KR102471670B1 - 고출력 발광 다이오드 및 그것을 갖는 발광 모듈 - Google Patents

고출력 발광 다이오드 및 그것을 갖는 발광 모듈 Download PDF

Info

Publication number
KR102471670B1
KR102471670B1 KR1020160015753A KR20160015753A KR102471670B1 KR 102471670 B1 KR102471670 B1 KR 102471670B1 KR 1020160015753 A KR1020160015753 A KR 1020160015753A KR 20160015753 A KR20160015753 A KR 20160015753A KR 102471670 B1 KR102471670 B1 KR 102471670B1
Authority
KR
South Korea
Prior art keywords
layer
substrate
type semiconductor
light emitting
semiconductor layer
Prior art date
Application number
KR1020160015753A
Other languages
English (en)
Other versions
KR20170094679A (ko
Inventor
장종민
배선민
임재희
김창연
김재헌
Original Assignee
서울바이오시스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울바이오시스 주식회사 filed Critical 서울바이오시스 주식회사
Priority to KR1020160015753A priority Critical patent/KR102471670B1/ko
Priority to PCT/KR2017/000810 priority patent/WO2017138707A1/ko
Publication of KR20170094679A publication Critical patent/KR20170094679A/ko
Priority to US16/100,783 priority patent/US10559720B2/en
Application granted granted Critical
Publication of KR102471670B1 publication Critical patent/KR102471670B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/387Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape with a plurality of electrode regions in direct contact with the semiconductor body and being electrically interconnected by another electrode layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • H01L33/325Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen characterised by the doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/385Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape the electrode extending at least partially onto a side surface of the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0016Processes relating to electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/38Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape
    • H01L33/382Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes with a particular shape the electrode extending partially in or entirely through the semiconductor body

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

본 발명의 실시예들에 따르면, 질화갈륨 기판; 질화갈륨 기판 상에 배치된 제1 도전형 반도체층; 제1 도전형 반도체층 상에 배치된 제2 도전형 반도체층 및 제2 도전형 반도체층과 제1 도전형 반도체층 사이에 개재된 활성층을 포함하는 메사; 메사 둘레를 따라 질화갈륨 기판의 가장자리 근처에서 제1 도전형 반도체층에 콘택하는 외부 접촉부 및 외부 접촉부로 둘러싸인 영역 내에서 제1 도전형 반도체층에 콘택하는 내부 접촉부를 포함하는 제1 콘택층; 메사 상에 배치되어 제2 도전형 반도체층에 콘택하는 제2 콘택층; 제1 콘택층에 중첩하는 제1 개구부 및 제2 콘택층에 중첩하는 제2 개구부를 가지는 상부 절연층; 제1 개구부를 통해 제1 콘택층에 전기적으로 접속하는 제1 전극 패드; 및 제2 개구부를 통해 제2 콘택층에 전기적으로 접속하는 제2 전극 패드를 포함하고, 전류 밀도 150A/㎠ 이상에서 구동 가능하며, 최대 접합 온도가 180℃ 이상인 발광 다이오드가 제공된다.

Description

고출력 발광 다이오드 및 그것을 갖는 발광 모듈{HIGH POWER LIGHT EMITTING DIODE AND LIGHT EMITTING MODULE HAVING THE SAME}
본 발명은 발광 다이오드 및 발광 모듈에 관한 것으로, 더욱 상세하게는 고전류 밀도에서 동작 가능한 고출력 발광 다이오드 및 그것을 갖는 발광 모듈에 관한 것이다.
일반적으로 질화갈륨(GaN), 질화알루미늄(AlN) 등과 같은 Ⅲ족 원소의 질화물은 열적 안정성이 우수하고 직접 천이형의 에너지 밴드(band) 구조를 가지므로, 최근 가시광선 및 자외선 영역의 광원용 물질로 많은 각광을 받고 있다. 특히, 질화인듐갈륨(InGaN)을 이용한 청색 및 녹색 발광 다이오드는 대규모 천연색 평판 표시 장치, 신호등, 실내 조명, 고밀도광원, 고해상도 출력 시스템과 광통신 등 다양한 응용 분야에 활용되고 있다.
종래, 이러한 Ⅲ족 원소의 질화물 반도체층을 성장시킬 수 있는 동종의 기판을 제작하는 것이 어려워, 유사한 결정 구조를 갖는 이종 기판이 질화물 반도체층의 성장 기판으로 사용되어 왔다. 특히, 이종기판으로는 육방 정계의 구조를 갖는 사파이어(Sapphire) 기판이 주로 사용된다. 최근에는 사파이어와 같은 이종기판 상에 질화물 반도체층과 같은 에피층들을 성장시키고, 상기 에피층들에 지지기판을 본딩한 후, 레이저 리프트 오프 기술 등을 이용하여 이종기판을 분리하여 수직형 구조의 고효율 발광 다이오드를 제조하는 기술이 개발되고 있다.
그러나 이종 기판 상에 성장된 에피층은 성장 기판과의 격자 부정합 및 열팽창 계수 차이에 기인하여 전위 밀도가 상대적으로 높다. 사파이어 기판 상에 성장된 에피층은 일반적으로 1E8/㎠ 이상의 전위밀도를 갖는 것으로 알려져 있다. 이러한 높은 전위밀도를 갖는 에피층으로는 발광 다이오드의 발광 효율을 개선하는데 한계가 있다.
더욱이, 발광 다이오드 제조 비용을 절감하기 위해 발광 다이오드의 단위면적당 방출되는 광량을 증가시킬 필요가 있으며, 이를 위해, 발광 다이오드를 고전류 밀도에서 동작시킬 필요가 있다. 그러나 고전류 밀도에서 발광 다이오드를 동작시킬 경우, 전위를 통해 전류가 집중되기 때문에 저전류 밀도에서 동작하는 경우에 비해, 내부양자효율이 감소하는 드룹(droop) 현상이 심하게 나타난다. 또한, 예컨대 350㎛×350㎛, 또는 1㎟ 등의 발광 면적에 비해 이종 기판 상에 성장된 에피층의 전체 두께가 수 ㎛로 매우 얇기 때문에, 수평 방향으로의 전류 분산에 어려움이 있어 전류 밀도가 증가할 수록 발광 효율은 더욱 감소한다.
나아가, 고전류 밀도에서 발광 다이오드를 동작시킬 경우, 발광 다이오드에서 상당한 열이 발생하여, 발광 다이오드의 접합 온도(junction temperature)를 상승시킨다. 종래, 발광 다이오드는 일반적으로 최대 접합 온도(Max Tj)가 150℃ 이하였으나, 이러한 발광 다이오드를 150A/㎠ 이상의 고전류 밀도에서 사용하기 위해서는, 접합 온도의 상승을 방지하기 위한 특단의 냉각 시스템이 요구된다.
본 발명이 해결하고자 하는 과제는, 단위 면적당 방출되는 광량이 증대된 고출력 발광 다이오드를 제공하는 것이다.
본 발명이 해결하고자 하는 또 다른 과제는, 수평 방향으로의 전류 분산 성능을 개선하여 넓은 면적에 걸쳐 전류를 고르게 분산시킬 수 있는 고출력 발광 다이오드를 제공하는 것이다.
본 발명이 해결하고자 하는 또 다른 과제는, 별도의 냉각 시스템이 없이도 고전류 밀도에서 사용할 수 있는 발광 다이오드를 제공하는 것이다.
본 발명의 실시예들에 따르면, 질화갈륨 기판; 상기 질화갈륨 기판 상에 배치된 제1 도전형 반도체층; 상기 제1 도전형 반도체층 상에 배치된 제2 도전형 반도체층 및 상기 제2 도전형 반도체층과 상기 제1 도전형 반도체층 사이에 개재된 활성층을 포함하는 메사; 상기 메사 둘레를 따라 상기 질화갈륨 기판의 가장자리 근처에서 상기 제1 도전형 반도체층에 콘택하는 외부 접촉부 및 상기 외부 접촉부로 둘러싸인 영역 내에서 상기 제1 도전형 반도체층에 콘택하는 내부 접촉부를 포함하는 제1 콘택층; 상기 메사 상에 배치되어 상기 제2 도전형 반도체층에 콘택하는 제2 콘택층; 상기 제1 콘택층에 중첩하는 제1 개구부 및 상기 제2 콘택층에 중첩하는 제2 개구부를 가지는 상부 절연층; 상기 제1 개구부를 통해 상기 제1 콘택층에 전기적으로 접속하는 제1 전극 패드; 및 상기 제2 개구부를 통해 상기 제2 콘택층에 전기적으로 접속하는 제2 전극 패드를 포함하고, 전류 밀도 150A/㎠ 이상에서 구동 가능하며, 최대 접합 온도가 180℃ 이상인 발광 다이오드가 제공된다.
또한, 본 발명의 다른 실시예들에 따르면, 인쇄회로보드; 상기 인쇄회로보드 상에 실장된 서브 마운트; 및 상기 서브 마운트 상에 플립 본딩된 상기 발광 다이오드를 포함하는 발광 모듈이 제공된다.
본 발명의 실시예들에 따르면, 별도의 냉각 시스템이 없이도 단위 면적당 방출되는 광량이 증대된 고출력 발광 다이오드 및 발광 모듈이 제공된다. 또한, 질화갈륨 기판을 사용하면서 제1 콘택층이 외부 접촉부 및 내부 접촉부를 포함하며, 메사 상에 제2 콘택층이 배치되므로, 수평 방향의 전류 분산 성능이 개선되어 발광 효율이 향상된 발광 다이오드가 제공된다.
도 1은 본 발명의 일 실시예에 따른 발광 다이오드의 개략적인 평면도 및 단면도를 나타낸다.
도 2 내지 도 11은 본 발명의 일 실시예에 따른 발광 다이오드 제조 방법을 설명하기 위한 개략적인 평면도들 및 단면도들이다.
도 12는 본 발명의 일 실시예에 따른 발광 다이오드의 질화갈륨 기판의 측면 형상을 설명하기 위한 개략적인 단면도이다.
도 13은 본 발명의 일 실시예에 따른 발광 다이오드 제조 방법에서 질화갈륨 기판의 후면에서의 레이저 스크라이빙 라인을 설명하기 위한 개략적인 평면도이다.
도 14a는 본 발명의 일 실시예에 따른 발광 다이오드의 질화갈륨 기판의 후면에 형성된 표면 텍스쳐를 설명하기 위한 SEM 이미지 사진들이다.
도 14b는 본 발명의 또 다른 실시예에 따른 발광 다이오드의 질화갈륨 기판의 후면에 형성된 표면 텍스쳐를 설명하기 위한 SEM 이미지 사진들이다.
도 15는 본 발명의 일 실시예에 따른 발광 모듈을 설명하기 위한 개략적인 단면도이다.
도 16은 본 발명의 일 실시예에 따른 발광 모듈의 서브 마운트 기판을 설명하기 위한 평면도 및 배면도이다.
도 17 내지 도 21은 본 발명의 또 다른 실시예에 따른 발광 다이오드 제조 방법을 설명하기 위한 평면도들 및 단면도들이다.
도 22 (a)는 성장 기판의 종류에 따라 전류 밀도 증가에 따른 외부 양자 효율의 변화를 나타내는 그래프이고, 도 22 (b)는 성장 기판의 종류에 따라 전류 밀도 증가에 따른 순방향 전압의 변화를 나타내는 그래프이다.
도 23은 성장 기판의 종류에 따른 신뢰성 테스트 결과를 보여주는 그래프이다.
도 24는 본 발명의 실시예들에 따라 제조된 발광 다이오드의 접합 온도에 대한 신뢰성 테스트 결과를 보여주는 그래프이다.
이하, 첨부한 도면들을 참조하여 본 발명의 실시예들을 상세히 설명하기로 한다. 다음에 소개되는 실시예들은 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것이다. 따라서, 본 발명은 이하 설명되는 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 그리고 도면들에 있어서, 구성요소의 폭, 길이, 두께 등은 편의를 위하여 과장되어 표현될 수 있다. 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다.
본 발명의 일 실시예에 따른 발광 다이오드는, 질화갈륨 기판; 상기 질화갈륨 기판 상에 배치된 제1 도전형 반도체층; 상기 제1 도전형 반도체층 상에 배치된 제2 도전형 반도체층 및 상기 제2 도전형 반도체층과 상기 제1 도전형 반도체층 사이에 개재된 활성층을 포함하는 메사; 상기 메사 둘레를 따라 상기 질화갈륨 기판의 가장자리 근처에서 상기 제1 도전형 반도체층에 콘택하는 외부 접촉부 및 상기 외부 접촉부로 둘러싸인 영역 내에서 상기 제1 도전형 반도체층에 콘택하는 복수개의 내부 접촉부를 포함하는 제1 콘택층; 상기 메사 상에 배치되어 상기 제2 도전형 반도체층에 콘택하는 제2 콘택층; 상기 제1 콘택층에 중첩하는 제1 개구부 및 상기 제2 콘택층에 중첩하는 제2 개구부를 가지는 상부 절연층; 상기 제1 개구부를 통해 상기 제1 콘택층에 전기적으로 접속하는 제1 전극 패드; 및 상기 제2 개구부를 통해 상기 제2 콘택층에 전기적으로 접속하는 제2 전극 패드를 포함하고, 전류 밀도 150A/㎠ 이상에서 구동 가능하며, 최대 접합 온도가 180℃ 이상이다.
종래 사파이어 기판과 같은 이종 기판에서 성장된 질화갈륨계 반도체층을 이용한 발광 다이오드는 효율 드룹(droop)에 기인하여 150A/㎠ 이상에서 외부양자효율이 20% 이상 감소하며, 최대 접합 온도가 150℃를 넘기 어려워 150A/㎠ 이상에서 장시간 구동이 어렵다. 이에 반해, 본 발명의 일 실시예에 따른 발광 다이오드는 질화갈륨 기판을 채택하고, 제1 콘택층이 외부 접촉부 및 내부 접촉부를 포함함으로써 제1 도전형 반도체층 내의 전류 분산을 돕고, 또한, 제2 콘택층이 메사 상에 배치되어 제2 도전형 반도체층 내의 전류 분산을 돕기 때문에, 최대 접합 온도가 180℃ 이상이 될 수 있으며, 전류 밀도 150A/㎠ 이상에서 장시간 구동 가능하다.
몇몇 실시예들에 있어서, 상기 복수개의 내부 접촉부는 상기 외부 접촉부로부터 연장할 수 있다. 이와 달리, 내부 접촉부는 상기 외부 접촉부로부터 이격될 수도 있다.
한편, 상기 제1 콘택층은 상기 메사로부터 이격되어 상기 메사 상부를 덮되, 상기 제2 콘택층에 중첩하는 개구부를 가질 수 있으며, 상기 제1 콘택층의 개구부의 측벽은 상기 상부 절연층에 의해 덮일 수 있다. 제1 콘택층이 메사 상부를 덮기 때문에, 제1 콘택층이 넓은 면적에 걸쳐 배치될 수 있다. 이에 따라, 외부 접촉부 및 내부 접촉부에 전류를 신속하게 공급할 수 있어 전류 분산 성능을 개선할 수 있으며, 나아가 발광 다이오드의 방열 특성을 개선할 수 있다.
상기 발광 다이오드는, 상기 제1 콘택층의 개구부 내부에 위치하며, 상기 제2 콘택층에 접속하는 중간 접속부를 더 포함할 수 있다. 상기 상부 절연층의 제2 개구부는 상기 중간 접속부를 노출시키고, 상기 제2 전극 패드는 상기 중간 접속부에 접속될 수 있다. 상기 중간 접속부를 배치함에 따라, 제1 전극 패드와 제2 전극 패드를 동일 레벨에 형성할 수 있어 발광 다이오드의 제조 공정을 더욱 안정화시킬 수 있다. 상기 중간 접속부는 상기 제1 콘택층과 동일 재료로 동일 공정에서 형성될 수 있다.
나아가, 상기 발광 다이오드는, 상기 제1 도전형 반도체층 및 상기 메사를 덮어, 상기 제1 콘택층을 상기 메사로부터 절연시킴과 아울러, 상기 제2 콘택층과 상기 중간 접속부 사이에 개재된 하부 절연층을 더 포함할 수 있다. 상기 하부 절연층은 상기 외부 접촉부 및 상기 내부 접촉부가 상기 제1 도전형 반도체층에 접촉하도록 상기 제1 도전형 반도체층을 노출시키는 개구부와 함께 상기 제2 콘택층을 노출시키는 개구부를 가지며, 상기 중간 접속부는 상기 하부 절연층의 개구부를 통해 상기 제2 콘택층에 접속할 수 있다.
한편, 상기 기판은 측면을 포함하되, 상기 기판의 측면은 상기 제1 도전형 반도체층이 위치하는 상기 기판의 전면에 수직한 면 및 상기 수직한 면과 상기 기판의 후면을 연결하는 경사면을 포함하고, 상기 기판의 두께는 300㎛ 이상일 수 있으며, 상기 수직한 면의 높이는 50 내지 200㎛일 수 있다. 수직한 면은 기판 크래킹에 의해 형성된 면일 수 있다. 질화갈륨 기판은 직사각형 또는 정사각형을 가질 수 있다. 이러한 질화갈륨 기판은 상대적으로 큰 성장 기판 상에 복수개의 발광 다이오드들이 형성된 웨이퍼를 다이싱하여 개별 발광 다이오드로 분할함으로써 형성된다. 300㎛ 이상의 상대적으로 두꺼운 질화갈륨 기판을 다이싱 할 때, 질화갈륨 기판의 결정 구조에 의해 직사각형이나 정사각형으로 분할되는 것이 아니라 원하지 않는 방향으로 크랙이 발생할 수 있다. 이를 방지하기 위해, 질화갈륨 기판을 레이저로 먼저 스크라이빙하여 50 내지 200㎛ 두께의 질화갈륨 기판을 남기고, 그 후, 크래킹함으로써 원하는 형상의 직사각형이나 정사각형의 기판을 얻을 수 있다.
상기 기판의 측면은 상기 수직한 면과 상기 기판의 전면을 연결하는 경사면을 더 포함할 수 있다. 경사면을 형성함으로써 발광 소자의 표면적을 증가시킬 수 있으며, 이에 따라, 외부 환경과 접촉하는 면적이 증가하여 열 방출에 도움을 줄 수 있다. 또한, 상기 기판의 전면에서 상기 수직한 면까지의 깊이는 30 내지 50㎛이고, 상기 기판의 후면으로부터 상기 수직한 면까지의 깊이는 80 내지 100㎛일 수 있다.
상기 기판의 전면에서 수직한 면까지의 깊이를 상기 기판의 후면으로부터 상기 수직한 면까지의 깊이보다 크게 할 경우, 광 생성을 위한 활성층 면적이 감소된다. 따라서, 기판의 전면에서 수직한 면까지의 깊이를 상대적으로 작게하여 활성층 면적을 확보할 수 있다.
한편, 상기 상부 절연층은 상기 기판의 가장자리를 따라 상기 수직한 면 위쪽의 경사면을 덮을 수 있다. 이에 따라, 상기 상부 절연층은 제1 도전형 반도체층의 측면을 덮으며, 따라서, 습기 등의 외부 환경으로부터 상기 제1 도전형 반도체층을 보호할 수 있다.
몇몇 실시예들에 있어서, 상기 기판은 후면에 표면 텍스쳐를 포함할 수 있다. 상기 표면 텍스쳐는 복수의 원뿔대를 포함할 수 있다. 표면 텍스쳐를 이용하여 광 추출 효율을 향상시킬 수 있다. 한편, 상기 발광 다이오드는 각각의 원뿔대 상에 위치하는 마스크들을 더 포함할 수 있다. 상기 마스크들은 예를 들어 SiO2로 형성될 수 있다. 질화갈륨 기판에 비해 상대적으로 굴절률이 작은 SiO2를 원뿔대 상에 배치함으로써 내부 전반사를 감소시켜 광 추출 효율을 더욱 증가시킬 수 있다.
나아가, 상기 마스크는 위로 볼록한 형상을 가질 수 있으며, 따라서 광 추출 효율이 더욱 향상된다.
한편, 본 실시예에 따른 발광 다이오드에 있어서, 상기 원뿔대들 사이에 뾰족한 골이 형성된다. 원뿔대들 사이에 평평한 바닥면을 갖는 골이 형성될 경우, 바닥면에서 내부 전반사가 발생하여 광 추출 효율이 감소할 수 있다. 특히, 질화갈륨 기판은 약 2.43의 높은 굴절률을 갖기 때문에, 골의 평평한 바닥면에서 내부 전반사기 일어나기 쉽다. 그러나 뾰족한 골에서는 평평한 바닥면이 없기 때문에 내부 전반사에 의한 광 손실을 방지할 수 있다.
한편, 상기 질화갈륨 기판은 8E17 ~ 1E18/㎤ 범위 내의 불순물 도핑 농도를 가질 수 있으며, 상기 제1 도전형 반도체층은 1E19~2E19/㎤의 불순물 도핑 농도를 가질 수 있다. 제1 도전형 반도체층의 불순물 도핑 농도를 질화갈륨 기판보다 높게 함으로써 제1 콘택층의 콘택저항을 낮출 수 있다. 또한, 질화갈륨 기판에 불순물을 도핑함으로써 질화갈륨 기판을 통해 전류를 분산시킬 수 있다.
본 발명의 다른 실시예에 따른 발광 모듈은, 인쇄회로보드; 상기 인쇄회로보드 상에 실장된 서브 마운트; 및 상기 서브 마운트 상에 플립 본딩된 앞서 설명한 발광 다이오드를 포함한다. 이에 따라, 발광 다이오드의 단위 면적당 광량이 증가된 발광 모듈이 제공될 수 있다.
한편, 상기 서브 마운트는, 베이스 기판; 상기 베이스 기판 상에 배치되며, 제1 상부 전극 및 제2 상부 전극을 포함하는 상부 전극 패턴; 상기 베이스 기판 바닥에 배치되며, 제1 하부 전극 및 제2 하부 전극을 포함하는 하부 전극 패턴; 및 상기 상부 전극 패턴과 상기 하부 전극 패턴을 연결하는 비아들을 포함할 수 있다.
또한, 상기 베이스 기판은 질화알루미늄 기판일 수 있으며, 상기 상부 전극 패턴 및 하부 전극 패턴은 Ni층/Cu층/Au층으로 형성될 수 있다.
나아가, 상기 하부 전극 패턴은 방열 패드를 더 포함할 수 있다. 상기 방열 패드는 상기 인쇄회로보드에 접촉하여 열 방출을 돕는다.
이하 도면들을 참조하여 본 발명의 실시예들에 대해 더욱 상세하게 설명한다.
도 1은 본 발명의 일 실시예에 따른 발광 다이오드를 설명하기 위한 개략적인 평면도(a) 및 단면도(b)이다. 여기서, 상기 단면도(b)는 평면도(a)에서 절취선 A-A를 따라 취해진 것이다.
도 1을 참조하면, 상기 발광 다이오드는 기판(21), 제1 도전형 반도체층(23), 활성층(25), 제2 도전형 반도체층(27), 제1 콘택층(35a), 제2 콘택층(31), 하부 절연층(33), 상부 절연층(37), 제1 전극 패드(39a) 및 제2 전극 패드(39b)를 포함한다.
기판(21)은 질화갈륨 기판으로 극성 또는 비극성 기판일 수 있다. 예컨대, 기판(21)은 c면 성장면을 갖는 극성 질화갈륨 기판, m면이나 a면 등의 비극성 성장면을 갖는 비극성 질화갈륨 기판, 또는 반극성 질화갈륨 기판일 수 있다. 본 명세서에 있어서, "질화갈륨 기판"은 질소와 갈륨의 화합물을 포함하는 기판을 의미하며, 갈륨 이외의 다른 3족 원소, 예컨대 Al 또는 In을 포함할 수도 있다. 또한, 질화갈륨 기판은 Si과 같은 불순물로 도핑될 수 있으며, 예컨대 8E17/㎤ 이상의 도핑 농도를 가질 수 있으며, 구체적으로는 8E17/㎤~1E18/㎤ 범위 내의 도핑 농도를 가질 수 있다.
기판(21)은 예컨대 약 300㎛ 이상의 두께를 가질 수 있다. 질화갈륨 기판(21)이 상대적으로 두꺼운 두께를 갖기 때문에 전류 분산에 용이하며 또한 발광 다이오드에서 생성되는 열을 수용할 수 있어 발광 다이오드의 열적 특성을 향상시킬 수 있다.
기판(21)은 평면도(a)에서 보듯이 직사각형 또는 정사각형의 외형을 가질 수 있으며, 측면을 가진다. 기판(21)의 크기는 예를 들어 1000㎛×1000㎛ 또는 700㎛×700㎛의 정사각형 형상 또는 유사한 크기의 직사각형 형상일 수 있다. 한편, 도 2(b)에 도시된 바와 같이, 기판(21)의 측면은 기판(21)의 전면에 수직한 면(C)을 포함하며, 수직한 면(C)과 기판(21)의 후면을 연결하는 경사면(L2)을 포함한다. 나아가, 기판(21)의 측면은 수직한 면(C)과 기판(21)의 전면을 연결하는 경사면(L1)을 포함할 수도 있다. 이들 경사면들은 레이저(L1, L2) 스크라이빙에 의해 형성될 수 있으며, 수직한 면(C)은 크래킹에 의해 형성될 수 있다. 경사면들(L1, L2)은 기판(21)의 네 측면들에 모두 형성될 수 있으나, 반드시 이에 한정되는 것은 아니며, 서로 대향하는 두 개의 측면에만 형성될 수도 있다.
한편, 기판(21)은 그 후면에 표면 텍스쳐(R)를 포함할 수 있다. 표면 텍스쳐(R)는 발광 다이오드의 광 추출 효율을 향상시킨다. 기판(21) 측면의 형상 및 표면 텍스쳐에 대해서는 뒤에서 더 상세하게 설명된다.
제1 도전형 반도체층(21)은 기판(21)의 전면 상에 배치된다. 제1 도전형 반도체층(21)은 기판(21) 상에서 성장된 층으로, 질화갈륨계 반도체층이다. 제1 도전형 반도체층(21)은 불순물, 예컨대 Si이 도핑된 질화갈륨계 반도체층일 수 있다. 불순물 도핑 농도는 예컨대, 1E19~2E19/㎤ 범위 내일 수 있다.
제1 도전형 반도체층 상에 메사(M)가 배치된다. 메사(M)는 제1 도전형 반도체층(23)으로 둘러싸인 영역 내측에 한정되어 위치할 수 있으며, 따라서, 제1 도전형 반도체층의 가장자리 근처 영역들은 메사(M)에 의해 덮이지 않고 외부에 노출된다.
메사(M)는 제2 도전형 반도체층(27)과 활성층(25)을 포함한다. 상기 활성층(25)은 제1 도전형 반도체층(23)과 제2 도전형 반도체층(27) 사이에 개재된다. 활성층(25)은 단일 양자우물 구조 또는 다중 양자우물 구조를 가질 수 있다. 활성층(25) 내에서 우물층의 조성 및 두께는 생성되는 광의 파장을 결정한다. 특히, 우물층의 조성을 조절함으로써 자외선, 청색광 또는 녹색광을 생성하는 활성층을 제공할 수 있다.
한편, 제2 도전형 반도체층(27)은 p형 불순물, 예컨대 Mg이 도핑된 질화갈륨계 반도체층일 수 있다. 제1 도전형 반도체층(23) 및 제2 도전형 반도체층(27)은 각각 단일층일 수 있으나, 이에 한정되는 것은 아니며, 다중층일 수도 있으며, 초격자층을 포함할 수도 있다.
한편, 상기 메사(M)는 핑거부(F)와 손바닥부(P)를 포함할 수 있다. 핑거부들(F) 사이에는 만입부가 형성되며, 만입부에 의해 제1 도전형 반도체층(23)의 상면이 노출된다. 본 실시예에 있어서, 메사(M)가 핑거부(F)와 손바닥부(P)를 갖는 것으로 설명하지만, 이에 한정되는 것은 아니다. 예를 들어, 메사(M)는 기판(21)과 유사한 사각형 형상을 갖고, 메사(M)의 내부에 제1 도전형 반도체층(23)을 노출시키는 관통홀들이 형성될 수도 있다. 또한, 본 실시예에 있어서, 핑거부(F)가 3개인 것으로 도시하였으나, 핑거부(F)의 개수는 3개에 한정되는 것은 아니며, 2개 또는 4개 이상일 수도 있다.
한편, 제2 콘택층(31)은 메사(M) 상부에 배치되어 제2 도전형 반도체층(27)에 콘택한다. 제2 콘택층(31)은 메사(M) 상부 영역에서 메사(M)의 거의 전영역에 걸쳐 배치될 수 있다. 예를 들어, 제2 콘택층(31)은 메사(M) 상부 영역의 80% 이상, 나아가 90% 이상을 덮을 수 있다.
제2 콘택층(31)은 반사성을 갖는 금속층을 포함할 수 있으며, 따라서, 활성층(25)에서 생성되어 제2 콘택층(31)으로 진행하는 광을 기판(21) 측으로 반사시킬 수 있다. 이와 달리, 상기 제2 콘택층(31)은 예컨대 ITO(indidum tin oxide) 또는 ZnO와 같은 투명 산화물층일 수도 있다.
한편, 예비 절연층(29)이 상기 제2 콘택층(31) 주변의 메사(M)를 덮을 수 있다. 예비 절연층(29)은 예컨대 SiO2로 형성될 수 있으며, 메사(M)을 측면을 덮고 나아가 제1 도전형 반도체층(23)의 일부 영역을 덮을 수 있다.
한편, 제1 콘택층(35a)이 메사(M) 상부 영역을 덮는다. 제1 콘택층(35a)은 제1 도전형 반도체층(23)에 접촉하는 내부 접촉부(35a1) 및 외부 접촉부(35a2)를 포함한다. 외부 접촉부(35a2)는 메사(M) 둘레를 따라 기판(21)의 가장자리 근처에서 제1 도전형 반도체층(23)에 접촉하며, 내부 접촉부(35a1)는 외부 접촉부(35a2)f로 둘러싸인 영역 내부에서 제1 도전형 반도체층(23)에 콘택한다. 도 1(a)에 도시된 바와 같이, 또한, 도 7에서 더 잘 알 수 있듯이, 상기 내부 접촉부(35a1)는 외부 접촉부(35a2)에 연결될 수 있다. 그러나 본 발명은 이에 한정되는 것은 아니며, 내부 접촉부(35a1)가 외부 접촉부(35a2)로부터 이격될 수도 있다.
한편, 상기 제1 콘택층(35a)은 상기 메사(M) 상부 영역에 개구부를 가질 수 있으며, 상기 개구부 내부에 중간 접속부(35b)가 배치될 수 있다. 중간 접속부(35b)는 제1 콘택층(35a)을 형성하는 동안 함께 형성될 수 있다.
하부 절연층(33)이 상기 제1 콘택층(35a)과 상기 메사(M) 사이에 배치되어 제1 콘택층(35a)을 메사(M) 및 제2 콘택층(31)으로부터 절연시킬 수 있다. 또한, 하부 절연층(33)은 예비 절연층(29)을 덮으며, 제1 도전형 반도체층(23)을 노출시키는 개구부들을 가진다. 상기 하부 절연층(33) 및 예비 절연층(29)에 형성된 개구부들에 의해 앞서 설명한 외부 접촉부(35a2) 및 내부 접촉부(35a1) 영역이 정의될 수 있다. 상기 하부 절연층(33)은 또한 중간 접속부(35b)와 제2 콘택층(31) 사이에 개재될 수 있으며, 제2 콘택층(31)을 노출시키는 개구부(원형 점선부분들)를 가질 수 있다. 중간 접속부(35b)는 이들 개구부들을 통해 제2 콘택층(31)에 접속할 수 있다.
상부 절연층(37)은 제1 콘택층(35a) 및 중간 접속부(35b) 상에 배치되며, 제1 콘택층(35a)을 노출시키는 개구부(37a) 및 중간 접속부(35b)를 노출시키는 개구부(37b)를 가진다. 상부 절연층(37)은 또한 기판(21)의 경사면(L1)을 덮으며, 기판(21) 상부에 배치된 제1 도전형 반도체층(23)의 측면을 덮는다. 또한, 상부 절연층(37)은 상기 제1 콘택층(35a)의 개구부의 측벽 및 중간 접속부(35b)의 측벽을 덮을 수 있다.
상기 하부 절연층(33) 및 상부 절연층(37)은 SiO2의 단일층으로 형성될 수 있으나 이에 한정되는 것은 아니다. 예를 들어, 하부 절연층(33) 또는 상부 절연층(37)은 실리콘질화막과 실리콘산화막을 포함하는 다층 구조를 가질 수도 있으며, 실리콘산화막과 타이타늄산화막을 교대로 적층한 분포브래그 반사기일 수도 있다.
제1 전극 패드는 상부 절연층(37)의 개구부(37a)를 통해 제1 콘택층(35a)에 전기적으로 접속하며, 제2 전극 패드는 개구부(37b)를 통해 중간 접속부(35b)에 접속한다. 따라서, 제2 전극 패드는 중간 접속부(35b)를 거쳐 제2 콘택층(31)에 전기적으로 연결될 수 있다.
도 1은 설명의 편의를 위해 개략적으로 도시된 것이며, 후술하는 발광 다이오드 제조 방법을 통해 발광 다이오드의 구조 및 각 구성요소들이 더욱 명확하게 이해될 것이다.
도 2 내지 도 12는 본 발명의 일 실시예에 따른 발광 다이오드 제조 방법을 설명하기 위한 도면들로서, 도 2 내지 도 12의 각 도면들에서 (a)는 평면도를 (b)는 절취선 B-B를 따라 취해진 단면도를 나타낸다.
우선, 도 2를 참조하면, 기판(21) 상에 제1 도전형 반도체층(23), 활성층(25) 및 제2 도전형 반도체층(27)이 성장된다. 상기 기판(21)은 질화갈륨 기판으로, 극성, 비극성 또는 반극성 기판일 수 있다. 예컨대, 기판(21)은 c면 성장면 또는 m면이나 a면 성장면을 가질 수 있다. 상기 기판(21)은 아모노서멀 성장 방법, 플럭스 법, 또는 HVPE(Hydide vapor phase epitaxy) 등에 의해 성장된 질화갈륨 결정괴를 약 300㎛ 이상의 두께로 잘라내어 형성된 것일 수 있다. 이러한 방법에 의해 전위(dislocation) 밀도가 낮은 질화갈륨 기판이 제공될 수 있다.
한편, 제1 도전형 반도체층(23)은 예컨대 n형 질화갈륨계층을 포함하고, 제2 도전형 반도체층(27)은 p형 질화갈륨계층을 포함할 수 있다. 또한, 활성층(25)은 단일양자우물 구조 또는 다중양자우물 구조일 수 있으며, 우물층과 장벽층을 포함할 수 있다. 또한, 우물층은 요구되는 광의 파장에 따라 그 조성원소가 선택될 수 있으며, 예컨대 InGaN을 포함할 수 있다.
상기 제1 도전형 반도체층(23), 활성층(25) 및 제2 도전형 반도체층(27)은 유기금속 화학기상 성장(MOCVD)법을 이용하여 질화갈륨 기판(21) 상에 성장될 수 있다. 여기서, 상기 제1 도전형 반도체층(23)은 n형 불순물, 예컨대 Si가 8E17/㎤ 이상의 농도로 도핑될 수 있다. 제1 도전형 반도체층(23)은 구체적으로는 8E17/㎤~1E18/㎤ 범위 내의 도핑 농도를 가질 수 있다. 제1 도전형 반도체층(23)은 질화갈륨 기판(21)에 비해 상대적으로 높은 도핑 농도를 가지며, 따라서, 도핑 농도에 의해 질화갈륨 기판(21)과 구별될 수 있다.
이어서, 제2 도전형 반도체층(27) 및 활성층(25)을 패터닝하여 제1 도전형 반도체층(23) 상에 배치된 메사(M)가 형성된다. 메사(M)는 각각 활성층(25) 및 제2 도전형 반도체층(27)을 포함하며, 나아가, 제1 도전형 반도체층(23)의 일부 두께를 포함할 수도 있다. 또한, 메사(M)는 제1 도전형 반도체층(23)의 가장자리 영역 내측에 배치되며, 핑거부(F)와 손바닥부(P)를 포함할 수 있다. 도 2에 도시한 바와 같이, 핑거부(F)는 3개일 수 있으나, 이에 한정되는 것은 아니며, 2개 또는 4개 이상일 수 있다. 이에 따라, 상기 메사(M) 둘레의 제1 도전형 반도체층(23)이 노출되며, 상기 핑거부들(F) 사이에 만입부(B)가 배치된다. 만입부(B)는, 특별히 한정되는 것은 아니지만, 메사(M)의 일측변 길이의 약 1/2까지 만입될 수 있다. 따라서, 핑거부들(F)은 손바닥부(P)와 대체로 동일한 길이를 가질 수 있다. 핑거부들(F)과 손바닥부(P)를 배치함으로써, 제2 도전형 반도체층(27)이 하나로 연결될 수 있어 전류 분산을 위한 후속 공정들이 단순해질 수 있다.
상기 메사(M)의 측면은 포토레지스트 리플로우와 같은 기술을 사용함으로써 경사지게 형성될 수 있다. 메사(M) 측면의 경사진 프로파일은 활성층(25)에서 생성된 광의 추출 효율을 향상시킨다.
도 3을 참조하면, 제1 도전형 반도체층(23) 및 메사(M)를 덮도록 예비 절연층(29)이 형성된다. 예비 절연층(29)은 예컨대 화학기상증착 기술을 이용하여 SiO2로 형성될 수 있다.
상기 예비 절연층(29) 상에 포토레지스트 패턴(30)이 형성된다. 포토레지스트 패턴(30)은 메사(M) 상부 영역을 노출시키는 개구부를 가진다. 이 개구부는 메사(M)의 형상과 대체로 유사할 수 있으나, 메사(M)보다 약간 작게 형성될 수 있다. 즉, 포토레지스트가 메사(M)의 가장자리부들을 덮을 수 있다. 또한, 이 개구부는 입구의 폭보다 바닥부의 폭이 넓도록 형성될 수 있다. 예를 들어, 네거티브 타입의 포토레지스트를 사용함으로써 위와 같은 형상의 개구부를 갖는 포토레지스트 패턴(30)을 용이하게 형성할 수 있다.
이어서, 상기 포토레지스트 패턴(30)을 식각 마스크로 사용하여 예비 절연층(29)이 식각되고, 이에 따라 제2 도전형 반도체층(27)이 노출된다. 예비 절연층(29)은 예를 들어 습식 식각 기술을 이용하여 식각될 수 있다.
그 후, 제2 콘택층(31)이 형성된다. 제2 콘택층(31)은 전자빔 증발법을 이용한 코팅 기술에 의해 메사(M) 상에 형성될 수 있다.
도 4를 참조하면, 포토레지스트 패턴(30)이 제거된다. 이와 함께 포토레지스트 상에 증착된 물질 또한 포토레지스트 패턴(30)과 함께 제거된다. 이에 따라, 메사(M) 상에 제2 도전형 반도체층(27)에 콘택하는 제2 콘택층(31)이 잔류하며, 제2 콘택층(31) 주위에 예비 절연층(29)이 잔류한다. 예비 절연층(29)은 또한 제1 도전형 반도체층(23)의 노출된 부분을 덮을 수 있다.
여기서, 제2 콘택층(31)은 단일의 금속 물질층일 수 있으나, 이에 한정되는 것은 아니며, 다중층일 수 있다. 예컨대, 제2 콘택층(31)은 반사층, 캐핑층 및 산화 방지층을 포함할 수 있다. 또한, 반사층과 캐핑층 사이에 응력 완화층이 개재될 수도 있다.
반사층은 예컨대, Ni/Ag/Ni/Au로 형성될 수 있으며, 캐핑층은 반사층의 상면 및 측면을 덮어 반사층을 보호할 수 있다. 반사층은 전자빔 증발법을 이용하여 형성되고, 캐핑층은 스퍼터링 기술을 이용하여 또는 기판(21)을 기울여서 회전시키며 진공 증착하는 전자-빔 증발법(예컨대, planetary e-beam evaporation)을 이용하여 형성될 수 있다. 캐핑층은 Ni, Pt, Ti, 또는 Cr을 포함할 수 있으며, 예컨대 1쌍 이상의 Ni/Pt 또는 1쌍 이상의 Ni/Ti를 증착하여 형성될 수 있다. 이와 달리, 상기 캐핑층은 TiW, W, 또는 Mo을 포함할 수 있다.
응력 완화층은 반사층과 캐핑층 사이에 개재되어 응력을 완화시키며, 따라서 반사층과 캐핑층의 금속 물질에 따라 다양하게 선택될 수 있다. 예컨대, 상기 반사층이 Al 또는 Al합금이고, 캐핑층이 W, TiW 또는 Mo을 포함하는 경우, 응력 완화층은 Ag, Cu, Ni, Pt, Ti, Rh, Pd 또는 Cr의 단일층이거나, Cu, Ni, Pt, Ti, Rh, Pd 또는 Au의 복합층일 수 있다. 또한, 반사층이 Al 또는 Al합금이고, 캐핑층이 Cr, Pt, Rh, Pd 또는 Ni인 경우, 응력 완화층은 Ag 또는 Cu의 단일층이거나, Ni, Au, Cu 또는 Ag의 복합층일 수 있다.
또한, 반사층이 Ag 또는 Ag합금이고, 캐핑 금속부(32)가 W, TiW 또는 Mo을 포함하는 경우, 응력 완화층은 Cu, Ni, Pt, Ti, Rh, Pd 또는 Cr의 단일층이거나, Cu, Ni, Pt, Ti, Rh, Pd, Cr 또는 Au의 복합층일 수 있다. 또한, 반사층이 Ag 또는 Ag합금이고, 캐핑층이 Cr 또는 Ni인 경우, 응력 완화층은 Cu, Cr, Rh, Pd, TiW, Ti의 단일층이거나, Ni, Au 또는 Cu의 복합층일 수 있다.
또한, 산화 방지층은 캐핑층의 산화를 방지하기 위해 Au를 포함하며, 예컨대 Au/Ni 또는 Au/Ti로 형성될 수 있다. Ti는 SiO2와 같은 산화물층의 접착력이 양호하므로 선호된다. 산화 방지층은 또한 스퍼터링 또는 기판(21)을 기울여서 회전시키며 진공 증착하는 전자-빔 증발법(예컨대, planetary e-beam evaporation)을 이용하여 형성될 수 있다.
본 실시예에 있어서, 제2 콘택층(31)이 금속층인 것에 대해 설명하나, 이에 한정되는 것은 아니며, 제2 도전형 반도체층(27)에 오믹 콘택하는 물질이면 어느 것이든 제2 콘택층(31)으로 사용될 수 있다. 예를 들어, 제2 콘택층(31)은 ITO 또는 ZnO와 같은 투명 도전층일 수도 있다.
도 5를 참조하면, 메사(M) 및 제1 도전형 반도체층(23)을 덮는 하부 절연층(33)이 형성된다. 하부 절연층(33)은 제2 콘택층(31)을 덮고 또한 예비 절연층(29)을 덮는다. 한편, 하부 절연층(33)은 특정 영역에서 제1 도전형 반도체층(23)에 전기적 접속을 허용하기 위한 개구부들(33a1, 33a2) 및 제2 콘택층(31)에 전기적 접속을 허용하기 위한 개구부들(33b)을 갖는다. 개구부들(33a1, 33a2)는 하부 절연층(33) 및 예비 절연층(29)을 관통하여 형성될 수 있다. 한편, 개구부(33b)는 제2 콘택층(31) 상에 위치한다.
개구부들(33a1)은 핑거부들(F) 사이에 위치하여 제1 도전형 반도체층(23)을 노출시킨다. 또한, 개구부(33a2)는 메사(M) 둘레를 따라 기판(21) 가장자리 근처에 형성된다. 개구부(33a2)와 개구부(33a1)는 서로 연결될 수도 있으나, 이에 한정되는 것은 아니며, 서로 이격될 수도 있다.
한편, 개구부(33b)는 메사(M)의 손바닥부(P) 상에 배치된다. 개구부(33b)의 개수는 특별히 제한되지 않으며, 하나 이상일 수 있다.
상기 하부 절연층(33)은 화학기상증착(CVD) 등의 기술을 사용하여 SiO2 등의 산화막, SiNx 등의 질화막, MgF2의 절연막으로 형성될 수 있으며, 사진 및 식각 기술을 이용하여 개구부들(33a1, 33a2, 33b)이 형성될 수 있다. 나아가, 제1 도전형 반도체층(23)의 가장자리 근처의 하부 절연층(33)은 제거되어 제1 도전형 반도체층이 노출될 수 있다. 하부 절연층(33)은 기판(21)의 가장자리로부터 약 5㎛ 이상 제거될 수 있다.
상기 하부 절연층(33)은 예컨대 4000~12000Å의 두께로, 단일층 또는 다중층으로 형성될 수 있다. 나아가, 하부 절연층(33)은 저굴절 물질층과 고굴절 물질층이 교대로 적층된 분포 브래그 반사기(DBR)로 형성될 수 있다. 예컨대, SiO2/TiO2나 SiO2/Nb2O5 등의 층을 적층함으로써 반사율이 높은 절연 반사층을 형성할 수 있다.
도 6을 참조하면, 제1 도전형 반도체층(23) 및 기판(21)의 가장자리 부분에 레이저 스크라이빙 공정이 수행된다. 이에 따라, 기판(21)의 가장자리 부분에 경사면(L1)이 형성된다. 레이저 스크라이빙에 의해 형성되는 스크라이빙 깊이는 약 30 내지 50㎛ 범위 내일 수 있다. 또한, 레이저 스크라이빙에 의해 기판(21)의 가장자리로부터 리세스되는 폭은 대략 5㎛ 이내일 수 있다.
본 실시예에 있어서, 경사면(L1)이 형성되는 것으로 설명하지만, 이것은 생략될 수도 있다. 다만, 경사면(L1)을 형성함으로써 브레이킹 또는 크래킹 공정이 용이하며, 또한, 제1 도전형 반도체층(23)의 측면을 후술할 상부 절연층(37)으로 덮어 외부 환경으로부터 보호할 수 있는 등의 효과가 있다. 한편, 레이저 스크라이빙 후에 인산 등의 케미컬을 이용하여 기판(21)의 측면에 형성된 오염물질을 제거할 수 있다.
도 7을 참조하면, 상기 하부 절연층(33) 상에 제1 콘택층(35a) 및 중간 접속부(35b)가 형성된다. 제1 콘택층(35a) 및 중간 접속부(35b)는 예컨대 리프트 오프 기술을 이용하여 동일한 재료로 동시에 형성될 수 있다.
제1 콘택층(35a)은 중간 접속부(35b)가 형성될 영역을 제외하고 제1 도전형 반도체층(23) 상부의 대부분의 영역을 덮는다. 제1 콘택층(35a)은 하부 절연층(33)에 의해 메사(M) 및 제2 콘택층(31)으로부터 절연된다. 제1 콘택층(35a)은 중간 접속부(35b)를 둘러싸는 개구부를 가지며, 중간 접속부(35b)는 상기 개구부 내에 형성된다.
또한, 상기 제1 콘택층(35a)은 하부 절연층(33)의 개구부(33a1)를 통해 제1 도전형 반도체층(23)에 접촉하는 내부 접촉부(35a1) 및 개구부(33a2)를 통해 제1 도전형 반도체층(23)에 접촉하는 외부 접촉부(35a2)를 포함한다. 외부 접촉부(35a2)는 메사(M) 둘레를 따라 제1 도전형 반도체층(23)의 가장자리 근처에서 제1 도전형 반도체층(23)에 접촉하며, 내부 접촉부(35a1)는 외부 접촉부(35a2)로 둘러싸인 영역 내에서, 특히 핑거부들(F) 사이의 영역에서 제1 도전형 반도체층(23)에 접속한다. 특히, 3개 이상의 핑거부들(F)이 형성되고, 복수개의 내부 접촉부들(35a1)이 제1 도전형 반도체층(23)에 접속할 수 있다. 이에 따라, 외부 접촉부들(35a2)와 함께 복수의 내부 접촉부들(35a1)이 제1 도전형 반도체층(23)의 다양한 지점들에 접속하므로, 전류를 용이하게 분산시킬 수 있다.
한편, 상기 제1 콘택층(35a)의 개구부는 상기 하부 절연층(33)의 개구부(33b)를 둘러싸도록 형성되며, 중간 접속부(35b)는 하부 절연층(33)의 개구부(33b)를 덮는다. 이에 따라, 중간 접속부(35b)는 하부 절연층(33)의 개구부(33b)를 통해 제2 콘택층(31)에 접속한다. 중간 접속부(35b)는 또한 제2 콘택층(31)에 중첩하여 배치되며, 특히 메사(M)의 손바닥부(P) 상에 한정되어 위치할 수 있다.
본 실시예에 따르면, 상기 제1 콘택층(35a)은 개구부를 제외한 제1 도전형 반도체층(23)의 거의 전 영역 상부에 형성된다. 따라서, 상기 제1 콘택층(35a)을 통해 전류가 쉽게 분산될 수 있다. 제1 콘택층(35a)은 Al층과 같은 고반사 금속층을 포함할 수 있으며, 고반사 금속층은 Ti, Cr 또는 Ni 등의 접착층 상에 형성될 수 있다. 또한, 상기 고반사 금속층 상에 Ni, Cr, Au 등의 단층 또는 복합층 구조의 보호층이 형성될 수 있다. 상기 제1 콘택층(35a)은 예컨대, Cr/Al/Ni/Ti/Ni/Ti/Au/Ti의 다층 구조를 가질 수 있다.
도 8을 참조하면, 상기 제1 콘택층(35a) 상에 상부 절연층(37)이 형성된다. 상부 절연층(37)은 제1 콘택층(35a)을 노출시키는 개구부(37a)와 함께, 중간 접속부(35b)를 노출시키는 개구부(37b)를 갖는다. 상기 개구부(37a)는 메사(M)의 핑거부들(F)에 걸쳐 제1 콘택층(35a)에 중첩하도록 형성될 수 있으며, 개구부(37b)는 메사(M)의 손바닥부(P) 상에서 제2 콘택층(31)에 중첩하도록 중간 접속부(35b) 상에 형성될 수 있다.
개구부(37b)는 제2 콘택층(31)에 중첩하도록 위치하며, 중간 접속부(35b)보다 작은 크기를 가질 수 있다. 따라서, 중간 접속부(35b)의 가장자리 및 측벽은 상부 절연층(37)으로 덮인다. 나아가, 제1 콘택층(35a)의 개구부의 측벽 또한 상부 절연층(37)으로 덮인다.
상기 상부 절연층(37)은 실리콘 질화막 또는 실리콘 산화막의 단일층으로 형성될 수 있으나, 이에 한정되는 것은 아니며, 다중층 또는 분포 브래그 반사기 구조로 형성될 수 있다. 상부 절연층(37)은 또한 경사면(L1)을 덮어 제1 도전형 반도체층(23)의 측면을 덮을 수 있다.
도 9를 참조하면, 기판(21)의 후면에 표면 텍스쳐(R)가 형성된다. 표면 텍스쳐(R)는 예컨대 SiO2와 같은 저유전율을 갖는 물질의 마스크를 형성하고, 이를 식각 마스크로 이용하여 기판(21)의 후면을 건식 식각함으로써 형성될 수 있다. 표면 텍스쳐(R)는 예컨대 복수의 원뿔대들을 포함할 수 있으며, 원뿔대들 사이의 골은 뾰족한 형상을 가질 수 있다. 또한, 마스크는 원뿔대 상에 잔류할 수 있다. 표면 텍스쳐(R)의 형상에 대해서는 도 14를 참조하여 뒤에서 자세하게 설명된다.
도 10을 참조하면, 상기 상부 절연층(37) 상에 제1 전극 패드(39a) 및 제2 전극 패드(39b)가 형성된다. 제1 전극 패드(39a)는 상부 절연층(37)의 개구부(37a)를 통해 제1 콘택층(35a)에 접속하고, 제2 전극 패드(39b)는 상부 절연층(37)의 개구부(37b)을 통해 중간 접속부(35b)에 접속한다. 상기 제1 전극 패드(39a) 및 제2 전극 패드(39b)는 발광 다이오드를 서브 마운트 또는 인쇄회로보드 등에 실장하기 위해 사용된다. 제1 전극 패드(39a)와 제2 전극 패드(39b)는 AuSn으로 형성될 수 있으며, 공융 본딩을 통해 서브마운트 등에 실장될 수 있다.
제1 및 제2 전극 패드들 사이의 거리(D)는 단락이 방지되도록 약 80㎛ 이상일 수 있다.
한편, 상기 제1 및 제2 전극 패드(39a, 39b)는 동일 공정으로 함께 형성될 수 있으며, 예컨대 리프트 오프 기술을 사용하여 형성될 수 있다.
도 11을 참조하면, 기판(21)의 후면에 레이저 스크라이빙 공정에 의해 경사면(L2)이 형성된다. 경사면(L2)은 기판(21) 전면에 형성된 경사면(L1)에 대향하도록 형성된다. 레이저 스크라이빙에 의해 형성되는 스크라이빙 깊이는 대략 80 내지 100㎛ 범위 내일 수 있다. 이에 따라, 경사면(L1)과 경사면(L2) 사이의 기판의 두께는 대략 50 내지 200㎛ 범위 내가 된다. 레이저 스크라이빙 후에 인산 등으로 기판(21)의 측면에 형성된 오염물질을 제거할 수 있다.
이어서, 기판(21)을 크래킹하여 개별 발광 다이오드로 분할함으로써 개별적으로 분리된 발광 다이오드가 제공된다. 상기 크래킹에 의해 기판(21)의 경사면들(L1, L2) 사이에 크랙면(C)이 형성된다.
본 실시예에 있어서, 경사면(L1, L2)은 레이저 스크라이빙에 의해 형성되고, 크랙면(C)은 기판(21)의 크래킹에 의해 형성된다. 도 12는 경사면들(L1, L2) 및 크랙면(C)을 설명하기 위한 개략적인 확대단면도이다. 도 12에 도시한 바와 같이, 크랙면(C)은 대체로 기판(21)의 전면에 대해 수직하게 형성될 것이다. 기판(21)의 크랙에 의해 형성되는 크랙면(C)의 두께는 약 50 내지 200㎛ 범위 내이다. 크랙되는 부분의 기판(21) 두께가 200㎛ 이하가 되도록 함으로써 원하지 않는 방향으로 크랙이 발생하는 것을 방지할 수 있으며, 이에 따라, 요구되는 사각형 형상의 발광 다이오드가 제공될 수 있다. 크랙되는 기판(21) 두께를 200㎛ 이하가 되도록 할 수 있는 한, 경사면들(L1, L2) 중 어느 하나만 형성될 수도 있다. 다만, 활성 영역의 면적을 확보하기 위해 경사면(L1) 보다는 경사면(L2)이 형성되는 것이 바람직하다.
한편, 기판(21) 전면 경사면(L1)에 형성되는 깊이(D1)는 50㎛를 넘지 않으며, 약 30 내지 50㎛ 범위 내일 수 있다. 또한, 레이저 스크라이빙에 의해 기판(21) 전면에서 크랙면(C)으로부터 리세스되는 폭은 약 5㎛ 이내이다. 또한, 기판(21) 후면 경사면(L2)에 형성되는 깊이(D2)는 80㎛ 이상으로, 약 80 내지 100㎛ 범위 내일 수 있다. 또한, 레이저 스크라이빙에 의해 기판(21) 전면에서 크랙면(C)으로부터 리세스되는 폭은 약 10㎛ 이내이다. 한편, 이들 경사면들(L1, L2)은 크랙면(C)에 비해 거친 표면을 가지며, 따라서, 내부 전반사를 줄여 광 추출 효율을 향상시킬 수 있다.
본 발명의 실시예에 있어서, 경사면들(L1, L2)이 일정한 각도로 경사진 것으로 도시하였으나, 이에 한정되는 것은 아니다. 경사면들(L1, L2)은 레이저 스크라이빙에 의해 형성되므로, 일정한 각도로 경사지기보다는 크랙면(C)으로부터 리세스되어 대체로 기판(21) 전면에 수직한 형상을 가질 수 있다. 다만, 경사면(L2)은 경사면(L1)에 비해 크랙면(C)으로부터 더 리세스된다.
도 13은 경사면(L2)이 형성되는 것을 설명하기 위해 표면 텍스쳐(R)가 형성된 웨이퍼에 수행되는 레이저 스크라이빙 공정을 설명하기 위한 개략적인 평면도이다.
도 13을 참조하면, 하나의 웨이퍼에는 복수의 발광 다이오드 영역들이 정의되며, 각 발광 다이오드 영역의 기판(21) 후면에 각각 표면 텍스쳐(R)가 형성된다. 표면 텍스쳐들(R)은 서로 분리되며 이들 사이에 평평한 면이 잔류한다. 표면 텍스쳐들(R) 사이의 이 평평한 영역을 따라 레이저 빔이 조사되어 레이저 스크라이빙이 수행된다. 레이저 빔은 약 20㎛ 이내의 직경을 가지며, 따라서 약 20㎛ 이내의 폭을 가지는 스크라이빙 라인들(DL)이 형성된다. 표면 텍스쳐들(R) 사이의 폭은 20㎛ 이상, 구체적으로는 약 30㎛ 이상일 수 있으며, 40㎛ 이하일 수 있다. 웨이퍼는 이들 스크라이빙 라인들(DL)을 따라 크래킹되어 개별 발광 다이오드로 분할된다. 따라서, 표면 텍스쳐들(R) 사이의 폭을 40㎛ 이하로 함으로써, 발광 다이오드의 기판(21) 후면에 형성되는 표면 텍스쳐의 면적을 증가시킬 수 있으며, 이에 따라 광 추출 효율을 향상시킬 수 있다.
한편, 크래킹은 대체로 스크라이빙 라인(DL)의 중앙을 따라 발생될 것이다. 따라서, 각 발광 다이오드에서 기판(21) 후면에 형성되는 경사면(L2)의 리세스되는 폭은 대체로 상기 레이저 빔 직경의 1/2이 될 것이다.
한편, 도 14는 표면 텍스쳐(R)를 설명하기 위한 SEM 이미지 사진들이다. 여기서, 도 14a는 c면 성장면을 갖는 질화갈륨 기판(21)의 후면에 형성된 표면 텍스쳐(R)이고, 도 14b는 m면 성장면을 갖는 질화갈륨 기판(121)의 후면에 형성된 표면 텍스쳐(R)를 보여준다. 각 사진들에서 오른쪽 사진은 확대 단면을 보여준다.
표면 텍스쳐(R)는 기판(21) 후면에 마스크 패턴을 형성하고, 이를 식각 마스크로 이용하여 질화갈륨 기판(21)을 식각함으로써 형성될 수 있다. 마스크 패턴의 각 마스크들(41)은 SiO2로 형성될 수 있다. 도 14a 및 도 14b에 보이듯이, 원뿔대들(43)이 형성되며, 각 원뿔대들(43) 상에 마스크들(41)이 잔류할 수 있다. 원뿔대들(43)은 벌집 모양으로 배치될 수 있다. 또한, 상기 마스크들(41)은 약간 볼록한 형상을 가질 수 있다.
질화갈륨 기판(21, 121)은 약 2.43의 높은 굴절률을 갖는다. 이 때문에, 기판(21, 121) 후면에서 내부 전반사가 발생되기 쉽다. 그러나 원뿔대들(43)을 형성함으로써 내부 전반사를 줄일 수 있다. 더욱이, SiO2와 같이 굴절률이 낮은 마스크를 각 원뿔대(43) 상에 남겨 놓음으로써, 원뿔대(43)의 평평한 면에서 내부 전반사가 발생하는 것을 더욱 줄일 수 있다.
나아가, 확대된 사진들에서 볼 수 있듯이, 원뿔대들(43) 사이의 골은 평평한 바닥이 없이 뾰족한 형상을 갖는다. 이에 따라, 원뿔대들(43) 사이의 골의 바닥에서 발생될 수 있는 내부 전반사를 방지할 수 있다.
본 실시예에 있어서, 메사(M)가 핑거부들(F)과 손바닥부(P)를 포함하고, 내부 접촉부(53a1)가 외부 접촉부(53a2)로부터 연장할 수 있다. 그러나 본 발명은 이에 한정되는 것은 아니며, 메사(M)가 핑거부들 대신 관통홀들을 포함하고, 내부 접촉부(53a1)는 외부 접촉부(53a2)로부터 이격될 수도 있다. 이 경우, 메사(M)는 기판(21)과 대체로 유사한 사각형 형상을 가지며, 관통홀들은 메사(M)의 가장자리로 둘러싸인 내부 영역에 형성된다.
본 실시예에 따르면, 제1 콘택층(35a)이 내부 접촉부(35a1)와 외부 접촉부(35a2)를 포함하며, 외부 접촉부(35a2)는 메사(M) 둘레를 따라 제1 도전형 반도체층(23)의 가장자리 근처에 배치된다. 즉, 외부 접촉부(35a2)는 제1 도전형 반도체층(23)의 가장자리를 따라 메사(M)을 둘러싼다. 또한, 내부 접촉부(35a1)는 외부 접촉부(35a2)로 둘러싸인 영역 내에서 제1 도전형 반도체층(23)에 접속된다. 이에 따라, 제1 도전형 반도체층(23)의 다양한 지점에 제1 콘택층(35a)이 접속할 수 있어 전류가 특정 영역에 집중되는 것을 방지할 수 있다. 더욱이, 제1 콘택층(35a)이 메사(M) 상부로 연장함으로써 전류를 더욱 고르게 분산시킬 수 있다.
나아가, 약 300㎛ 이상의 두께를 가지는 질화갈륨 기판(21)을 채택함으로써, 활성층(25)에서 생성된 열을 쉽게 분산시킬 수 있어 발광 다이오드의 열적 특성을 개선할 수 있다.
도 15는 본 발명의 일 실시예에 따른 발광 모듈을 설명하기 위한 개략적인 단면도이고, 도 16은 상기 발광 모듈의 서브 마운트 기판을 설명하기 위한 개략적인 평면도(a) 및 배면도(b)이다.
도 15를 참조하면, 발광 모듈은 인쇄회로보드(PCB, 61), 서브 마운트(51) 및 발광 다이오드(100)를 포함한다. 서브 마운트(51)는 생략될 수도 있다.
인쇄회로보드(61)는 Al-PCB 또는 Cu-PCB와 같은 메탈 PCB일 수 있다. Cu는 Al에 비해 열 전도율이 높기 때문에 발광 다이오드(100)에서 생성되는 열을 더 신속하게 방출할 수 있다.
도 15 및 도 16을 참조하면, 서브 마운트(51)는 베이스 기판 상에 배치된 상부 전극 패턴 및 하부 전극 패턴을 포함한다. 또한, 상부 전극 패턴은 제1 상부 전극(53a) 및 제2 상부 전극(53b)을 포함하고, 하부 전극 패턴은 제1 하부 전극(55a), 제2 하부 전극(55b)을 포함하며, 나아가 방열 패드(55c)를 포함할 수 있다.
서브 마운트(51)의 베이스 기판은 AlN 기판일 수 있다. 또한, 상부 전극 패턴은 및 하부 전극 패턴은 Ni층/Cu층/Au층이 적층된 다층 구조를 가질 수 있다. Ni층은 AlN 기판에 전극 패턴들의 접착력을 향상시키기 위해 사용되며, Au층은 Cu층의 산화를 방지하기 위해 사용되며, 또한, 발광 다이오드(100)의 전극 패드들(39a, 39b)과의 접착력을 향상시키기 위해 사용된다. 또한, Cu층은 전류 및 열 전달을 위해 사용되며, Ni층 및 Au층에 비해 상대적으로 두껍다.
비아들(54a, 54b)은 AlN 기판(51)을 관통하여 제1 및 제2 상부 전극(53a, 53b)을 제1 및 제2 하부 전극(55a, 55b)에 연결한다.
한편, 방열 패드(55c)는 제1 및 제2 하부 전극들(55a, 55b) 사이에 배치되며, 제1 및 제2 하부 전극들(55a, 55b)로부터 전기적으로 절연된다. 방열 패드(55c)는 인쇄회로보드(61)에 접촉하며, 특히, 메탈 PCB(61)의 금속에 접촉하여 열 방출을 도울 수 있다.
발광 다이오드(100)는 도 1에서 설명한 발광 다이오드와 동일한 것으로 자세한 설명은 생략한다. 발광 다이오드(100)는 플립칩 형태로 뒤집어져서 서브 마운트(51) 상에 실장될 수 있다. 발광 다이오드(100)의 전극 패드들(도 1의 39a, 39b)이 서브 마운트(51)의 제1 및 제2 상부 전극들(53a, 53b)에 각각 본딩된다.
상기 서브 마운트(51) 및 메탈 PCB(61)를 사용함으로써 발광 다이오드(100)에서 생성되는 열을 용이하게 방출할 수 있으며, 따라서, 발광 다이오드(100)의 동작을 위한 전류 밀도를 더욱 높일 수 있다.
본 실시예에 있어서, 도 1의 발광 다이오드(100)가 사용되나 또 다른 실시예의 발광 다이오드가 서브 마운트(51) 상에 실장될 수도 있다. 이하에서 본 발명의 또 다른 실시예에 따른 발광 다이오드에 대해 설명한다.
도 17 내지 도 21은 본 발명의 또 다른 실시예에 따른 발광 다이오드 제조 방법을 설명하기 위한 평면도들 및 단면도들이다.
도 17을 참조하면, 도 2를 참조하여 설명한 바와 같이, 질화갈륨 기판(21) 상에 제1 도전형 반도체층(23), 활성층(25) 및 제2 도전형 반도체층(27)이 성장되고, 이들을 이용하여 메사(M)가 형성된다. 또한, 메사(M)는 핑거부들(F)과 손바닥부(P)를 가지며, 핑거부들(F) 사이에 만입부(B)가 형성된다. 다만, 본 실시예에 있어서, 만입부(B)는 입구가 상대적으로 넓은 폭을 가진다.
도 18을 참조하면, 제1 도전형 반도체층(23) 및 메사(M)를 덮는 예비 절연층(29)이 형성된다. 도 3을 참조하여 설명한 바와 같이, 예비 절연층(29)은 예컨대 화학기상증착 기술을 이용하여 SiO2로 형성될 수 있다.
또한, 상기 예비 절연층(29) 상에 포토레지스트 패턴(도시하지 않음)이 형성되고, 이 포토레지스트 패턴을 식각 마스크로 사용하여 예비 절연층(29)이 식각되고, 이에 따라 핑거부들(F) 사이의 영역 및 메사(M) 둘레를 따라 기판(21) 가장자리 근처에서 제1 도전형 반도체층(23)이 노출된다. 예비 절연층(29)은 예를 들어 습식 식각 기술을 이용하여 식각될 수 있다.
그 후, 노출된 제1 도전형 반도체층(23) 상에 제1 콘택층이 형성된다. 제1 콘택층은 핑거부들(F) 사이의 영역에서 제1 도전형 반도체층(23)에 접촉하는 내부 접촉부(135a)와 메사 둘레에 노출된 제1 도전형 반도체층(23)에 접촉하는 외부 접촉부(135b)를 포함한다. 상기 제1 콘택층은 상기 포토레지스 패턴을 이용한 리프트 오프 기술을 이용하여 형성될 수 있다.
제1 콘택층(35a)은, 도 7을 참조하여 설명한 바와 같이, Al층과 같은 고반사 금속층을 포함할 수 있으며, 고반사 금속층은 Ti, Cr 또는 Ni 등의 접착층 상에 형성될 수 있다. 또한, 상기 고반사 금속층 상에 Ni, Cr, Au 등의 단층 또는 복합층 구조의 보호층이 형성될 수 있다.
도 19를 참조하면, 도 3을 참조하여 설명한 바와 같이, 상기 예비 절연층(29) 상에 포토레지스트 패턴이 다시 형성된다. 이 포토레지스트 패턴은 메사(M) 상부 영역을 노출시키는 개구부를 가진다. 이 개구부는 메사(M)의 형상과 대체로 유사할 수 있으나, 메사(M)보다 약간 작게 형성될 수 있다. 즉, 포토레지스트가 메사(M)의 가장자리부들을 덮을 수 있다. 또한, 이 개구부는 입구의 폭보다 바닥부의 폭이 넓도록 형성될 수 있다. 예를 들어, 네거티브 타입의 포토레지스트를 사용함으로써 위와 같은 형상의 개구부를 갖는 포토레지스트 패턴(30)을 용이하게 형성할 수 있다.
이어서, 상기 포토레지스트 패턴을 식각 마스크로 사용하여 예비 절연층(29)이 식각되고, 이에 따라 제2 도전형 반도체층(27)이 노출된다. 예비 절연층(29)은 예를 들어 습식 식각 기술을 이용하여 식각될 수 있다.
그 후, 제2 콘택층(31)이 형성되고, 포토레지스트 패턴은 제거된다. 도 3 및 도 4를 참조하여 설명한 바와 같으므로 중복을 피하기 위해 상세한 설명은 생략한다.
도 20을 참조하면, 제1 콘택층 및 제2 콘택층(31)을 덮는 상부 절연층(137)이 형성된다. 상부 절연층(137)은 또한 제1 도전형 반도체층(23)의 가장자리를 덮을 수 있다. 상부 절연층(137)은 내부 접촉부(135a)를 노출시키는 개구부(137a)와 함께, 제2 콘택층(31)을 노출시키는 개구부(137b)를 갖는다. 상기 개구부(137a)는 제1 콘택층의 내부 접촉부(135a)에 중첩하며, 개구부(137b)는 메사(M)의 손바닥부(P) 상에서 제2 콘택층(31)에 중첩하도록 형성된다.
상기 상부 절연층(137)은 실리콘 질화막 또는 실리콘 산화막의 단일층으로 형성될 수 있으나, 이에 한정되는 것은 아니며, 다중층 또는 분포 브래그 반사기 구조로 형성될 수 있다. 본 실시예에서 도시하지는 않았지만, 기판(21) 전면에 경사면(L1)이 형성되고, 상부 절연층(137)은 또한 경사면(L1)을 덮어 제1 도전형 반도체층(23)의 측면을 덮을 수 있다.
도 21을 참조하면, 도 10을 참조하여 설명한 바와 같이, 상기 상부 절연층(137) 상에 제1 전극 패드(139a) 및 제2 전극 패드(139b)가 형성된다. 제1 전극 패드(139a)는 상부 절연층(137)의 개구부(137a)를 통해 제1 콘택층의 내부 접촉부(135a)에 접속하고, 제2 전극 패드(139b)는 상부 절연층(137)의 개구부(137b)를 통해 제2 콘택층(31)에 접속한다. 상기 제1 전극 패드(139a) 및 제2 전극 패드(139b)는 발광 다이오드를 서브 마운트 또는 인쇄회로보드 등에 실장하기 위해 사용된다. 제1 전극 패드(39a)와 제2 전극 패드(39b)는 AuSn으로 형성될 수 있으며, 공융 본딩을 통해 서브마운트 등에 실장될 수 있다.
제1 및 제2 전극 패드들 사이의 거리(D)는 단락이 방지되도록 약 80㎛ 이상일 수 있다.
한편, 상기 제1 및 제2 전극 패드(39a, 39b)는 동일 공정으로 함께 형성될 수 있으며, 예컨대 리프트 오프 기술을 사용하여 형성될 수 있다.
본 실시예에 따른 발광 다이오드는 상대적으로 단순한 공정을 통해 제조될 수 있다. 한편, 본 실시예에 있어서, 레이저 스크라이빙을 통해 형성되는 기판(21) 측면의 형상에 대해 설명하지 않았지만, 레이저 스크라이빙 공정은 앞서 설명한 실시예와 유사하게 수행될 수 있으며, 따라서, 기판(21)의 전면 및 후면에 앞의 실시예에서 설명한 바와 같이 경사면(L1, L2)가 형성될 수 있다.
도 22 (a)는 성장 기판의 종류에 따라 전류 밀도 증가에 따른 외부 양자 효율의 변화를 나타내는 그래프이고, 도 22 (b)는 성장 기판의 종류에 따라 전류 밀도 증가에 따른 순방향 전압의 변화를 나타내는 그래프이다. 성장 기판을 제외하면 다른 공정은 동일하게 진행하여 발광 다이오드를 제작하였다.
도 22(a)를 참조하면, c면 사파이어 기판을 성장 기판으로 사용하여 제작된 발광 다이오드는 전류 밀도가 증가함에 따라 외부 양자 효율의 드룹(droop)이 크게 나타나는 것을 알 수 있다. 35 A/㎠의 전류 밀도에서의 외부양자효율에 비해 약 150 A/㎠의 전류 밀도하에서 외부 양자 효율은 75% 미만으로 떨어진다. 일반적으로, 사파이어 기판을 성장 기판으로 사용한 발광 다이오드의 최대 외부양자효율이 약 10 A/㎠ 근처에서 최대인 것을 고려하면, 사파이어 기판을 성장 기판으로 사용한 발광 다이오드의 외부 양자 효율의 드룹은 더욱 심각할 것이다.
이에 반해, c면 질화갈륨 기판 및 m면 질화갈륨 기판을 사용한 발광 다이오드는 드룹이 상대적으로 적게 나타난다. 특히, m면 질화갈륨 기판을 사용한 발광 다이오드는 235 A/㎠ 이상의 전류 밀도에서도 90% 이상의 외부양자효율을 보여준다.
또한, 도 22(b)를 참조하면, 전류 밀도가 증가함에 따라 사파이어 기판을 이용하여 제조된 발광 다이오드는 질화갈륨 기판을 이용하여 제조된 발광 다이오드에 비해 VF가 급격히 증가하는 것을 확인할 수 있다. 한편, c면 질화갈륨 기판이나 m면 질화갈륨 기판을 사용한 발광 다이오드는 전류 밀도가 증가함에 따라 VF 증가가 완만하여 차이가 거의 없었다.
따라서, 질화갈륨 기판(21)을 채택함으로써 사파이어 기판을 채택한 발광 다이오드에 비해 고전류 밀도 하에서 발광 다이오드를 동작시킬 수 있음을 알 수 있다.
도 23은 성장 기판의 종류에 따른 신뢰성 테스트 결과를 보여주는 그래프이다. 챔버 내부의 온도를 100℃로 유지하고 챔버 내부에 배치된 발광 다이오드에 245 A/㎠의 전류 밀도를 유지하여 장시간 발광 다이오드를 동작시키면서 시간에 따른 광 출력을 측정하였다.
도 23을 참조하면, 사파이어 기판을 성장 기판으로 사용한 발광 다이오드는 250시간이 지나면서 광 출력이 감소하였으며, 1000시간에서 약 10%의 광출력 감소를 나타냈고 1500시간에서 약 40% 이상의 광 출력 감소를 나타내었다.
이에 반해, 질화갈륨 기판을 성장 기판으로 사용한 발광 다이오드는 1500시간이 지나도 초기 광 출력 대비 95% 이상의 광 출력을 유지하였다.
도 24는 본 발명의 실시예들에 따라 제조된 발광 다이오드의 접합 온도에 대한 신뢰성 테스트 결과를 보여주는 그래프이다. 챔버 내부의 온도를 100℃로 유지하고 챔버 내부에 배치된 발광 다이오드에 일정한 전류 밀도를 유지하여 1000시간 이상 발광 다이오드를 동작시키면서 발광 다이오드의 불량 여부를 측정하였다.
도 24를 참조하면, 본 발명의 실시예들에 따른 발광 다이오드는 전류 밀도 315 A/㎠ 및 접합 온도 190℃에서 양호한 동작을 나타내었다. 따라서, 본 발명의 실시예들에 따른 발광 다이오드는 적어도 최대 접합 온도가 190℃ 이상임을 알 수 있다.
이상에서, 본 발명의 다양한 실시예들에 대해 설명하였으나, 본 발명은 이들 실시예들에 한정되는 것은 아니다. 또한, 하나의 실시예에 대해서 설명한 사항이나 구성요소는 본 발명의 기술적 사상을 벗어나지 않는 한, 다른 실시예에도 적용될 수 있다.

Claims (16)

  1. 질화갈륨 기판;
    상기 질화갈륨 기판 상에 배치된 제1 도전형 반도체층;
    상기 제1 도전형 반도체층 상에 배치된 제2 도전형 반도체층 및 상기 제2 도전형 반도체층과 상기 제1 도전형 반도체층 사이에 개재된 활성층을 포함하는 메사;
    상기 메사 둘레를 따라 상기 질화갈륨 기판의 가장자리 근처에서 상기 제1 도전형 반도체층에 콘택하는 외부 접촉부 및 상기 외부 접촉부로 둘러싸인 영역 내에서 상기 제1 도전형 반도체층에 콘택하는 복수개의 내부 접촉부를 포함하는 제1 콘택층;
    상기 메사 상에 배치되어 상기 제2 도전형 반도체층에 콘택하는 제2 콘택층;
    상기 제2 콘택층에 전기적으로 접속하는 중간 접속부;
    상기 제1 콘택층에 중첩하는 제1 개구부 및 상기 제2 콘택층에 중첩하는 제2 개구부를 가지는 상부 절연층;
    상기 제1 개구부를 통해 상기 제1 콘택층에 전기적으로 접속하는 제1 전극 패드; 및
    상기 제2 개구부를 통해 상기 제2 콘택층에 전기적으로 접속하는 제2 전극 패드를 포함하고,
    전류 밀도 150A/㎠ 이상에서 구동 가능하며, 최대 접합 온도가 180℃ 이상이고,
    상기 제1 콘택층은 상기 제2 콘택층에 중첩하는 개구부를 가지며,
    상기 중간접속부는 상기 제1 콘택층의 개구부 내부에 위치하며,
    상기 상부 절연층의 제2 개구부는 상기 중간 접속부를 노출시키고,
    상기 제2 전극패드는 상기 중간 접속부에 접속하는 발광 다이오드.
  2. 청구항 1에 있어서,
    상기 복수개의 내부 접촉부는 상기 외부 접촉부로부터 연장하는 발광 다이오드.
  3. 청구항 1에 있어서,
    상기 제1 콘택층은 상기 메사로부터 이격되어 상기 메사 상부를 덮고,
    상기 제1 콘택층의 개구부의 측벽은 상기 상부 절연층에 의해 덮인 발광 다이오드.
  4. 삭제
  5. 청구항 1에 있어서,
    상기 제1 도전형 반도체층 및 상기 메사를 덮어, 상기 제1 콘택층을 상기 메사로부터 절연시킴과 아울러, 상기 제2 콘택층과 상기 중간 접속부 사이에 개재된 하부 절연층을 더 포함하되,
    상기 하부 절연층은 상기 외부 접촉부 및 상기 내부 접촉부가 상기 제1 도전형 반도체층에 접촉하도록 상기 제1 도전형 반도체층을 노출시키는 개구부와 함께 상기 제2 콘택층을 노출시키는 개구부를 가지며,
    상기 중간 접속부는 상기 하부 절연층의 개구부를 통해 제2 콘택층에 접속하는 발광 다이오드.
  6. 청구항 1에 있어서,
    상기 기판은 측면을 포함하되, 상기 기판의 측면은 상기 제1 도전형 반도체층이 위치하는 상기 기판의 전면에 수직한 면 및 상기 수직한 면과 상기 기판의 후면을 연결하는 경사면을 포함하고, 상기 기판의 두께는 300㎛ 이상이며, 상기 수직한 면의 높이는 50 내지 200㎛인 발광 다이오드.
  7. 청구항 6에 있어서,
    상기 기판의 측면은 상기 수직한 면과 상기 기판의 전면을 연결하는 경사면을 더 포함하되,
    상기 기판의 전면에서 상기 수직한 면까지의 깊이는 30 내지 50㎛이고, 상기 기판의 후면으로부터 상기 수직한 면까지의 깊이는 80 내지 100㎛인 발광 다이오드.
  8. 청구항 7에 있어서,
    상기 상부 절연층은 상기 기판의 가장자리를 따라 상기 수직한 면 위쪽의 경사면을 덮는 발광 다이오드.
  9. 청구항 1에 있어서,
    상기 기판은 후면에 표면 텍스쳐를 포함하되,
    상기 표면 텍스쳐는 복수의 원뿔대를 포함하는 발광 다이오드.
  10. 청구항 9에 있어서,
    각각의 원뿔대 상에 위치하는 SiO2 마스크들을 더 포함하는 발광 다이오드.
  11. 청구항 10에 있어서,
    상기 원뿔대들 사이에 뾰족한 골이 형성된 발광 다이오드.
  12. 청구항 1에 있어서,
    상기 질화갈륨 기판은 8E17 ~ 1E18/㎤ 범위 내의 불순물 도핑 농도를 가지며,
    상기 제1 도전형 반도체층은 1E19~2E19/㎤의 불순물 도핑 농도를 가지는 발광 다이오드.
  13. 인쇄회로보드;
    상기 인쇄회로보드 상에 실장된 서브 마운트; 및
    상기 서브 마운트 상에 플립 본딩된 청구항 1 내지 3, 및 청구항 5 내지 11중 어느 한 항에 기재된 발광 다이오드를 포함하는 발광 모듈.
  14. 청구항 13에 있어서,
    상기 서브 마운트는,
    베이스 기판;
    상기 베이스 기판 상에 배치되며, 제1 상부 전극 및 제2 상부 전극을 포함하는 상부 전극 패턴;
    상기 베이스 기판 바닥에 배치되며, 제1 하부 전극 및 제2 하부 전극을 포함하는 하부 전극 패턴; 및
    상기 상부 전극 패턴과 상기 하부 전극 패턴을 연결하는 비아들을 포함하는 발광 모듈.
  15. 청구항 14에 있어서,
    상기 베이스 기판은 질화알루미늄 기판인 발광 모듈.
  16. 청구항 14에 있어서,
    상기 하부 전극 패턴은 방열 패드를 더 포함하는 발광 모듈.
KR1020160015753A 2016-02-11 2016-02-11 고출력 발광 다이오드 및 그것을 갖는 발광 모듈 KR102471670B1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020160015753A KR102471670B1 (ko) 2016-02-11 2016-02-11 고출력 발광 다이오드 및 그것을 갖는 발광 모듈
PCT/KR2017/000810 WO2017138707A1 (ko) 2016-02-11 2017-01-24 고출력 발광 다이오드 및 그것을 갖는 발광 모듈
US16/100,783 US10559720B2 (en) 2016-02-11 2018-08-10 High-power light-emitting diode and light-emitting module having the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160015753A KR102471670B1 (ko) 2016-02-11 2016-02-11 고출력 발광 다이오드 및 그것을 갖는 발광 모듈

Publications (2)

Publication Number Publication Date
KR20170094679A KR20170094679A (ko) 2017-08-21
KR102471670B1 true KR102471670B1 (ko) 2022-11-29

Family

ID=59563772

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160015753A KR102471670B1 (ko) 2016-02-11 2016-02-11 고출력 발광 다이오드 및 그것을 갖는 발광 모듈

Country Status (3)

Country Link
US (1) US10559720B2 (ko)
KR (1) KR102471670B1 (ko)
WO (1) WO2017138707A1 (ko)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9847457B2 (en) * 2013-07-29 2017-12-19 Seoul Viosys Co., Ltd. Light emitting diode, method of fabricating the same and LED module having the same
JP6927217B2 (ja) * 2016-07-27 2021-08-25 ソニーグループ株式会社 窒化物半導体レーザおよび電子機器
CN110192287B (zh) * 2017-12-22 2022-10-28 首尔伟傲世有限公司 芯片级封装发光二极管
KR20200111323A (ko) 2019-03-18 2020-09-29 삼성전자주식회사 반도체 발광소자 및 그 제조 방법
KR102215937B1 (ko) * 2020-02-11 2021-02-18 주식회사 세미콘라이트 반도체 발광소자
US20210296536A1 (en) * 2020-03-17 2021-09-23 Epistar Corporation Semiconductor light-emitting device
TWI729846B (zh) * 2020-06-10 2021-06-01 友達光電股份有限公司 發光裝置
TWI746293B (zh) * 2020-11-27 2021-11-11 錼創顯示科技股份有限公司 微型發光二極體結構與使用其之微型發光二極體顯示裝置
US20220367753A1 (en) * 2021-05-17 2022-11-17 Seoul Viosys Co., Ltd. Uv light emitting diode

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007157853A (ja) * 2005-12-01 2007-06-21 Sony Corp 半導体発光素子およびその製造方法
KR101592201B1 (ko) * 2008-11-06 2016-02-05 삼성전자 주식회사 발광 장치 및 그 제조 방법
CN102630349B (zh) 2009-09-18 2017-06-13 天空公司 功率发光二极管及利用电流密度操作的方法
KR20130094621A (ko) * 2012-02-16 2013-08-26 서울옵토디바이스주식회사 개선된 광 추출 효율을 갖는 발광 다이오드 및 그것을 제조하는 방법
KR101669641B1 (ko) * 2012-06-28 2016-10-26 서울바이오시스 주식회사 표면 실장용 발광 다이오드, 그 형성방법 및 발광 다이오드 모듈의 제조방법
US9461212B2 (en) * 2012-07-02 2016-10-04 Seoul Viosys Co., Ltd. Light emitting diode module for surface mount technology and method of manufacturing the same
KR20140130618A (ko) * 2013-05-01 2014-11-11 서울바이오시스 주식회사 솔더 페이스트를 통해 접착된 발광 다이오드를 갖는 발광 다이오드 모듈 및 발광 다이오드
WO2015016561A1 (en) * 2013-07-29 2015-02-05 Seoul Viosys Co., Ltd. Light emitting diode, method of fabricating the same and led module having the same
US9123866B2 (en) * 2013-09-26 2015-09-01 Seoul Viosys Co., Ltd. Light emitting device having wide beam angle and method of fabricating the same
US9577171B2 (en) * 2014-06-03 2017-02-21 Seoul Viosys Co., Ltd. Light emitting device package having improved heat dissipation efficiency
KR102402260B1 (ko) * 2015-01-08 2022-05-27 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 발광 소자 패키지
US9455300B1 (en) * 2015-03-02 2016-09-27 Rayvio Corporation Pixel array of ultraviolet light emitting devices
KR101646666B1 (ko) * 2015-03-26 2016-08-08 엘지이노텍 주식회사 발광 소자, 이 소자를 포함하는 발광 소자 패키지, 및 이 패키지를 포함하는 조명 장치
JP6101303B2 (ja) * 2015-04-30 2017-03-22 昭和電工株式会社 発光ダイオード、発光ダイオードランプ及び照明装置
KR20160141063A (ko) * 2015-05-27 2016-12-08 삼성전자주식회사 발광소자 패키지, 그 제조 방법
JP6440846B2 (ja) * 2015-08-03 2018-12-19 創光科学株式会社 窒化物半導体ウェハ及びその製造方法、並びに、窒化物半導体紫外線発光素子及び装置
KR102415331B1 (ko) * 2015-08-26 2022-06-30 삼성전자주식회사 발광 소자 패키지, 및 이를 포함하는 장치
KR101679395B1 (ko) * 2016-01-11 2016-11-25 서울바이오시스 주식회사 발광 다이오드 및 그것을 제조하는 방법
KR102530758B1 (ko) * 2016-06-21 2023-05-11 삼성전자주식회사 반도체 발광소자 패키지

Also Published As

Publication number Publication date
WO2017138707A1 (ko) 2017-08-17
US20180351042A1 (en) 2018-12-06
US10559720B2 (en) 2020-02-11
KR20170094679A (ko) 2017-08-21

Similar Documents

Publication Publication Date Title
KR102471670B1 (ko) 고출력 발광 다이오드 및 그것을 갖는 발광 모듈
CN111525008B (zh) 具有侧面反射层的发光二极管
KR102641239B1 (ko) 발광 다이오드, 그것을 제조하는 방법 및 그것을 갖는 발광 소자 모듈
US8242530B2 (en) Light emitting device and method for fabricating the same
US8791483B2 (en) High efficiency light emitting diode and method for fabricating the same
KR100887139B1 (ko) 질화물 반도체 발광소자 및 제조방법
KR101017394B1 (ko) 발광 소자 및 그것을 제조하는 방법
US10749074B2 (en) Vertical type light emitting diode having groove disposed under the first conductivity type semiconductor layer
KR20140125521A (ko) 반도체 발광소자
KR20160025456A (ko) 발광 다이오드 및 그 제조 방법
US11810943B2 (en) Light-emitting device and manufacturing method thereof
KR102562063B1 (ko) 발광 다이오드
US20220149241A1 (en) Vertical light-emitting diode
US20170179341A1 (en) Light-emitting device and manufacturing method thereof
TWI766821B (zh) 發光元件
KR20160036862A (ko) 발광 소자 제조 방법 및 그것에 의해 제조된 발광 소자
TW202143507A (zh) 發光元件
US12002842B2 (en) Light emitting device and manufacturing method thereof
KR20140140399A (ko) 복수개의 발광 요소들을 갖는 발광다이오드 및 그것을 제조하는 방법
KR102499308B1 (ko) 발광 다이오드
KR20150136264A (ko) 발광 소자
KR20120016831A (ko) 반도체 발광 소자 및 그 제조방법
KR20220161191A (ko) 발광 소자
KR101158077B1 (ko) 고효율 발광 다이오드 및 그것을 제조하는 방법
KR20120073396A (ko) 발광 다이오드 및 그의 제조 방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant