KR102513692B1 - Additive for Improving Durability of Concrete Using Eco-friendly Binder, Manufacturing Method of the Additive and Eco-friendly Concrete Contained the Additive - Google Patents

Additive for Improving Durability of Concrete Using Eco-friendly Binder, Manufacturing Method of the Additive and Eco-friendly Concrete Contained the Additive Download PDF

Info

Publication number
KR102513692B1
KR102513692B1 KR1020220107580A KR20220107580A KR102513692B1 KR 102513692 B1 KR102513692 B1 KR 102513692B1 KR 1020220107580 A KR1020220107580 A KR 1020220107580A KR 20220107580 A KR20220107580 A KR 20220107580A KR 102513692 B1 KR102513692 B1 KR 102513692B1
Authority
KR
South Korea
Prior art keywords
weight
eco
concrete
additive
friendly
Prior art date
Application number
KR1020220107580A
Other languages
Korean (ko)
Inventor
정석만
박동철
양완희
김건우
전현수
김영선
조홍범
이상현
기전도
Original Assignee
주식회사 위드엠텍
롯데건설 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 위드엠텍, 롯데건설 주식회사 filed Critical 주식회사 위드엠텍
Priority to KR1020220107580A priority Critical patent/KR102513692B1/en
Application granted granted Critical
Publication of KR102513692B1 publication Critical patent/KR102513692B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/14Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements
    • C04B28/16Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements containing anhydrite, e.g. Keene's cement
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/0006Waste inorganic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/06Oxides, Hydroxides
    • C04B22/062Oxides, Hydroxides of the alkali or alkaline-earth metals
    • C04B22/064Oxides, Hydroxides of the alkali or alkaline-earth metals of the alkaline-earth metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • C04B22/14Acids or salts thereof containing sulfur in the anion, e.g. sulfides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/02Alcohols; Phenols; Ethers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/04Carboxylic acids; Salts, anhydrides or esters thereof
    • C04B24/06Carboxylic acids; Salts, anhydrides or esters thereof containing hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/14Cements containing slag
    • C04B7/147Metallurgical slag
    • C04B7/153Mixtures thereof with other inorganic cementitious materials or other activators
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/24Cements from oil shales, residues or waste other than slag
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/34Hydraulic lime cements; Roman cements ; natural cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00017Aspects relating to the protection of the environment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00051Mortar or concrete mixtures with an unusual low cement content, e.g. for foundations

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

The present invention relates to eco-friendly concrete using an eco-friendly binder including a large amount of blast furnace slag fine powder and a minimum amount of cement, anhydrous gypsum, slaked lime, and cement kiln dust as a binder in a concrete mixing process, and to eco-friendly concrete including an additive capable of improving durability of the eco-friendly concrete by improving compression strength of the eco-friendly concrete and effectively suppressing carbonation reaction and drying shrinkage crack. The eco-friendly concrete according to the present invention uses an eco-friendly binder including 60 to 90 wt% of blast furnace slag fine powder, 5 to 25 wt% of anhydrous gypsum, 0.5 to 5 wt% of slaked lime, 0.1 to 5 wt% of cement, and 0.1 to 5 wt% of cement kiln dust as a binder, and is mixed by pulverizing 10 to 70 parts by weight of sodium lactate (C_3H_5NaO_3), 5 to 30 parts by weight of sodium thiocyanate (NaSCN), and 5 to 30 parts by weight of supercritical fluidized bed boiler ash (CFBC) or further including 5 to 30 parts by weight of trimethylolpropane (C_6H_14O_3).

Description

친환경 결합재를 사용한 콘크리트의 내구성 증진용 첨가제와 그 첨가제의 제조방법, 그리고 그 첨가제를 혼입한 친환경 콘크리트{Additive for Improving Durability of Concrete Using Eco-friendly Binder, Manufacturing Method of the Additive and Eco-friendly Concrete Contained the Additive}Additive for Improving Durability of Concrete Using Eco-friendly Binder, Manufacturing Method of the Additive and Eco-friendly Concrete Contained the Additive}

본 발명은 콘크리트 배합에서 결합재로 다량의 고로슬래그 미분말과 최소량의 시멘트, 무수석고, 소석회, 시멘트 킬른더스트로 조성된 친환경 결합재를 사용한 친환경 콘크리트에 관한 것으로, 더욱 상세하게는 친환경 결합재가 사용된 친환경 콘크리트의 압축강도와 건조수축 균열을 개선하고 탄산화 반응을 효과적으로 억제함으로써 친환경 콘크리트의 내구성을 증진시킬 수 있는 첨가제와, 그 첨가제의 바람직한 제조방법, 그리고 그 첨가제를 바람직하게 이용한 친환경 콘크리트에 관한 것이다.The present invention relates to an eco-friendly concrete using an eco-friendly binder composed of a large amount of blast furnace slag fine powder and a minimum amount of cement, anhydrite, slaked lime, and cement kiln dust as a binder in concrete mixing, and more particularly, an eco-friendly concrete using an eco-friendly binder It relates to an additive capable of improving the durability of eco-friendly concrete by improving the compressive strength and drying shrinkage cracking and effectively suppressing the carbonation reaction, a preferred method for manufacturing the additive, and environmentally friendly concrete using the additive.

우리나라는 전 세계에서 온실가스를 많이 배출하는 국가 중 하나이다. 특히 시멘트 제조산업은 우리나라 온실가스 배출의 상당 부분을 차지하는데, 1톤의 포틀랜드 시멘트의 제조 시 석회석과 화석연료의 연소를 통한 소성공정에서 약 0.9톤의 이산화탄소를 배출한다. 국내에서는 시멘트 생산에 따른 이산화탄소의 배출량을 줄이기 위해 시멘트 사용량을 줄이려는 노력이 있으며, 그 일례로 혼합시멘트가 있다. Korea is one of the largest emitters of greenhouse gases in the world. In particular, the cement manufacturing industry accounts for a significant portion of greenhouse gas emissions in Korea. When manufacturing 1 ton of Portland cement, about 0.9 ton of carbon dioxide is emitted in the firing process through the combustion of limestone and fossil fuel. In Korea, there is an effort to reduce the amount of cement used in order to reduce the emission of carbon dioxide from cement production, and one example is mixed cement.

혼합시멘트는 콘크리트 제조과정에서 고로슬래그 미분말, 플라이애시 등의 산업부산물 형태의 혼화재를 일부 시멘트 대체재로 사용한 시멘트이다. 하지만 종래 혼합시멘트는 보통포틀랜드시멘트를 40~60중량% 정도 사용하기 때문에 시멘트 저감량에 한계가 있다. 다만 최근 국내에서는 시멘트 5% 이하 수준으로 활용이 가능하고 고로슬래그 미분말을 80% 이상 다량치환이 가능한 친환경 결합재에 대한 연구개발이 활발히 진행되고 있다.Mixed cement is cement that uses admixtures in the form of industrial by-products such as blast furnace slag fine powder and fly ash as part of cement substitutes in the concrete manufacturing process. However, since conventional mixed cement uses about 40 to 60% by weight of ordinary Portland cement, there is a limit to the reduction of cement. Recently, however, research and development on eco-friendly binders that can be used at a level of less than 5% of cement and can replace 80% or more of the fine powder of blast furnace slag are being actively conducted in Korea.

