KR102527964B1 - Hot gas path parts repair and thermal barrier coating process by 3D printing - Google Patents

Hot gas path parts repair and thermal barrier coating process by 3D printing Download PDF

Info

Publication number
KR102527964B1
KR102527964B1 KR1020220160665A KR20220160665A KR102527964B1 KR 102527964 B1 KR102527964 B1 KR 102527964B1 KR 1020220160665 A KR1020220160665 A KR 1020220160665A KR 20220160665 A KR20220160665 A KR 20220160665A KR 102527964 B1 KR102527964 B1 KR 102527964B1
Authority
KR
South Korea
Prior art keywords
laser cladding
step process
coating layer
repair
temperature
Prior art date
Application number
KR1020220160665A
Other languages
Korean (ko)
Inventor
강현기
정택호
변삼섭
Original Assignee
터보파워텍(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 터보파워텍(주) filed Critical 터보파워텍(주)
Priority to KR1020220160665A priority Critical patent/KR102527964B1/en
Application granted granted Critical
Publication of KR102527964B1 publication Critical patent/KR102527964B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P6/00Restoring or reconditioning objects
    • B23P6/002Repairing turbine components, e.g. moving or stationary blades, rotors
    • B23P6/007Repairing turbine components, e.g. moving or stationary blades, rotors using only additive methods, e.g. build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3033Ni as the principal constituent
    • B23K35/304Ni as the principal constituent with Cr as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • B33Y40/20Post-treatment, e.g. curing, coating or polishing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing

Abstract

본 발명은 고온부품 수리 및 열차폐 코팅 공정에 관한 것으로, 더욱 상세하게는 고온부품의 크랙 내부 1차 레이저 클래딩하여 크랙 내부를 충진 및 접합하는 2단계 공정; 1차 레이저 클래딩에 의해 고온부품의 표면으로 돌출생성된 적층면 주변을 적층면 높이만큼 브레이징 코팅층을 형성하는 3단계 공정; 3단계 공정에 의해 형성된 브레이징 코팅층의 상면에 2차 레이저 클래딩으로 본드코팅층을 형성하는 4단계 공정; 2차 레이저 클래딩에 의해 생성된 본드코팅층에 3차 레이저 클래딩하여 열차폐 코팅층을 형성하는 5단계 공정; 확산열처리하는 6단계 공정;을 포함하여 이루어지는 것이 특징인 3D프린팅에 의한 고온부품 수리 및 열차폐 코팅 공정에 관한 것이다.
상술한 바와 같이 본 발명 3D프린팅에 의한 고온부품 수리 및 열차폐 코팅 공정은 3D 적층제조 기술을 적용하여 제조공정을 줄여 수리비용을 절감할 수 있다는 등의 현저한 효과가 있다.
The present invention relates to a high-temperature component repair and heat shielding coating process, and more particularly, a two-step process of filling and bonding the inside of a crack by performing primary laser cladding on the inside of a crack of a high-temperature component; A three-step process of forming a brazing coating layer by the height of the laminated surface around the laminated surface protruded to the surface of the high-temperature part by the first laser cladding; A 4-step process of forming a bond coating layer by secondary laser cladding on the upper surface of the brazing coating layer formed by the 3-step process; a 5-step process of forming a thermal barrier coating layer by tertiary laser cladding on the bond coating layer created by secondary laser cladding; It relates to a high-temperature part repair and thermal barrier coating process by 3D printing, characterized in that it comprises a six-step process of diffusion heat treatment.
As described above, the high-temperature component repair and heat shielding coating process by 3D printing of the present invention has significant effects such as reducing repair costs by reducing the manufacturing process by applying 3D additive manufacturing technology.

Description

3D프린팅에 의한 고온부품 수리 및 열차폐 코팅 공정{Hot gas path parts repair and thermal barrier coating process by 3D printing}Hot gas path parts repair and thermal barrier coating process by 3D printing

본 발명은 고온부품 수리 및 열차폐 코팅 공정에 관한 것으로, 더욱 상세하게는 3D프린팅에 의한 고온부품 수리 및 열차폐 코팅 공정에 관한 것이다.The present invention relates to a high-temperature component repair and thermal barrier coating process, and more particularly, to a high-temperature component repair and thermal barrier coating process by 3D printing.

가스터빈의 고온부품은 장시간 고온고압의 높은 온도(1100-1600℃)에서 가동되기 때문에 열적 진동 피로에 따른 열화를 받게 되어 궁극적으로 크랙 또는 심할 경우 부분적으로 깨어져 떨어져 나가는 파손이 발생하게 된다. Since the high-temperature parts of the gas turbine are operated at high temperature and high pressure (1100-1600 ° C) for a long time, they are subjected to deterioration due to thermal vibration fatigue, which ultimately causes cracks or, in severe cases, partial breakage and breakage.

이들 손상을 수리하는 기술은 접합이고 크게 두 가지로 나눌 수 있는데 하나는 용접이고 다른 하나는 브레이징이 있다. The technology to repair these damages is bonding and can be divided into two major categories, one is welding and the other is brazing.

특히, 고온부품 표면에 크랙이 발생한 경우 접합 수리를 위해서 크랙 내부에 있는 금속산화물(Al2O3, TiO2, Cr2O3 등)을 제거한 후 접합기술을 적용하여 수리한 후 블렌딩(Blending) 공정이 적용된다. In particular, when a crack occurs on the surface of a high-temperature part, after removing the metal oxide (Al 2 O 3 , TiO 2 , Cr 2 O 3 , etc.) inside the crack for bonding repair, apply bonding technology to repair it, and then blend. fairness is applied.

수리가 완료된 고온부품의 경우, 열차폐 코팅(Thermal Barrier Coating)을 적용하여 고온에서 소재가 받는 높은 열을 차단하여 열화에 의한 소재의 손상을 줄여 설계수명을 확보하는 것이 중요하다.In the case of high-temperature parts that have been repaired, it is important to apply thermal barrier coating to block the high heat received by the material at high temperatures to reduce damage to the material due to deterioration and to secure the design life.

기존의 열차폐코팅 공정은 소재에 손상이 없는 경우에는 그릿 블라스팅(Grit Blasting)으로 소재의 표면에 거칠기를 주어 소재표면에 소재와 접착성이 좋으면서 고온내열성을 가진 소재 분말(MCrAlY(M=Ni, Co))을 1차적으로 대기 플라즈마 스프레이(Atmospheric Plasma Spray) 또는 고속용사(High Velocity Fuel Spray) 방법으로 본드코팅한 후 열전도도가 매우 낮은 이트리아 안정화 지르코니아(YSZ, Yttria-Stabilized Zirconia)를 대기 플라즈마 스프레이 방법으로 2차코팅 즉, 탑 코팅(Top Coating) 한다. In the conventional thermal barrier coating process, when there is no damage to the material, the surface of the material is roughened by grit blasting, so that the material has good adhesion to the material and high-temperature heat resistance (MCrAlY (M=Ni , Co)) is primarily bond-coated by Atmospheric Plasma Spray or High Velocity Fuel Spray method, followed by Yttria-Stabilized Zirconia (YSZ), which has very low thermal conductivity. Secondary coating, that is, top coating, is performed by the plasma spray method.

특히, MCrAlY와 YSZ의 계면 접착성을 높이기 위해 프레쉬 코팅(Flash coating)이라는 중간코팅을 적용하는 공정이 있다. In particular, there is a process of applying an intermediate coating called flash coating to increase the interfacial adhesion between MCrAlY and YSZ.

도 1은 종래의 고온부품 수리 및 열차폐 코팅 공정도, 도 2는 종래의 고온부품 수리 및 열차폐 코팅 공정의 개요도이다.1 is a conventional high-temperature component repair and thermal barrier coating process diagram, and FIG. 2 is a conventional high-temperature component repair and thermal barrier coating process schematic diagram.

고온부품에 크랙이 있는 경우 종래의 고온부품 수리 및 열차폐 코팅은 도 1 내지 도 2에 도시된 바와 같이 크랙 산화물제거--> 용접 또는 브레이징--> 블렌딩--> 블라스팅--> 본드코팅--> 중간코팅--> 탑 코팅 순으로 각각의 공정에서 부품의 이동 및 기계적 세팅으로 많은 시간과 인력이 투입되어 수리비용이 상승하는 단점이 있었다.If there is a crack in the high-temperature part, the conventional high-temperature part repair and heat shielding coating remove crack oxide as shown in FIGS. 1 and 2--> welding or brazing--> blending--> blasting--> bond coating- -> Intermediate coating -> Top coating, in each process, a lot of time and manpower were invested in moving parts and mechanical setting, which increased the repair cost.

대한민국 등록특허공보 제10-020127호(다층형 열차폐 코팅막 및 이러한 코팅막이 코팅된 고온 가스터빈 설비 부품, 등록일자 2019년 09월 03일)Republic of Korea Patent Registration No. 10-020127 (Multi-layer thermal barrier coating film and high-temperature gas turbine equipment parts coated with such a coating film, registration date: September 03, 2019) 대한민국 등록특허공보 제10-1125329호( 가스터빈의 운전 중 열차폐 코팅층 형성방법, 등록일자 2012년 03월 02일)Republic of Korea Patent Registration No. 10-1125329 (Method of forming heat shielding coating layer during gas turbine operation, registration date: March 02, 2012) 대한민국 등록특허공보 제10-2278835호(브레이징을 이용한 가스터빈 베인의 코어플러그 제조방법, 등록일자 2021년 07월 13일)Republic of Korea Patent Registration No. 10-2278835 (Method for manufacturing core plug of gas turbine vane using brazing, registration date July 13, 2021) 대한민국 등록특허공보 제10-2278830호(고주파 용접을 이용한 가스터빈 블레이드 수리방법, 등록일자 2021년 07월 13일)Republic of Korea Patent Registration No. 10-2278830 (Gas turbine blade repair method using high frequency welding, registration date July 13, 2021)

본 발명은 상술한 문제점을 해결하기 위하여 안출된 것으로, 크랙이 있는 고온부품 수리면에 레이저 클래딩을 통한 3D 적층제조 기술을 적용하여 제조공정을 줄여 수리비용을 절감하는 공정기술을 제공하는 데 그 목적이 있다.The present invention has been made to solve the above-mentioned problems, and the purpose of the present invention is to provide a process technology that reduces repair costs by reducing the manufacturing process by applying 3D additive manufacturing technology through laser cladding to the repair surface of high-temperature parts with cracks. there is

본 발명 3D프린팅에 의한 고온부품 수리 및 열차폐 코팅 공정은 고온부품의 크랙 내부 산화물을 제거하는 1단계 공정: 고온부품의 크랙 내부 1차 레이저 클래딩하여 크랙 내부를 충진 및 접합하는 2단계 공정; 1차 레이저 클래딩에 의해 고온부품의 표면으로 돌출생성된 적층면 주변을 적층면 높이만큼 브레이징 코팅층을 형성하는 3단계 공정; 3단계 공정에 의해 형성된 코팅층의 상면에 2차 레이저 클래딩으로 본드코팅층을 형성하는 4단계 공정; 2차 레이저 클래딩에 의해 생성된 본드코팅층에 3차 레이저 클래딩하여 열차폐 코팅층을 형성하는 5단계 공정; 확산열처리하는 6단계 공정;을 포함하여 이루어지는 것이 특징이다.The high-temperature part repair and heat shielding coating process by 3D printing of the present invention is a first-step process of removing oxides inside cracks of high-temperature parts: a second-step process of filling and bonding the inside of cracks by first laser cladding the inside of cracks of high-temperature parts; A three-step process of forming a brazing coating layer by the height of the laminated surface around the laminated surface protruded to the surface of the high-temperature part by the first laser cladding; a 4-step process of forming a bond coating layer by secondary laser cladding on the upper surface of the coating layer formed by the 3-step process; A five-step process of forming a thermal barrier coating layer by tertiary laser cladding on the bond coating layer created by secondary laser cladding; It is characterized by comprising; a six-step process of diffusion heat treatment.

상술한 바와 같이 본 발명 3D프린팅에 의한 고온부품 수리 및 열차폐 코팅 공정은 3D 적층제조 기술을 적용하여 제조공정을 줄여 수리비용을 절감할 수 있다는 등의 현저한 효과가 있다.As described above, the high-temperature component repair and heat shielding coating process by 3D printing of the present invention has significant effects such as reducing repair costs by reducing the manufacturing process by applying 3D additive manufacturing technology.

도 1은 종래의 고온부품 수리 및 열차폐 코팅 공정도.
도 2는 종래의 고온부품 수리 및 열차폐 코팅 공정의 개요도.
도 3은 본 발명 3D프린팅에 의한 고온부품 수리 및 열차폐 코팅 공정도.
도 4는 본 발명 3D프린팅에 의한 고온부품 수리 및 열차폐 코팅 공정의 개요도.
1 is a conventional high-temperature part repair and thermal barrier coating process diagram.
Figure 2 is a schematic diagram of a conventional high-temperature component repair and thermal barrier coating process.
Figure 3 is a high-temperature parts repair and heat shield coating process diagram by 3D printing of the present invention.
Figure 4 is a schematic diagram of a high-temperature parts repair and heat shielding coating process by 3D printing of the present invention.

본 발명 3D프린팅에 의한 고온부품 수리 및 열차폐 코팅 공정은 고온부품의 크랙 내부 산화물을 제거하는 1단계 공정: 고온부품의 크랙 내부 1차 레이저 클래딩하여 크랙 내부를 충진 및 접합하는 2단계 공정; 1차 레이저 클래딩에 의해 고온부품의 표면으로 돌출생성된 적층면 주변을 적층면 높이만큼 브레이징 코팅층을 형성하는 3단계 공정; 3단계 공정에 의해 형성된 코팅층의 상면에 2차 레이저 클래딩으로 본드코팅층을 형성하는 4단계 공정; 2차 레이저 클래딩에 의해 생성된 본드코팅층에 3차 레이저 클래딩하여 열차폐 코팅층을 형성하는 5단계 공정; 확산열처리하는 6단계 공정;을 포함하여 이루어지는 것이 특징이다.The high-temperature component repair and heat shielding coating process by 3D printing of the present invention is a first-step process of removing oxides inside cracks of high-temperature parts: a second-step process of filling and bonding the inside of cracks by first laser cladding the inside of cracks of high-temperature parts; A three-step process of forming a brazing coating layer by the height of the laminated surface around the laminated surface protruded to the surface of the high-temperature part by the primary laser cladding; a 4-step process of forming a bond coating layer by secondary laser cladding on the upper surface of the coating layer formed by the 3-step process; a 5-step process of forming a thermal barrier coating layer by tertiary laser cladding on the bond coating layer created by secondary laser cladding; It is characterized by comprising; a six-step process of diffusion heat treatment.

상기 1차 레이저 클래딩에 사용되는 분말은 중량비로 실리콘(Si) 7% 이하, 보론(B) 2% 이하, 탄소(C) 0.01% 이하, 알루미늄(Al) 0.1% 이하, 지르코늄(Zr) 0.05% 이하, 코발트(Co) 0.5% 이하, 인(P) 0.01% 이하, 황(S) 0.02% 이하, 텅스텐(W) 3% 이하, 탄탈룸(Ta) 2% 이하, 크롬(Cr) 20∼30%, 나머지는 니켈(Ni)로 이루어진 것이 특징이다.The powder used for the primary laser cladding contains, by weight, 7% or less of silicon (Si), 2% or less of boron (B), 0.01% or less of carbon (C), 0.1% or less of aluminum (Al), and 0.05% of zirconium (Zr). Below, Cobalt (Co) 0.5% or less, Phosphorus (P) 0.01% or less, Sulfur (S) 0.02% or less, Tungsten (W) 3% or less, Tantalum (Ta) 2% or less, Chromium (Cr) 20-30% , the remainder being made of nickel (Ni).

그리고 상기 1차, 2차, 3차 레이저 클래딩 과정에서는 초음파진동과 원적외선 가열이 이루어지는 것이 특징이다.In addition, ultrasonic vibration and far-infrared heating are performed in the first, second, and third laser cladding processes.

또한, 초음파 진동은 1KHz∼100MHz의 범위로 하고, 원적외선 가열은 원적외선 파장을 10∼1000㎛ 사이에서 진행하여 모재인 고온부품의 온도를 400∼1,000℃ 내로 유지하면서 레이저 클래딩하는 것이 특징이다.In addition, ultrasonic vibration is in the range of 1 KHz to 100 MHz, and far-infrared heating is characterized by laser cladding while maintaining the temperature of the high-temperature component, which is the base material, within 400 to 1,000 ° C.

또한, 상기 고온부품의 크랙 내부 산화물 제거하는 1단계 공정은 금속 산화물을 제거하는 불소이온세정 공정과 힌트틴트(Heat tint)에 의한 크랙 내부를 검사하는 공정이 포함되어 있는 것이 특징이다.In addition, the first-step process of removing the oxide inside the crack of the high-temperature part includes a fluoride ion cleaning process to remove metal oxide and a process of inspecting the inside of the crack by heat tint.

또한, 확산열처리하는 6단계 공정은 온도 1200∼1450℃에서 30∼60분간 행한 후, 20분 동안 1023∼1350℃까지 온도를 내려서 150∼255분간 진공에서 확산 열처리하도록 하는 것이 특징이다.In addition, the six-step process of diffusion heat treatment is characterized by performing diffusion heat treatment in vacuum for 150 to 255 minutes by lowering the temperature to 1023 to 1350 ° C for 20 minutes after performing at a temperature of 1200 to 1450 ° C for 30 to 60 minutes.

이하, 본 발명 3D프린팅에 의한 고온부품 수리 및 열차폐 코팅 공정을 첨부한 도면에 의해 상세히 설명하면 다음과 같다.Hereinafter, a high-temperature part repair and thermal barrier coating process by 3D printing of the present invention will be described in detail with reference to the accompanying drawings.

도 3은 본 발명 3D프린팅에 의한 고온부품 수리 및 열차폐 코팅 공정도, 도 4는 본 발명 3D프린팅에 의한 고온부품 수리 및 열차폐 코팅 공정의 개요도이다.Figure 3 is a high-temperature part repair and heat shield coating process diagram by 3D printing of the present invention, Figure 4 is a schematic diagram of the high temperature part repair and heat shield coating process by 3D printing of the present invention.

도 3 내지 도 4에 도시된 바와 같이 본 발명 3D프린팅에 의한 고온부품 수리 및 열차폐 코팅 공정은 고온부품의 크랙 내부 산화물을 제거하는 1단계 공정: 고온부품의 크랙 내부 1차 레이저 클래딩하여 크랙 내부를 충진 및 접합하는 2단계 공정; 1차 레이저 클래딩에 의해 고온부품의 표면으로 돌출생성된 적층면 주변을 적층면 높이만큼 브레이징 코팅층을 형성하는 3단계 공정; 3단계 공정에 의해 형성된 코팅층의 상면에 2차 레이저 클래딩으로 본드코팅층을 형성하는 4단계 공정; 2차 레이저 클래딩에 의해 생성된 본드코팅층에 3차 레이저 클래딩하여 열차폐 코팅층을 형성하는 5단계 공정; 확산열처리하는 6단계 공정;을 포함하여 이루어지는 것이 특징으로 하고 있다.As shown in FIGS. 3 and 4, the high-temperature parts repair and heat shielding coating process by 3D printing of the present invention is a first-step process of removing oxides inside cracks of high-temperature parts: inside cracks of high-temperature parts by primary laser cladding to inside cracks A two-step process of filling and bonding; A three-step process of forming a brazing coating layer by the height of the laminated surface around the laminated surface protruded to the surface of the high-temperature part by the first laser cladding; a 4-step process of forming a bond coating layer by secondary laser cladding on the upper surface of the coating layer formed by the 3-step process; A five-step process of forming a thermal barrier coating layer by tertiary laser cladding on the bond coating layer created by secondary laser cladding; It is characterized by comprising a; six-step process of diffusion heat treatment.

더욱 상세하게는 1단계 공정은 고온부품의 크랙 내부 산화물을 제거하는 것으로, 1단계 공정에는 금속 산화물을 제거하는 불소이온세정(Fluoride Ion Cleaning) 공정과 힌트틴트(Hint tint)에 의한 크랙 내부를 검사하는 공정이 포함되도록 한다.More specifically, the first step process is to remove oxides inside the cracks of high-temperature parts. process to be included.

그리고 2단계 공정은 고온부품의 크랙 내부 1차 레이저 클래딩하여 크랙 내부를 충진 및 접합하는 것으로, 레이저로 스캔하여 크랙의 깊이와 폭을 3차원 이미지로 인식한 후, 브레이징 분말을 레이저로 용융하여 크랙부분을 접합하는 공정이다.And the second step is to fill and join the inside of the crack by first laser cladding the inside of the crack of the high-temperature part. After scanning with the laser to recognize the depth and width of the crack as a 3D image, the brazing powder is melted with the laser to crack the crack. It is the process of joining parts.

1차 레이저 클래딩 공정시 브레이징 멜팅이 크랙 내부로 깊이 침투할 수 있도록 원적외선으로 모재인 고온부품의 가열과 함께 초음파 진동을 해주면서 크랙 내부를 충진하여 접합하는 것이다.During the first laser cladding process, it fills and bonds the inside of the crack while heating the high-temperature component, which is the base material, with ultrasonic vibration so that the brazing melting can penetrate deeply into the crack.

이때, 1차 레이저 클래딩에 의해 크랙의 내부를 충진 및 접합시 고온부품의 표면의 상부로 돌출되게 형성된다.At this time, when filling and bonding the inside of the crack by the primary laser cladding, it is formed to protrude upward from the surface of the high-temperature part.

이에, 3단계 공정으로 1차 레이저 클래딩에 의해 고온부품의 표면으로 돌출생성된 적층면 주변을 적층면 높이만큼 레이저 클래딩하여 브레이징 코팅층을 형성하는 것이다.Accordingly, in a three-step process, a brazing coating layer is formed by laser cladding the periphery of the laminated surface protruded to the surface of the high-temperature part by the primary laser cladding by the height of the laminated surface.

브레이징 코팅층은 5∼200㎛ 정도의 두께가 되게 형성하도록 한다.The brazing coating layer is formed to a thickness of about 5 to 200 μm.

즉, 1차 레이저 클래딩 공정으로 크랙 부분을 충진 및 접합한 후, 1차 레이저 클래딩 공정시 고온부품의 표면 위로 돌출된 적층면 주변인 크랙이 없는 부분도 전체적으로 1∼5회 수행함으로써 높이가 전체적으로 평평한 브레이징 코팅층을 형성하는 것이다.That is, after filling and bonding the cracked part with the 1st laser cladding process, during the 1st laser cladding process, the non-cracked part around the laminated surface protruding on the surface of the high-temperature part is also performed 1 to 5 times as a whole, so that the overall height is flat brazing. to form a coating layer.

그리고 4단계 공정으로는 2차 레이저 클래딩에 의해 본드코팅층을 형성하는 것이다.In the fourth step, a bond coat layer is formed by secondary laser cladding.

본드코팅층은 종래의 고온내열성을 가진 소재 분말(MCrAlY(M=Ni, Co))을 사용하여 50∼2,000㎛의 두께가 되도록 형성한다.The bond coating layer is formed to a thickness of 50 to 2,000 μm using conventional material powder (MCrAlY (M=Ni, Co)) having high temperature and heat resistance.

그리고 5단계 공정으로 3차 레이저 클래딩하여 열차폐 코팅층을 형성하도록 한다.Then, tertiary laser cladding is performed in a 5-step process to form a thermal barrier coating layer.

바람직하게는 2차 레이저 클래딩 공정에 의해 형성된 본드코팅층의 상면에 널리 알려진 YSZ분말을 사용하여 초음파 진동과 원적외선을 가열하면서 3차 레이저 클래딩에 의해 열차폐 코팅층을 형성하는 것이다.Preferably, a heat shielding coating layer is formed on the top surface of the bond coating layer formed by the secondary laser cladding process by tertiary laser cladding while heating with ultrasonic vibration and far-infrared rays using YSZ powder, which is widely known.

상기 열차폐 코팅층은 최상면에 위치하고 있기에 탑코팅층이라고 불리우며, 0.5∼5mm 두께가 되도록 형성하는 것으로, 본드코팅층으로부터 처음 적층시 5∼50㎛까지는 초음파진동을 가해줌으로써 코팅층에 기공 없이 형성되도록 하여 접합력을 향상시켜 주도록 한다.Since the thermal barrier coating layer is located on the top surface, it is called a top coating layer, and is formed to have a thickness of 0.5 to 5 mm. When first laminated from the bond coating layer, ultrasonic vibration is applied to 5 to 50 μm so that the coating layer is formed without pores to improve bonding strength. let me do it

1차, 2차, 3차 레이저 클래딩시 함께 행하는 초음파 진동은 1KHz∼100MHz의 범위로 하고, 원적외선 가열은 원적외선 파장을 10∼1000㎛ 사이에서 진행하여 모재인 고온부품의 온도를 400∼1,000℃ 내로 유지하면서 레이저 클래딩하도록 한다.The ultrasonic vibration performed together during the 1st, 2nd, and 3rd laser cladding is in the range of 1KHz to 100MHz, and far-infrared heating proceeds with far-infrared wavelengths between 10 and 1000㎛ to bring the temperature of the high-temperature part, which is the base material, to within 400 to 1,000℃. while maintaining the laser cladding.

더욱 상세하게는 진동자(도면 미도시)를 모재인 고온부품의 표면에 접촉시키고 초음파 진동과 원적외선을 가열하는 것이다.More specifically, a vibrator (not shown) is brought into contact with the surface of a high-temperature part, which is a base material, and ultrasonic vibration and far-infrared rays are heated.

최적의 초음파를 레이저 클래딩 되는 부분에 전달하기 위해서 레이저 클래딩 되는 크랙부분으로부터 0.5∼500mm 이내 떨어진 곳에 진동자를 부착하여 모재인 고온부품에 진동을 주면서 레이저 클래딩을 하는 것이다.In order to transmit optimal ultrasonic waves to the part to be laser cladding, a vibrator is attached to a place within 0.5 to 500 mm away from the crack part to be laser cladding, and laser cladding is performed while vibrating the high-temperature part, which is the base material.

즉, 진동자는 모재인 고온부품의 표면에 접촉되도록 하되, 크랙으로부터는 0.5∼500mm 이내 떨어진 고온부품의 표면에 접촉시키도록 한다.That is, the vibrator is brought into contact with the surface of the high-temperature part, which is the base material, but is brought into contact with the surface of the high-temperature part within 0.5 to 500 mm away from the crack.

보다 바람직하게는 크랙으로부터 500mm 이상 떨어진 곳에서 모재에 물을 적시면서 초음파 진동자를 부착해서 음파를 전파하면 진동자의 마모를 감소시킬 수 있기 때문에 진동자의 수명을 연장시키는 장점이 있다. More preferably, when the ultrasonic vibrator is attached to the base material while being wetted with water at a distance of 500 mm or more from the crack and sound waves are propagated, wear of the vibrator can be reduced, thereby extending the lifetime of the vibrator.

상술한 바와 같이 초음파 진동과 동시에 레이저 클래딩할 경우 장점은 용접부에 기공율을 0.01% 이하로 감소시킴과 동시에 결정립의 크기를 기존 레이저 클래딩 보다 50% 이하로 작게 하기 때문에 기계적 특성(경도, 강도, 마모, 피로)이 증가하는 장점이 있다 As described above, the advantage of laser cladding simultaneously with ultrasonic vibration is that it reduces the porosity of the welded part to 0.01% or less and at the same time reduces the size of crystal grains to 50% or less compared to conventional laser cladding, so the mechanical properties (hardness, strength, wear, Fatigue) has the advantage of increasing

한편 상기 1차, 레이저 클래딩에 사용되는 브레이징 분말은 상용 브레이징 분말과 달리 온도강하 원소인 실린콘과 보론 함량이 적절히 조절되는 것으로, 중량비로 실리콘(Si) 7% 이하, 보론(B) 2% 이하, 탄소(C) 0.01% 이하, 알루미늄(Al) 0.1% 이하, 지르코늄(Zr) 0.05% 이하, 코발트(Co) 0.5% 이하, 인(P) 0.01% 이하, 황(S) 0.02% 이하, 텅스텐(W) 3% 이하, 탄탈룸(Ta) 2% 이하, 크롬(Cr) 20∼30%, 나머지는 니켈(Ni)로 이루어진 것을 사용하도록 한다.On the other hand, the brazing powder used for the primary laser cladding, unlike commercial brazing powder, has silicon and boron contents, which are temperature lowering elements, properly controlled, and contains less than 7% of silicon (Si) and less than 2% of boron (B) in weight ratio. , Carbon (C) 0.01% or less, Aluminum (Al) 0.1% or less, Zirconium (Zr) 0.05% or less, Cobalt (Co) 0.5% or less, Phosphorus (P) 0.01% or less, Sulfur (S) 0.02% or less, tungsten (W) 3% or less, tantalum (Ta) 2% or less, chromium (Cr) 20 to 30%, and the rest is made of nickel (Ni).

그리고 3단계 공정의 브레이징 코팅층은 1차 레이저 클래딩시 사용되는 브레이징 분말과 동일한 조성을 지닌 것을 사용하여 레이저 클래딩에 의해 형성되도록 한다.In addition, the brazing coating layer of the three-step process is formed by laser cladding by using a brazing powder having the same composition as the brazing powder used in the first laser cladding.

끝으로, 확산열처리(용체화 열처리)하는 6단계 공정은 온도 1200∼1450℃에서 30∼60분간 행한 후, 20분 동안 1023∼1350℃까지 온도를 내려서 150∼255분간 진공에서 확산열처리하는 것이다.Finally, the 6-step process of diffusion heat treatment (solution heat treatment) is performed at a temperature of 1200 to 1450 ° C for 30 to 60 minutes, then lowered to 1023 to 1350 ° C for 20 minutes, followed by diffusion heat treatment in vacuum for 150 to 255 minutes.

상술한 바와 같이 본 발명 3D프린팅에 의한 고온부품 수리 및 열차폐 코팅 공정은 3D 적층제조 기술을 적용하여 제조공정을 줄여 수리비용을 절감할 수 있다는 등의 현저한 효과가 있다.As described above, the high-temperature component repair and heat shielding coating process by 3D printing of the present invention has significant effects such as reducing repair costs by reducing manufacturing processes by applying 3D additive manufacturing technology.

Claims (7)

고온부품의 크랙 내부 산화물을 제거하는 1단계 공정:
고온부품의 크랙 내부 1차 레이저 클래딩하여 크랙 내부를 충진 및 접합하는 2단계 공정;
1차 레이저 클래딩에 의해 고온부품의 표면으로 돌출생성된 적층면 주변을 적층면 높이만큼 브레이징 코팅층을 형성하는 3단계 공정;
3단계 공정에 의해 형성된 코팅층의 상면에 2차 레이저 클래딩으로 본드코팅층을 형성하는 4단계 공정;
2차 레이저 클래딩에 의해 생성된 본드코팅층에 3차 레이저 클래딩하여 열차폐 코팅층을 형성하는 5단계 공정;
확산열처리하는 6단계 공정;
을 포함하여 이루어지는 것이 특징인 3D프린팅에 의한 고온부품 수리 및 열차폐 코팅 공정.
One-step process to remove oxides inside cracks of high-temperature parts:
A two-step process of filling and bonding the inside of the crack by first laser cladding the inside of the crack of the high-temperature part;
A three-step process of forming a brazing coating layer by the height of the laminated surface around the laminated surface protruded to the surface of the high-temperature part by the first laser cladding;
a 4-step process of forming a bond coating layer by secondary laser cladding on the upper surface of the coating layer formed by the 3-step process;
A five-step process of forming a thermal barrier coating layer by tertiary laser cladding on the bond coating layer created by secondary laser cladding;
6-step process of diffusion heat treatment;
High-temperature part repair and heat shielding coating process by 3D printing characterized by comprising a.
제1항에 있어서,
상기 1차 레이저 클래딩에 사용되는 분말은 중량비로 실리콘(Si) 7% 이하, 보론(B) 2% 이하, 탄소(C) 0.01% 이하, 알루미늄(Al) 0.1% 이하, 지르코늄(Zr) 0.05% 이하, 코발트(Co) 0.5% 이하, 인(P) 0.01% 이하, 황(S) 0.02% 이하, 텅스텐(W) 3% 이하, 탄탈룸(Ta) 2% 이하, 크롬(Cr) 20∼30%, 나머지는 니켈(Ni)로 이루어진 것이 특징인 3D프린팅에 의한 고온부품 수리 및 열차폐 코팅 공정.
According to claim 1,
The powder used for the primary laser cladding contains, by weight, 7% or less of silicon (Si), 2% or less of boron (B), 0.01% or less of carbon (C), 0.1% or less of aluminum (Al), and 0.05% of zirconium (Zr). Below, Cobalt (Co) 0.5% or less, Phosphorus (P) 0.01% or less, Sulfur (S) 0.02% or less, Tungsten (W) 3% or less, Tantalum (Ta) 2% or less, Chromium (Cr) 20-30% , High-temperature part repair and heat shielding coating process by 3D printing characterized by the rest being made of nickel (Ni).
제1항에 있어서,
상기 3단계 공정에 의해 형성되는 브레이징 코팅층은 1차 레이저 클래딩시 사용되는 브레이징 분말과 동일한 조성의 분말을 사용하여 레이저 클래딩에 의해 형성되는 것이 특징인 3D프린팅에 의한 고온부품 수리 및 열차폐 코팅 공정.
According to claim 1,
The brazing coating layer formed by the three-step process is formed by laser cladding using powder of the same composition as the brazing powder used in the first laser cladding. High-temperature part repair and heat shielding coating process by 3D printing.
제1항에 있어서,
상기 1차, 2차, 3차 레이저 클래딩 과정에서는 초음파진동과 원적외선 가열이 이루어지는 것이 특징인 3D프린팅에 의한 고온부품 수리 및 열차폐 코팅 공정.
According to claim 1,
High-temperature part repair and heat shielding coating process by 3D printing, characterized in that ultrasonic vibration and far-infrared heating are performed in the first, second, and third laser cladding processes.
제4항에 있어서,
초음파 진동은 1KHz∼100MHz의 범위로 하고, 원적외선 가열은 원적외선 파장을 10∼1000㎛ 사이에서 진행하여 모재인 고온부품의 온도를 400∼1000℃ 내로 유지하면서 레이저 클래딩하는 것이 특징인 3D프린팅에 의한 고온부품 수리 및 열차폐 코팅 공정.
According to claim 4,
Ultrasonic vibration is in the range of 1KHz to 100MHz, and far-infrared heating proceeds with far-infrared wavelengths between 10 to 1000㎛ to maintain the temperature of the high-temperature part, which is the base material, within 400 to 1000 ℃ while laser cladding is characterized by high temperature by 3D printing. Component repair and thermal barrier coating process.
제1항에 있어서,
상기 고온부품의 크랙 내부 산화물 제거하는 1단계 공정은 금속 산화물을 제거하는 불소이온세정 공정과 힌트틴트(Hint tint)에 의한 크랙 내부를 검사하는 공정이 포함되어 있는 것이 특징인 3D프린팅에 의한 고온부품 수리 및 열차폐 코팅 공정.
According to claim 1,
The first-step process of removing the oxide inside the crack of the high-temperature part includes a fluoride ion cleaning process to remove metal oxide and a process of inspecting the inside of the crack by hint tint. Repair and thermal barrier coating process.
제1항에 있어서,
상기 확산열처리하는 6단계 공정은 온도 1200∼1450℃에서 30∼60분간 행한 후, 20분 동안 1023∼1350℃까지 온도를 내려서 150∼255분간 진공에서 확산 열처리하도록 하는 것이 특징인 3D프린팅에 의한 고온부품 수리 및 열차폐 코팅 공정.
According to claim 1,
The six-step process of diffusion heat treatment is performed at a temperature of 1200 to 1450 ° C for 30 to 60 minutes, then lowered to 1023 to 1350 ° C for 20 minutes, and diffusion heat treatment in vacuum for 150 to 255 minutes. Component repair and thermal barrier coating process.
KR1020220160665A 2022-11-25 2022-11-25 Hot gas path parts repair and thermal barrier coating process by 3D printing KR102527964B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220160665A KR102527964B1 (en) 2022-11-25 2022-11-25 Hot gas path parts repair and thermal barrier coating process by 3D printing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220160665A KR102527964B1 (en) 2022-11-25 2022-11-25 Hot gas path parts repair and thermal barrier coating process by 3D printing

Publications (1)

Publication Number Publication Date
KR102527964B1 true KR102527964B1 (en) 2023-05-02

Family

ID=86387555

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220160665A KR102527964B1 (en) 2022-11-25 2022-11-25 Hot gas path parts repair and thermal barrier coating process by 3D printing

Country Status (1)

Country Link
KR (1) KR102527964B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102631599B1 (en) 2023-08-28 2024-02-01 터보파워텍(주) Method of repairing wide gap cracks in hot gas path parts for gas turbine using brazing

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100201270B1 (en) 1996-02-29 1999-06-15 최진호 Controlling speed of moving for vacuum cleaner
JP2011530409A (en) * 2008-05-29 2011-12-22 シーメンス アクチエンゲゼルシヤフト Method and apparatus for welding workpiece made of heat-resistant superalloy
KR101125329B1 (en) 2009-06-29 2012-03-27 한국전력공사 Method for forming thermal barrier coating on hot-gas-path components of gas turbine during operation
KR101511248B1 (en) * 2013-11-14 2015-04-10 한전케이피에스 주식회사 Extra dense thermal barrier coating structure with vertical cracks and method thereof
KR102084671B1 (en) * 2019-08-23 2020-05-25 주식회사 성일터빈 Method of repair of gas turbine single crystal first stage blade
KR102278830B1 (en) 2021-04-12 2021-07-19 주식회사 성일터빈 Method of repairing gas turbine blade tip using high frequency welding
KR102278835B1 (en) 2021-04-12 2021-07-19 주식회사 성일터빈 Method for manufacturing core plug of gas turbine vane using brazing
KR102364770B1 (en) * 2016-03-15 2022-02-18 제네럴 일렉트릭 컴퍼니 Weld forced crack and braze repair of superalloys

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100201270B1 (en) 1996-02-29 1999-06-15 최진호 Controlling speed of moving for vacuum cleaner
JP2011530409A (en) * 2008-05-29 2011-12-22 シーメンス アクチエンゲゼルシヤフト Method and apparatus for welding workpiece made of heat-resistant superalloy
KR101125329B1 (en) 2009-06-29 2012-03-27 한국전력공사 Method for forming thermal barrier coating on hot-gas-path components of gas turbine during operation
KR101511248B1 (en) * 2013-11-14 2015-04-10 한전케이피에스 주식회사 Extra dense thermal barrier coating structure with vertical cracks and method thereof
KR102364770B1 (en) * 2016-03-15 2022-02-18 제네럴 일렉트릭 컴퍼니 Weld forced crack and braze repair of superalloys
KR102084671B1 (en) * 2019-08-23 2020-05-25 주식회사 성일터빈 Method of repair of gas turbine single crystal first stage blade
KR102278830B1 (en) 2021-04-12 2021-07-19 주식회사 성일터빈 Method of repairing gas turbine blade tip using high frequency welding
KR102278835B1 (en) 2021-04-12 2021-07-19 주식회사 성일터빈 Method for manufacturing core plug of gas turbine vane using brazing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102631599B1 (en) 2023-08-28 2024-02-01 터보파워텍(주) Method of repairing wide gap cracks in hot gas path parts for gas turbine using brazing

Similar Documents

Publication Publication Date Title
JP5377241B2 (en) Gas turbine rotor blade repair method and gas turbine rotor blade
US7780059B2 (en) Method of forming a component on a substrate
KR102527964B1 (en) Hot gas path parts repair and thermal barrier coating process by 3D printing
US9564299B2 (en) Methods of manufacturing large-area sputtering targets using interlocking joints
US9149881B2 (en) Damage-repairing method of transition piece and transition piece
RU2598018C2 (en) Process for local repair of damaged thermomechanical part and part thus produced, in particular turbine part
US8156649B2 (en) Gas turbine hot gas component repair method
JPS5946302B2 (en) Recycling method for turbine parts
WO2006095799A1 (en) Surface treatment method and repair method
SG177092A1 (en) Method for repairing gas turbine blades and gas turbine blade
KR102278830B1 (en) Method of repairing gas turbine blade tip using high frequency welding
CN105904151B (en) Thin-wall part combined-repair method based on pulse welding and laser gain material reparation
KR102507408B1 (en) Rrepairing Airfoil Process of gas turbine blades by 3D printing
US6672501B2 (en) Method for repairing damaged areas in a metal component
CN105695984B (en) A kind of surface repairing method of Al Zn Mg Cu alloy sheets
RU2468902C2 (en) Method of welding two metal parts together
KR102084671B1 (en) Method of repair of gas turbine single crystal first stage blade
JP2005254283A (en) Method of repairing wear-resistant member
JP2007130654A (en) Temper bead method
KR102507407B1 (en) Fixture for thermal barrier coating of hot gas path parts by 3D printing laser cladding
KR102631599B1 (en) Method of repairing wide gap cracks in hot gas path parts for gas turbine using brazing
CA2930180C (en) Integrated sintering process for microcracking and erosion resistance of thermal barriers
KR102616606B1 (en) Method for repairing vane and manufacturing core plug of gas turbine by 3D printing
TW202045809A (en) Gas turbine blade repair method and gas turbine blade
CN115255585B (en) Arc spraying interlayer-based resistance spot welding method for aluminum-magnesium dissimilar alloy

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant