KR102467810B1 - Lithium Ion Capacitor - Google Patents

Lithium Ion Capacitor Download PDF

Info

Publication number
KR102467810B1
KR102467810B1 KR1020160037572A KR20160037572A KR102467810B1 KR 102467810 B1 KR102467810 B1 KR 102467810B1 KR 1020160037572 A KR1020160037572 A KR 1020160037572A KR 20160037572 A KR20160037572 A KR 20160037572A KR 102467810 B1 KR102467810 B1 KR 102467810B1
Authority
KR
South Korea
Prior art keywords
lithium
negative electrode
ion capacitor
lithium ion
lithium ions
Prior art date
Application number
KR1020160037572A
Other languages
Korean (ko)
Other versions
KR20170113910A (en
Inventor
이동열
노남종
한상진
김종완
손유정
이예슬
이원열
채민수
강의겸
Original Assignee
비나텍주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 비나텍주식회사 filed Critical 비나텍주식회사
Priority to KR1020160037572A priority Critical patent/KR102467810B1/en
Publication of KR20170113910A publication Critical patent/KR20170113910A/en
Application granted granted Critical
Publication of KR102467810B1 publication Critical patent/KR102467810B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

본 발명은 전해액에 포함된 리튬염을 리튬 이온의 공급원으로 하여, 리튬염으로부터 리튬 이온을 음극에 미리(pre) 도핑하도록 한 리튬 이온 커패시터에 관한 것이다. 본 발명에 따른 리튬 이온 커패시터는 음극, 음극과 이온 교환을 수행하는 양극, 양극 및 음극이 침지되고, 리튬염을 포함하는 전해액을 포함하고, 음극은 상기 전해액의 리튬염을 리튬 이온의 공급원으로 하여, 리튬염으로부터 리튬 이온을 가역적으로 도핑 또는 탈도핑하는 것을 특징으로 한다.The present invention relates to a lithium ion capacitor in which a negative electrode is pre-doped with lithium ions from the lithium salt by using a lithium salt contained in an electrolyte solution as a source of lithium ions. The lithium ion capacitor according to the present invention includes a negative electrode, a positive electrode performing ion exchange with the negative electrode, an electrolyte solution in which the positive electrode and the negative electrode are immersed and containing a lithium salt, and the negative electrode uses the lithium salt of the electrolyte as a source of lithium ions. , characterized by reversibly doping or undoping lithium ions from the lithium salt.

Description

리튬 이온 커패시터{Lithium Ion Capacitor}Lithium Ion Capacitor

본 발명은 리튬 이온 커패시터에 관한 것으로, 더욱 상세하게는 전해액에 포함된 리튬염을 리튬 이온의 공급원으로 하여, 리튬염으로부터 리튬 이온을 음극에 미리(pre) 도핑하도록 한 리튬 이온 커패시터에 관한 것이다.The present invention relates to a lithium ion capacitor, and more particularly, to a lithium ion capacitor in which a negative electrode is pre-doped with lithium ions from the lithium salt by using a lithium salt contained in an electrolyte as a source of lithium ions.

휴대용의 소형 전기 전자기기의 보급이 확산됨에 따라 니켈수소전지나 리튬 이차 전지, 슈퍼 커패시터, 리튬 이온 커패시터라고 하는 신형의 이차 전지 개발이 활발하게 진행되고 있다.BACKGROUND ART With the spread of portable small electrical and electronic devices, development of new types of secondary batteries such as nickel metal hydride batteries, lithium secondary batteries, supercapacitors, and lithium ion capacitors is actively progressing.

이 중에서, 리튬 이온 커패시터(LIC: lithium ion capacitor)는 기존 전기 이중층 커패시터(EDLC: ElectricDouble Layer Capacitor)의 고출력/장수명 특성과 리튬 이온 전지의 고에너지 밀도를 결합한 새로운 개념의 이차전지 시스템이다.Among them, a lithium ion capacitor (LIC) is a secondary battery system of a new concept that combines the high power/long life characteristics of an existing electric double layer capacitor (EDLC) and the high energy density of a lithium ion battery.

전기적 이중층 내 전하의 물리적 흡착 반응을 이용하는 전기 이중층 커패시터는 우수한 출력특성 및 수명특성에도 불구하고 낮은 에너지 밀도 때문에 다양한 응용 분야에 적용이 제한되고 있다. 이러한 전기 이중층 커패시터의 문제점을 해결하는 수단으로서 양극 또는 음극 활물질로서 리튬 이온을 삽입 및 탈리할 수 있는 재료를 이용하여 에너지 밀도가 향상된 하이브리드 커패시터가 제안되었으며, 특히 양극은 기존 전기 이중층 커패시터의 양극 물질을 사용하고 음극 활물질로서 리튬 이온을 삽입 및 탈리할 수 있는 탄소계 재료를 이용하는 리튬 이온 커패시터가 제안되었다.Electric double-layer capacitors using the physical adsorption reaction of electric charges in the electric double-layer are limited in various application fields due to their low energy density despite their excellent output characteristics and lifespan characteristics. As a means to solve the problem of the electric double layer capacitor, a hybrid capacitor with improved energy density has been proposed by using a material capable of intercalating and deintercalating lithium ions as a cathode or anode active material. A lithium ion capacitor using a carbon-based material capable of intercalating and deintercalating lithium ions as an anode active material has been proposed.

이러한 리튬 이온 커패시터의 반응 메카니즘(mechanism)을 살펴보면, 충전 시에는 음극의 탄소계 소재로 전자가 이송되어 탄소계 소재는 음전하를 띠게 됨으로써, 리튬 이온이 음극의 탄소질 재료에 삽입되고, 반대로 방전 시에는 음극의 탄소계 재료에 삽입되어 있던 리튬 이온이 탈리되고 다시 음이온이 양극에 흡착된다. 이러한 반응 메카니즘을 이용하는 것으로 음극에서의 리튬 이온의 도핑량을 제어하여 고에너지 밀도를 갖는 리튬 이온 커패시터를 실현할 수 있다. 또한, 이러한 리튬 이온 커패시터는 리튬 이온 전지의 에너지 저장 능력과 커패시터의 출력 특성을 조합한 시스템으로 두 가지 기능을 동시에 발현할 수 있는 소재를 적용하여 고출력 사용 시에 커패시터 특성을 나타내고 기기의 지속 사용 시간을 리튬 이온 전지 수준으로 확장한 미래형 전지시스템이다.Looking at the reaction mechanism of such a lithium ion capacitor, electrons are transferred to the carbon-based material of the negative electrode during charging, and the carbon-based material has a negative charge, so that lithium ions are inserted into the carbonaceous material of the negative electrode, and vice versa during discharge. In this case, lithium ions intercalated in the carbon-based material of the negative electrode are desorbed and negative ions are adsorbed to the positive electrode. By using such a reaction mechanism, a lithium ion capacitor having a high energy density can be realized by controlling the doping amount of lithium ions in the negative electrode. In addition, this lithium ion capacitor is a system that combines the energy storage capability of a lithium ion battery and the output characteristics of a capacitor, and by applying a material that can simultaneously express both functions, it shows the capacitor characteristics when using high power and the continuous use time of the device It is a future battery system that has expanded to the level of a lithium ion battery.

그러나, 이와 같은 리튬 이온 커패시터는 전기화학적 흡탈착 반응뿐 아니라 리튬의 삽입 및 탈리 반응을 위한 리튬 도핑 공정이 반드시 필요하게 된다. 이러한 리튬 이온 커패시터를 구현하기 위하여 리튬을 음극에 도핑하는 종래의 기술은, 금속 리튬을 전극에 라미네이트한 후 전해액을 넣어 음극과 금속 리튬을 단락시키는 것만으로 음극과 금속 리튬의 전위차에 의해 라미네이트된 금속 리튬이 음극 속으로 녹아 들어가는 방식을 채용하고 있다. 그러나, 금속 리튬을 전극에 라미네이트하여 전기적 단락을 통해 리튬을 도핑하는 방식의 경우, 리튬이 음극에 도핑되는 양을 제어하기가 어렵고, 도핑공정에서 발생하는 리튬 금속에 따른 안전성을 확보하기 어려우며, 이에 따라 양산에 적용하기 어려운 문제점이 있다.However, such a lithium ion capacitor necessarily requires a lithium doping process for intercalation and desorption of lithium as well as electrochemical adsorption and desorption reactions. In order to realize such a lithium ion capacitor, the conventional technique of doping lithium into an anode is to laminate metal lithium to an electrode, and then put an electrolyte to short-circuit the anode and metal lithium, and the laminated metal is formed by the potential difference between the anode and metal lithium. A method in which lithium melts into the anode is adopted. However, in the case of a method of laminating metallic lithium on an electrode and doping lithium through an electrical short circuit, it is difficult to control the amount of lithium doped into the negative electrode, and it is difficult to secure safety due to metal lithium generated in the doping process. Accordingly, there is a problem that is difficult to apply to mass production.

따라서 본 발명의 목적은 음극의 리튬 이온 도핑을 위하여 금속 리튬을 사용하지 않고, 안전하며 음극에 도핑되는 리튬 이온을 양을 용이하게 제어할 수 있는 리튬 이온 커패시터를 제공하는 데 있다.Accordingly, an object of the present invention is to provide a lithium ion capacitor that does not use metallic lithium for lithium ion doping of the negative electrode, is safe, and can easily control the amount of lithium ions doped into the negative electrode.

본 발명에 따른 리튬 이온 커패시터는 음극, 상기 음극과 이온 교환을 수행하는 양극, 상기 양극 및 음극이 침지되고, 리튬염을 포함하는 전해액; 을 포함하고, 상기 음극은 상기 전해액의 리튬염을 리튬 이온의 공급원으로 하여, 상기 리튬염으로부터 상기 리튬 이온을 가역적으로 도핑 또는 탈도핑하는 것을 특징으로 한다.A lithium ion capacitor according to the present invention includes a negative electrode, a positive electrode performing ion exchange with the negative electrode, an electrolyte solution in which the positive electrode and the negative electrode are immersed, and containing a lithium salt; The negative electrode is characterized in that the lithium salt of the electrolyte solution is used as a source of lithium ions, and the lithium ions are reversibly doped or undoped from the lithium salt.

본 발명에 따른 리튬 이온 커패시터에 있어서, 상기 음극은 상기 양극과 이온 교환을 수행하기 이전에 상기 전해액에 포함된 리튬염을 통해 미리 리튬 이온이 도핑되는 것을 특징으로 한다.In the lithium ion capacitor according to the present invention, the negative electrode is doped with lithium ions in advance through the lithium salt contained in the electrolyte before performing ion exchange with the positive electrode.

본 발명에 따른 리튬 이온 커패시터에 있어서, 상기 음극에 도핑되는 리튬 이온의 양은 상기 전해액에 포함된 상기 리튬염의 양과 비례하는 것을 특징으로 한다.In the lithium ion capacitor according to the present invention, the amount of lithium ions doped into the negative electrode is proportional to the amount of the lithium salt contained in the electrolyte solution.

본 발명에 따른 리튬 이온 커패시터는 전해액에 포함된 리튬염을 리튬 이온의 공급원으로 하여, 리튬염으로부터 리튬 이온을 음극에 미리 도핑하도록 함으로써, 금속 리튬을 사용함에 따르는 안정성을 확보할 수 있고, 전해액에 포함된 리튬염의 양을 조절하여 음극에 도핑되는 리튬 이온의 양을 용이하게 제어할 수 있으며, 리튬 금속 대비 가격이 저렴하며, 리튬 금속을 형성하기 위한 공정비용이 절감될 수 있다.The lithium ion capacitor according to the present invention uses the lithium salt contained in the electrolyte as a source of lithium ions, and by pre-doping the negative electrode with lithium ions from the lithium salt, it is possible to secure stability due to the use of metal lithium, and to The amount of lithium ions doped into the anode can be easily controlled by adjusting the amount of lithium salt included, and the price is lower than that of lithium metal, and the process cost for forming lithium metal can be reduced.

도 1은 본 발명의 실시예에 따른 리튬 이온 커패시터의 구조를 나타낸 예시도이다.
도 2는 본 발명의 실시예에 따른 리튬 이온 커패시터의 초기 충전 전압을 인가하였을 경우 전해액에 포함된 리튬 이온의 이동 경로를 나타낸 도면이다.
1 is an exemplary view showing the structure of a lithium ion capacitor according to an embodiment of the present invention.
2 is a diagram illustrating a movement path of lithium ions included in an electrolyte when an initial charging voltage of a lithium ion capacitor according to an embodiment of the present invention is applied.

하기의 설명에서는 본 발명의 실시예를 이해하는데 필요한 부분만이 설명되며, 그 이외 부분의 설명은 본 발명의 요지를 흩트리지 않도록 생략될 것이라는 것을 유의하여야 한다.It should be noted that in the following description, only parts necessary for understanding the embodiments of the present invention are described, and descriptions of other parts will be omitted so as not to obscure the gist of the present invention.

이하에서 설명되는 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념으로 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 바람직한 실시예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.The terms or words used in this specification and claims described below should not be construed as being limited to ordinary or dictionary meanings, and the inventors have appropriately used the concept of terms to describe their inventions in the best way. It should be interpreted as a meaning and concept consistent with the technical spirit of the present invention based on the principle that it can be defined in the following way. Therefore, the embodiments described in this specification and the configurations shown in the drawings are only preferred embodiments of the present invention, and do not represent all of the technical spirit of the present invention, so various equivalents that can replace them at the time of the present application. It should be understood that there may be variations and variations.

이하, 첨부된 도면을 참조하여 본 발명의 실시예를 보다 상세하게 설명하고자 한다.Hereinafter, embodiments of the present invention will be described in more detail with reference to the accompanying drawings.

도 1은 본 발명의 실시예에 따른 리튬 이온 커패시터의 구조를 나타낸 예시도이고, 도 2는 본 발명의 실시예에 따른 리튬 이온 커패시터의 초기 충전 전압을 인가하였을 경우 전해액에 포함된 리튬 이온의 이동 경로를 나타낸 도면이다.1 is an exemplary diagram showing the structure of a lithium ion capacitor according to an embodiment of the present invention, and FIG. 2 is a movement of lithium ions included in an electrolyte when an initial charging voltage is applied to a lithium ion capacitor according to an embodiment of the present invention. A diagram showing the route.

도 1 및 도 2를 참조하면, 본 발명의 실시예에 따른 리튬 이온 커패시터(100)는 양극(10), 음극(20), 분리막(30) 및 전해액(40)을 포함한다.Referring to FIGS. 1 and 2 , a lithium ion capacitor 100 according to an embodiment of the present invention includes an anode 10 , a cathode 20 , a separator 30 and an electrolyte solution 40 .

양극(10)은 양극 집전체와, 양극 집전체의 적어도 일면에 배치되는 양극 활물질을 포함한다.The positive electrode 10 includes a positive electrode current collector and a positive electrode active material disposed on at least one surface of the positive electrode current collector.

여기서 양극 집전체(11)는 금속으로써, 알루미늄(Al), 스테인리스, 구리(Cu), 니켈(Ni), 타이타늄(Ti), 탄탈륨(Ta), 니오븀(Nb) 중 어느 하나이거나 이들의 합금 등으로 형성될 수 있다.Here, the positive current collector 11 is a metal, and is any one of aluminum (Al), stainless steel, copper (Cu), nickel (Ni), titanium (Ti), tantalum (Ta), and niobium (Nb), or an alloy thereof, etc. can be formed as

양극 활물질은 활성탄(AC)을 포함하는 전해액(40)에 포함되어 있는 음이온이 흡착되거나 탈착할 수 있는 탄소계 재료가 사용될 수 있다.A carbon-based material capable of adsorbing or desorbing anions contained in the electrolyte solution 40 including activated carbon (AC) may be used as the cathode active material.

음극(20)은 음극 집전체(21)와, 음극 집전체(21)의 적어도 일면에 배치되는 음극 활물질을 포함한다.The negative electrode 20 includes a negative electrode current collector 21 and a negative electrode active material disposed on at least one surface of the negative electrode current collector 21 .

음극 활물질은 용량이 크고 리튬 이온을 삽입 및 탈리할 수 있는 탄소계 재료가 사용될 수 있다. 예컨데 양극 활물질로는 그래파이트(graphite), 하드 카본(hard carbon), 소프트 카본(soft carbon) 등을 사용할 수 있다.As the negative electrode active material, a carbon-based material having a high capacity and capable of intercalating and deintercalating lithium ions may be used. For example, graphite, hard carbon, soft carbon, etc. may be used as the cathode active material.

이와 같이 제조되는 리튬 이온 커패시터(100)는 양극 활물질로 활성탄을 사용하고, 음극 활물질로 그래파이트(graphite), 하드 카본(hard carbon), 소프트 카본(soft carbon) 등을 사용하여 전기화학적 흡탈착 반응뿐만 아니라 낮은 전위에서 리튬의 삽입 및 탈리 반응을 이용하기 때문에 단위 중량당 에너지 밀도를 향상시킬 수 있다.The lithium ion capacitor 100 manufactured as described above uses activated carbon as a cathode active material and graphite, hard carbon, soft carbon, etc. In addition, since the intercalation and desorption reactions of lithium are used at low potentials, the energy density per unit weight can be improved.

여기서 리튬 이온 커패시터는 전기화학적 흡탈착 반응뿐 아니라 리튬의 삽입 및 탈리 반응을 위한 리튬 도핑 공정이 반드시 필요하게 되며, 기존의 금속 리튬을 전극에 라미네이트하여 전기적으로 단락시키는 도핑 방식은 리튬이 음극에 도핑되는 양을 제어하기가 어렵고, 도핑 공정에서 발생하는 리튬 금속에 따른 안전성 유지가 여려운 문제점이 있다.Here, lithium ion capacitors need a lithium doping process for intercalation and desorption reactions of lithium as well as electrochemical adsorption and desorption reactions. There are problems in that it is difficult to control the amount of lithium metal and it is difficult to maintain safety according to lithium metal generated in the doping process.

이에 따라 본 발명의 실시예에 따른 리튬 이온 커패시터(100)는 전해액(40)에 포함된 리튬염을 리튬 이온의 공급원으로 하여, 리튬염으로부터 리튬 이온을 음극(20)에 미리 도핑하도록 함으로써, 금속 리튬을 사용함에 따르는 안정성을 확보할 수 있고, 전해액에 포함된 리튬염의 양을 조절하여 음극(20)에 도핑되는 리튬 이온의 양을 용이하게 제어할 수 있으며, 리튬 금속 대비 가격이 저렴하며, 리튬 금속을 형성하기 위한 공정비용이 절감될 수 있다.Accordingly, the lithium ion capacitor 100 according to an embodiment of the present invention uses the lithium salt contained in the electrolyte solution 40 as a source of lithium ions, and pre-dopes the negative electrode 20 with lithium ions from the lithium salt, so that the metal Stability due to the use of lithium can be secured, the amount of lithium ions doped into the negative electrode 20 can be easily controlled by adjusting the amount of lithium salt contained in the electrolyte, and the price is inexpensive compared to lithium metal, and lithium The process cost for forming the metal can be reduced.

분리막(30)은 양극(10)과 음극(20)을 분리하도록 양극(10)과 음극(20) 사이에 배치될 수 있다. 분리막(30)은 음극(10) 또는 양극(20) 사이에 리튬 이온을 교환할 수 있는 다공성 물질로 형성될 수 있다.The separator 30 may be disposed between the positive electrode 10 and the negative electrode 20 to separate the positive electrode 10 and the negative electrode 20 . The separator 30 may be formed of a porous material capable of exchanging lithium ions between the negative electrode 10 or the positive electrode 20 .

전해액(40)은 이온들을 이동시킬 수 있는 매질의 역할을 하는 것으로, 전해질 및 용매를 포함한다. 전해질은 LiPF6, LiBF4 및 LiCIO4 중 어느 하나의 리튬염을 포함할 수 있다. 리튬염은 리튬이온 커패시터(100)의 초기 충전시 음극으로 도핑되는 리튬이온의 공급원의 역할을 할 수 있다. 또한, 전해액(40)의 용매로 사용되는 재질의 예로서는 프로필렌 카보네이트(propylene carbonate), 에틸렌 카보네이트(ethylene carbonate), 디에틸 카보네이트(diethyl carbonate), 디메틸 카보네이트(dimethyl carbonate), 및 에틸 메틸 카보네이트(ethyl methyl carbonate) 중 어느 하나 또는 둘 이상의 혼합 용매일 수 있다.The electrolyte solution 40 serves as a medium capable of moving ions, and includes an electrolyte and a solvent. The electrolyte may include any one of lithium salts of LiPF 6 , LiBF 4 and LiCIO 4 . The lithium salt may serve as a source of lithium ions doped into the negative electrode when the lithium ion capacitor 100 is initially charged. In addition, examples of the material used as the solvent of the electrolyte 40 include propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, and ethyl methyl carbonate. carbonate), or a mixed solvent of two or more.

이러한 전해액(40)은 양극(10) 및 음극(20)이 완전히 함침되도록 구비될 수 있다.The electrolyte solution 40 may be provided so that the positive electrode 10 and the negative electrode 20 are completely impregnated.

이러한 본 발명의 실시예에 따른 전해액(40)은 음극(10) 또는 양극(20)에 초기 충전 전압을 인가하게 되면 리튬염에 포함된 리튬이온이 음극에 미리 도핑 되도록 할 수 있다. 여기서 음극(20)에 도핑되는 리튬 이온의 양은 전해액(40)에 포함된 리튬염의 양과 비례할 수 있다.When an initial charging voltage is applied to the negative electrode 10 or the positive electrode 20 of the electrolyte solution 40 according to the embodiment of the present invention, lithium ions included in the lithium salt can be pre-doped into the negative electrode. Here, the amount of lithium ions doped into the anode 20 may be proportional to the amount of lithium salt included in the electrolyte solution 40 .

즉 본 발명의 실시예에서는 음극(20)에 포함된 리튬염의 농도를 통해 초기 음극(20)에 프리(pre) 도핑되는 리튬 이온의 양을 제어할 수 있다.That is, in the embodiment of the present invention, the amount of lithium ions pre-doped in the initial negative electrode 20 can be controlled through the concentration of the lithium salt included in the negative electrode 20 .

이와 같이, 본 발명의 실시예에 따른 리튬 이온 커패시터(100)는 전해액(40)에 포함된 리튬염을 리튬 이온의 공급원으로 하여, 리튬염으로부터 리튬 이온을 음극에 미리 도핑하도록 함으로써, 금속 리튬을 사용함에 따르는 안정성을 확보할 수 있고, 전해액(40)에 포함된 리튬염의 양을 조절하여 음극에 도핑되는 리튬 이온의 양을 용이하게 제어할 수 있으며, 리튬 금속 대비 가격이 저렴하며, 리튬 금속을 형성하기 위한 공정비용이 절감될 수 있다.As described above, the lithium ion capacitor 100 according to an embodiment of the present invention uses the lithium salt contained in the electrolyte 40 as a source of lithium ions, and pre-dopes the negative electrode with lithium ions from the lithium salt, thereby forming metal lithium. It is possible to secure stability during use, and it is possible to easily control the amount of lithium ions doped into the negative electrode by adjusting the amount of lithium salt contained in the electrolyte 40. The process cost for formation can be reduced.

한편, 본 도면에 개시된 실시예는 이해를 돕기 위해 특정 예를 제시한 것에 지나지 않으며, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시예 이외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형예들이 실시 가능하다는 것은, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게는 자명한 것이다.On the other hand, the embodiments disclosed in the drawings are only presented as specific examples to aid understanding, and are not intended to limit the scope of the present invention. It is obvious to those skilled in the art that other modified examples based on the technical idea of the present invention can be implemented in addition to the embodiments disclosed herein.

10 : 양극 11 : 양극 집전체
20 : 음극 21 : 음극 집전체
30 : 분리막 40 : 전해액
100 : 리튬 이온 커패시터
10: positive electrode 11: positive electrode current collector
20: negative electrode 21: negative electrode current collector
30: Separator 40: Electrolyte
100: lithium ion capacitor

Claims (3)

음극;
상기 음극과 이온 교환을 수행하는 양극;
상기 양극 및 음극이 침지되고, 리튬염을 포함하는 전해액; 을 포함하고,
상기 음극은 상기 음극 또는 상기 양극에 초기 충전 전압을 인가하여 상기 전해액의 리튬염으로부터 미리 리튬 이온이 도핑되는 것을 특징으로 하는 리튬 이온 커패시터.
cathode;
an anode performing ion exchange with the cathode;
an electrolyte solution in which the positive electrode and the negative electrode are immersed and include a lithium salt; including,
The lithium ion capacitor of claim 1 , wherein the negative electrode is previously doped with lithium ions from a lithium salt of the electrolyte by applying an initial charging voltage to the negative electrode or the positive electrode.
삭제delete 제1항에 있어서,
상기 음극에 도핑되는 리튬 이온의 양은 상기 전해액에 포함된 상기 리튬염의 양과 비례하는 것을 특징으로 하는 리튬 이온 커패시터.
According to claim 1,
The lithium ion capacitor, characterized in that the amount of lithium ions doped into the negative electrode is proportional to the amount of the lithium salt contained in the electrolyte solution.
KR1020160037572A 2016-03-29 2016-03-29 Lithium Ion Capacitor KR102467810B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160037572A KR102467810B1 (en) 2016-03-29 2016-03-29 Lithium Ion Capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160037572A KR102467810B1 (en) 2016-03-29 2016-03-29 Lithium Ion Capacitor

Publications (2)

Publication Number Publication Date
KR20170113910A KR20170113910A (en) 2017-10-13
KR102467810B1 true KR102467810B1 (en) 2022-11-17

Family

ID=60139651

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160037572A KR102467810B1 (en) 2016-03-29 2016-03-29 Lithium Ion Capacitor

Country Status (1)

Country Link
KR (1) KR102467810B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200118662A (en) * 2019-04-08 2020-10-16 솔브레인홀딩스 주식회사 Ion-exchange chromatography system, method for quantitative analysis of lithium salts in electrolyte solution and method for preparing electrolyte solution

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008166342A (en) * 2006-12-27 2008-07-17 Fuji Heavy Ind Ltd Lithium ion capacitor
JP5856946B2 (en) * 2012-12-21 2016-02-10 太陽誘電株式会社 Electrochemical devices

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
인용발명 1: 공개특허공보 제10-2014-0081671호(2014.07.01.) 1부.*
인용발명 2: 일본 공개특허공보 특개2008-166342호(2008.07.17.) 1부.*

Also Published As

Publication number Publication date
KR20170113910A (en) 2017-10-13

Similar Documents

Publication Publication Date Title
US10636581B2 (en) Electric double layer capacitor
JPWO2005096333A1 (en) Organic electrolyte capacitor using mesopore carbon material for negative electrode
WO2006112070A1 (en) Lithium ion capacitor
WO2014148250A1 (en) Lithium ion capacitor and method for charging and discharging same
US20120050950A1 (en) Lithium ion capacitor
US20170194106A1 (en) Electricity storage device and charge/discharge system
JP2012244164A (en) Hybrid capacitor
JP2012089825A (en) Lithium ion capacitor
JP2012004491A (en) Power storage device
JP2019508896A (en) PRE-DOPED ANODE AND METHOD AND APPARATUS FOR MANUFACTURING THE SAME
TW201721941A (en) Method for producing negative electrode active material for nonaqueous electrolyte secondary batteries and method for manufacturing nonaqueous electrolyte secondary battery
WO2014049440A2 (en) Hybrid electrochemical energy storage device
JP4731974B2 (en) Lithium ion capacitor
KR102467810B1 (en) Lithium Ion Capacitor
TWI692786B (en) Hybrid capacitor
JP2013143422A (en) Lithium ion capacitor
JP2012089823A (en) Lithium ion capacitor and manufacturing method for the same
JP2012028366A (en) Power storage device
JP2012253072A (en) Lithium ion capacitor
US20230387475A1 (en) Lithium supercapattery with stacked or wound negative and positive electrodes sets along with separator
JP2015095634A (en) Power storage device and manufacturing method thereof
JP4863000B2 (en) Electric storage device and manufacturing method thereof
JP4732074B2 (en) Lithium ion capacitor
US20170011860A1 (en) Capacitor and method for charging and discharging same
KR20170113908A (en) Lithium ion capacitor

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right