한편 콘크리트 구조물은 시간의 경과와 환경영향에 따라 내구성 저하가 발생한다. 콘크리트 구조물의 내구성을 저하시키는 원인에는 염화물 이온 침투에 의한 철근부식, 동결과 융해 작용에 의한 성능저하, 건습반복 및 온도변화 등 기상작용에 의한 성능저하, 알카리 골재 반응, 콘크리트와 공기 중의 탄산가스가 반응하여 알카리성을 잃게 되는 탄산화 등이 있다. 특히 고로슬래그 미분말을 다량 치환한 결합재가 사용된 콘크리트는 탄산화 촉진 및 조기강도 저하 등의 문제가 발생하기 쉬우며, 이러한 문제는 시멘트량 감소에 따른 pH 저하 및 콘크리트 내부의 공극을 통해 각종 유해 물질의 침투가 원인으로 지적된다. On the other hand, durability of concrete structures deteriorates over time and environmental influences. Causes of deterioration in durability of concrete structures include corrosion of reinforcing bars by chloride ion penetration, performance degradation by freezing and melting, performance degradation by weather conditions such as wet and dry cycles and temperature changes, alkali aggregate reaction, and carbon dioxide gas in concrete and air. There is carbonation, which reacts to lose alkalinity. In particular, concrete using a binder in which a large amount of blast furnace slag fine powder is substituted is prone to problems such as acceleration of carbonation and loss of strength at an early stage. Penetration is pointed out as the cause.

따라서 고로슬래그 미분말이 다량 치환된 결합재를 사용하는 경우에는 탄산화 반응 억제, 조기강도 확보 등 내구성을 증진시킬 수 있는 방안도 함께 제시할 필요가 있다. Therefore, in the case of using a binder in which a large amount of blast furnace slag fine powder is substituted, it is necessary to suggest measures to improve durability, such as suppressing carbonation reaction and securing early strength.

KRKR 10-1244825 10-1244825 B1B1 KRKR 10-2013-0087663 10-2013-0087663 AA

본 발명은 콘크리트 배합에서 고로슬래그 미분말이 다량 치환된 친환경 결합재를 사용하려는 방안으로 개발된 것으로서, 친환경 콘크리트의 탄산화 반응 억제, 조기강도 확보 등 내구성을 증진시킬 수 있는 새로운 첨가제와, 그 첨가제의 바람직한 제조방법, 그리고 그 첨가제를 바람직하게 이용한 친환경 콘크리트를 제공하는데 기술적 과제가 있다.The present invention was developed as a way to use an eco-friendly binder in which a large amount of blast furnace slag fine powder is substituted in concrete mixing, and a new additive capable of improving durability such as inhibiting carbonation reaction of eco-friendly concrete and securing early strength, and preferable manufacturing of the additive There is a technical challenge in providing a method and an environmentally friendly concrete using the additive preferably.

상기한 기술적 과제를 해결하기 위해 본 발명은, 고로슬래그 미분말 60~90중량%, 무수석고 5~25중량%, 소석회 0.5~5중량%, 시멘트 0.1~5중량%, 시멘트 킬른더스트 0.1~5중량%를 포함하는 친환경 결합재가 사용된 친환경 콘크리트 배합에 첨가 혼입되는 첨가제로, 소듐 락테이트(C3H5NaO3) 10~70중량부, 티오시안나트륨(NaSCN) 5~30중량부, 초임계유동층 보일러애시(CFBC) 5~30중량부가 분쇄 혼합된 것임을 특징으로 하는 친환경 결합재를 사용한 콘크리트의 내구성 증진용 첨가제를 제공한다. 더욱 바람직하게는 첨가제는 트리메틸올프로판(C6H14O3) 5~30중량부가 더 포함되어 분쇄 혼합된 것일 수 있다.In order to solve the above technical problem, the present invention contains 60 to 90% by weight of blast furnace slag fine powder, 5 to 25% by weight of anhydrite, 0.5 to 5% by weight of slaked lime, 0.1 to 5% by weight of cement, and 0.1 to 5% by weight of cement kiln dust. As an additive added and incorporated into an eco-friendly concrete mix using an eco-friendly binder containing %, 10 to 70 parts by weight of sodium lactate (C 3 H 5 NaO 3 ), 5 to 30 parts by weight of sodium thiocyanate (NaSCN), supercritical It provides an additive for enhancing the durability of concrete using an eco-friendly binder, characterized in that 5 to 30 parts by weight of fluidized bed boiler ash (CFBC) is pulverized and mixed. More preferably, the additive may be pulverized and mixed by further including 5 to 30 parts by weight of trimethylolpropane (C 6 H 14 O 3 ).

또한 본 발명은 친환경 결합재를 사용한 콘크리트의 내구성 증진용 첨가제를 제조하는 방법으로, 분쇄믹서에 초임계유동층 보일러애시의 일부, 트리메틸올프로판을 순서대로 투입하면서 분쇄혼합하는 제1단계; 제1단계의 분쇄혼합물에, 초임계유동층 보일러애시의 나머지, 소듐 락테이트, 티오시안나트륨을 순서대로 투입하면서 분쇄혼합하는 제2단계;로 구성되는 것을 특징으로 하는 친환경 결합재를 사용한 콘크리트의 내구성 증진용 첨가제의 제조방법을 제공한다.In addition, the present invention is a method for manufacturing an additive for enhancing the durability of concrete using an eco-friendly binder, a first step of pulverizing and mixing while sequentially introducing a portion of supercritical fluidized bed boiler ash and trimethylolpropane into a pulverizing mixer; A second step of pulverizing and mixing while sequentially adding the rest of the supercritical fluidized bed boiler ash, sodium lactate, and sodium thiocyanate to the grinding mixture of the first step; It provides a method for preparing the additive for use.

나아가 본 발명은 콘크리트 배합에서, 고로슬래그 미분말 60~90중량%, 무수석고 5~25중량%, 소석회 0.5~5중량%, 시멘트 0.5~5중량%, 시멘트 킬른더스트 0.5~5중량%를 포함하는 친환경 결합재 100중량부에, 친환경 결합재를 사용한 콘크리트의 내구성 증진용 첨가제 0.25~2중량부를 혼입하여 배합하는 것을 특징으로 하는 친환경 콘크리트를 제공한다. 여기서 결합재의 소석회는, 습식스크러버 백필터 시스템에서 포집된 폐소석회를 바람직하게 사용할 수 있다.Furthermore, the present invention contains 60 to 90% by weight of blast furnace slag fine powder, 5 to 25% by weight of anhydrous gypsum, 0.5 to 5% by weight of slaked lime, 0.5 to 5% by weight of cement, and 0.5 to 5% by weight of cement kiln dust in concrete mixing Provided is an eco-friendly concrete characterized by blending by mixing 0.25 to 2 parts by weight of an additive for enhancing the durability of concrete using an eco-friendly binder to 100 parts by weight of the eco-friendly binder. Here, the slaked lime of the binder may preferably use slaked lime collected in a wet scrubber bag filter system.

본 발명에 따르면 다음과 같은 효과를 기대할 수 있다.According to the present invention, the following effects can be expected.

첫째, 본 발명의 첨가제는 결합재로 다량의 고로슬래그 미분말과 최소량의 시멘트, 무수석고, 소석회, 시멘트 킬른더스트로 조성된 친환경 결합재를 사용한 친환경 콘크리트 배합에 혼입되면 탄산화 반응과 건조수축 균열의 억제, 초기강도는 물론 장기강도의 발현에 기여한다. 이로써 친환경 콘크리트의 내구성 향상이 가능해진다. .First, when the additive of the present invention is incorporated into an eco-friendly concrete mixture using an eco-friendly binder composed of a large amount of blast furnace slag fine powder and a minimum amount of cement, anhydrite, slaked lime, and cement kiln dust as a binder, carbonation reaction and inhibition of drying shrinkage cracking, initial Strength, of course, contributes to the expression of long-term strength. This makes it possible to improve the durability of eco-friendly concrete. .

둘째, 본 발명의 친환경 콘크리트는 고로슬래그 미분말을 다량 사용하면서 시멘트는 5중량% 이내로 최소량 사용하기 때문에 산업부산물의 적극적인 활용에 따른 경제성과 친환경성 확보에 기여하고, 더불어 시멘트 사용 저감에 따른 이산화탄소 발생량 억제에 기여한다. Second, the eco-friendly concrete of the present invention uses a minimum amount of cement within 5% by weight while using a large amount of blast furnace slag powder, contributing to securing economic feasibility and eco-friendliness through active use of industrial by-products, and suppressing carbon dioxide emissions due to reduced cement use. contribute to

본 발명은 다량의 고로슬래그 미분말과 최소량의 시멘트, 무수석고, 소석회, 시멘트 킬른더스트로 조성된 친환경 결합재가 사용되는 친환경 콘크리트 배합에서 내구성 향상을 가능케 한 첨가제와 그 첨가제의 제조방법, 그리고 첨가제를 혼입한 친환경 콘크리트에 관한 것이다. 본 발명에 따른 첨가제는 친환경 결합재를 사용한 친환경 콘크리트를 전제로 하므로, 이하에서는 친환경 결합재, 내구성 증진용 첨가제, 친환경 콘크리트를 구분하여 살펴본다. The present invention is an additive capable of improving durability in an eco-friendly concrete mixture in which an eco-friendly binder composed of a large amount of blast furnace slag powder and a minimum amount of cement, anhydrite, slaked lime, and cement kiln dust is used, a manufacturing method of the additive, and mixing of the additive It is about eco-friendly concrete. Since the additive according to the present invention is premised on eco-friendly concrete using an eco-friendly binder, hereinafter, an eco-friendly binder, an additive for enhancing durability, and an eco-friendly concrete will be separately examined.

1. 친환경 결합재1. Eco-friendly binder

본 발명에서 친환경 결합재는, 고로슬래그 미분말을 다량 사용하면서 시멘트가 5중량% 이내로 최소량 사용한 결합재를 의미한다. 구체적으로 본 발명의 친환경 결합재는 고로슬래그 미분말 60~90중량%, 무수석고 5~25중량%, 소석회 0.5~5중량%, 시멘트 0.1~5중량%, 시멘트 킬른더스트 0.1~5중량%를 포함하여 구성된다. In the present invention, the eco-friendly binder means a binder using a minimum amount of cement within 5% by weight while using a large amount of blast furnace slag fine powder. Specifically, the eco-friendly binder of the present invention includes 60 to 90% by weight of blast furnace slag fine powder, 5 to 25% by weight of anhydrite, 0.5 to 5% by weight of slaked lime, 0.1 to 5% by weight of cement, and 0.1 to 5% by weight of cement kiln dust It consists of

고로슬래그 미분말은 시멘트를 대체하는 주요한 재료가 되어, 무수석고에 의한 수화반응으로 에트링자이트, C-S-H 수화물 등이 생성되어 강도를 발현하게 된다. 고로슬래그 미분말은 분말도 6,000~8,500cm2/g의 고미분말을 사용하는 것이 바람직한데, 이러한 분말도는 경제성을 확보하면서 초기에 적절한 반응이 가능하다. 이는 높은 분말도로 고로슬래그 내부의 SiO2 성분이 빠르게 수화반응하여 C-S-H(Calcium silicate hydrate) 수화물을 생성하고 강도를 증진시킬 수 있기 때문이다. 또한 높은 분말도는 염소이온 침투 저항성 확보에도 효과적이다. 고로슬래그 미분말은 결합재에서 60~90중량% 사용하는데, 60중량% 미만이면 시멘트 대체 효과가 미미하고 염소이온 침투 저항 효과도 미미하며, 90중량% 초과하면 초기, 장기강도 부진이 우려된다. Blast furnace slag fine powder becomes a major material that replaces cement, and ettringite and CSH hydrate are produced through the hydration reaction by anhydrite to develop strength. It is preferable to use a fine powder having a fineness of 6,000 to 8,500 cm 2 /g for the fine powder of blast furnace slag, and this fineness enables an appropriate reaction at the beginning while securing economic feasibility. This is because the SiO 2 component inside the blast furnace slag with a high fineness is rapidly hydrated to generate CSH (Calcium silicate hydrate) hydrate and increase the strength. In addition, high fineness is effective in securing resistance to penetration of chlorine ions. Blast furnace slag powder is used in an amount of 60 to 90% by weight in the binder. If it is less than 60% by weight, the cement replacement effect is insignificant and the effect of resisting chlorine ion penetration is insignificant.

무수석고는 고로슬래그 미분말 및 시멘트 킬른더스트와 반응하여 다량의 에트링자이트, C-S-H 수화물을 생성한다. 무수석고도 고로슬래그 미분말과 마찬가지로 경제성 확보와 초기 적절한 반응을 위해 분말도 5,500~7,500cm2/g의 고미분말을 사용하는 것이 바람직하다. 무수석고는 결합재에서 5~25중량% 사용하며, 5중량% 미만이면 자극 효과 부족으로 초기 강도 발현이 부진하고, 25중량% 초과하면 경제성을 상실한다.Anhydrite reacts with blast furnace slag powder and cement kiln dust to produce a large amount of ettringite and C-S-H hydrates. Anhydrite, like the blast furnace slag fine powder, is preferably used in a fine powder having a powder degree of 5,500 to 7,500 cm2/g to ensure economic feasibility and ensure proper initial reaction. Anhydrite is used in an amount of 5 to 25% by weight in the binder, and if it is less than 5% by weight, the initial strength expression is sluggish due to lack of stimulation effect, and if it exceeds 25% by weight, economic feasibility is lost.

소석회는 고로슬래그 미분말과 반응하는 한편, pH를 높이는 알칼리성으로 인해 C-S-H 수화물생성 촉진한다. 소석회는 폐기물 소각시설의 습식 스크러버 백필터 시스템에서 집진된 폐소석회를 바람직하게 사용할 수 있는데, 폐소석회의 사용으로 친환경성, 경제성을 더욱 향상시킬 수 있다. 소석회는 강도 증진 효과와 작업성을 확보를 위해 0.5~5중량% 사용하는 것이 바람직하다.While slaked lime reacts with blast furnace slag fine powder, it promotes the formation of C-S-H hydrates due to its alkalinity that raises the pH. As slaked lime, slaked lime collected in a wet scrubber bag filter system of a waste incineration facility can be preferably used. The use of slaked lime can further improve eco-friendliness and economic feasibility. Slaked lime is preferably used in an amount of 0.5 to 5% by weight in order to secure strength enhancing effect and workability.

시멘트는 초기, 중장기강도 확보를 위해 최소량으로 사용한다. 바람직하게는 0.1~5중량% 사용하는데, 0.1중량% 미만이면 강도 확보가 미진하고, 5중량% 초과하면 경제성 상실, 이산화탄소 발생량 증대, 내구성 상실 등이 우려된다.Cement is used in the minimum amount to secure initial, mid- and long-term strength. Preferably, 0.1 to 5% by weight is used. If less than 0.1% by weight, strength is not secured, and if it exceeds 5% by weight, there are concerns about loss of economy, increase in carbon dioxide generation, and loss of durability.

시멘트 킬른더스트(Cement Kiln Dust, CKD)는 시멘트 제조공정에서 발생되는 배출가스에 포함된 비산분진을 집진한 것으로, 탄산칼슘 및 알칼리가 포함되어 있기 때문에 초기 수화 반응 촉진으로 응결 촉진과 초기강도 증진에 기여한다. 시멘트 킬른더스트는 결합재에서 0.1~5.0중량% 사용하며, 0.1중량% 미만이면 초기 강도 증진 효과가 미미하고, 5중량% 초과하면 작업성이 저하한다,Cement Kiln Dust (CKD) is a collection of scattering dust included in the exhaust gas generated in the cement manufacturing process. Since it contains calcium carbonate and alkali, it promotes the initial hydration reaction to promote setting and increase initial strength. contribute Cement kiln dust is used in an amount of 0.1 to 5.0% by weight in the binder, and if it is less than 0.1% by weight, the initial strength enhancement effect is insignificant, and if it exceeds 5% by weight, workability is reduced,

2. 내구성 증진용 첨가제2. Additives for improving durability

본 발명의 친환경 결합재는 고로슬래그 미분말의 다량 사용과 시멘트의 최소량 사용으로, 초기강도 발현 부족, 염소이온 침투저항성 저하, 탄산화 성능 저하 등 내구성 저하기 우려된다. 이러한 내구성 저하는 실제 시험예를 통해 확인되었다. 본 발명은 친환경 결합재를 사용한 콘크리트의 내구성 증진을 위한 첨가제를 제안한다.The eco-friendly binder of the present invention uses a large amount of blast furnace slag fine powder and a minimum amount of cement, so there is a concern about deterioration in durability such as lack of expression of initial strength, decrease in chlorine ion penetration resistance, and decrease in carbonation performance. This decrease in durability was confirmed through an actual test example. The present invention proposes an additive for enhancing the durability of concrete using an eco-friendly binder.

본 발명에 따른 내구성 증진용 첨가제는, 소듐 락테이트(C3H5NaO3) 10~70중량부, 티오시안나트륨(NaSCN) 5~30중량부, 초임계유동층 보일러애시(CFBC) 5~30중량부가 분쇄 혼합된 것임을 특징으로 하며, 나아가 트리메틸올프로판(C6H14O3) 5~30중량부가 더 포함되어 분쇄 혼합될 수 있다. The additive for enhancing durability according to the present invention contains 10 to 70 parts by weight of sodium lactate (C 3 H 5 NaO 3 ), 5 to 30 parts by weight of sodium thiocyanate (NaSCN), and 5 to 30 parts by weight of supercritical fluidized bed boiler ash (CFBC). It is characterized in that parts by weight are pulverized and mixed, and further, 5 to 30 parts by weight of trimethylolpropane (C 6 H 14 O 3 ) may be further included to be pulverized and mixed.

소듐 락테이트(Sodium Lactate)는 고로슬래그 미분말의 수화를 촉진하여 더많은 에트링자이트 생성에 기여한다. 소듐 락테이트는 젖산의 높은 음이온이 두 자리 리간드의 한 종류에 속하는 것으로, 두 개의 공여 부위를 통해 유리 슬래그에 결합하여 긴밀한 연결을 형성할 수 있다. 또한 슬래그의 수화 초기에 젖산 음이온의 배위 결합이 파괴되면서 슬래그 용해를 증가시킨다. 더불어 소듐 락테이트는 실리카 이온 및 기타 금속 이온과 복합 화합물을 형성할 수 있어 산소 가교역할을 약화하고 슬래그에서 실리카 이온의 용해를 증가시키며, 이에 따라 고로슬래그 미분말의 수화를 촉진하여 더 많은 에트링자이트 생성에 기여한다. 소듐 락테이트 첨가제에서 10~70중량부 사용하며, 10중량부 미만이면 강도증진 효과가 미미하고 70중량부 초과하면 경제성이 상실하고 또는 오히려 강도 저하가 우려된다.Sodium lactate contributes to the production of more ettringite by accelerating the hydration of the blast furnace slag fine powder. Sodium lactate is a high anion of lactic acid belonging to a type of bidentate ligand, which can bind to glass slag through two donor sites to form a tight link. In addition, the dissolution of slag increases as the coordination bond of lactate anion is destroyed in the early stage of hydration of slag. In addition, sodium lactate can form complex compounds with silica ions and other metal ions, weakening the role of oxygen bridging and increasing the dissolution of silica ions in slag, thereby promoting hydration of the blast furnace slag fine powder, resulting in more ettringzi. contribute to the creation of 10 to 70 parts by weight is used in the sodium lactate additive, and if it is less than 10 parts by weight, the strength enhancing effect is insignificant, and if it exceeds 70 parts by weight, economic efficiency is lost or rather, strength reduction is concerned.

티오시안나트륨(NaSCN)는 시멘트 중의 Ca2+ 이온을 빠르게 용출시켜 시멘트 중 초기강도에 중요한 역할을 하는 성분인 3CaO·SiO2의 수화를 촉진하며, 이로써 시멘트의 경화 반응을 촉진하게 된다. 티오시안나트륨은 5~30중량부 사용하며, 5중량부 미만이면 시멘트 경화 촉진 효과가 미미하고 30중량부 초과하면 경제성이 상실한다.Sodium thiocyanate (NaSCN) rapidly elutes Ca 2+ ions in cement and promotes the hydration of 3CaO·SiO 2 , a component that plays an important role in the initial strength of cement, thereby accelerating the hardening reaction of cement. Sodium thiocyanate is used in an amount of 5 to 30 parts by weight, and if it is less than 5 parts by weight, the effect of accelerating cement hardening is insignificant, and if it exceeds 30 parts by weight, economic feasibility is lost.

초임계유동층 보일러애시(CFBC)는 초임계 유동층 보일러에서 산소를 주입하면서 석탄 연료를 초임계 조건으로 연소하는 공정을 통해 배출되는 애시로서, 5∼20중량%의 SO3, 20∼30중량%의 CaO 등을 함유하면서 분말도가 6,000~9,000cm2/g인 애시이다. 일반적인 플라이애시는 석탄 화력발전소에서 연료(석탄)와 공기를 주입하여 연소(1200~1500도)하는 공정에서 배출되는 애시이고, 순환유동층 보일러애시는 순환 유동층 보일러에서 공기와 석회를 동시에 주입하여 지속적으로 열을 순환시키면서 석탄을 완전 연소(760~950도)하는 공정을 통해 배출되는 애시이고, 초임계유동층 보일러애시는 초임계 유동층 보일러(물이 증기로 변환되는 임계조건(2255kg/cm2 증기압, 374도 증기온도)으로 가하여 발전하는 보일러)에서 공기 대신 산소를 주입하여 초임계 상태에서 연료(석탄)을 연소하는 공정에서 배출되는 애시이다. 이들 플라이애시들은 석탄을 연료로 하는 발전설비에서 배출되는 애시라는 점에서 공통점이 있으나 발전설비의 구체적인 처리방식이 달라 플라이애시의 화학성분과 물리적 특성에서 차이가 있다. Supercritical fluidized bed boiler ash (CFBC) is ash discharged through a process of burning coal fuel under supercritical conditions while injecting oxygen in a supercritical fluidized bed boiler, and contains 5 to 20% by weight of SO 3 and 20 to 30% by weight of It is an ash containing CaO and the like and having a fineness of 6,000 to 9,000 cm2/g. Common fly ash is ash discharged from the process of burning (1200-1500 degrees) by injecting fuel (coal) and air in a coal-fired power plant, and circulating fluidized bed boiler ash is continuously produced by simultaneously injecting air and lime in a circulating fluidized bed boiler. It is ash discharged through the process of complete combustion of coal (760-950 degrees) while circulating heat, and supercritical fluidized bed boiler ash is a supercritical fluidized bed boiler (critical conditions in which water is converted to steam (2255kg/cm2 vapor pressure, 374 degrees Celsius) It is ash discharged from the process of burning fuel (coal) in a supercritical state by injecting oxygen instead of air in a boiler) that generates electricity by applying steam temperature). These fly ash have a common point in that they are ash discharged from power generation facilities using coal as fuel, but the specific treatment method of power generation facilities is different, so there are differences in the chemical composition and physical properties of fly ash.

초임계유동층 보일러애시는 다량의 CaO와 SO3의 성분으로 포졸란 반응에 의해 시멘트의 C3A와 반응하여 에트링자이트를 생성하여 강도 성능 향상에 기여한다. 또한 높은 분말도와 고르지 못한 입형의 다공성으로 흡수율이 높기 때문에, 고로슬래그의 단점인 블리딩을 적절히 제어함으로써 소성수축에 기여한다. 나아가 초임계유동층 보일러애시는 다른 재료들이 골고루 혼합될 수 있도록 충진재 역할을 하는데, 특히 조해성으로 흡습성이 높아지면서 적절한 분산력을 상실하기 쉬운 소듐 락테이트, 티오시안나트륨이 균일하게 분산될 수 있도록 충진재 역할을 하는 것이다. 초임계유동층 보일러애시는 5~30중량부 사용하며, 5중량부 미만이면 분산효과, 블리딩 제어 효과, 강도 증진 효과가 미미하고, 30중량부 초과하면 콘크리트 팽창, 유동성 저하, 강도 저하가 우려된다. Supercritical fluidized bed boiler ash, a component of a large amount of CaO and SO 3 , reacts with C3A of cement through a pozzolanic reaction to generate ettringite, contributing to the improvement of strength performance. In addition, since the absorption rate is high due to the high fineness and uneven grain porosity, it contributes to plastic shrinkage by appropriately controlling the bleeding, which is a disadvantage of blast furnace slag. Furthermore, supercritical fluidized bed boiler ash serves as a filler so that other materials can be mixed evenly. In particular, it serves as a filler so that sodium lactate and sodium thiocyanate, which tend to lose proper dispersibility due to deliquescent property, are uniformly dispersed. is to do Supercritical fluidized bed boiler ash is used in an amount of 5 to 30 parts by weight. If it is less than 5 parts by weight, the dispersion effect, bleeding control effect, and strength enhancement effect are insignificant, and if it exceeds 30 parts by weight, concrete expansion, decrease in fluidity and strength are concerned.

첨가제에는 콘크리트의 균열 억제 효과를 위해 트리메틸올프로판(Trimethylol Propane)가 추가될 수 있다. 트리메틸올프로판은 콘크리트 모세관 응축수에 용해하여 표면장력을 완화시키고 이로써 콘크리트의 수축 저감에 기여하여 건조수축에 따른 초기 건조 수축균열을 방지할 수 있게 한다. 또한, 트리메틸올프로판은 첨가제 제조에서 분쇄혼합 시에 재료들의 응집 방지에 역할하며, 밀봉성능(대기 중의 습기 흡수 방지)을 향상시키는 장점이 있어 첨가제의 저장성 향상에도 기여한다. 트리메틸올프로판은 5~30중량부 사용하는데, 5중량부 미만이면 수축 저감 효과가 미미하고, 30중량부 초과하면 초기 장기강도 부진을 초래한다.Trimethylol Propane may be added to the additive to inhibit cracking of concrete. Trimethylolpropane dissolves in concrete capillary condensate to relieve surface tension, thereby contributing to reducing shrinkage of concrete, thereby preventing initial drying shrinkage cracks due to drying shrinkage. In addition, trimethylolpropane plays a role in preventing aggregation of materials during pulverization and mixing in additive manufacturing, and has the advantage of improving sealing performance (preventing moisture absorption in the air), thereby contributing to improving the storage stability of additives. Trimethylolpropane is used in an amount of 5 to 30 parts by weight. If the amount is less than 5 parts by weight, the effect of reducing shrinkage is insignificant, and if it exceeds 30 parts by weight, the initial long-term strength is deteriorated.

위와 같은 재료 조성으로 준비된 첨가제 조성물은 분쇄 혼합하여 제조하는 것이 바람직하다. 소듐 락테이트, 티오시안나트륨, 초임계유동층 보일러애시만으로 첨가제를 제조한다면, 초임계유동층 보일러애시, 소듐 락테이트, 티오시안나트륨을 순서대로 투입하면서 분쇄 혼합하는 것이 바람직하다. 조해성이 높은 물질을 마지막에 투입함으로써 적절한 분산 및 분쇄 혼합될 수 있도록 한 것이다. 분쇄 혼합을 통한 미분화로 첨가제는 H2O(배합수)에 더욱 빠르게 용해되어 반응성을 끌어올릴 수 있게 된다.The additive composition prepared with the above material composition is preferably prepared by pulverization and mixing. If the additive is prepared only with sodium lactate, sodium thiocyanate, and supercritical fluidized bed boiler ash, it is preferable to pulverize and mix the supercritical fluidized bed boiler ash, sodium lactate, and sodium thiocyanate in order. By adding a material with high deliquescence at the end, it is possible to properly disperse and pulverize and mix. By pulverization through pulverization and mixing, the additive can be dissolved more quickly in H 2 O (mixing water) to increase the reactivity.

트리메틸올프로판을 더 추가하여 첨가제를 제조한다면, 분쇄 혼합과정을 2단계로 세분화하는 것이 바람직다. 먼저 분쇄믹서에 초임계유동층 보일러애시의 일부(준비량의 50% 내외), 트리메틸올프로판을 순서대로 투입하면서 분쇄 혼합하고(제1단계), 다음으로 제1단계의 분쇄 혼합물에, 초임계유동층 보일러애시의 나머지, 소듐 락테이트, 티오시안나트륨을 순서대로 투입하면서 분쇄 혼합하는 것이다(제2단계). 제1단계의 분쇄 혼합으로 트리메틸올프로판의 응집 방지가 가능해지고, 또한 트리메틸올프로판의 급격한 수분 증발이 억제되어 수축 저감이 방지된다. 더불어 다공질의 초임계유동층 보일러애시는 높은 흡수율로 인해 골고루 혼합될 수 있도록 충진재 역할을 하기 때문에 먼저 투입되어 고르게 분산시킨 상태에서 트리메틸올프로판을 투입함으로써 적절한 분산이 가능해진다. 특히 분쇄 혼합에 따라 트리메틸올프로판은 분말도가 높아짐으로써 초기에 적절한 반응이 가능해지고, 또한 높은 분말도로 첨가제 전체에 골고루 분산되어 첨가제 전체의 응집 방지성능을 향상시켜 Silo 저장성능 향상에 기여하기도 한다. If the additive is prepared by adding more trimethylolpropane, it is preferable to subdivide the grinding and mixing process into two steps. First, a part of the supercritical fluidized bed boiler ash (about 50% of the preparation amount) and trimethylolpropane are added in order to the grinding mixer and pulverized and mixed (first step), and then, to the first step pulverized mixture, The rest of the boiler ash, sodium lactate, and sodium thiocyanate are added in order and pulverized and mixed (second step). The pulverization and mixing in the first step makes it possible to prevent aggregation of trimethylolpropane, and suppresses rapid water evaporation of trimethylolpropane to prevent reduction of shrinkage. In addition, since the porous supercritical fluidized bed boiler ash serves as a filler so that it can be mixed evenly due to its high water absorption, appropriate dispersion is possible by adding trimethylolpropane in a state of being injected first and evenly dispersed. In particular, trimethylolpropane can react appropriately in the initial stage by increasing the powder degree according to grinding and mixing, and also contributes to improving the silo storage performance by improving the aggregation prevention performance of the entire additive by being evenly dispersed throughout the additive with a high powder degree.

이로써 본 발명에 따른 내구성 증진용 첨가제가 제조되며, 이렇게 제조된 첨가제는 모든 구성재료가 프리믹스된 상태이므로 현장에서는 일반 혼화제의 사용방법과 마찬가지로 간편하게 적용할 수 있다. As a result, the additive for enhancing durability according to the present invention is prepared, and since all constituent materials of the additive prepared in this way are premixed, it can be conveniently applied in the field in the same way as in the method of using a general admixture.

3. 친환경 콘크리트3. Green concrete

콘크리트 배합에서 앞서 살펴본 친환경 결합재와 내구성 증진용 첨가제를 사용하면, 내구성을 확보한 친환경 콘크리트가 된다. 여기서 내구성 증진용 첨가제는 내구성 증진 효과, 경제성 등을 고려할 때 친환경 결합재 100중량부에, 0.25~2중량부 혼입하는 것이 적당하다. In concrete mixing, if the above-mentioned eco-friendly binder and durability enhancing additive are used, it becomes an eco-friendly concrete with durability. Here, it is appropriate to mix 0.25 to 2 parts by weight of the additive for enhancing durability with 100 parts by weight of the eco-friendly binder in consideration of the durability enhancing effect and economic feasibility.

이하에서는 제조예 및 시험예에 의거하여 본 발명을 상세히 살펴본다. 다만, 아래의 제조예 및 시험예는 본 발명을 예시하기 위한 것일 뿐이며, 본 발명의 범위가 이로써 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail based on preparation examples and test examples. However, the preparation examples and test examples below are only for illustrating the present invention, and the scope of the present invention is not limited thereto.

[제조예] 내구성 증진용 첨가제 제조 [ Manufacture Example] Preparation of additives for enhancing durability

아래 [표 1]과 같은 조성으로 준비하고 내구성 증진용 첨가제를 제조하였다. 비교예1과 실시예1,3은 구성재료를 단순 혼합하여 제조하고, 실시예2는 분쇄믹서에 초임계유동층 보일러애시, 소듐 락테이트, 티오시안나트륨을 순서대로 투입하면서 분쇄 혼합하여 제조하고, 실시예4는 분쇄믹서에 초임계유동층 보일러애시 15중량부를 투입한 후 트리메틸올프로판을 투입하여 1차 분쇄 혼합한 다음 초임계유동층 보일러애시 10중량부를 투입하고 소듐 락테이트, 티오시안나트륨을 순서대로 투입하면서 2차 분쇄 혼합하여 제조하였다. It was prepared with the composition shown in [Table 1] below, and an additive for enhancing durability was prepared. Comparative Example 1 and Examples 1 and 3 were prepared by simply mixing the constituent materials, and Example 2 was prepared by pulverizing and mixing while sequentially adding supercritical fluidized bed boiler ash, sodium lactate, and sodium thiocyanate to a pulverization mixer, In Example 4, 15 parts by weight of supercritical fluidized bed boiler ash was added to a grinding mixer, trimethylolpropane was added, and 10 parts by weight of supercritical fluidized bed boiler ash was first pulverized and mixed, and sodium lactate and sodium thiocyanate were sequentially added. It was prepared by secondary pulverization and mixing while adding.

첨가제 조성(중량부)Additive composition (parts by weight) 구분division 비교예1Comparative Example 1 실시예1Example 1 실시예2Example 2 실시예3Example 3 실시예4Example 4 티오시안나트륨sodium thiocyanate 2525 2525 2525 2525 2525 소듐 락테이트sodium lactate -- 4545 45
45
4545 4545
초임계유동층 보일러애시Supercritical Fluidized Bed Boiler Ash 1010 1010 1010 2525 2525 트리메틸롤프로판
(Flake 형태)
trimethylolpropane
(Flake form)
-- -- -- 1515 1515

[시험예 1] 친환경 콘크리트 특성[Test Example 1] Characteristics of eco-friendly concrete

1. 결합재 준비1. Preparation of binder

아래 [표 1]과 같은 조성으로 결합재를 준비하였다. 대조예1은 일반적으로 사용되는 고로슬래그 시멘트 2종으로 보통포틀랜드시멘트 47%, 고로슬래그 미분말(3종) 53%의 사용률을 적용한 결합재이고, 대조예2, 비교예1, 실시예1~4는 본 발명에 따라 고로슬래그 미분말, 무수석고, 소석회, 시멘트, 시멘트 킬른더스트로 조성한 친환경 결합재이다.A binder was prepared with the same composition as in [Table 1] below. Control Example 1 is a binder using two types of commonly used blast furnace slag cement, 47% of ordinary Portland cement and 53% of blast furnace slag fine powder (3 types), and Control Example 2, Comparative Example 1, and Examples 1 to 4 are According to the present invention, it is an eco-friendly binder composed of blast furnace slag fine powder, anhydrite, slaked lime, cement, and cement kiln dust.

결합재 조성(중량%)Binder composition (wt%) 구분division 대조예1Control Example 1 대조예2, 비교예1, 실시예1~4Control Example 2, Comparative Example 1, Examples 1 to 4 고로슬래그 미분말(SP)Blast furnace slag fine powder (SP) 5353 -- 보통포틀랜트시멘트(OPC)Ordinary Portland Cement (OPC) 4747 0.60.6 고로슬래그 고미분말Blast Furnace Slag Fine Powder -- 8080 무수석고anhydrite -- 1515 폐소석회slaked lime -- 22 시멘트 킬른더스트cement kiln dust -- 2.42.4 - 고로슬래그 고미분말: 분말도 6,500~8,500cm2/g
- 무수석고: 분말도 5,000~7,000cm2/g
- 폐소석회: 습식스크러버 백필터 시스템에서 집진 분말도 4200~4700cm2/g
- 시멘트 킬른더스트: 분말도 7,000~8,000cm2/g
- Blast furnace slag fine powder: fineness 6,500~8,500cm2/g
- Anhydrite: Fineness 5,000~7,000cm2/g
- Waste slaked lime: 4200~4700cm2/g fineness collected in wet scrubber bag filter system
- Cement kiln dust: Fineness 7,000~8,000cm2/g

2. 콘크리트 배합2. Mixing concrete

위 [표 2]의 결합재와, [제조예]에 따라 제조한 첨가제를 이용하면서 아래 [표 3]과 같이 콘크리트를 배합하였다. 보는 바와 같이 대조예1은 고로슬래그 시멘트만을 이용한 배합이고, 대조예2는 친환경 결합재만을 이용한 배합이며, 비교예1과 실시예1~4는 친환경 결합재와 함께 첨가제를 혼입한 배합이다.Concrete was mixed as shown in [Table 3] below, using the binder of [Table 2] above and the additives prepared according to [Preparation Example]. As can be seen, Control Example 1 is a blend using only blast furnace slag cement, Control Example 2 is a blend using only an eco-friendly binder, and Comparative Example 1 and Examples 1 to 4 are blends in which additives are mixed with an eco-friendly binder.

콘크리트 배합concrete mix 구분division W/BW/B S/aS/a 단위재료량(kg/m3)Unit material amount (kg/m3) WW 결합재(B)Binder (B) 잔골재fine aggregate 굵은골재coarse aggregate PC계 고성능 혼화제PC-based high-performance admixture 첨가제
(B×%)
additive
(B×%)
대조예1Control Example 1 45.745.7 49.049.0 168168 350350 886886 905905 2.802.80 -- 대조예2Control Example 2 857857 894894 -- 비교예1Comparative Example 1 0.53%0.53% 실시예1Example 1 1.05%1.05% 실시예2Example 2 1.05%1.05% 실시예3Example 3 1.50%1.50% 실시예4Example 4 1.50%1.50%

3. 콘크리트 특성3. Concrete properties

[표 3]과 같이 배합한 콘크리트에 대하여, 압축강도(KS F 2405 콘크리트의 압축강도 시험방법), 길이변화(Data Rogger(TDS-530)법), 염소이온 침투저항성( KS F 2711 전기전도도에 의한 콘크리트의 염소이온 침투저항성 시험방법), 탄산화 깊이측정(KS F 2596 콘크리트 탄산화 깊이 측정방법시험)을 실시하였다. 특히 압축강도는 시험체 제작 후 평균온도 20.0±2℃ 환경의 항온항습기에서 24hr 경과 후 1일 조기강도를 측정하고, 이후에는 표준조건 양생(20℃±1℃)을 실시하여 측정하였다. 시험결과는 아래 [표 4]와 같이 나타냈다.For the concrete mixed as shown in [Table 3], compressive strength (KS F 2405 test method for compressive strength of concrete), length change (Data Rogger (TDS-530) method), chloride ion penetration resistance (KS F 2711 electrical conductivity Test method for chloride ion penetration resistance of concrete) and carbonation depth measurement (KS F 2596 concrete carbonation depth measurement method test) were conducted. In particular, the compressive strength was measured by measuring the strength at an early age of 1 day after 24 hr in a constant temperature and humidity chamber at an average temperature of 20.0 ± 2 ° C after fabrication of the test body, and then curing under standard conditions (20 ° C ± 1 ° C). The test results are shown in [Table 4] below.

콘크리트 특성concrete properties 구분division 대조예1Control Example 1 대조예2Control Example 2 비교예1Comparative Example 1 실시예1Example 1 실시예2Example 2 실시예3Example 3 실시예4Example 4 압축강도
(MPa)
compressive strength
(MPa)
3일3 days 14.314.3 11.511.5 14.114.1 12.412.4 13.713.7 12.712.7 13.113.1
7일7 days 26.226.2 25.625.6 27.927.9 26.226.2 27.027.0 26.526.5 27.227.2 28일28 days 41.941.9 38.738.7 37.237.2 41.041.0 42.442.4 41.941.9 43.243.2 56일56 days 48.548.5 45.045.0 41.441.4 45.745.7 52.752.7 46.246.2 53.153.1 Slump(mm)Slump(mm) 즉시immediately 190190 200200 200200 205205 200200 205205 210210 Air(%)Air (%) 즉시immediately 4.94.9 4.54.5 4.84.8 4.54.5 4.24.2 4.14.1 4.64.6 길이변화(×10-6)Length change (×10 -6 ) 28일28 days -549-549 -411-411 -447-447 -419-419 -472-472 -443-443 -361-361 염소이온 침투저항성(Coulombs)Chloride ion penetration resistance (Coulombs) 28일28 days 1,9251,925 392392 457457 405405 431431 397397 389389 56일56 days 1,3241,324 8484 9797 8989 9292 9393 8585 탄산화 깊이측정
(mm)
Carbonation depth measurement
(mm)
28일28 days 5.845.84 14.1914.19 13.8513.85 10.8510.85 6.746.74 8.288.28 6.126.12
56일56 days 10.1710.17 25.2625.26 24.9124.91 19.7419.74 11.6211.62 14.2914.29 9.879.87

일반적인 고로슬래그 시멘트의 특성을 보여주는 대조예1과 비교할 때, 친환경 결합재만을 적용한 대조예2는 대조예1보다 압축강도 측정 결과 전반적으로 낮은 물리성능이 확인되고, 콘크리트 탄산화 깊이 측정 결과 2배이상 침투성능이 저조한 것으로 확인된다. 하지만, 길이변화와 염소이온침투저항성에서 우수한 성능을 확인되어 콘크리트 결합재로서의 가능성이 보인다고 할 수 있다. Compared to Control Example 1 showing the characteristics of general blast furnace slag cement, Control Example 2 using only eco-friendly binders showed lower overall physical performance than Control Example 1 as a result of measuring compressive strength, and as a result of measuring the carbonation depth of concrete, penetration performance was more than twice as high. This is confirmed to be poor. However, it can be said that it has a possibility as a concrete binder as it has been confirmed to have excellent performance in length change and chloride ion penetration resistance.

비교예1은 대조예1의 배합에 티오시안나트륨과 CFBC를 더 혼입한 배합으로, 대조예1,2와 비교할 때 초기 재령의 압축강도에서 다소 높은 경향이 확인되나, 7일 이후 28일 압축강도에서 다소 낮아지는 것이 확인된다. 또한, 콘크리트의 탄산화 깊이에서 대조예2보다 일정부분 성능이 향상된 것이 확인되나, 염소이온 침투저항성, 길이변화의 성능이 일부 감소하는 것으로 확인된다.Comparative Example 1 is a formulation in which sodium thiocyanate and CFBC are further incorporated into the formulation of Control Example 1. Compared to Control Examples 1 and 2, a slightly higher tendency is found in the compressive strength at the initial age, but the compressive strength at 28 days after 7 days It is confirmed that there is a slight decrease in In addition, it was confirmed that some performance was improved compared to Control Example 2 at the carbonation depth of the concrete, but it was confirmed that the performance of chloride ion penetration resistance and length change were partially reduced.

실시예1은 비교예1에서 다소 부족하였던 중·장기 압축강도 성능 향상과 콘크리트의 탄산화 저항 성능을 향상시키기 위하여, 비교예1의 첨가제에 C3H5NaO3(소듐 락테이트)를 추가 첨가한 예이다. 실시예1은 대조예2 및 비교예1과 비교할 때 전반적으로 중장기 압축강도와 탄산화 성능 향상이 확인되나, 압축강도와 탄산화 성능이 대조예1에는 못 미치는 것으로 확인된다. In Example 1, C 3 H 5 NaO 3 (sodium lactate) was additionally added to the additive of Comparative Example 1 in order to improve the medium and long-term compressive strength performance and carbonation resistance performance of concrete, which were somewhat lacking in Comparative Example 1. Yes. In Example 1, compared with Control Example 2 and Comparative Example 1, overall mid- to long-term compressive strength and carbonation performance were improved, but the compressive strength and carbonation performance were found to be inferior to Control Example 1.

실시예2는 실시예1의 첨가제를 별도의 분쇄혼합을 거치도록 한 후에 첨가한 예인데, 대조예1에 준하는 압축강도와 탄산화 성능 향상이 확인되며, 특히 장기강도는 대조예1보다도 우수한 것으로 확인된다.Example 2 is an example in which the additives of Example 1 were added after undergoing separate pulverization and mixing, and the improvement in compressive strength and carbonation performance was confirmed to be comparable to that of Control Example 1, and in particular, the long-term strength was found to be superior to that of Control Example 1. do.

실시예3은 균열제어 및 분쇄성능 향상을 위해 실시예1의 첨가제에 균열억제제로써 트리메틸올프로판을 추가한 예이다. 실시예1과 비교하였을 때 길이변화를 제외한 압축강도, 염소이온 침투저항성, 탄산화 성능에서 소폭 상승된 것으로 확인된다.Example 3 is an example in which trimethylolpropane was added as a crack inhibitor to the additive of Example 1 to improve crack control and grinding performance. When compared with Example 1, it was confirmed that the compressive strength, chlorine ion penetration resistance, and carbonation performance, except for the change in length, were slightly increased.

실시예4는 실시예3의 첨가제를 별도의 분쇄혼합을 거치도록 한 후에 첨가한 예이다. 실시예2,실시예3과 비교할 때, 압축강도, 염소이온 침투저항성, 탄산화 성능은 물론 길이변화까지 모든 면에서 우수한 성능이 확인된다. 특히 탄산화 반응 억제 성능은 대조예1보다도 우수한 결과를 보여준다. Example 4 is an example in which the additive of Example 3 was added after undergoing separate pulverization and mixing. Compared to Examples 2 and 3, excellent performance was confirmed in all aspects, including compressive strength, chloride ion permeation resistance, carbonation performance, and length change. In particular, the carbonation reaction inhibition performance shows better results than Control Example 1.

Claims (4)

고로슬래그 미분말 60~90중량%, 무수석고 5~25중량%, 소석회 0.5~5중량%, 시멘트 0.1~5중량%, 시멘트 킬른더스트 0.1~5중량%를 포함하는 친환경 결합재가 사용된 친환경 콘크리트 배합에 첨가 혼입되는 첨가제로,
소듐 락테이트(C3H5NaO3) 10~70중량부, 티오시안나트륨(NaSCN) 5~30중량부, 초임계유동층 보일러애시(CFBC) 5~30중량부, 트리메틸올프로판(C6H14O3) 5~30중량부가 분쇄 혼합된 것임을 특징으로 하는 친환경 결합재를 사용한 콘크리트의 내구성 증진용 첨가제.
Eco-friendly concrete mixture using an eco-friendly binder containing 60 to 90% by weight of blast furnace slag fine powder, 5 to 25% by weight of anhydrite, 0.5 to 5% by weight of slaked lime, 0.1 to 5% by weight of cement, and 0.1 to 5% by weight of cement kiln dust As an additive added to and mixed in,
10 to 70 parts by weight of sodium lactate (C 3 H 5 NaO 3 ), 5 to 30 parts by weight of sodium thiocyanate (NaSCN), 5 to 30 parts by weight of supercritical fluidized bed boiler ash (CFBC), trimethylolpropane (C 6 H 14 O 3 ) An additive for improving the durability of concrete using an eco-friendly binder, characterized in that 5 to 30 parts by weight is ground and mixed.
삭제delete 제1항에 따른 내구성 증진용 첨가제를 제조하는 방법으로,
분쇄믹서에 초임계유동층 보일러애시의 일부, 트리메틸올프로판을 순서대로 투입하면서 분쇄 혼합하는 제1단계;
제1단계의 분쇄 혼합물에, 초임계유동층 보일러애시의 나머지, 소듐 락테이트, 티오시안나트륨을 순서대로 투입하면서 분쇄 혼합하는 제2단계;
로 구성되는 것을 특징으로 하는 친환경 결합재를 사용한 콘크리트의 내구성 증진용 첨가제의 제조방법.
A method for producing the additive for enhancing durability according to claim 1,
A first step of pulverizing and mixing while sequentially introducing a portion of supercritical fluidized bed boiler ash and trimethylolpropane into a pulverizing mixer;
A second step of pulverizing and mixing the pulverized mixture of the first step while sequentially introducing the rest of the supercritical fluidized bed boiler ash, sodium lactate, and sodium thiocyanate;
Method for producing an additive for enhancing the durability of concrete using an eco-friendly binder, characterized in that consisting of.
제1항에 따른 내구성 증진용 첨가제를 혼입한 콘크리트 배합에서,
고로슬래그 미분말 60~90중량%, 무수석고 5~25중량%, 소석회 0.5~5중량%, 시멘트 0.5~5중량%, 시멘트 킬른더스트 0.5~5중량%를 포함하는 친환경 결합재 100중량부에, 내구성 증진용 첨가제 0.25~2중량부를 혼입하여 배합하는 것을 특징으로 하는 친환경 콘크리트.
In the concrete mix incorporating the additive for enhancing durability according to claim 1,
100 parts by weight of an eco-friendly binder containing 60 to 90% by weight of blast furnace slag powder, 5 to 25% by weight of anhydrous gypsum, 0.5 to 5% by weight of slaked lime, 0.5 to 5% by weight of cement, and 0.5 to 5% by weight of cement kiln dust, durability Eco-friendly concrete characterized by mixing by mixing 0.25 to 2 parts by weight of additives for enhancement.
KR1020220107580A 2022-08-26 2022-08-26 Additive for Improving Durability of Concrete Using Eco-friendly Binder, Manufacturing Method of the Additive and Eco-friendly Concrete Contained the Additive KR102513692B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020220107580A KR102513692B1 (en) 2022-08-26 2022-08-26 Additive for Improving Durability of Concrete Using Eco-friendly Binder, Manufacturing Method of the Additive and Eco-friendly Concrete Contained the Additive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020220107580A KR102513692B1 (en) 2022-08-26 2022-08-26 Additive for Improving Durability of Concrete Using Eco-friendly Binder, Manufacturing Method of the Additive and Eco-friendly Concrete Contained the Additive

Publications (1)

Publication Number Publication Date
KR102513692B1 true KR102513692B1 (en) 2023-03-27

Family

ID=85799885

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020220107580A KR102513692B1 (en) 2022-08-26 2022-08-26 Additive for Improving Durability of Concrete Using Eco-friendly Binder, Manufacturing Method of the Additive and Eco-friendly Concrete Contained the Additive

Country Status (1)

Country Link
KR (1) KR102513692B1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09110510A (en) * 1995-10-17 1997-04-28 Denki Kagaku Kogyo Kk Cement composition
KR20120128128A (en) * 2010-01-11 2012-11-26 세라테크, 인코포레이티드 Lactate activated cement and activator compositions
KR101244825B1 (en) 2012-09-13 2013-03-18 신성종합건축사사무소(주) High volume blast furnace slag concrete composition using waste ash and recycled aggregate
JP2013521217A (en) * 2010-03-09 2013-06-10 コンストラクション リサーチ アンド テクノロジー ゲーエムベーハー Cement quick-setting agent
KR20130087663A (en) 2012-01-30 2013-08-07 주식회사 인트켐 High durable concrete containing high volume slag
KR102153658B1 (en) * 2019-10-21 2020-09-09 (주)대우건설 Early strength accelerating cement for cold weather concrete

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09110510A (en) * 1995-10-17 1997-04-28 Denki Kagaku Kogyo Kk Cement composition
KR20120128128A (en) * 2010-01-11 2012-11-26 세라테크, 인코포레이티드 Lactate activated cement and activator compositions
JP2013516388A (en) * 2010-01-11 2013-05-13 セラテック インコーポレーティッド Lactate activated cement and activator composition
JP2013521217A (en) * 2010-03-09 2013-06-10 コンストラクション リサーチ アンド テクノロジー ゲーエムベーハー Cement quick-setting agent
KR20130087663A (en) 2012-01-30 2013-08-07 주식회사 인트켐 High durable concrete containing high volume slag
KR101244825B1 (en) 2012-09-13 2013-03-18 신성종합건축사사무소(주) High volume blast furnace slag concrete composition using waste ash and recycled aggregate
KR102153658B1 (en) * 2019-10-21 2020-09-09 (주)대우건설 Early strength accelerating cement for cold weather concrete

Similar Documents

Publication Publication Date Title
KR101543307B1 (en) Method of manufacture and Environment-Friendly Quarry Landfill filler of occurred in the circulating fluidized bed boiler using gas desulfurization gypsum
KR101201924B1 (en) High Functional Binder Composition for Carbon Dioxide Reduction Displaying Properties of Early Strength
KR101903463B1 (en) Composition for mine backfill and ground stabilizer
KR101366174B1 (en) Ecofriendly cement binder composite
CN109748561A (en) A kind of high intensity pervious concrete
KR101834539B1 (en) A composition of low-shrinkage low-carbon green cement comprising carbon-mineralized fly ash and early strength expansive admixture and concrete applied thereby
KR101821647B1 (en) Green cement composite and making method thereof
KR102597189B1 (en) Hybrid Functional Additive for Slag Cement and Slag Cement Concrete Using the Same
KR20170118991A (en) Soil stabilizer
KR102513692B1 (en) Additive for Improving Durability of Concrete Using Eco-friendly Binder, Manufacturing Method of the Additive and Eco-friendly Concrete Contained the Additive
KR101535909B1 (en) Mamufacturing method for soil solidified agent
KR101973967B1 (en) An inorganic binder composition capable of improving initial strength and preventing initial frost resistance
KR101345203B1 (en) Low alkali non-cement concrete composition with tannin and block unit comprising the same
KR101859214B1 (en) Blast Furance Slag Composition With Integration Gasification Combined Cycle Slag
KR102551892B1 (en) Additive for Strength Development of Type Ⅰ Slag Cement and Slag Cement Concrete Using the Same
KR102513686B1 (en) Additive for Durable Slag Cement Concrete, and Durable Slag Cement Concrete Contained the Same
KR101183535B1 (en) Drying shrinkage-reducing type inorganic composite having high pozzolanic reactivity and nano filler effect
KR102119471B1 (en) Inorganic binder composition capable of promoting heat generation and resistance to cold
KR102127223B1 (en) Process for the preparation of initialcompression improving agent for hydraulic cement
KR101409784B1 (en) Admixture for concrete comprising high calcium ash and Fly-ash
KR20150044341A (en) Cement composition for accelerating concrete curing
KR20200027632A (en) Reaction accelerator for non-sintering cement concrete and composition of non-sintering cement concrete comprising it
KR102578767B1 (en) Eco-friendly Low-carbon Concrete Composition Using High-early-strength Slag Cement
KR101752156B1 (en) Binder composition agent
KR102649566B1 (en) Cement replacement agent comprising waste clay and/or poetry stone, method for preparing the same, cement composition, mortar and concrete

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant