KR102512956B1 - 자가 충전 가능한 슈퍼 커패시터 - Google Patents

자가 충전 가능한 슈퍼 커패시터 Download PDF

Info

Publication number
KR102512956B1
KR102512956B1 KR1020210110352A KR20210110352A KR102512956B1 KR 102512956 B1 KR102512956 B1 KR 102512956B1 KR 1020210110352 A KR1020210110352 A KR 1020210110352A KR 20210110352 A KR20210110352 A KR 20210110352A KR 102512956 B1 KR102512956 B1 KR 102512956B1
Authority
KR
South Korea
Prior art keywords
supercapacitor
electrolyte
electrolyte gel
thermoelectric
gel
Prior art date
Application number
KR1020210110352A
Other languages
English (en)
Other versions
KR20230027977A (ko
Inventor
전성찬
강정섭
박세원
정의걸
Original Assignee
연세대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 연세대학교 산학협력단 filed Critical 연세대학교 산학협력단
Priority to KR1020210110352A priority Critical patent/KR102512956B1/ko
Publication of KR20230027977A publication Critical patent/KR20230027977A/ko
Application granted granted Critical
Publication of KR102512956B1 publication Critical patent/KR102512956B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/56Solid electrolytes, e.g. gels; Additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Hybrid Cells (AREA)

Abstract

본 실시예에 의한 슈퍼 커패시터는 열전(Thermal ionic) 전해질 겔; 열전 전해질과 인접한 슈퍼 커패시터 전해질 겔; 슈퍼 커패시터 전해질과 전기적으로 연결된 그리드 전극; 슈퍼 커패시터 전해질 겔과 전기적으로 연결된 플레이트 전극을 포함하며, 플레이트 전극은 그리드 전극과 전기적으로 연결되어 열전 전해질 겔이 슈퍼 커패시터를 충전하고, 플레이트 전극과 그리드 전극이 전기적으로 절연되어 슈퍼 커패시터가 방전을 수행한다.

Description

자가 충전 가능한 슈퍼 커패시터{SELF-RECHARGEABLE SUPER CAPACITOR}
본 기술은 자가 충전 가능한 슈퍼 커패시터와 관련된다.
기존의 멤스(MEMS) 스위치는 경우 전압을 가해 스위칭을 유도하는 경우가 일반적이었다. 다수의 스위치들은 전원으로부터 제공된 전압을 인가하여 스위치를 제어하였다.
기존의 열충전 슈퍼캐패시터의 경우 열에너지가 지속적으로 공급되면 열전 소자의 전압이 떨어지지 않았다. 따라서 슈퍼 캐패시터의 방전이 불가능하였으며, 열충전 효과와 에너지 저장 사이클에 한계가 발생하였다. 실질적으로, 방전을 위해서 온도를 낮출 필요가 있었으나, 방열판을 사용하여야 구조가 복잡해졌을 뿐만 아니라 사용 가능 온도에도 제약이 있었다.
본 기술로 해결하고자 하는 과제 중 하나는 상기한 종래 기술의 난점을 해속하기 위한 것이다. 즉, 방열판 없이 방전 가능한 슈퍼 커패시터를 제공하는 것이 본 기술로 해결하고자 하는 과제 중 하나이다.
본 실시예에 의한 슈퍼 커패시터는 열전(Thermal ionic) 전해질 겔; 열전 전해질과 인접한 슈퍼 커패시터 전해질 겔; 슈퍼 커패시터 전해질과 전기적으로 연결된 그리드 전극; 슈퍼 커패시터 전해질 겔과 전기적으로 연결된 플레이트 전극을 포함하며, 플레이트 전극은 그리드 전극과 전기적으로 연결되어 열전 전해질 겔이 슈퍼 커패시터를 충전하고, 플레이트 전극과 그리드 전극이 전기적으로 절연되어 슈퍼 커패시터가 방전을 수행한다.
본 실시예의 어느 한 측면에 의하면, 플레이트 전극은, 판 스프링의 형태이다.
본 실시예의 어느 한 측면에 의하면, 열전 전해질 겔과 그리드 전극 사이에서 형성하는 정전기적 인력이 판 스프링의 복원력을 초과할 때 판 스프링이 그리드 전극과 전기적으로 연결된다.
본 실시예의 어느 한 측면에 의하면, 열전 전해질 겔은 소렛 효과를 일으키는 전해질 겔로, CoXM1-XO2, NaXCoXO4, Ba1-XSrXPbO3 인 슈퍼 커패시터.
본 실시예의 어느 한 측면에 의하면, 제벡 효과를 일으키는 전해질 겔로, Co(OH)2, Ni(OH)2 어느 하나인 슈퍼 커패시터.
본 실시예의 어느 한 측면에 의하면, 슈퍼 커패시터 전해질 겔은 Co(OH)2, Ni(OH)2 중 어느 하나이다.
본 실시예에 의하면 종래 기술에서 요청되는 방열판 없이도 슈퍼 커패시터가 부하측으로 에너지를 제공할 수 있어 구조가 간단하며, 저렴한 비용으로 제조할 수 있다는 장점이 제공된다.
도 1은 본 실시예에 의한 자가 충전 가능한 슈퍼 커패시터(10)의 개요를 도시한 사시도이다.
도 2는 본 실시예에 의한 슈퍼 커패시터(10)의 단면을 개요적으로 도시한 도면이다.
도 3(a)는 그리드 전극과 플레이트 전극이 전기적으로 연결되어 열전 전해질 겔이 슈퍼 커패시터 전해질 겔을 충전할 때를 개요적으로 도시한 도면이고, 도 3(b)는 슈퍼 커패시터 전해질 겔이 방전할할 때를 개요적으로 도시한 도면으로, 본 시시예에 의한 슈퍼 커패시터(10)를 플레이트 전극측에서 바라본 평면도이다.
이하, 본 발명의 일 실시예를 예시적인 도면을 통해 상세하게 설명한다. 도 1은 본 실시예에 의한 자가 충전 가능한 슈퍼 커패시터(10)의 개요를 도시한 사시도이다. 도 1을 참조하면, 본 실시예에 의한 자가 충전 가능한 슈퍼 커패시터(10)는 열전(Thermal ionic) 전해질 겔(220), 상기 열전 전해질과 인접한 슈퍼 커패시터 전해질 겔(210). 상기 슈퍼 커패시터 전해질과 전기적으로 연결된 그리드 전극(200), 플레이트 전극(100)을 포함하며, 상기 플레이트 전극(100)은 상기 그리드 전극(200)과 전기적으로 연결되어 상기 열전 전해질 겔이 상기 슈퍼 커패시터를 충전하고, 상기 플레이트 전극과 상기 그리드 전극이 전기적으로 절연되어 상기 슈퍼 커패시터가 방전을 수행한다.
열전 전해질 젤(220)은 열전 현상을 발생시키는 전해질로, 온도 차로부터 전기 에너지를 형성한다. 열전 전해질 젤(220)이 전기 에너지를 형성하기 위하여는 반드시 온도 차이가 있어야 한다.
열전 전해질 젤(220)은 고온부(Thot)과 저온부(Tcold) 사이에 위치하여야 하며 이를 연결하는 이중채널 구조에 기초하여 동작한다. 이중채널은 크게 N-type과 P-type으로 나뉘며 N-type 채널에서는 전기장이 저온부에서 고온부로, 그리고 P-type에서는 고온부에서 저온부로 형성되며 전류 또한 전기장과 같은 방향으로 흐른다. 이 때, 캐리어 구배를 살펴보면, N-type 채널 고온부에서 캐리어가 형성되는 것과 P-type 채널 고온부에서 포논(phonon)이 형성된다.
열전 전해질 젤(220)은 일 예로, 제벡 효과(Seeback Effect)에 의하여 전기 에너지를 형성하는 전해질 물질일 수 있으며, 온도 비대칭성에 의한 제벡 효과에 기반해 전자, 정공, 포논 형성으로 인해 전류가 형성된다. 상술한 바와 같이 온도 구배가 존재해야 에너지를 생산할 수 있으며, 온도 구배가 유지될 때에는 열전 소자의 전압이 하락하지 않으므로 방전이 필요하다. 일 실시예로 제벡 효과에 의하여 전기 에너지를 형성하는 전해질 물질은 Co(OH)2, Ni(OH)2 일 수 있다.
다른 예로, 열전 전해질 젤(220)은 소렛 효과(Soret Effect)에 기초한 열전 전해질 젤일 수 있다. 소렛 효과에 기초한 열전 전해질은 온도 구배에 의하여 형성되는 이온 구배(gradient)를 이용하여 전기 에너지를 생성한다. 즉, 온도 구배가 형성되면 이온이 이동하면서 전압을 형성하며, 전압 유도기라고 할 수 있다. 이어서, 형성된 전기 에너지(전압)을 소모하여 방전이 수행된다. 일 실시예로 소렛 효과에 의하여 전기 에너지를 형성하는 전해질 물질은 CoXM1-XO2, NaXCoXO4, Ba1-XSrXPbO3 일 수 있다.
상술한 바와 같이 열전 전해질 젤(220)은 온도차를 반드시 제거하여야 충방전 사이클을 완성시킬 수 있으며, 이를 위하여는 방열판이 필요하다. 그러나 후술할 바와 같이 본 실시예에 의하면 방열판 없이 충방전을 수행할 수 있다.
슈퍼 커패시터 전해질 겔(210)은 EDLC(Electric Double Layer)를 형성하고, 이를 이용하는 전해질 물질일 수 있다. 이는 종래의 캐패시터와는 달리 전기적 이중층에 양이온과 음이온이 형성되어 전기 에너지를 저장하는 형태이다. 이러한 형태의 전해질 물질은 전기 이중층의 상기의 이격거리 D가 매우 작고, 빠른 충방전과 함께 큰 에너지를 저장할 수 있다. 이러한 형태의 전해질 물질은 Co(OH)2, Ni(OH)2 일 수 있다.
다른 예로, 열전 전해질 젤(220)은 슈도 타입(pseudo type)의 전해질일 수 있다. 슈도 타입의 전해질에 있어서는 전해질을 통해서 이온들이 이동하며, 이동하는 이온들은 양극과 음극단에 존재하는 활물질과 결합/분해되어 존재한다. 즉 산화-환원 반응에 의해서 전기 에너지를 저장한다. 이러한 형태의 전해질 물질은 CoXM1-XO2, NaXCoXO4, Ba1-XSrXPbO3 일 수 있다.
이어서, 도 1 내지 도 3을 참조하여 본 실시예에 의한 슈퍼 커패시터(10)의 동작을 살펴본다. 도 2는 본 실시예에 의한 슈퍼 커패시터(10)의 단면을 개요적으로 도시한 도면이고, 도 3(a)는 그리드 전극과 플레이트 전극이 전기적으로 연결되어 열전 전해질 겔이 슈퍼 커패시터 전해질 겔을 충전할 때를 개요적으로 도시한 도면이고, 도 3(b)는 슈퍼 커패시터 전해질 겔이 방전할할 때를 개요적으로 도시한 도면으로, 본 시시예에 의한 슈퍼 커패시터(10)를 플레이트 전극측에서 바라본 평면도이다. 도 1 내지 도 3을 참조하면, 그리드 전극(200)는 슈퍼 커패시터 전해질 겔(210)과 전기적으로 연결된다.
플레이트 전극(100)은, 슈퍼 커패시터(10)의 상부에 위치하고, 양 단부가 고정되며, 열전 전해질(220)의 전기적 인력에 의하여 변형되는 판 스프링일 수 있다. 도시된 실시예에서, 플레이트 전극(100)은 스프링 상수값이 k인 스프링으로 모델될 수 있다.
열전 전해질 젤(220)에 온도차가 제공되어 에너지가 충전되면 열전 전해질 젤(220)과 그리드 전극 사이에 정전기적 인력이 발생한다. 정전기적 인력이 플레이트 전극(100)의 복원보다 크면 플레이트 전극이 변형되고 그리드 전극과 전기적으로 연결된다.
따라서, 열전 전해질(220)과 슈퍼 커패시터 전해질 겔(210)은 플레이트 전극(100)과 그리드 전극(200)을 통하여 서로 전기적으로 연결되며, 열전 전해질 겔(220)이 형성한 전기적 에너지는 슈퍼 커패시터 전해질 겔(210)에 충전된다. 그러나, 슈퍼 퍼캐시터 전해질 겔(210)과 부하(LOAD) 사이의 전기적 연결은 차단된다.
그러나, 열전 전해질 젤(220)이 형성한 전기적 에너지가 슈퍼 커패시터 전해질 겔(210)로 전달되면 정전기적 인력을 감소하며, 플레이트 전극(100)은 원상태로 복원된다. 따라서, 플레이트 전극(100)은 원상태로 위치하며, 그리드 전극(200)은 부하(LOAD)에 충전된 전기 에너지를 방전할 수 있다.
위에서 설명된 바와 같이 본 실시예에 의한 슈퍼 커패시터는 방열판 없이도 부하에 전기 에너지를 방전할 수 있어 구조가 간단하며, 제조 비용이 경제적이라는 장점이 제공된다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능하다.
본 발명에 개시된 실시예는 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다.
본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 한다.
본 발명은 열충전 캐패시터의 전압 제어를 위해 기존에 차용하던 방열판 및 방열 구조의 한계를 극복하기 위해 MEMS Switch를 설계 및 제작하였다.
10: 슈퍼 커패시터 100: 플레이트 전극
200: 그리드 전극 210: 슈퍼 커패시터 전해질 겔
220: 열전(Thermal ionic) 전해질 겔

Claims (6)

  1. 열전(Thermal ionic) 전해질 겔;
    상기 열전 전해질과 인접한 슈퍼 커패시터 전해질 겔;
    상기 슈퍼 커패시터 전해질과 전기적으로 연결된 그리드 전극;
    상기 슈퍼 커패시터 전해질 겔과 전기적으로 연결된 플레이트 전극을 포함하며,
    상기 플레이트 전극은 상기 그리드 전극과 전기적으로 연결되어 상기 열전 전해질 겔이 상기 슈퍼 커패시터를 충전하고,
    상기 플레이트 전극과 상기 그리드 전극이 전기적으로 절연되어 상기 슈퍼 커패시터가 방전을 수행하는 슈퍼 커패시터.
  2. 제1항에 있어서,
    상기 플레이트 전극은,
    판 스프링의 형태인 슈퍼 커패시터.
  3. 제2항에 있어서,
    상기 열전 전해질 겔과 상기 상기 그리드 전극 사이에서 형성하는 정전기적 인력이 상기 판 스프링의 복원력을 초과할 때
    상기 판 스프링이 상기 그리드 전극과 전기적으로 연결되는 슈퍼 커패시터.
  4. 제1항에 있어서,
    상기 열전 전해질 겔은 소렛 효과를 일으키는 전해질 겔로,
    CoXM1-XO2, NaXCoXO4, Ba1-XSrXPbO3 인 슈퍼 커패시터.
  5. 제1항에 있어서,
    상기 열전 전해질 겔은 제벡 효과를 일으키는 전해질 겔로,
    Co(OH)2, Ni(OH)2 어느 하나인 슈퍼 커패시터.
  6. 제1항에 있어서,
    상기 슈퍼 커패시터 전해질 겔은 Co(OH)2, Ni(OH)2 중 어느 하나인 슈퍼 커패시터.

KR1020210110352A 2021-08-20 2021-08-20 자가 충전 가능한 슈퍼 커패시터 KR102512956B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210110352A KR102512956B1 (ko) 2021-08-20 2021-08-20 자가 충전 가능한 슈퍼 커패시터

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210110352A KR102512956B1 (ko) 2021-08-20 2021-08-20 자가 충전 가능한 슈퍼 커패시터

Publications (2)

Publication Number Publication Date
KR20230027977A KR20230027977A (ko) 2023-02-28
KR102512956B1 true KR102512956B1 (ko) 2023-03-21

Family

ID=85326810

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210110352A KR102512956B1 (ko) 2021-08-20 2021-08-20 자가 충전 가능한 슈퍼 커패시터

Country Status (1)

Country Link
KR (1) KR102512956B1 (ko)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005528751A (ja) 2002-05-31 2005-09-22 ノースロップ グラマン コーポレーション 微小電気機械スイッチ

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0923926A2 (pt) * 2009-01-02 2016-01-12 Tempronics Inc dispositivo para conversão de energia, comutação elétrica, e comutação térmica
KR101584683B1 (ko) * 2014-02-20 2016-01-13 인하대학교 산학협력단 자가발전이 가능한 착용형 열전모듈의 제조방법 및 이를 이용한 무선 생체전극 센서
KR101637119B1 (ko) * 2014-08-04 2016-07-06 부산대학교 산학협력단 열전 소자, 이의 제조 방법, 웨어러블 장치 및 열전 소자를 포함하는 장치

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005528751A (ja) 2002-05-31 2005-09-22 ノースロップ グラマン コーポレーション 微小電気機械スイッチ

Also Published As

Publication number Publication date
KR20230027977A (ko) 2023-02-28

Similar Documents

Publication Publication Date Title
CN110383409B (zh) 具有分离体的电极双电层电容器
JP2013517591A5 (ko)
KR20140004061A (ko) 전기화학 전지용 케이싱
KR102446772B1 (ko) 안전 장치를 구비한 전지 모듈
KR102512956B1 (ko) 자가 충전 가능한 슈퍼 커패시터
KR20210027948A (ko) 배터리 팩, 이를 포함하는 배터리 랙 및 전력 저장 장치
KR102114196B1 (ko) 열전 마이크로 슈퍼커패시터 통합 디바이스 및 그 제조방법
KR101944905B1 (ko) 분리체 구비 전극 전기 이중층 커패시터
TWI661596B (zh) 蓄電裝置及固體電解質層的製造方法
CN106653378B (zh) 储存和释放电能的层合装置
US9698707B2 (en) Device for converting thermal power into electric power
JP2019106309A (ja) 電池システムおよび電池セル
CN112117426B (zh) 单体电池、动力电池包和车辆
KR102134223B1 (ko) 베타전지
US10283282B2 (en) Strain capacitor energy storage devices and assemblies
KR101182192B1 (ko) 전기화학 에너지 저장장치 및 그를 이용한 모듈
KR101269484B1 (ko) 전기화학 에너지 저장장치를 이용한 모듈
JP2019128991A (ja) 組電池
JP6205490B2 (ja) 電気化学的エネルギ貯蔵器のためのスイッチング装置及びエネルギ貯蔵システム
KR20140055011A (ko) 커패시터 충방전 관리 장치 및 그 방법
CN101315989A (zh) 模块电池
US6430111B1 (en) Electronic timepiece
KR20150015258A (ko) 유연한 박막형 전지셀 및 이의 제조방법
KR20200065948A (ko) 압전 소자 및 열전 소자를 포함하는 원통형 이차 전지
KR102443898B1 (ko) 과충전 방지가 가능한 구조를 갖는 배터리 팩 충전 시스템 및 이를 포함하는 자동차

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant