 고정 물질에 의해 홈에 고정되는 것을 특징으로 하는 반도체 소자용 지지 기판을 제조하는 방법.
(18) 인서트의 삽입에 앞서, 제1 면 측에서 고정 물질을 형성하는 단계;를 포함하는 것을 특징으로 하는 반도체 소자용 지지 기판을 제조하는 방법.
(19) 고정 물질은 접합성을 가지는 금속을 포함하는 것을 특징으로 하는 반도체 소자용 지지 기판을 제조하는 방법.
(20) 인서트의 삽입에 앞서, 홈에 고반사성 물질을 형성하는 단계;를 포함하는 것을 특징으로 하는 반도체 소자용 지지 기판을 제조하는 방법.
(21) 인서트는 고체상 와이어로부터 컷트된 막대 형상을 가지는 것을 특징으로 하는 반도체 소자용 지지 기판을 제조하는 방법. 여기서, 인서트는 비록 ㎛-스케일의 크기를 가지지만, 홈은 폭보다 깊이가 긴 형상을 가지므로, 전체적으로 막대(rod) 형상이 할 수 있다.
(22) 인서트는 액체상의 연속적으로 이어진 와이어 형태로 홈에 삽입되는 것을 특징으로 하는 반도체 소자용 지지 기판을 제조하는 방법.
(23) 인서트는 홈에 파우더를 삽입한 후, 열처리를 통해 형성되는 것을 특징으로 하는 반도체 소자용 지지 기판을 제조하는 방법.
(24) 인서트 삽입 후, 제1 면 및 제2 면 중의 적어도 하나가 연마되는 것을 특징으로 하는 반도체 소자용 지지 기판을 제조하는 방법.
(25) 인서트의 삽입 및 고정 후, 제2 면이 연마되는 것을 특징으로 하는 반도체 소자용 지지 기핀을 제조하는 방법.
(26) 인서트의 삽입에 앞서, 인서트가 고정 물질과 함께 제1 면 위에 놓여지는 것을 특징으로 하는 반도체 소자용 지지 기판을 제조하는 방법
(27) 제1 기판은 전기절연성 물질로 이루어지는 것을 특징으로 하는 반도체 소자용 지지 기판을 제조하는 방법.
(28) 전술한 실시예들의 조합.
본 개시에 따른 하나의 반도체 소자용 지지 기판에 의하면, 반도체 소자 칩의 크랙 또는 깨짐을 방지할 수 있게 된다.
본 개시에 따른 하나의 반도체 장치에 의하면, 반도체 소자 칩의 크랙 또는 깨짐을 방지할 수 있게 된다.
본 개시에 따른 하나의 반도체 장치를 제조하는 방법에 의하면, 반도체 소자 칩의 크랙 또는 깨짐을 방지할 수 있게 된다.
본 개시에 따른 하나의 반도체 소자용 지지 기판에 의하면, 지지 기판에 도금을 통해 전기 통로 또는 방열 통로를 형성할 때의 문제점을 개선할 수 있게 된다.
본 개시에 따른 하나의 반도체 소자용 지지 기판에 의하면, 반도체 소자와의 열팽창 계수, 격자 상수 등을 적절히 일치시키는 한편, 지지 기판에 도금을 통해 전기 통로 또는 방열 통로를 형성할 때의 문제점을 개선할 수 있게 된다.
제1 기판(10), 홈(14), 도전부(15), 도전 패드(16), 반도체 발광소자 칩(20)

Claims (12)

  1. 반도체 소자용 지지 기판을 제조하는 방법에 있어서,
    제1 면 및 제2 면에 대향하는 제2 면을 가지는 제1 기판을 준비하는 단계;
    제1 면으로부터 제2 면 측을 향하는 홈을 형성하는 단계;
    홈에 인서트를 삽입 및 고정시켜 제1 기판을 관통하는 통로를 형성하는 단계;로서, 통로는 방열 통로 및 전기 통로 중 적어도 하나로 기능하는, 통로를 형성하는 단계;를 포함하며,
    인서트는 고정 물질에 의해 홈에 고정되고,
    고정 물질은 인서트가 홈에 삽입 후에 형성되어 인서트를 홈에 고정하는 것을 특징으로 하는 반도체 소자용 지지 기판을 제조하는 방법.
  2. 삭제
  3. 삭제
  4. 삭제
  5. 청구항 1에 있어서,
    인서트의 삽입에 앞서, 홈에 고반사성 물질을 형성하는 단계;를 포함하는 것을 특징으로 하는 반도체 소자용 지지 기판을 제조하는 방법.
  6. 청구항 1에 있어서,
    인서트는 고체상 와이어로부터 컷트된 막대 형상을 가지는 것을 특징으로 하는 반도체 소자용 지지 기판을 제조하는 방법.
  7. 청구항 1에 있어서,
    인서트는 액체상의 연속적으로 이어진 와이어 형태로 홈에 삽입되는 것을 특징으로 하는 반도체 소자용 지지 기판을 제조하는 방법.
  8. 삭제
  9. 청구항 1에 있어서,
    인서트 삽입 후, 제1 면 및 제2 면 중의 적어도 하나가 연마되는 것을 특징으로 하는 반도체 소자용 지지 기판을 제조하는 방법.
  10. 청구항 1에 있어서,
    인서트의 삽입 및 고정 후, 제2 면이 연마되는 것을 특징으로 하는 반도체 소자용 지지 기핀을 제조하는 방법.
  11. 삭제
  12. 삭제
KR1020220044923A 2018-05-31 2022-04-12 반도체 발광소자용 지지 기판을 제조하는 방법 KR102538039B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220044923A KR102538039B1 (ko) 2018-05-31 2022-04-12 반도체 발광소자용 지지 기판을 제조하는 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180062279A KR102387087B1 (ko) 2016-05-02 2018-05-31 반도체 발광소자용 지지 기판을 제조하는 방법
KR1020220044923A KR102538039B1 (ko) 2018-05-31 2022-04-12 반도체 발광소자용 지지 기판을 제조하는 방법

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020180062279A Division KR102387087B1 (ko) 2016-05-02 2018-05-31 반도체 발광소자용 지지 기판을 제조하는 방법

Publications (2)

Publication Number Publication Date
KR20220054551A KR20220054551A (ko) 2022-05-03
KR102538039B1 true KR102538039B1 (ko) 2023-05-31

Family

ID=81590775

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220044923A KR102538039B1 (ko) 2018-05-31 2022-04-12 반도체 발광소자용 지지 기판을 제조하는 방법

Country Status (1)

Country Link
KR (1) KR102538039B1 (ko)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010123606A (ja) * 2008-11-17 2010-06-03 Seiko Instruments Inc 貫通電極付基板、発光デバイス及び貫通電極付基板の製造方法
JP4936078B2 (ja) * 2005-04-08 2012-05-23 マイクロン テクノロジー, インク. スルーワイヤ相互連結による半導体構成要素製造方法及びシステム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL124564C (ko) * 1964-09-30 1900-01-01
KR101032961B1 (ko) * 2009-07-28 2011-05-09 주식회사 세미라인 Led 방열기판의 제조방법 및 그의 구조
KR101353299B1 (ko) * 2012-03-14 2014-01-22 주식회사티티엘 고효율 고방열구조의 led패키지 구조 및 그 제조방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4936078B2 (ja) * 2005-04-08 2012-05-23 マイクロン テクノロジー, インク. スルーワイヤ相互連結による半導体構成要素製造方法及びシステム
JP2010123606A (ja) * 2008-11-17 2010-06-03 Seiko Instruments Inc 貫通電極付基板、発光デバイス及び貫通電極付基板の製造方法

Also Published As

Publication number Publication date
KR20220054551A (ko) 2022-05-03

Similar Documents

Publication Publication Date Title
US9236525B2 (en) Semiconductor light emitting device and fabrication method thereof
CN113380928B (zh) 半导体装置的制造方法
JP5414579B2 (ja) 半導体発光装置
US8941124B2 (en) Semiconductor light emitting device and method for manufacturing same
JP2005108863A (ja) 垂直構造ガリウムナイトライド発光ダイオード及びその製造方法
US7696523B2 (en) Light emitting device having vertical structure and method for manufacturing the same
JP2011254102A (ja) 発光素子
KR102387087B1 (ko) 반도체 발광소자용 지지 기판을 제조하는 방법
JP6100794B2 (ja) 厚い金属層を有する半導体発光デバイス
CN114008799A (zh) 半导体发光元件用支承基板的制造方法
KR102538039B1 (ko) 반도체 발광소자용 지지 기판을 제조하는 방법
KR101764129B1 (ko) 반도체 발광소자 및 이를 제조하는 방법
US11552213B2 (en) Template for growing group III-nitride semiconductor layer, group III-nitride semiconductor light emitting device, and manufacturing method therefor
TW201318236A (zh) 具增大面積之氮化鎵發光二極體及其製造方法
KR102405836B1 (ko) 3족 질화물 반도체층 성장을 위한 템플릿, 3족 질화물 반도체 발광소자 및 이들을 제조하는 방법
KR102387082B1 (ko) 반도체 소자용 지지 기판, 이를 포함하는 반도체 장치 및 이를 제조하는 방법
KR20160047306A (ko) 반도체 발광소자 및 이를 제조하는 방법
KR20170124361A (ko) 반도체 발광소자용 지지 기판을 제조하는 방법
KR101114126B1 (ko) 발광 장치 및 그 제조방법
KR20180030490A (ko) 반도체 소자용 지지 기판을 제조하는 방법
KR20170052546A (ko) 반도체 발광소자 및 이를 제조하는 방법
KR20170124766A (ko) 반도체 소자용 지지 기판을 제조하는 방법
US20210376212A1 (en) Semiconductor light emitting device and method of manufacturing the same
KR20160097082A (ko) 반도체 소자용 지지 기판, 이를 포함하는 반도체 장치 및 이를 제조하는 방법
KR101928322B1 (ko) 화합물 반도체 광소자

Legal Events

Date Code Title Description
A107 Divisional application of patent
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant