KR102449786B1 - Corrosion inhibiting addtives for pcb treated by electroless nickel immersion gold - Google Patents

Corrosion inhibiting addtives for pcb treated by electroless nickel immersion gold Download PDF

Info

Publication number
KR102449786B1
KR102449786B1 KR1020210030467A KR20210030467A KR102449786B1 KR 102449786 B1 KR102449786 B1 KR 102449786B1 KR 1020210030467 A KR1020210030467 A KR 1020210030467A KR 20210030467 A KR20210030467 A KR 20210030467A KR 102449786 B1 KR102449786 B1 KR 102449786B1
Authority
KR
South Korea
Prior art keywords
corrosion
additive
pcb wiring
enig
treated
Prior art date
Application number
KR1020210030467A
Other languages
Korean (ko)
Other versions
KR20220126344A (en
Inventor
김정구
최석열
이윤호
Original Assignee
성균관대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성균관대학교산학협력단 filed Critical 성균관대학교산학협력단
Priority to KR1020210030467A priority Critical patent/KR102449786B1/en
Priority to PCT/KR2022/001081 priority patent/WO2022191419A1/en
Publication of KR20220126344A publication Critical patent/KR20220126344A/en
Application granted granted Critical
Publication of KR102449786B1 publication Critical patent/KR102449786B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings
    • H05K3/282Applying non-metallic protective coatings for inhibiting the corrosion of the circuit, e.g. for preserving the solderability
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/14Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/10Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using organic inhibitors
    • C23F11/14Nitrogen-containing compounds
    • C23F11/141Amines; Quaternary ammonium compounds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings

Abstract

본 발명은 무전해 도금 처리된 PCB 배선에서 발생하는 부식 해결을 위한 부식 방지 첨가제에 관한 내용이다.
본 발명은 부식방지제를 이용하여 Ni/Au 무전해도금(Electroless nickel immersion gold, 이하 ENIG) 처리된 PCB 배선에서 발생하는 부식을 방지하는 방법이다. 부식방지제를 배선 주변의 고분자 물질 또는 접착제에 혼합하여 사용하여, 복잡한 추가 공정 없이 저렴한 가격으로 PCB 배선의 금속 부식 저항성을 높이는 방법이다.
The present invention relates to an anti-corrosion additive for solving corrosion occurring in an electroless plated PCB wiring.
The present invention is a method of preventing corrosion occurring in PCB wiring treated with Ni/Au electroless nickel immersion gold (ENIG) using a corrosion inhibitor. It is a method to increase the metal corrosion resistance of PCB wiring at a low price without complicated additional process by mixing the corrosion inhibitor with the polymer material or adhesive around the wiring.

Description

무전해 도금 처리된 PCB 배선의 부식 방지 첨가제 {CORROSION INHIBITING ADDTIVES FOR PCB TREATED BY ELECTROLESS NICKEL IMMERSION GOLD}Anti-corrosion additive for electroless-plated PCB wiring {CORROSION INHIBITING ADDTIVES FOR PCB TREATED BY ELECTROLESS NICKEL IMMERSION GOLD}

본 발명은 무전해 도금 처리된 PCB 배선에서 발생하는 부식 해결을 위한 부식 방지 첨가제에 관한 내용이다.The present invention relates to an anti-corrosion additive for solving corrosion occurring in an electroless plated PCB wiring.

본 발명은 부식방지제를 이용하여 Ni/Au 무전해도금(Electroless nickel immersion gold, 이하 ENIG) 처리된 PCB 배선에서 발생하는 부식을 방지하는 방법이다. 부식방지제를 배선 주변의 고분자 물질 또는 접착제에 혼합하여 사용하여, 복잡한 추가 공정 없이 저렴한 가격으로 PCB 배선의 금속 부식 저항성을 높이는 방법이다.The present invention is a method of preventing corrosion occurring in PCB wiring treated with Ni/Au electroless nickel immersion gold (ENIG) using a corrosion inhibitor. It is a method to increase the metal corrosion resistance of PCB wiring at a low price without complicated additional process by mixing the corrosion inhibitor with the polymer material or adhesive around the wiring.

최근 전자 부품의 소형화에 따라, 회로의 고밀도/고집적화가 진행중이다. 이러한 현상 속에서, 금속 배선의 부식 등의 신뢰성 문제가 발생하였는데, 이를 해결하기 위해, 도 1과 같이 ENIG를 이용하여 금속 배선 위에 Ni/Au의 금속을 도금하여 하부 배선 금속 층의 부식을 방지하고 있다.Recently, with the miniaturization of electronic components, high-density/high-integration of circuits is in progress. In this phenomenon, reliability problems such as corrosion of metal wiring occurred. In order to solve this problem, Ni/Au metal is plated on the metal wiring using ENIG as shown in FIG. 1 to prevent corrosion of the metal layer of the lower wiring. have.

하지만 ENIG 간 도금되는 얇은 Au 층(<0.05㎛)의 결함에서 부식이 진행되면, 하부 Ni 금속이 전해질에 노출되어 미세 갈바닉 부식이 발생한다. 전해질에 노출이 되면, Au와 Ni의 환원전위차에 의해서 미세 갈바닉 쌍을 형성하고 Ni의 부식이 도 2와 같이 가속화된다.However, when corrosion proceeds in the defect of the thin Au layer (<0.05㎛) plated between ENIGs, the underlying Ni metal is exposed to the electrolyte and microgalvanic corrosion occurs. When exposed to electrolyte, a fine galvanic pair is formed by the reduction potential difference between Au and Ni, and the corrosion of Ni is accelerated as shown in FIG. 2 .

또한, 구동중인 PCB가 대기 중의 습기에 노출되면, Au의 얇은 두께에 의해 Au 층이 부식이 빠르게 진행되어 Ni 및 하부 배선이 노출되어 부식이 진행된다.In addition, when the PCB being driven is exposed to moisture in the atmosphere, the Au layer is corroded rapidly due to the thin thickness of Au, so that Ni and the lower wiring are exposed and the corrosion proceeds.

ENIG 처리된 PCB 배선에서 Ni의 부식은 금속 배선간의 정상적인 접촉을 방해하는 전기적 개방(Open) 불량을 야기한다.Corrosion of Ni in ENIG-treated PCB wiring causes electrical open failure that prevents normal contact between metal wirings.

본 발명은 복잡한 추가 공정 없이, 저렴한 방법으로 ENIG 처리된 PCB 배선에서 Ni 및 Au의 부식을 방지하는 기술을 개발하기 위한 것이다. The present invention is to develop a technology for preventing corrosion of Ni and Au in ENIG-treated PCB wiring in an inexpensive way without complicated additional processes.

동전위 분극 실험(Potentiodynamic polarization test)을 통하여 부식 방지 첨가제를 첨가함에 따라 Ni의 부식전류밀도 감소를 평가함으로써 ENIG 내 Ni의 부식 방지를 목적으로 한다. It aims to prevent corrosion of Ni in ENIG by evaluating the decrease in corrosion current density of Ni as corrosion inhibitor is added through a potentiodynamic polarization test.

ZRA(Zero resistance ammeter) 실험을 통하여 첨가제 유무에 따라 Au와 Ni의 갈바닉 부식 전류 밀도를 측정함으로써 첨가제를 통한 갈바닉 부식 방지를 목적으로 한다. The objective is to prevent galvanic corrosion through additives by measuring the galvanic corrosion current density of Au and Ni according to the presence or absence of additives through ZRA (Zero resistance ammeter) experiment.

또한, 실제 ENIG 처리된 PCB 배선에 첨가제 유무에 따른 부식 고가속실험인 물방울시험 (Water drop test)를 통해 실제 ENIG 처리된 PCB 배선이 구동 중에 부식 방지 정도를 평가함으로써 첨가제를 통한 ENIG 처리된 PCB 배선의 부식 방지를 목적으로 한다.In addition, the ENIG-treated PCB wiring through additives is evaluated by evaluating the degree of corrosion protection of the actual ENIG-treated PCB wiring during operation through the Water drop test, a high-accelerating corrosion test depending on the presence or absence of additives in the actual ENIG-treated PCB wiring. for the purpose of corrosion protection.

본 발명의 일 실시예에 따른 무전해 도금 처리된 PCB 배선의 부식 방지 첨가제는, 무전해 도금(ENIG; Electroless nickel immersion gold) 처리된 PCB 배선의 패키징에 이용되는 에폭시 몰딩 컴파운드(EMC; Epoxy Molding Compound)에 혼합하여 사용되며, 하기 첨가제 중 어느 하나 또는 둘 이상의 조합을 포함한다.The anti-corrosion additive of the electroless-plated PCB wiring according to an embodiment of the present invention is an Epoxy Molding Compound (EMC) used for packaging of the electroless nickel immersion gold (ENIG)-treated PCB wiring. ), and includes any one or a combination of two or more of the following additives.

Dodecyltrimethylammonium chloride[CH3(CH2)11N(CH3)3Cl], Dodecyltrimethylammonium bromide[CH3(CH2)11N(CH3)3Br], Sodium dodecyl sulfate[NaC12H25SO4], 2-butyne-1,4-diol[C4H6O2], Saccharin[C7H5NO3S], Sodium benzenesulfonate[C6H5SO3Na], Cetyltrimethylammonium chloride[C19H42ClN], Polyethyleneimine[C2H5N)n], 4-picoline[C6H7N], Polyethylene glycol[C2nH4n+2On+1], Alanine[HO2CCH(NH2)CH3], Naphthylamine[C10H9N], Benzylidenemethylamine[C8H9N], Serine[C3H7NO3], Threonine[C4H9NO3], Glutamine[C5H10N2O3], Phenylenediamine[C12H12N2], Benzotriazole[C6H5N3], Hexamethylenetetramine[C6H12N4]Dodecyltrimethylammonium chloride[CH 3 (CH 2 ) 11 N(CH 3 ) 3 Cl], Dodecyltrimethylammonium bromide[CH 3 (CH 2 ) 11 N(CH 3 ) 3 Br], Sodium dodecyl sulfate[NaC1 2 H 25 SO 4 ], 2-butyne-1,4-diol[C 4 H 6 O 2 ], Saccharin[C 7 H 5 NO 3 S], Sodium benzenesulfonate[C 6 H 5 SO 3 Na], Cetyltrimethylammonium chloride[C 19 H 42 ClN] , Polyethyleneimine[C 2 H 5 N) n ], 4-picoline[C 6 H 7 N], Polyethylene glycol[C 2n H 4n+2 O n+1 ], Alanine[HO 2 CCH(NH 2 )CH 3 ] , Naphthylamine[C 10 H 9 N], Benzylidenemethylamine[C 8 H 9 N], Serine[C 3 H 7 NO 3 ], Threonine[C 4 H 9 NO 3 ], Glutamine[C 5 H 10 N 2 O 3 ] , Phenylenediamine[C 12 H 12 N 2 ], Benzotriazole[C 6 H 5 N 3 ], Hexamethylenetetramine[C 6 H 12 N 4 ]

본 발명의 일 실시예에 따른 무전해 도금 처리된 PCB 배선의 부식 방지 첨가제는, 무전해 도금(ENIG; Electroless nickel immersion gold) 처리된 PCB 배선의 패키징에 이용되는 언더필(Underfill)에 혼합하여 사용되며, 하기 첨가제 중 어느 하나 또는 둘 이상의 조합을 포함한다.The anti-corrosion additive of the electroless plated PCB wiring according to an embodiment of the present invention is mixed with the underfill used for packaging of the electroless nickel immersion gold (ENIG)-treated PCB wiring. , any one or a combination of two or more of the following additives.

Dodecyltrimethylammonium chloride[CH3(CH2)11N(CH3)3Cl], Dodecyltrimethylammonium bromide[CH3(CH2)11N(CH3)3Br], Sodium dodecyl sulfate[NaC12H25SO4], 2-butyne-1,4-diol[C4H6O2], Saccharin[C7H5NO3S], Sodium benzenesulfonate[C6H5SO3Na], Cetyltrimethylammonium chloride[C19H42ClN], Polyethyleneimine[C2H5N)n], 4-picoline[C6H7N], Polyethylene glycol[C2nH4n+2On+1], Alanine[HO2CCH(NH2)CH3], Naphthylamine[C10H9N], Benzylidenemethylamine[C8H9N], Serine[C3H7NO3], Threonine[C4H9NO3], Glutamine[C5H10N2O3], Phenylenediamine[C12H12N2], Benzotriazole[C6H5N3], Hexamethylenetetramine[C6H12N4]Dodecyltrimethylammonium chloride[CH 3 (CH 2 ) 11 N(CH 3 ) 3 Cl], Dodecyltrimethylammonium bromide[CH 3 (CH 2 ) 11 N(CH 3 ) 3 Br], Sodium dodecyl sulfate[NaC1 2 H 25 SO 4 ], 2-butyne-1,4-diol[C 4 H 6 O 2 ], Saccharin[C 7 H 5 NO 3 S], Sodium benzenesulfonate[C 6 H 5 SO 3 Na], Cetyltrimethylammonium chloride[C 19 H 42 ClN] , Polyethyleneimine[C 2 H 5 N) n ], 4-picoline[C 6 H 7 N], Polyethylene glycol[C 2n H 4n+2 O n+1 ], Alanine[HO 2 CCH(NH 2 )CH 3 ] , Naphthylamine[C 10 H 9 N], Benzylidenemethylamine[C 8 H 9 N], Serine[C 3 H 7 NO 3 ], Threonine[C 4 H 9 NO 3 ], Glutamine[C 5 H 10 N 2 O 3 ] , Phenylenediamine[C 12 H 12 N 2 ], Benzotriazole[C 6 H 5 N 3 ], Hexamethylenetetramine[C 6 H 12 N 4 ]

본 발명의 일 실시예에 따른 무전해 도금 처리된 PCB 배선의 부식 방지 첨가제는, 무전해 도금(ENIG; Electroless nickel immersion gold) 처리된 PCB 배선의 회로 접착시 사용되는 ACF(Anisotropic Counductive Film)에 혼합하여 사용되며, 하기 첨가제 중 어느 하나 또는 둘 이상의 조합을 포함한다.The anti-corrosion additive of the electroless plated PCB wiring according to an embodiment of the present invention is mixed with ACF (Anisotropic Counductive Film) used for circuit bonding of the electroless nickel immersion gold (ENIG)-treated PCB wiring and is used, and includes any one or a combination of two or more of the following additives.

Dodecyltrimethylammonium chloride[CH3(CH2)11N(CH3)3Cl], Dodecyltrimethylammonium bromide[CH3(CH2)11N(CH3)3Br], Sodium dodecyl sulfate[NaC12H25SO4], 2-butyne-1,4-diol[C4H6O2], Saccharin[C7H5NO3S], Sodium benzenesulfonate[C6H5SO3Na], Cetyltrimethylammonium chloride[C19H42ClN], Polyethyleneimine[C2H5N)n], 4-picoline[C6H7N], Polyethylene glycol[C2nH4n+2On+1], Alanine[HO2CCH(NH2)CH3], Naphthylamine[C10H9N], Benzylidenemethylamine[C8H9N], Serine[C3H7NO3], Threonine[C4H9NO3], Glutamine[C5H10N2O3], Phenylenediamine[C12H12N2], Benzotriazole[C6H5N3], Hexamethylenetetramine[C6H12N4]Dodecyltrimethylammonium chloride[CH 3 (CH 2 ) 11 N(CH 3 ) 3 Cl], Dodecyltrimethylammonium bromide[CH 3 (CH 2 ) 11 N(CH 3 ) 3 Br], Sodium dodecyl sulfate[NaC1 2 H 25 SO 4 ], 2-butyne-1,4-diol[C 4 H 6 O 2 ], Saccharin[C 7 H 5 NO 3 S], Sodium benzenesulfonate[C 6 H 5 SO 3 Na], Cetyltrimethylammonium chloride[C 19 H 42 ClN] , Polyethyleneimine[C 2 H 5 N) n ], 4-picoline[C 6 H 7 N], Polyethylene glycol[C 2n H 4n+2 O n+1 ], Alanine[HO 2 CCH(NH 2 )CH 3 ] , Naphthylamine[C 10 H 9 N], Benzylidenemethylamine[C 8 H 9 N], Serine[C 3 H 7 NO 3 ], Threonine[C 4 H 9 NO 3 ], Glutamine[C 5 H 10 N 2 O 3 ] , Phenylenediamine[C 12 H 12 N 2 ], Benzotriazole[C 6 H 5 N 3 ], Hexamethylenetetramine[C 6 H 12 N 4 ]

상기 Hexamethylenetetramine의 농도는 10 내지 1000 ppm이고, 바람직하게 상기 Hexamethylenetetramine의 농도는 100 ppm이다.The concentration of the Hexamethylenetetramine is 10 to 1000 ppm, preferably the concentration of the Hexamethylenetetramine is 100 ppm.

본 발명에서 제안하는 첨가제를 첨가한 용액과 첨가되지 않은 용액을 비교하였을 때, 배선에 전압 인가 유무에 상관없이 Ni 및 Au의 부식을 억제하는 것을 확인할 수 있었다. When the solution with and without the additive proposed in the present invention was compared, it was confirmed that corrosion of Ni and Au was suppressed regardless of whether voltage was applied to the wiring.

첨가제 유무에 따라, 부식 전류 밀도가 최대 176배 가량 감소하였으며, Au와 Ni의 갈바닉 부식 전류 밀도 또한 최대 8배 가량 감소하여 ENIG 처리된 PCB 배선 부식을 방지함을 확인할 수 있었다. With or without additives, the corrosion current density was reduced by up to 176 times, and the galvanic corrosion current density of Au and Ni was also reduced by up to 8 times, confirming that the ENIG-treated PCB wiring corrosion was prevented.

또한, ENIG 처리된 PCB 배선에 전압을 인가하였을 때, 부식 방지 첨가제를 첨가하였을 때, ENIG 구성 물질인 Au와 Ni의 부식을 현저하게 감소시킴을 확인하였다.In addition, it was confirmed that when a voltage was applied to the ENIG-treated PCB wiring, corrosion of the ENIG constituent materials Au and Ni was remarkably reduced when an anti-corrosion additive was added.

본 발명에서 제안하는 첨가제를 반도체, 디스플레이 등을 패키징 (packaging)할 때 사용되는 에폭시 몰딩 컴파운드(Epoxy Molding Compound)(EMC)나 언더필(Underfill) 등의 고분자 물질에 혼합하여 사용하거나, 회로 접착 시 사용되는 ACF(Anisotropic Conductive Film)에 혼합하여 사용하여 ENIG 처리된 PCB 배선에서 발생할 수 있는 부식을 방지함으로써, 소자의 신뢰성을 확보할 수 있다.The additive proposed in the present invention is mixed with a polymer material such as an epoxy molding compound (EMC) or underfill used for packaging semiconductors and displays, or used for circuit bonding. By mixing with ACF (Anisotropic Conductive Film) to prevent corrosion that may occur in ENIG-treated PCB wiring, the reliability of the device can be secured.

도 1은 PCB 내 ENIG처리된 구리배선 단면 모식도를 도시한다.
도 2는 PCB 내 Au 결함부에서의 Au-Ni 미세 갈바닉 부식 모식도를 도시한다.
도 3은 ENIG 처리된 Cu Comb의 물방울 실험 방법을 도시한다.
도 4는 NaCl 35000ppm 농도 하 부식 방지 첨가제의 최적 농도 산출을 위한 H.M.T (Hexamethylenetetramine) 농도별 Ni의 부식 방지 효과(IE%)를 도시한다.
도 5는 NaCl 35000ppm 농도 및 부식 방지 첨가제 최적 농도 첨가에 따른 Ni의 동전위 분극 실험 결과 및 부식 전류 밀도, 부식 속도 산출를 도시한다.
도 6은 NaCl 35000ppm 농도 및 부식 방지 첨가제 최적 농도 첨가에 따른 Au, Ni의 ZRA 실험 결과 및 갈바닉 부식 전류 밀도 산출를 도시한다.
도 7은 클로라이드 이온 1000ppm 농도 및 부식 방지 첨가제 최적 농도 첨가에 따른 ENIG 처리된 구리 배선의 PCB에서의 Water drop test 실험 결과를 도시한다.
다양한 실시예들이 이제 도면을 참조하여 설명되며, 전체 도면에서 걸쳐 유사한 도면번호는 유사한 엘리먼트를 나타내기 위해서 사용된다. 설명을 위해 본 명세서에서, 다양한 설명들이 본 발명의 이해를 제공하기 위해서 제시된다. 그러나 이러한 실시예들은 이러한 특정 설명 없이도 실행될 수 있음이 명백하다. 다른 예들에서, 공지된 구조 및 장치들은 실시예들의 설명을 용이하게 하기 위해서 블록 다이아그램 형태로 제시된다.
1 shows a schematic cross-sectional view of ENIG-treated copper wiring in a PCB.
Figure 2 shows a schematic diagram of Au-Ni micro galvanic corrosion in the Au defect in the PCB.
3 shows a droplet test method of ENIG-treated Cu Comb.
Figure 4 shows the corrosion prevention effect (IE%) of Ni for each concentration of HMT (Hexamethylenetetramine) for calculating the optimal concentration of the corrosion inhibitor additive under NaCl 35000ppm concentration.
5 shows the results of the electrostatic polarization experiment and corrosion current density and corrosion rate calculation of Ni according to the NaCl 35000ppm concentration and the addition of the optimum concentration of the anticorrosion additive.
Figure 6 shows the ZRA experimental results and galvanic corrosion current density calculation of Au and Ni according to the NaCl 35000ppm concentration and the addition of the optimum concentration of the corrosion inhibitor additive.
7 shows the test results of water drop test on the PCB of ENIG-treated copper wiring according to the addition of the chloride ion concentration of 1000ppm and the optimum concentration of the anticorrosion additive.
BRIEF DESCRIPTION OF THE DRAWINGS Various embodiments are now described with reference to the drawings, wherein like reference numerals are used to refer to like elements throughout. In this specification for purposes of explanation, various descriptions are presented to provide an understanding of the present invention. However, it will be apparent that these embodiments may be practiced without these specific descriptions. In other instances, well-known structures and devices are presented in block diagram form in order to facilitate describing the embodiments.

이하, 첨부한 도면을 참조하여 본 발명의 실시예에 대해 상세히 설명한다. 본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다. Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. Since the present invention can have various changes and can have various forms, specific embodiments are illustrated in the drawings and described in detail in the text. However, this is not intended to limit the present invention to the specific disclosed form, it should be understood to include all modifications, equivalents and substitutes included in the spirit and scope of the present invention. In describing each figure, like reference numerals have been used for like elements.

본 출원에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로서 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terms used in the present application are used only to describe specific embodiments and are not intended to limit the present invention. The singular expression includes the plural expression unless the context clearly dictates otherwise. In the present application, terms such as “comprise” or “have” are intended to designate that a feature, step, operation, component, part, or combination thereof described in the specification is present, and includes one or more other features or steps. , it should be understood that it does not preclude the possibility of the existence or addition of , operation, components, parts or combinations thereof.

본 발명은 무전해 도금 처리된 PCB 배선에서 발생하는 부식 해결을 위한 부식 방지 첨가제에 관한 내용으로써, 본 발명은 부식방지제를 이용하여 Ni/Au 무전해도금(Electroless nickel immersion gold, 이하 ENIG) 처리된 PCB 배선에서 발생하는 부식을 방지하는 방법이다. 부식방지제를 배선 주변의 고분자 물질 또는 접착제에 혼합하여 사용하여, 복잡한 추가 공정 없이 저렴한 가격으로 PCB 배선의 금속 부식 저항성을 높이는 방법이다.The present invention relates to an anti-corrosion additive for solving corrosion occurring in an electroless-plated PCB wiring, and the present invention relates to a Ni/Au electroless nickel immersion gold (ENIG) treatment using a corrosion inhibitor. It is a method to prevent corrosion that occurs in PCB wiring. It is a method to increase the metal corrosion resistance of PCB wiring at a low price without complicated additional process by mixing the corrosion inhibitor with the polymer material or adhesive around the wiring.

본 발명의 부식 방지 첨가제는 반도체, 디스플레이 등을 패키징 (packaging)할 때 사용되는 에폭시 몰딩 컴파운드(Epoxy Molding Compound)(EMC)나 언더필(Underfill)의 고분자 물질에 혼합하여 사용될 수 있다. 또한, 회로 접착 시 사용되는 ACF(Anisotropic Conductive Film)에 혼합하여 사용하여 ENIG 처리된 PCB 배선에서 발생할 수 있는 부식을 방지함으로써, 소자의 신뢰성을 확보할 수 있다.The anticorrosion additive of the present invention may be mixed with a polymer material of an epoxy molding compound (EMC) or underfill used for packaging semiconductors, displays, and the like. In addition, it is mixed with ACF (Anisotropic Conductive Film) used for circuit bonding to prevent corrosion that may occur in ENIG-treated PCB wiring, thereby securing device reliability.

본 발명의 부식 방지 첨가제는 하기 첨가제 중 어느 하나 또는 둘 이상의 조합을 포함한다.The anticorrosion additive of the present invention includes any one or a combination of two or more of the following additives.

Dodecyltrimethylammonium chloride[CH3(CH2)11N(CH3)3Cl], Dodecyltrimethylammonium bromide[CH3(CH2)11N(CH3)3Br], Sodium dodecyl sulfate[NaC12H25SO4], 2-butyne-1,4-diol[C4H6O2], Saccharin[C7H5NO3S], Sodium benzenesulfonate[C6H5SO3Na], Cetyltrimethylammonium chloride[C19H42ClN], Polyethyleneimine[C2H5N)n], 4-picoline[C6H7N], Polyethylene glycol[C2nH4n+2On+1], Alanine[HO2CCH(NH2)CH3], Naphthylamine[C10H9N], Benzylidenemethylamine[C8H9N], Serine[C3H7NO3], Threonine[C4H9NO3], Glutamine[C5H10N2O3], Phenylenediamine[C12H12N2], Benzotriazole[C6H5N3], Hexamethylenetetramine[C6H12N4]Dodecyltrimethylammonium chloride[CH 3 (CH 2 ) 11 N(CH 3 ) 3 Cl], Dodecyltrimethylammonium bromide[CH 3 (CH 2 ) 11 N(CH 3 ) 3 Br], Sodium dodecyl sulfate[NaC1 2 H 25 SO 4 ], 2-butyne-1,4-diol[C 4 H 6 O 2 ], Saccharin[C 7 H 5 NO 3 S], Sodium benzenesulfonate[C 6 H 5 SO 3 Na], Cetyltrimethylammonium chloride[C 19 H 42 ClN] , Polyethyleneimine[C 2 H 5 N) n ], 4-picoline[C 6 H 7 N], Polyethylene glycol[C 2n H 4n+2 O n+1 ], Alanine[HO 2 CCH(NH 2 )CH 3 ] , Naphthylamine[C 10 H 9 N], Benzylidenemethylamine[C 8 H 9 N], Serine[C 3 H 7 NO 3 ], Threonine[C 4 H 9 NO 3 ], Glutamine[C 5 H 10 N 2 O 3 ] , Phenylenediamine[C 12 H 12 N 2 ], Benzotriazole[C 6 H 5 N 3 ], Hexamethylenetetramine[C 6 H 12 N 4 ]

이러한 부식 방지 첨가제는 금속 표면 흡착 첨가제로 단일 첨가 또는 복합 첨가로 이용될 수 있다.These anti-corrosion additives can be used as a single addition or a combined addition as a metal surface adsorption additive.

이하에서는 구체적인 실시예와 함께 본 발명의 내용을 추가적으로 설명하도록 하겠다.Hereinafter, the content of the present invention will be further described along with specific examples.

실시예 1Example 1

부식 방지 평가 실험을 위한 첨가제 용액 제작Preparation of additive solutions for corrosion protection evaluation experiments

전기전도도가 15MΩ 이상인 deionized water에 sodium chloride(NaCl)을 35000ppm을 첨가하여 부식가혹화 용액을 제작하였다. 다만, 물방울 실험은 그 자체로 가속화 시험이므로 염소 1000ppm으로 사용하였다. 염소 이온은 양극 금속의 이온화 반응을 가속화시켜 부식 현상을 촉진시킨다. 이러한 가속 용액에 첨가제를 첨가하여 발명의 효과를 확인하고자 하였다.35000ppm of sodium chloride (NaCl) was added to deionized water having an electrical conductivity of 15MΩ or more to prepare a corrosion-hardening solution. However, since the droplet test itself is an accelerated test, 1000 ppm of chlorine was used. Chlorine ions accelerate the ionization reaction of the anode metal, thereby promoting corrosion. An additive was added to the accelerated solution to confirm the effect of the invention.

본 실험에서는 Polyethylene glycol [C2nH4n+2On+1] (이하 P.E.G), Phenylenediamine [C12H12N2] (이하 P.D), Benzotriazole [C6H5N3] (이하 B.T.A), Hexamethylenetetramine [C6H12N4] (이하 H.M.T), Naphthylamine [C10H9N] (이하 N.A.P)를 가속 용액인 염소 이온 용액에 첨가하여 ENIG 처리된 PCB 배선의 부식 방지 첨가제로 사용하였다. 각 첨가제는 최적 농도로 첨가하여 단일 첨가한 용액을 제작하여 실험을 진행하였다. 각 용액은 충분히 교반 된 후, 안정화를 위한 충분한 시효처리 시간을 가졌다.In this experiment, polyethylene glycol [C 2n H 4n+2 O n+1 ] (hereinafter PEG), Phenylenediamine [C 12 H 12 N 2 ] (hereinafter PD), Benzotriazole [C 6 H 5 N 3 ] (hereinafter BTA), Hexamethylenetetramine [C 6 H 12 N 4 ] (hereafter HMT) and Naphthylamine [C 10 H 9 N] (hereinafter NAP) were added to the accelerating solution, chlorine ion solution, and used as an anti-corrosion additive for ENIG-treated PCB wiring. Each additive was added at an optimal concentration to prepare a single added solution, and the experiment was conducted. After each solution was sufficiently stirred, it had sufficient aging time for stabilization.

실시예 2Example 2

부식 방지 첨가제 첨가 용액의 농도별 Ni 부식 방지 특성 시험Ni corrosion prevention property test by concentration of anti-corrosion additive solution

ENIG 구성 물질인 Ni의 부식 방지 특성을 평가하기 위해, Cu 기판 위에 Ni을 도금한 시편에 실시예 1의 부식 방지 첨가제 첨가 용액 및 미첨가 용액에 담그어 동전위 분극 실험을 진행하였다. 분극 실험은 부식 방지 첨가제 농도 별 (10, 100, 1000, 10000ppm)로 각각 실시하였으며, 각 부식 방지 첨가제의 최적 농도를 산출하였다. 실험은 각 용액에 대하여 최소 2회 이상 실시하였다.In order to evaluate the corrosion protection properties of Ni, which is a component of ENIG, a specimen plated with Ni on a Cu substrate was immersed in the solution with and without the anticorrosion additive of Example 1 to conduct a potentiostatic polarization test. The polarization test was carried out for each concentration of corrosion inhibitor (10, 100, 1000, 10000 ppm), and the optimum concentration of each corrosion inhibitor was calculated. The experiment was conducted at least twice for each solution.

실시예 3Example 3

부식 방지 첨가제 첨가 용액의 Au, Ni 갈바닉 부식 방지 특성 시험Au, Ni galvanic anti-corrosion property test of anti-corrosion additive solution

전압 미인가 시, ENIG 구성 물질인 Ni, Au의 갈바닉 부식 정도를 측정하기 위해 부식 전위가 높은 Au를 귀금속으로 설정하고, 부식 전위가 낮은 Ni를 활성 금속으로 설정하여, 실시예 1의 부식 첨가제 첨가 용액 및 미첨가 용액에서 ZRA 실험을 진행하였다. ZRA 실험은 이종 금속 간의 갈바닉 부식을 측정하는 실험으로, 같은 전해질에 노출된 두 금속 간의 자연적인 반응에 의해 흐르는 전류를 측정하는 시험법이다. ZRA 실험에 의해 측정되는 전류가 클수록 갈바닉 부식 정도가 크다.When no voltage is applied, to measure the degree of galvanic corrosion of Ni and Au, which are components of ENIG, Au having a high corrosion potential is set as a noble metal, and Ni having a low corrosion potential is set as an active metal, and the corrosion additive solution of Example 1 And the ZRA experiment was performed in an unadded solution. The ZRA test is an experiment to measure galvanic corrosion between dissimilar metals, and it is a test method to measure the current flowing through a natural reaction between two metals exposed to the same electrolyte. The greater the current measured by the ZRA experiment, the greater the degree of galvanic corrosion.

실시예 4Example 4

부식 방지 첨가제 첨가 용액의 실제 ENIG PCB 시편의 부식 방지 특성 시험Anti-corrosion properties test of real ENIG PCB specimens with anti-corrosion additive solution

실시예 1의 부식 방지 첨가제 첨가 용액을 ENIG 처리된 구리 배선 사이에 동일한 양으로 떨어뜨려 부식 방지 특성을 측정하는 실험을 진행하였다. 실험은 각 용액에 대하여 최소 5회 이상 실시하였다.An experiment was conducted to measure the anti-corrosion properties by dropping the anti-corrosion additive solution of Example 1 in the same amount between ENIG-treated copper wires. The experiment was conducted at least 5 times for each solution.

실험예 1 : Ni의 부식 방지 첨가제 농도별 동전위 분극 실험 (Potentiodynamic polarization test)Experimental Example 1: Potentiodynamic polarization test for each concentration of Ni corrosion inhibitor additive

본 실험은 전기화학 실험의 한 종류로, 동전위 분극 실험을 위하여 ENIG 구성 물질인 Ni을 작업전극, graphite를 상대전극, saturated calomel electode (SCE)를 기준전극으로 하는 3전극 시스템을 구성하였다. 동전위 분극 실험 전, Ni은 용액 내에서 3시간의 open circuit potential(OCP)를 측정한 후, 전위가 안정된 상태에서 동전위 분극 실험을 실시하였다. 동전위 분극 실험은 NaCl 35000ppm 용액 내에서, P.E.G , P.D , B.T.A, H.M.T, N.A.P 농도 별(10, 100, 1000, 10000ppm) 첨가 유, 무에 따라 부식 전류 밀도 및 부식 속도를 산출하였다. 도 4에서는 부식 방지 첨가제 중 H.M.T 의 농도별 부식방지 효과 (Inhibiting Efficinecy ;IE%)를 나타내었다. 도 4에서 보는 것처럼, H.M.T 부식 방지 첨가제의 경우 10 내지 1000ppm, 바람직하게는 100 내지 1000ppm, 가장 바람직하게는 100ppm에서 부식 방지 효과가 높았으며, 1000ppm을 넘는 경우에는 부식 방지 효과가 급격히 떨어짐을 확인하였다.This experiment is a kind of electrochemical experiment, and for the potentiometric polarization experiment, a three-electrode system was constructed using Ni, which is an ENIG component, as a working electrode, graphite as a counter electrode, and saturated calomel electode (SCE) as a reference electrode. Before the electropotential polarization experiment, after measuring the open circuit potential (OCP) for 3 hours in the Ni silver solution, the potentiostatic polarization experiment was performed in a state where the potential was stable. In the electropotential polarization experiment, the corrosion current density and corrosion rate were calculated according to the presence or absence of addition of P.E.G , P.D , B.T.A, H.M.T, and N.A.P concentrations (10, 100, 1000, 10000ppm) in NaCl 35000ppm solution. 4 shows the corrosion inhibitory effect (Inhibiting Efficinecy; IE%) of each concentration of H.M.T among the corrosion inhibitor additives. As shown in FIG. 4, in the case of H.M.T anti-corrosion additive, the anti-corrosion effect was high at 10-1000 ppm, preferably 100-1000 ppm, and most preferably 100 ppm, and when it exceeds 1000 ppm, it was confirmed that the anti-corrosion effect rapidly dropped. .

각 부식 방지 첨가제의 부식 방지 최적 농도를 확인 한 후, 최적 농도에 따라 도 5에 각 부식 방지 첨가제의 최적 농도 첨가 유, 무에 따른 Ni의 동전위 분극 실험 결과와 산출된 부식 전류 밀도 및 부식 속도를 나타내었다.After confirming the optimum concentration of corrosion protection of each anticorrosion additive, according to the optimum concentration, the results of the copotential polarization test of Ni according to the presence and absence of the optimum concentration of each corrosion protection additive in FIG. 5 and the calculated corrosion current density and corrosion rate was shown.

실험예 2 : 갈바닉 부식 방지 첨가제 최적 농도 첨가 ZRA (Zero Resistance Ammeter) 실험Experimental Example 2: ZRA (Zero Resistance Ammeter) Experiment with Optimum Concentration of Galvanic Corrosion Prevention Additive

본 실험은 이종 금속 간 갈바닉 부식 전류 밀도를 측정하는 전기화학 실험의 한 종류로, ENIG 구성 물질인 Au, Ni의 갈바닉 부식 정도를 측정하였다. 부식 전위가 높은 Au를 상대전극으로, 부식 전위가 낮은 Ni을 작업 전극으로 구성하였다. ZRA 실험 전, 각 금속은 용액 내에서 3시간의 open circuit potential (OCP)을 측정한 후, 전위가 안정된 상태에서 ZRA 실험을 실시하였다. ZRA 실험은 NaCl 35000ppm 용액 내에서, P.E.G , P.D , B.T.A 최적 농도 첨가 유, 무에 따라 갈바닉 부식 전류 밀도를 산출하였다. 도 6은 부식 방지 첨가제 유무에 따른 Au, Ni의 갈바닉 부식 전류 밀도를 나타내었다.This experiment is a type of electrochemical experiment to measure the galvanic corrosion current density between dissimilar metals, and the degree of galvanic corrosion of Au and Ni, which are ENIG constituent materials, was measured. Au having a high corrosion potential was used as a counter electrode, and Ni having a low corrosion potential was configured as a working electrode. Before the ZRA experiment, the open circuit potential (OCP) of each metal was measured in solution for 3 hours, and then the ZRA experiment was performed in a state where the potential was stable. The ZRA experiment calculated the galvanic corrosion current density in NaCl 35000ppm solution, depending on the presence or absence of the optimum concentration of P.E.G , P.D , and B.T.A added. Figure 6 shows the galvanic corrosion current density of Au, Ni according to the presence or absence of corrosion inhibitory additives.

실험예 3 : 부식 방지 첨가제 최적 농도 첨가 용액 물방울 실험 (Water drop test)Experimental Example 3: Anti-corrosion additive optimum concentration added solution drop test (Water drop test)

본 실험은 IPC-TM-650에 준하여 Comb Type으로 제작된 ENIG 처리된 구리 배선 사이에 물방울을 5㎕ 떨어뜨리고 배선 양쪽에 전압을 인가하여, 금속 배선의 부식을 확인하는 평가 방법이다.(도 3 참고) 본 실험에서는 대기 상태 (대기 온도, 대기 습도)에서 염소 1000ppm 용액에 부식 방지 첨가제(최적 농도)를 첨가한 용액을 5㎕ 떨어뜨린 뒤, 3V의 전압을 인가하였고, 전압 인가와 동시에 영상 녹화를 실시하여 부식 정도를 측정하였다. 도 7은 부식 방지 첨가제의 첨가 유무에 따라 시간 별 부식 정도를 비교하였다.This experiment is an evaluation method to check corrosion of metal wiring by dropping 5 μl of water droplets between ENIG-treated copper wiring manufactured in Comb Type according to IPC-TM-650 and applying voltage to both sides of the wiring. (Fig. 3) Note) In this experiment, 5 μl of a solution containing an anti-corrosion additive (optimal concentration) was added to a 1000 ppm chlorine solution under atmospheric conditions (atmospheric temperature, atmospheric humidity), a voltage of 3V was applied, and video was recorded simultaneously with the voltage application. was carried out to measure the degree of corrosion. 7 is a comparison of the degree of corrosion over time according to the presence or absence of the addition of the anti-corrosion additive.

실험예 1의 결과Results of Experimental Example 1

도 4에서와 같이, Ni에 대해서 부식 방지 첨가제의 농도에 따라 부식 방지 효과가 차이가 나는 것을 확인하였다. (1) 식에 의해 부식 방지 효과를 확인할 수 있다. H.M.T의 경우에는 100ppm에서 부식 방지 효과가 가장 높고, 그 후 감소하는 것을 확인하였다. 이에 따라, H.M.T 부식 방지 첨가제의 최적 농도는 100ppm으로 산출하였다.As shown in FIG. 4 , it was confirmed that the corrosion-preventing effect differs according to the concentration of the corrosion-preventing additive for Ni. (1) The anti-corrosion effect can be confirmed by Equation. In the case of H.M.T, it was confirmed that the corrosion prevention effect was highest at 100 ppm, and then decreased. Accordingly, the optimum concentration of the H.M.T anti-corrosion additive was calculated to be 100 ppm.

Figure 112021027354514-pat00001
(1)
Figure 112021027354514-pat00001
(One)

(i0 corr = 부식 방지 첨가제를 첨가하지 않았을 때의 부식 전류 밀도(i 0 corr = corrosion current density without anti-corrosion additive

icorr = 부식 방지 첨가제를 첨가하였을 때의 부식 전류 밀도)i corr = corrosion current density with anti-corrosion additive)

도 5에서와 같이, Ni에 대해서 부식 방지 첨가제를 첨가한 용액은 첨가하지 않은 용액 대비 부식 속도를 P.E.G 첨가했을 때, 약 166배, P.D를 첨가했을 때, 약 73배, B.T.A를 첨가했을 때, 약 25배, H.M.T를 첨가했을 때, 약 63배, N.A.P를 첨가했을 때, 약 176배 가량 부식 속도를 늦추는 것을 확인하였다. As shown in FIG. 5, when P.E.G is added, the corrosion rate of the solution in which the corrosion inhibitor is added to Ni is about 166 times, when P.D is added, about 73 times, when B.T.A is added, It was confirmed that the corrosion rate was slowed by about 25 times, when H.M.T was added, about 63 times, and when N.A.P was added, about 176 times.

또한, (1) 식에 의해 부식 방지 효과를 확인하였을 때, 각 부식 방지 첨가제들의 부식 방지 효과가 95% 이상임을 확인하였다. In addition, when the anti-corrosion effect was confirmed by Equation (1), it was confirmed that the anti-corrosion effect of each anti-corrosion additive was 95% or more.

따라서, 본 발명에서 사용한 부식 방지 첨가제의 고 염소 용액의 부식 가혹화 조건에서 Ni의 부식 방지 효과가 있음을 확인하였다. 이는 Ni 표면에 부식 방지 첨가제의 작용기가 Ni 표면에서의 반응 및 염소 이온과의 반응에 의해 Ni 표면에 부식 방지층을 형성하여 부식을 방지하기 때문이다. 본 특허에 사용된 다른 첨가제들의 복합 첨가 시, 표면 커버리지(surface coverage)를 향상시켜 ENIG 내 Ni의 부식 방지에 보다 효과적일 것으로 판단된다.Therefore, it was confirmed that the corrosion-preventing effect of Ni under the conditions of severe corrosion of the high chlorine solution of the corrosion inhibitor used in the present invention. This is because the functional group of the anti-corrosion additive on the Ni surface prevents corrosion by forming an anti-corrosion layer on the Ni surface by reaction on the Ni surface and reaction with chlorine ions. When the other additives used in this patent are added in combination, it is judged to be more effective in preventing the corrosion of Ni in ENIG by improving the surface coverage.

실험예 2의 결과Results of Experimental Example 2

도 6에서와 같이 부식 가속화 조건인 고 염소 용액에 부식 방지 첨가제를 첨가하였을 때 ENIG 구성물인 Au, Ni의 갈바닉 부식 전류 밀도를 확인한 결과, 부식방지 첨가제를 첨가하였을 때, 갈바닉 전류 밀도를 감소시킴을 확인하였다. P.E.G를 첨가하였을 때 4배, P.D를 첨가하였을 때 2배, B.T.A를 첨가하였을 때 5배 가량 감소시켰으며, 최대 8배 가량 감소시킴을 확인하였다.As a result of confirming the galvanic corrosion current densities of Au and Ni, which are ENIG components, when an anticorrosion additive is added to a high chlorine solution under corrosion acceleration conditions as shown in FIG. 6, when an anticorrosion additive is added, the galvanic current density is reduced. Confirmed. When P.E.G was added, it was reduced by 4 times, when P.D was added by 2 times, and when B.T.A was added, it was reduced by about 5 times, and it was confirmed that it was reduced by a maximum of 8 times.

본 특허에서 사용한 부식 방지 첨가제는 작용기를 가진 고분자 물질로서, 용액 내에서 부식 방지 첨가제의 작용기가 Au와 Ni의 표면에서 흡착하여 부식 방지층을 형성하여 부식을 억제한다. 이로 인해, Au와 Ni의 갈바닉 부식 전류 밀도를 감소시킨다. 이는 PCB가 대기에 노출된 상태로 전압이 걸리지 않았을 때, Au의 결함에서의 Au, Ni의 갈바닉 부식 방지에 효과적일 것으로 판단된다.The corrosion inhibitor used in this patent is a polymer material having a functional group, and the functional group of the corrosion inhibitor additive is adsorbed on the surface of Au and Ni in a solution to form a corrosion protection layer to inhibit corrosion. This reduces the galvanic corrosion current density of Au and Ni. This is considered to be effective in preventing the galvanic corrosion of Au and Ni in Au defects when the PCB is exposed to the atmosphere and no voltage is applied.

실험예 3의 결과Results of Experimental Example 3

도 7에서와 같이 염소 이온 용액 내에서 부식 방지 첨가제의 유, 무에 따른 ENIG 처리된 구리 배선 PCB에서 물방울 실험을 진행한 결과, 부식 방지 첨가제를 첨가하였을 때 Au 및 Ni의 부식방지 효과가 있음을 확인하였다. 부식 방지 첨가제를 첨가하지 않은 용액에서는 20초 경과 시, 양극 배선에서 Au 및 Ni이 부식되어 산화물이 형성되었으나, 부식 방지 첨가제를 첨가한 용액에서는 금속 표면에 부식방지층을 형성하여 부식이 거의 일어나지 않았음을 확인하였다. 30초 경과 시, 부식 방지 첨가제를 첨가하지 않은 용액에서는 양극 배선에서 부식이 더욱 가속화 되어 구리 배선까지 부식되었으나, 부식 방지 첨가제를 첨가하였을 때는 Au 및 Ni의 부식만이 약간 일어난 것을 확인하였다. 60초 경과 시, 부식 방지 첨가제를 첨가하지 않은 용액에서는 하부배선인 구리 배선까지 대부분 부식되었으나, 부식 방지 첨가제를 첨가하였을 때는 부식이 미미하게 진행됨을 확인하였다. 특히, P.D를 첨가하였을 때, 그 효과가 가장 좋음을 확인하였다.As a result of a water drop test on an ENIG-treated copper wiring PCB according to the presence or absence of an anti-corrosion additive in a chlorine ion solution as shown in FIG. Confirmed. In the solution without the anti-corrosion additive, after 20 seconds, Au and Ni were corroded and oxide was formed in the anode wiring. was confirmed. After 30 seconds, in the solution to which no corrosion inhibitor was added, corrosion was further accelerated in the anode wiring and even the copper wiring was corroded, but it was confirmed that only Au and Ni corrosion occurred slightly when the corrosion inhibitor was added. When 60 seconds elapsed, it was confirmed that most of the copper wiring, which is the lower wiring, was corroded in the solution to which the corrosion inhibitor was not added, but when the corrosion inhibitor was added, corrosion was insignificant. In particular, when P.D was added, it was confirmed that the effect was the best.

본 특허에서 ENIG처리된 PCB 배선에 부식 방지 첨가제를 첨가하였을 때 전압 인가 유무에 상관없이 모두 부식을 방지함을 확인할 수 있었다. 이는 본 특허에서 사용한 부식 방지 첨가제가 Au 및 Ni의 표면에 흡착하여 부식방지층을 형성함으로써 부식을 억제하였다. In this patent, it was confirmed that when an anti-corrosion additive was added to the ENIG-treated PCB wiring, corrosion was prevented regardless of whether voltage was applied. This inhibited corrosion by forming a corrosion-preventing layer by adsorbing the anti-corrosion additive used in this patent to the surface of Au and Ni.

본 특허에서 제안하는 부식 방지 첨가제를 반도체, 디스플레이 등을 패키징 (packaging)할 때 사용되는 Epoxy Molding Compound (EMC)나 Underfill 등의 고분자 물질에 혼합하여 사용하거나, 회로 접착 시 사용되는 ACF(Anisotropic Conductive Film)에 혼합하여 사용하여 ENIG 처리된 PCB 배선에서 발생할 수 있는 갈바닉 부식을 방지하는데 큰 효과를 미칠 것으로 판단된다.The anti-corrosion additive proposed in this patent is mixed with polymer materials such as Epoxy Molding Compound (EMC) or underfill used for packaging semiconductors and displays, or ACF (Anisotropic Conductive Film) used for circuit bonding. ), it is judged to have a great effect in preventing galvanic corrosion that may occur in ENIG-treated PCB wiring.

상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술분야의 숙련된 당업자는 하기의 특허 청구 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Although the above has been described with reference to the preferred embodiments of the present invention, those skilled in the art can variously modify and change the present invention without departing from the spirit and scope of the present invention as set forth in the claims below. You will understand that you can.

Claims (6)

무전해 도금(ENIG; Electroless nickel immersion gold) 처리된 PCB 배선의 패키징에 이용되는 에폭시 몰딩 컴파운드(EMC; Epoxy Molding Compound)에 혼합하여 사용되며,
하기 첨가제 중 어느 하나 또는 둘 이상의 조합을 포함하는,
Sodium dodecyl sulfate[NaC12H25SO4], 2-butyne-1,4-diol[C4H6O2], Sodium benzenesulfonate[C6H5SO3Na], Polyethylene glycol[C2nH4n+2On+1],
Ni/Au 무전해 도금 처리된 PCB 배선의 부식 방지 첨가제.
It is used by mixing with Epoxy Molding Compound (EMC) used for packaging of PCB wiring treated with electroless nickel immersion gold (ENIG).
Any one or a combination of two or more of the following additives,
Sodium dodecyl sulfate[NaC1 2 H 25 SO 4 ], 2-butyne-1,4-diol[C 4 H 6 O 2 ], Sodium benzenesulfonate[C 6 H 5 SO 3 Na], Polyethylene glycol[C 2n H 4n+ 2 O n+1 ],
Anti-corrosion additive for Ni/Au electroless plating of PCB wiring.
무전해 도금(ENIG; Electroless nickel immersion gold) 처리된 PCB 배선의 패키징에 이용되는 언더필(Underfill)에 혼합하여 사용되며,
하기 첨가제 중 어느 하나 또는 둘 이상의 조합을 포함하는,
Sodium dodecyl sulfate[NaC12H25SO4], 2-butyne-1,4-diol[C4H6O2], Sodium benzenesulfonate[C6H5SO3Na], Polyethylene glycol[C2nH4n+2On+1],
Ni/Au 무전해 도금 처리된 PCB 배선의 부식 방지 첨가제.
It is used by mixing with the underfill used for packaging of PCB wiring treated with electroless nickel immersion gold (ENIG).
Any one or a combination of two or more of the following additives,
Sodium dodecyl sulfate[NaC1 2 H 25 SO 4 ], 2-butyne-1,4-diol[C 4 H 6 O 2 ], Sodium benzenesulfonate[C 6 H 5 SO 3 Na], Polyethylene glycol[C 2n H 4n+ 2 O n+1 ],
Anti-corrosion additive for Ni/Au electroless plating of PCB wiring.
무전해 도금(ENIG; Electroless nickel immersion gold) 처리된 PCB 배선의 회로 접착시 사용되는 ACF(Anisotropic Counductive Film)에 혼합하여 사용되며,
하기 첨가제 중 어느 하나 또는 둘 이상의 조합을 포함하는,
Sodium dodecyl sulfate[NaC12H25SO4], 2-butyne-1,4-diol[C4H6O2], Sodium benzenesulfonate[C6H5SO3Na], Polyethylene glycol[C2nH4n+2On+1],
Ni/Au 무전해 도금 처리된 PCB 배선의 부식 방지 첨가제.
It is mixed with ACF (Anisotropic Counductive Film) used for circuit bonding of PCB wiring treated with electroless nickel immersion gold (ENIG).
Any one or a combination of two or more of the following additives,
Sodium dodecyl sulfate[NaC1 2 H 25 SO 4 ], 2-butyne-1,4-diol[C 4 H 6 O 2 ], Sodium benzenesulfonate[C 6 H 5 SO 3 Na], Polyethylene glycol[C 2n H 4n+ 2 O n+1 ],
Anti-corrosion additive for Ni/Au electroless plating of PCB wiring.
무전해 도금(ENIG; Electroless nickel immersion gold) 처리된 PCB 배선의 패키징에 이용되는 에폭시 몰딩 컴파운드(EMC; Epoxy Molding Compound)에 혼합하여 사용되며,
첨가제로 Hexamethylenetetramine[C6H12N4]를 포함하고, 상기 Hexamethylenetetramine의 농도는 10 내지 1000 ppm인,
Ni/Au 무전해 도금 처리된 PCB 배선의 부식 방지 첨가제.
It is used by mixing with Epoxy Molding Compound (EMC) used for packaging of PCB wiring treated with electroless nickel immersion gold (ENIG).
Hexamethylenetetramine [C 6 H 12 N 4 ] as an additive, and the concentration of the Hexamethylenetetramine is 10 to 1000 ppm,
Anti-corrosion additive for Ni/Au electroless plating of PCB wiring.
무전해 도금(ENIG; Electroless nickel immersion gold) 처리된 PCB 배선의 패키징에 이용되는 언더필(Underfill)에 혼합하여 사용되며,
첨가제로 Hexamethylenetetramine[C6H12N4]를 포함하고, 상기 Hexamethylenetetramine의 농도는 10 내지 1000 ppm인,
Ni/Au 무전해 도금 처리된 PCB 배선의 부식 방지 첨가제.
It is used by mixing with the underfill used for packaging of PCB wiring treated with electroless nickel immersion gold (ENIG).
Hexamethylenetetramine [C 6 H 12 N 4 ] as an additive, and the concentration of the Hexamethylenetetramine is 10 to 1000 ppm,
Anti-corrosion additive for Ni/Au electroless plating of PCB wiring.
무전해 도금(ENIG; Electroless nickel immersion gold) 처리된 PCB 배선의 회로 접착시 사용되는 ACF(Anisotropic Counductive Film)에 혼합하여 사용되며,
첨가제로 Hexamethylenetetramine[C6H12N4]를 포함하고, 상기 Hexamethylenetetramine의 농도는 10 내지 1000 ppm인,
Ni/Au 무전해 도금 처리된 PCB 배선의 부식 방지 첨가제.
It is mixed with ACF (Anisotropic Counductive Film) used for circuit bonding of PCB wiring treated with electroless nickel immersion gold (ENIG).
Hexamethylenetetramine [C 6 H 12 N 4 ] as an additive, and the concentration of the Hexamethylenetetramine is 10 to 1000 ppm,
Anti-corrosion additive for Ni/Au electroless plating of PCB wiring.
KR1020210030467A 2021-03-09 2021-03-09 Corrosion inhibiting addtives for pcb treated by electroless nickel immersion gold KR102449786B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020210030467A KR102449786B1 (en) 2021-03-09 2021-03-09 Corrosion inhibiting addtives for pcb treated by electroless nickel immersion gold
PCT/KR2022/001081 WO2022191419A1 (en) 2021-03-09 2022-01-21 Anti-corrosion additive for electroless-plated pcb wiring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210030467A KR102449786B1 (en) 2021-03-09 2021-03-09 Corrosion inhibiting addtives for pcb treated by electroless nickel immersion gold

Publications (2)

Publication Number Publication Date
KR20220126344A KR20220126344A (en) 2022-09-16
KR102449786B1 true KR102449786B1 (en) 2022-09-29

Family

ID=83226870

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210030467A KR102449786B1 (en) 2021-03-09 2021-03-09 Corrosion inhibiting addtives for pcb treated by electroless nickel immersion gold

Country Status (2)

Country Link
KR (1) KR102449786B1 (en)
WO (1) WO2022191419A1 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2537232B2 (en) * 1974-08-22 1976-07-01 INJECTION AND MOLDING COMPOUND
JP4831710B1 (en) * 2010-07-20 2011-12-07 日本エレクトロプレイテイング・エンジニヤース株式会社 Electroless gold plating solution and electroless gold plating method
JP6391597B2 (en) * 2014-08-29 2018-09-19 古河電気工業株式会社 Conductive adhesive composition
DE102017121485A1 (en) * 2017-09-15 2019-03-21 Infineon Technologies Austria Ag Semiconductor device with copper corrosion inhibitors
KR102135031B1 (en) * 2018-09-27 2020-07-17 성균관대학교산학협력단 Electrochemical migration preventive additives and method for inhibiting electrochemical migration by using the same
JP2021020982A (en) * 2019-07-24 2021-02-18 味の素株式会社 Resin composition

Also Published As

Publication number Publication date
KR20220126344A (en) 2022-09-16
WO2022191419A1 (en) 2022-09-15

Similar Documents

Publication Publication Date Title
Zhong et al. Electrochemical migration of Sn and Sn solder alloys: a review
Steppan et al. A review of corrosion failure mechanisms during accelerated tests: Electrolytic metal migration
Tao et al. Synergistic effect of different additives on microvia filling in an acidic copper plating solution
Liao et al. Recent advances in method of suppressing dendrite formation of tin-based solder alloys
KR102449786B1 (en) Corrosion inhibiting addtives for pcb treated by electroless nickel immersion gold
KR100885673B1 (en) Method for forming ag-pd plating on printed circuit board for high density interconnection, and printed circuit board for high density interconnection having ag-pd plating
JP5665749B2 (en) Post-treatment composition for increasing the corrosion resistance of a metal or metal alloy surface
Vimala et al. Corrosion and protection of electronic components in different environmental conditions-an overview
Tseng et al. Corrosion on automobile printed circuit broad
Long et al. Electroless Nickel/Immersion Silver—A new surface finish PCB applications
Gharaibeh et al. Numerical Models of the Electrochemical Migration: A short review
Li et al. Alkanolamines as activators in no-clean flux systems: investigation of humidity robustness and solderability
Yoo et al. Influence of corrosion properties on electrochemical migration susceptibility of SnPb solders for PCBs
Ambat et al. Solder flux residues and electrochemical migration failures of electronic devices
Oh et al. Galvanic corrosion of Cu coupled to Au on a print circuit board; effects of pretreatment solution and etchant concentration in organic solderability preservatives soft etching solution
US20110233768A1 (en) Semiconductor device
Yoo et al. Difference of Potential Range Formed at the Anode Between Water Drop Test and Temperature Humidity Bias Test to Evaluate Electrochemical Migration of Solders for Printed Circuit Board
Wagner et al. A critical review of corrosion phenomena in microelectronic systems
Bumiller et al. A review of models for time-to-failure due to metallic migration mechanisms
Xu et al. Creep corrosion of OSP and ImAg PWB finishes
Oh et al. Galvanic corrosion behaviors of Cu connected to Au on a printed circuit board in ammonia solution
Jellesen et al. Relation between PCBA cleanliness and climatic reliability
Chou New corrosion resistant plating to reduce gold consumption in connectors
Medgyes et al. Contradictory electrochemical migration behavior of copper and lead
Raman et al. Phenomenological understanding of Sn migration in ceramic-chip capacitors

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant