KR102447089B1 - 자외선 발광소자 및 발광소자 패키지 - Google Patents

자외선 발광소자 및 발광소자 패키지 Download PDF

Info

Publication number
KR102447089B1
KR102447089B1 KR1020150180114A KR20150180114A KR102447089B1 KR 102447089 B1 KR102447089 B1 KR 102447089B1 KR 1020150180114 A KR1020150180114 A KR 1020150180114A KR 20150180114 A KR20150180114 A KR 20150180114A KR 102447089 B1 KR102447089 B1 KR 102447089B1
Authority
KR
South Korea
Prior art keywords
semiconductor layer
layer
conductivity type
light emitting
type
Prior art date
Application number
KR1020150180114A
Other languages
English (en)
Other versions
KR20170071906A (ko
Inventor
박찬근
Original Assignee
쑤저우 레킨 세미컨덕터 컴퍼니 리미티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 filed Critical 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드
Priority to KR1020150180114A priority Critical patent/KR102447089B1/ko
Publication of KR20170071906A publication Critical patent/KR20170071906A/ko
Application granted granted Critical
Publication of KR102447089B1 publication Critical patent/KR102447089B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)
  • Led Device Packages (AREA)
  • Pinball Game Machines (AREA)

Abstract

실시예는 자외선 발광소자, 자외선 발광소자의 제조방법, 발광소자 패키지 및 조명장치에 관한 것이다.
실시 예에 따른 자외선 발광소자는 AlGaN 계열의 제1 도전형 제1 반도체층, 활성층, 제2 도전형 반도체층을 포함하는 발광구조물과 제2 도전형 반도체층 상의 제1 전극, 및 제2 도전형 반도체층 상의 제1 전극과 접하고 제1 도전형 제2 반도체층 내지 제1 도전형 제4 반도체층을 포함하는 전류 퍼짐층을 포함할 수 있다. 실시 예는 전류 퍼짐층에 의해 제2 도전형 반도체층 및 제1 전극과 오믹 접촉되고, 자외선 파장의 광 흡수를 개선함과 동시에 도핑된 제1 도펀트와 Al 조성에 의해 전류 퍼짐(current spreading)을 개선할 수 있다.

Description

자외선 발광소자 및 발광소자 패키지{UV LIGHT EMITTING DEVICE AND LIGHT EMITTING DEVICE PACKAGE}
실시예는 자외선 발광소자, 자외선 발광소자의 제조방법, 발광소자 패키지 및 조명장치에 관한 것이다.
발광소자(Light Emitting Diode)는 전기에너지가 빛 에너지로 변환되는 특성의 p-n 접합 다이오드를 주기율표상에서 3족-5족 원소 또는 2족-6족 원소가 화합되어 생성될 수 있고, 화합물 반도체의 조성비를 조절함으로써 다양한 색상구현이 가능하다.
질화물 반도체는 높은 열적 안정성과 폭 넓은 밴드갭 에너지에 의해 광소자 및 고출력 전자소자 개발 분야에서 큰 관심을 받고 있다. 특히, 질화물 반도체를 이용한 자외선(UV) 발광소자, 청색(Blue) 발광소자, 녹색(Green) 발광소자, 적색(RED) 발광소자 등은 상용화되어 널리 사용되고 있다.
상기 자외선 발광소자(UV LED)는 200nm~400nm 파장대의 빛을 발광하는 발광소자이다. 상기 자외선 발광소자는 용도에 따라 단파장 및 장파장으로 구성된다. 상기 단파장은 살균 또는 정화등에 사용되고, 장파장은 노광기 또는 경화기 등에 사용될 수 있다.
일반적인 자외선 발광소자는 p형 반도체층과 전극 사이에 오믹 접촉을 위한 투명 접촉층을 포함한다. 일반적인 투명 접촉층은 ITO가 주로 사용되고 있다.
그러나, 일반적인 자외선 발광소자는 오믹 접촉 특성이 우수한 ITO가 자외선 파장의 광의 일부를 흡수하여 광도가 저하되는 문제가 있었다.
실시 예는 전류 퍼짐(current spreading) 및 전기적 특성을 개선할 수 있는 자외선 발광소자, 자외선 발광소자의 제조방법, 발광소자 패키지 및 조명장치를 제공할 수 있다.
실시 예에 따른 자외선 발광소자는 제1 도전형 제1 반도체층, 활성층, 제2 도전형 반도체층을 포함하는 발광구조물(110); 상기 발광구조물 아래에 제1 전극(170); 및 상기 발광구조물 및 상기 제1 전극과 접하는 전류 퍼짐층(130)을 포함하고, 상기 전류 퍼짐층은 제1 도전형 제2 반도체층 내지 제1 도전형 제4 반도체층(131, 133, 135)을 포함하고, 상기 제1 도전형 제3 반도체층(133)은 상기 제1 도전형 제2 반도체층(131) 및 상기 제1 도전형 제4 반도체층(135)보다 낮은 도핑농도를 가질 수 있다. 실시 예는 전류 퍼짐층에 의해 제2 도전형 반도체층 및 제1 전극과 오믹 접촉되고, 자외선 파장의 광 흡수를 개선함과 동시에 도핑된 제1 도펀트와 Al 조성에 의해 전류 퍼짐(current spreading)을 개선할 수 있다.
실시 예에 따른 발광소자 패키지는 상기 자외선 발광소자를 포함할 수 있다.
실시 예의 자외선 발광소자는 AlGaN 계열의 발광구조물과 전극 사이에 전류 퍼짐층이 배치되고, 상기 전류 퍼짐층은 자외선 파장의 광 흡수를 줄여 광도를 개선할 수 있다. 상기 전류 퍼짐층은 상기 제2 도전형 반도체층과 전극 사이에 제1 도전형 도펀트를 포함하는 AlGaN 계열 반도체층으로 구성되어 오믹 접촉 및 전류 퍼짐을 개선할 수 있다.
도 1은 실시 예에 따른 자외선 발광소자를 도시한 평면도이다.
도 2는 도 1의 Ⅰ-Ⅰ'라인을 따라 절단한 자외선 발광소자의 단면도이다.
도 3은 실시 예의 전류 퍼짐층을 도시한 단면도이다.
도 4 내지 도 8은 실시 예에 따른 자외선 발광소자의 제조방법을 도시한 단면도이다.
도 9는 다른 실시 예에 따른 자외선 발광소자를 도시한 단면도이다.
도 10은 실시 예에 따른 발광소자 패키지를 도시한 단면도이다.
실시 예의 설명에 있어서, 각 층(막), 영역, 패턴 또는 구조물들이 기판, 각 층(막), 영역, 패드 또는 패턴들의 "상/위(on/over)"에 또는 "아래(under)"에 형성되는 것으로 기재되는 경우에 있어, "상/위(on/over)"와 "아래(under)"는 "직접(directly)" 또는 "다른 층을 개재하여 (indirectly)" 형성되는 것을 모두 포함한다. 또한 각 층의 상/위 또는 아래에 대한 기준은 도면을 기준으로 설명한다.
도 1은 실시 예에 따른 자외선 발광소자를 도시한 평면도이고, 도 2는 도 1의 Ⅰ-Ⅰ'라인을 따라 절단한 자외선 발광소자의 단면도이고, 도 3은 실시 예의 전류 퍼짐층을 도시한 단면도이다.
도 1 내지 도 3에 도시된 바와 같이, 실시 예에 따른 자외선 발광소자(100)는 발광구조물(110)을 포함할 수 있다.
상기 발광구조물(110)은 제1 도전형 제1 반도체층(112), 활성층(114) 및 제2 도전형 반도체층(116)을 포함할 수 있다. 실시 예는 400nm 이하의 자외선 파장의 광을 발광하는 자외선 발광소자(100)를 일 예로 설명하기로 한다. 예컨대 상기 발광구조물(110)은 AlGaN 계열 반도체일 수 있다.
상기 제1 도전형 제1 반도체층(112)은 반도체 화합물, 예컨대 Ⅱ족-Ⅳ족 및 Ⅲ족-Ⅴ족 등의 화합물 반도체로 구현될 수 있고, 제1 도전형 도펀트가 도핑될 수 있다. 예컨대 상기 제1 도전형 제1 반도체층(112)은 AlnGa1-nN (0≤n≤1)의 조성식을 갖는 반도체 물질을 포함할 수 있다. 상기 제1 도전형 제1 반도체층(112)이 n형 반도체층인 경우, n형 도펀트로서, Si, Ge, Sn, Se, Te를 포함할 수 있으나 이에 한정되는 것은 아니다. 상기 제1 도전형 제1 반도체층(112)은 광 추출 효율을 향상시키는 광 추출 패턴(113)을 포함할 수 있다. 상기 광 추출 패턴(113)은 PEC 등의 방법으로 형성될 수 있으며 이에 한정되는 것은 아니다. 상기 광 추출 패턴(113)은 규칙적인 형상 및 배열을 갖도록 형성할 수 있고, 불규칙적인 형상 및 배열을 갖도록 형성할 수도 있다. 예를 들어, 상기 광 추출 패턴(113)의 단면은 다각형, 원형 또는 타원형일 수 있으나 이에 한정하지 않는다. 상기 광 추출 패턴(113)은 활성층(114)으로부터 생성된 빛 중에 상기 제1 도전형 제1 반도체층(112)의 상부면으로부터 전반사되어 재흡수되는 빛을 외부로 굴절시켜 광 추출 효율을 향상시킬 수 있다.
상기 활성층(114)은 단일 양자 우물 구조, 다중 양자 우물 구조(MQW: Multi Quantum Well), 양자 선(Quantum-Wire) 구조, 또는 양자 점(Quantum Dot) 구조 중 적어도 어느 하나로 형성될 수 있다.
상기 활성층(114)은 상기 제1 도전형 제2 반도체층(112)을 통해서 주입되는 전자(또는 정공)와 상기 제2 도전형 반도체층(116)을 통해서 주입되는 정공(또는 전자)이 서로 만나서, 상기 활성층(114)의 형성 물질에 따른 에너지 밴드(Energy Band)의 밴드갭(Band Gap) 차이에 의해서 빛을 방출하는 층이다.
상기 활성층(114)는 화합물 반도체로 구성될 수 있다. 상기 활성층(114)는 예로서 Ⅱ족-Ⅳ족 및 Ⅲ족-Ⅴ족 화합물 반도체 중에서 적어도 하나로 구현될 수 있다.
상기 활성층(114)은 양자우물과 양자벽을 포함할 수 있다. 상기 활성층(114)이 다중 양자 우물 구조로 구현된 경우, 양자우물과 양자벽이 교대로 배치될 수 있다. 상기 양자우물과 양자벽은 각각 InxAlyGa1-x-yN(0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 갖는 반도체 재료로 배치될 수 있거나, AlGaN/GaN, AlGaN/AlGaN, InGaN/GaN, InGaN/InGaN, InAlGaN/GaN, GaAs/AlGaAs, InGaAs/AlGaAs, GaP/AlGaP, InGaP AlGaP 중 어느 하나 이상의 페어 구조로 형성될 수 있으나 이에 한정되지 않는다.
상기 제2 도전형 반도체층(116)은 반도체 화합물, 예컨대 Ⅱ족-Ⅳ족 및 Ⅲ족-Ⅴ족 등의 화합물 반도체로 구현될 수 있으며, 제2 도전형 도펀트가 도핑될 수 있다. 예컨대 상기 제2 도전형 반도체층(116)은 AlpGa1-pN (0≤p≤1)의 조성식을 갖는 반도체 물질을 포함할 수 있다. 상기 제2 도전형 반도체층(116)이 p형 반도체층인 경우, 상기 제2 도전형 도펀트는 p형 도펀트로서, Mg, Zn, Ca, Sr, Ba 등을 포함할 수 있다.
상기 제1 도전형 제1 반도체층(112)은 n형 반도체층, 상기 제2 도전형 반도체층(116)은 p형 반도체층으로 설명하고 있지만, 상기 제1 도전형 제1 반도체층(112)은 p형 반도체층, 상기 제2 도전형 반도체층(116)은 n형 반도체층으로 형성할 수도 있으며, 이에 한정되는 것은 아니다. 상기 제2 도전형 반도체층(116) 위에는 상기 제2 도전형과 반대의 극성을 갖는 반도체 예컨대 n형 반도체층(미도시)을 형성할 수 있다. 이에 따라 발광구조물(110)은 n-p 접합 구조, p-n 접합 구조, n-p-n 접합 구조, p-n-p 접합 구조 중 어느 한 구조로 구현할 수 있다.
실시 예에 따른 자외선 발광소자(100)는 전류 퍼짐층(130), 제1 및 제2 전극(170, 160)을 포함할 수 있다.
상기 전류 퍼짐층(130)은 상기 제1 및 제2 전극(170, 160) 위에 배치될 수 있다. 상기 전류 퍼짐층(130)은 상기 발광구조물(110) 아래에 배치될 수 있다. 상기 전류 퍼짐층(130)은 상기 발광구조물(110)과 제1 전극(170) 사이에 배치될 수 있다. 여기서, 상기 제1 전극(170)은 상기 제2 전극(160) 위에 배치될 수 있다. 상기 전류 퍼짐층(130)은 상기 발광구조물(110) 및 상기 제1 전극(170)과 오믹 접촉될 수 있다. 상기 전류 퍼짐층(130)은 제1 도전형 제2 반도체층(131), 제1 도전형 제3 반도체층(133) 및 제1 도전형 제4 반도체층(135)을 포함할 수 있다. 상기 전류 퍼짐층(130)은 AlGaN 계열 반도체층으로 구성되어 광 흡수에 의한 광도 저하를 개선할 수 있다. 예컨대 상기 전류 퍼짐층(130)은 자외선 파장의 광 흡수를 개선할 수 있다. 상기 전류 퍼짐층(130)은 상기 제2 도전형 반도체층(116)과 상기 제1 전극(170) 사이에 제1 도전형 도펀트를 포함하는 AlGaN 계열 반도체층으로 구성되어 오믹 접촉 및 전류 퍼짐을 개선할 수 있다.
상기 제1 도전형 제2 반도체층(131)은 상기 제2 도전형 반도체층(116)과 직접 접촉될 수 있다. 상기 제1 도전형 제2 반도체층(131)은 상기 제2 도전형 반도체층(116)과 제1 도전형 제3 반도체층(133) 사이에 배치될 수 있다. 상기 제1 도전형 제4 반도체층(135)은 상기 제1 전극(170)과 직접 접촉될 수 있다. 상기 제1 도전형 제4 반도체층(135)은 상기 제1 전극(170)과 제1 도전형 제3 반도체층(133) 사이에 배치될 수 있다. 상기 제1 도전형 제2 반도체층(131) 및 제1 도전형 제4 반도체층(135)은 반도체 화합물, 예컨대 Ⅱ족-Ⅳ족 및 Ⅲ족-Ⅴ족 등의 화합물 반도체로 구현될 수 있고, 제1 도전형 도펀트가 도핑될 수 있다. 예컨대 제1 도전형 도펀트는 n형 도펀트로서, Si, Ge, Sn, Se, Te를 포함할 수 있으나 이에 한정되는 것은 아니다. 상기 제1 도전형 제2 반도체층(131) 및 제1 도전형 제4 반도체층(135)은 1.0 x 1019 atoms/㎤이상의 n형 도핑농도를 포함할 수 있다. 예컨대 상기 제1 도전형 제2 반도체층(131) 및 제1 도전형 제4 반도체층(135)은 1.0 x 1019 atoms/㎤ 이상의 n형 도핑농도에 의해 PN접합의 공핍영역을 줄여 정공의 터널링을 구현할 수 있다. 상기 제1 도전형 제2 반도체층(131) 및 제1 도전형 제4 반도체층(135)은 1.0 x 1019 atoms/㎤ 내지 5.0 x 1020 atoms/㎤의 n형 도핑농도를 포함할 수 있다. 상기 제1 도전형 제2 반도체층(131) 및 제1 도전형 제4 반도체층(135)의 n형 도핑농도는 1.0 x 1019 atoms/㎤ 미만일 경우, n형 도펀트에 의한 터널링(tunneling) 효과가 저하될 수 있다. 즉, 상기 제1 도전형 제2 반도체층(131)과 상기 제2 도전형 반도체층(116)은 오믹 접촉이 잘 형성되지 않을 수 있다. 상기 제1 도전형 제4 반도체층(135)과 상기 제1 전극(170)은 오믹 접촉이 잘 형성되지 않을 수 있다. 상기 제1 도전형 제2 반도체층(131) 및 제1 도전형 제4 반도체층(135)의 n형 도핑농도는 5.0 x 1020 atoms/㎤ 초과일 경우, 결정성이 저하될 수 있다.
상기 제1 도전형 제2 반도체층(131) 및 제1 도전형 제4 반도체층(135)은 AlcGa1-cN(0<c≤0.04)의 조성식을 갖는 반도체 물질을 포함할 수 있다. 상기 제1 도전형 제3 반도체층(131) 및 제1 도전형 제4 반도체층(135)의 Al 조성비는 0% 초과 4% 이하일 수 있으며 좀 더 상세하게는 2% 내지 3% 일 수 있으며 이에 한정하지 않는다. 상기 제1 도전형 제2 반도체층(131) 및 제1 도전형 제4 반도체층(135)은 0을 초과하는 Al의 조성에 의해 광 흡수를 개선할 수 있다. 상기 제1 도전형 제2 반도체층(131) 및 제1 도전형 제4 반도체층(135)이 Al의 조성 c가 0이 되어 Al을 포함하지 않을 경우, 즉 GaN으로 형성될 경우 광을 흡수하게 되어 광도가 저하될 수 있다. Al의 조성 c가 0.04를 초과할 경우, Al의 양이 증가하게 되어 상기 제1 도전형 제2 반도체층(131) 및 제1 도전형 제4 반도체층(135)이 상기 제2 도전형 반도체층(116) 및 제1 전극(170)과 오믹 접촉이 잘 형성되지 않을 수 있다.
상기 제1 도전형 제2 반도체층(131) 및 제1 도전형 제4 반도체층(135)의 두께는 1㎚ 이상일 수 있다. 예를 들어, 상기 제1 도전형 제2 반도체층(131) 및 제1 도전형 제4 반도체층(135)의 두께는 1㎚ 내지 3㎚일 수 있다. 상기 제1 도전형 제2 반도체층(131) 및 제1 도전형 제4 반도체층(135)의 두께가 1㎚ 미만일 경우, 상기 제2 도전형 반도체층(116) 및 제1 전극(170)과 오믹 접촉이 잘 형성되지 않을 수 있다. 상기 제1 도전형 제2 반도체층(131) 및 제1 도전형 제4 반도체층(135)의 두께가 3㎚ 초과일 경우, 광 흡수에 의해 광도가 저하될 수 있다.
실시 예는 상기 제1 도전형 제2 반도체층(131) 및 제1 도전형 제4 반도체층(135)이 서로 같은 도핑농도, Al 조성 및 두께를 포함하는 것으로 한정하고 있지만, 이에 한정되는 것은 아니다. 예컨대 상기 제1 도전형 제2 반도체층(131) 및 제1 도전형 제4 반도체층(135)의 도핑농도, Al 조성 및 두께는 이상의 범위에서 변경될 수 있다.
실시 예의 상기 제1 도전형 제3 반도체층(133)은 상기 상기 제1 도전형 제2 반도체층(131) 및 제1 도전형 제4 반도체층(135) 사이에 배치될 수 있다. 상기 제1 도전형 제3 반도체층(133)은 반도체 화합물, 예컨대 Ⅱ족-Ⅳ족 및 Ⅲ족-Ⅴ족 등의 화합물 반도체로 구현될 수 있고, 제1 도전형 도펀트가 도핑될 수 있다. 예컨대 제1 도전형 도펀트는 n형 도펀트로서, Si, Ge, Sn, Se, Te를 포함할 수 있으나 이에 한정되는 것은 아니다. 상기 제1 도전형 제3 반도체층(133)은 상기 제1 도전형 제2 반도체층(131) 및 제1 도전형 제4 반도체층(135)보다 낮은 도핑농도를 포함할 수 있다. 상기 제1 도전형 제3 반도체층(133)은 상기 제1 도전형 제2 반도체층(131) 및 제1 도전형 제4 반도체층(135) 사이에 배치되어 배리어 기능을 갖는 정도의 n형 도핑 농도가 요구될 수 있다. 여기서, 제1 도전형 제3 반도체층(133)은 n형 도핑 농도가 높을수록 결정성이 저하될 수 있다. 보다 구체적으로 상기 제1 도전형 제3 반도체층(133)은 오믹 접촉을 위해 배치되는 상기 제1 도전형 제2 반도체층(131) 및 제1 도전형 제4 반도체층(135)보다 낮은 도핑 농도를 포함하여 결정성을 개선할 수 있다. 상기 제1 도전형 제3 반도체층(133)은 1.0 x 1019 atoms/㎤ 내지 5.0 x 1019 atoms/㎤의 n형 도핑농도를 포함할 수 있다. 상기 제1 도전형 제3 반도체층(133)의 n형 도핑농도가 1.0 x 1019 atoms/㎤ 미만일 경우, 전류 퍼짐(current spreading) 효과가 저하될 수 있다. 상기 제1 도전형 제3 반도체층의 n형 도핑농도가 5.0 x 1019 atoms/㎤ 초과일 경우, 접촉저항 증가에 의해 동작전압이 높아질 수 있고 결정성이 저하될 수 있다.
상기 제1 도전형 제3 반도체층(133)은 AldGa1-dN(0.02≤d≤0.07)의 조성식을 갖는 반도체 물질을 포함할 수 있다. 상기 제1 도전형 제3 반도체층(133)의 Al의 조성비는 2% 내지 7%로써, 배리어 기능 및 전류 퍼짐(current spreading) 기능을 포함할 수 있다. 좀 더 상세하게는 상기 제1 도전형 제3 반도체층(133)의 Al 조성비는 5% 내지 7%로 형성할 수도 있으며 이에 한정하지 않는다. 상기 Al의 조성 d이 0.02 미만일 경우, 광 흡수에 의해 광도가 저하될 수 있다. Al의 조성d이 0.07 초과일 경우, 결정성이 저하될 수 있다. 실시 예의 도전형 AlGaN 계열 제3 반도체층(133)은 일정한 Al의 조성을 포함하고 있으나, 이에 한정되는 것은 아니다. 예컨대 상기 제1 도전형 제3 반도체층(133)의 Al 조성 d는 상기 Al의 조성 범위내에서 조정 가능하며 예를 들어 도전형 제4 반도체층(135)으로 갈수록 커지거나, 작아질 수 있다.
상기 제1 도전형 제3 반도체층(133)의 두께는 10㎚ 이상일 수 있다. 예를 들어, 상기 제1 도전형 제3 반도체층(133)의 두께는 10㎚ 내지 20㎚ 일 수 있다. 상기 제1 도전형 제3 반도체층(133)의 두께가 10㎚ 미만일 경우, 전류 퍼짐 효과가 저하될 수 있다. 상기 제1 도전형 제3 반도체층(133)의 두께가 20㎚ 초과일 경우, 접촉저항 증가에 의해 동작전압이 높아질 수 있어 발광 효율이 저하될 수 있다.
실시 예의 자외선 발광소자(100)는 상기 발광구조물(110)과 제2 전극(160) 사이에 전류 퍼짐층(130)이 배치되어 상기 발광구조물(110)과 제2 전극(160) 사이의 오믹 접촉 및 전류 퍼짐 효과를 개선할 수 있다.
상기 제1 전극(170)은 반사층(173), 캡핑층(175) 및 패드(177)을 포함할 수 있다. 상기 반사층(173) 및 캡핑층(175)은 상기 전류 퍼짐층(130) 아래에 배치될 수 있다. 상기 반사층(173) 및 캡핑층(175)은 상기 전류 퍼짐층(130)과 상기 제2 전극(160) 사이에 배치될 수 있다. 상기 제1 전극(170)은 상기 제2 도전형 반도체층(116)과 전기적으로 연결될 수 있다. 상기 제1 전극(170)은 상기 제2 전극(160)과 전기적으로 절연될 수 있다.
상기 반사층(173)은 상기 전류 퍼짐층(130)과 상기 캡핑층(175) 사이에 배치될 수 있다. 상기 반사층(173)은 상기 전류 퍼짐층(130) 및 캡핑층(175)에 전기적으로 연결될 수 있다. 상기 반사층(173)은 상기 발광구조물(110)로부터 입사되는 빛을 반사시키는 기능을 포함할 수 있다. 상기 반사층(173)은 상기 발광구조물(110)로부터의 광을 외부로 반사시켜 광 추출 효율을 향상시킬 수 있다. 상기 반사층(173)은 금속일 수 있다. 예컨대 상기 반사층(173)은 Ag, Ni, Al, Rh, Pd, Ir, Ru, Mg, Zn, Pt, Cu, Au, Hf 중 적어도 하나를 포함하는 금속 또는 합금일 수 있으며 단층 또는 다층으로 형성할 수 있다.
상기 캡핑층(175)은 상기 반사층(173)의 아래에 배치될 수 있다. 상기 캡핑층(175)은 상기 반사층(173)과 접촉될 수 있다. 예를 들어, 상기 캡핑층(175)은 상기 반사층(173)의 하부면과 직접 접촉될 수 있으며 이에 한정하지 않는다. 상기 캡핑층(175)은 상기 패드(177) 아래에 배치될 수 있다. 상기 캡핑층(175)은 상기 패드(177)와 전기적으로 연결될 수 있다. 상기 캡핑층(175)은 상기 패드(177)와 접촉될 수 있다. 예를 들어, 상기 캡핑층(175)은 상기 패드(177)의 하부와 직접 접촉될 수 있으며 이에 한정하지 않는다. 상기 캡핑층(175)은 상기 패드(177)로부터 공급되는 구동전원을 상기 발광구조물(110)에 제공할 수 있다. 상기 캡핑층(175)은 도전성 물질일 수 있다. 예컨대 상기 캡핑층(175)은 Au, Cu, Ni, Ti, Ti-W, Cr, W, Pt, V, Fe, Mo 물질 중에서 적어도 하나를 포함할 수 있으며, 단층 또는 다층으로 형성될 수 있다. 상기 캡핑층(175)의 가장자리는 상기 발광구조물(110)의 가장자리보다 더 외측에 배치될 수 있으며 이에 한정하지 않는다.
상기 패드(177)는 상기 발광구조물(110)로부터 이격될 수 있다. 상기 패드(177)는 상기 발광구조물(110)의 외측에 배치될 수 있다. 상기 패드(177)는 상기 발광구조물(110)보다 외측에 배치된 상기 제1 캡핑층(175) 위에 배치될 수 있다. 상기 패드(177)는 Ti, Cr, Ni, Al, Pt, Au, W, Cu, Mo, Cu-W, Be, Zn, Ge 중에서 적어도 하나를 포함할 수 있으며, 단층 또는 다층으로 형성될 수 있다.
상기 제2 전극(160)은 상기 제1 전극(170) 아래에 배치될 수 있다. 상기 제2 전극(160)은 상기 제1 도전형 제1 반도체층(112)과 전기적으로 연결될 수 있다. 상기 제2 전극(160)은 확산 방지층(161), 본딩층(163) 및 지지부재(165)를 포함할 수 있다. 상기 제2 전극(160)은 상기 확산 방지층(161), 상기 본딩층(163), 상기 지지부재(165) 중에서 1 개 또는 2 개를 선택적으로 포함할 수 있다. 예컨대 상기 제2 전극(160)은 상기 확산 방지층(161) 및 상기 본딩층(163) 중 적어도 하나를 삭제할 수 있다.
상기 확산 방지층(161)은 상기 제1 전극(170)으로 상기 본딩층(163)에 포함된 물질의 확산을 방지하는 기능을 포함할 수 있다. 상기 확산 방지층(161)은 본딩층(163) 및 지지부재(165)와 전기적으로 연결될 수 있다. 상기 확산 방지층(161)은 Cu, Ni, Ti, Ti-W, Cr, W, Pt, V, Fe, Mo 물질 중에서 적어도 하나를 포함할 수 있으며, 단층 또는 다층으로 형성될 수 있다. 상기 확산 방지층(161)은 리세스(141)와 절연층(143)에 의해 상기 제2 전극(160), 전류 퍼짐층(130), 제2 도전형 반도체층(116) 및 활성층(114)과 절연되고, 상기 제1 도전형 제1 반도체층(112)과 전기적으로 연결될 수 있다.
상기 본딩층(163)은 상기 확산 방지층(161) 아래에 배치될 수 있다. 상기 본딩층(163)은 상기 확산 방지층(161)과 상기 지지부재(165) 사이에 배치될 수 있다. 상기 본딩층(163)은 베리어 금속 또는 본딩 금속 등을 포함할 수 있다. 예컨대 상기 본딩층(163)은 Ti, Au, Sn, Ni, Cr, Ga, In, Bi, Cu, Ag, Nb, Pd 또는 Ta 중 적어도 하나를 포함할 수 있으며 단층 또는 다층으로 형성될 수 있다.
상기 지지부재(165)는 금속 또는 캐리어 기판일 수 있다. 예컨대 상기 지지부재(165)는 Ti, Cr, Ni, Al, Pt, Au, W, Cu, Mo, Cu-W, Be, Zn, Ge 또는 불순물이 주입된 반도체 기판(예: Si, Ge, GaN, GaAs, ZnO, SiC, SiGe 등) 중에서 적어도 어느 하나로 형성될 수 있으며, 단층 또는 다층으로 형성될 수 있다.
실시 예의 자외선 발광소자(100)는 발광구조물(110)과 제2 전극(160) 사이에 제1 도전형 의 반도체 구조가 배치되어 광 흡수를 줄여 광도를 개선할 수 있다.
또한, 실시 예의 자외선 발광소자(100)는 발광구조물(110)과 제2 전극(160) 사이에 제1 도전형 의 반도체 구조가 배치되어 전류 퍼짐 효과를 개선할 수 있다.
도 4 내지 도 8은 실시 예에 따른 자외선 발광소자의 제조방법을 도시한 단면도이다.
도 3 및 도 4를 참조하면, 발광구조물(110), 전류 퍼짐층(130), 반사층(173), 캡핑층(175)은 기판(5) 상에 형성될 수 있다.
상기 기판(5)은 열전도성이 뛰어난 물질로 형성될 수 있으며, 전도성 기판 또는 절연성 기판일수 있다. 예컨대 상기 기판(5)은 사파이어(Al2O3), SiC, Si, GaAs, GaN, ZnO, GaP, InP, Ge, and Ga203 중 적어도 하나를 사용할 수 있다. 상기 기판(5) 상에는 광 추출 효율 향상을 위한 요철 구조가 형성될 수 있으며, 이에 대해 한정하지는 않는다.
상기 발광구조물(110)은 유기금속 화학 증착법(MOCVD; Metal Organic Chemical Vapor Deposition), 화학 증착법(CVD; Chemical Vapor Deposition), 플라즈마 화학 증착법(PECVD; Plasma-Enhanced Chemical Vapor Deposition), 분자선 성장법(MBE; Molecular Beam Epitaxy), 수소화물 기상 성장법(HVPE; Hydride Vapor Phase Epitaxy) 등의 방법으로 형성될 수 있으나, 이에 한정되는 것은 아니다.
상기 발광구조물(110)은 상기 기판(5) 위에 형성될 수 있다. 상기 발광구조물(110)은 제1 도전형 제1 반도체층(112), 활성층(114) 및 제2 도전형 반도체층(116)을 포함할 수 있다.
상기 제1 도전형 제1 반도체층(112)은 반도체 화합물, 예컨대 Ⅱ족-Ⅳ족 및 Ⅲ족-Ⅴ족 등의 화합물 반도체로 구현될 수 있고, 제1 도전형 도펀트가 도핑될 수 있다. 예컨대 상기 제1 도전형 제1 반도체층(112)은 AlnGa1-nN (0≤n≤1)의 조성식을 갖는 반도체 물질을 포함할 수 있다. 상기 제1 도전형 제1 반도체층(112)이 n형 반도체층인 경우, n형 도펀트로서, Si, Ge, Sn, Se, Te를 포함할 수 있으나 이에 한정되는 것은 아니다.
상기 활성층(114)은 단일 양자 우물 구조, 다중 양자 우물 구조(MQW: Multi Quantum Well), 양자 선(Quantum-Wire) 구조, 또는 양자 점(Quantum Dot) 구조 중 적어도 어느 하나로 형성될 수 있다.
상기 활성층(114)은 상기 제1 도전형 제2 반도체층(112)을 통해서 주입되는 전자(또는 정공)와 상기 제2 도전형 반도체층(116)을 통해서 주입되는 정공(또는 전자)이 서로 만나서, 상기 활성층(114)의 형성 물질에 따른 에너지 밴드(Energy Band)의 밴드갭(Band Gap) 차이에 의해서 빛을 방출하는 층이다.
상기 활성층(114)는 화합물 반도체로 구성될 수 있다. 상기 활성층(114)는 예로서 Ⅱ족-Ⅳ족 및 Ⅲ족-Ⅴ족 화합물 반도체 중에서 적어도 하나로 구현될 수 있다.
상기 활성층(114)은 양자우물과 양자벽을 포함할 수 있다. 상기 활성층(114)이 다중 양자 우물 구조로 구현된 경우, 양자우물과 양자벽이 교대로 배치될 수 있다. 상기 양자우물과 양자벽은 각각 InxAlyGa1-x-yN(0≤x≤1, 0≤y≤1, 0≤x+y≤1)의 조성식을 갖는 반도체 재료로 배치될 수 있거나, AlGaN/GaN, AlGaN/AlGaN, InGaN/GaN, InGaN/InGaN, InAlGaN/GaN, GaAs/AlGaAs, InGaAs/AlGaAs, GaP/AlGaP, InGaP AlGaP 중 어느 하나 이상의 페어 구조로 형성될 수 있으나 이에 한정되지 않는다.
상기 제2 도전형 반도체층(116)은 반도체 화합물, 예컨대 Ⅱ족-Ⅳ족 및 Ⅲ족-Ⅴ족 등의 화합물 반도체로 구현될 수 있으며, 제2 도전형 도펀트가 도핑될 수 있다. 예컨대 상기 제2 도전형 반도체층(116)은 AlpGa1-pN (0≤p≤1)의 조성식을 갖는 반도체 물질을 포함할 수 있다. 상기 제2 도전형 반도체층(116)이 p형 반도체층인 경우, 상기 제2 도전형 도펀트는 p형 도펀트로서, Mg, Zn, Ca, Sr, Ba 등을 포함할 수 있다.
상기 전류 퍼짐층(130)은 상기 발광구조물(110) 위에 형성될 수 있다. 상기 전류 퍼짐층(130)은 화학증착방법(CVD) 혹은 분자선 에피택시 (MBE) 혹은 스퍼터링 혹은 수산화물 증기상 에피택시(HVPE) 등의 방법을 사용하여 형성될 수 있으나 이에 한정되는 것은 아니다. 상기 전류 퍼짐층(130)은 상기 제2 도전형 반도체층(116) 위에 형성될 수 있고,, 상기 제2 도전형 반도체층(116)과 오믹 접촉될 수 있다. 상기 전류 퍼짐층(130)은 제1 도전형 제2 반도체층(131), 제1 도전형 제3 반도체층(133) 및 제1 도전형 제4 반도체층(135)을 포함할 수 있다. 상기 전류 퍼짐층(130)은 AlGaN 계열 반도체층으로 구성되어 광 흡수에 의한 광도 저하를 개선할 수 있다. 예컨대 상기 전류 퍼짐층(130)은 자외선 파장의 광 흡수를 개선할 수 있다. 상기 전류 퍼짐층(130)은 제1 도전형 도펀트를 포함하는 AlGaN 계열 반도체층으로 구성되어 오믹 접촉 및 전류 퍼짐을 개선할 수 있다.
상기 제1 도전형 제2 반도체층(131)은 상기 제2 도전형 반도체층(116) 위에 형성될 수 있다. 상기 제1 도전형 제2 반도체층(131)은 상기 제2 도전형 반도체층(116)과 직접 접촉될 수 있다. 상기 제1 도전형 제2 반도체층(131)은 상기 제2 도전형 반도체층(116)과 제1 도전형 제3 반도체층(133) 사이에 배치될 수 있다. 상기 제1 도전형 제4 반도체층(135)은 상기 제1 도전형 제3 반도체층(133) 위에 배치될 수 있다. 상기 제1 도전형 제4 반도체층(135)는 이후 형성되는 반사층(173)과 직접 접촉될 수 있다. 상기 제1 도전형 제4 반도체층(135)은 상기 반사층(173)과 제1 도전형 제3 반도체층(133) 사이에 배치될 수 있다. 상기 제1 도전형 제2 반도체층(131) 및 제1 도전형 제4 반도체층(135)은 반도체 화합물, 예컨대 Ⅱ족-Ⅳ족 및 Ⅲ족-Ⅴ족 등의 화합물 반도체로 구현될 수 있고, 제1 도전형 도펀트가 도핑될 수 있다. 예컨대 제1 도전형 도펀트는 n형 도펀트로서, Si, Ge, Sn, Se, Te를 포함할 수 있으나 이에 한정되는 것은 아니다. 상기 제1 도전형 제2 반도체층(131) 및 제1 도전형 제4 반도체층(135)은 1.0 x 1019 atoms/㎤이상의 n형 도핑농도를 포함할 수 있다. 예컨대 상기 제1 도전형 제2 반도체층(131) 및 제1 도전형 제4 반도체층(135)은 1.0 x 1019 atoms/㎤ 이상의 n형 도핑농도에 의해 PN접합의 공핍영역을 줄여 정공의 터널링(Tunneling)을 구현할 수 있다. 상기 제1 도전형 제2 반도체층(131) 및 제1 도전형 제4 반도체층(135)은 1.0 x 1019 atoms/㎤ 내지 5.0 x 1020 atoms/㎤의 n형 도핑농도를 포함할 수 있다. 상기 제1 도전형 제2 반도체층(131) 및 제1 도전형 제4 반도체층(135)의 n형 도핑농도는 1.0 x 1019 atoms/㎤ 미만일 경우, n형 도펀트에 의한 터널링(tunneling) 효과가 저하될 수 있다. 즉, 상기 제1 도전형 제2 반도체층(131)과 상기 제2 도전형 반도체층(116)은 오믹 접촉이 잘 형성되지 않을 수 있다. 상기 제1 도전형 제4 반도체층(135)과 상기 반사층(173)은 오믹 접촉이 잘 형성되지 않을 수 있다. 상기 제1 도전형 제2 반도체층(131) 및 제1 도전형 제4 반도체층(135)의 n형 도핑농도는 5.0 x 1020 atoms/㎤ 초과일 경우, 결정성이 저하될 수 있다.
상기 제1 도전형 제2 반도체층(131) 및 제1 도전형 제4 반도체층(135)은 AlcGa1-cN(0<c≤0.04)의 조성식을 갖는 반도체 물질을 포함할 수 있다. 상기 제1 도전형 제3 반도체층(131) 및 제1 도전형 제4 반도체층(135)의 Al 조성비는 0% 초과 4% 이하일 수 있으며 좀 더 상세하게는 2% 내지 3% 일 수 있으며 이에 한정하지 않는다. 상기 제1 도전형 제2 반도체층(131) 및 제1 도전형 제4 반도체층(135)은 0을 초과하는 Al의 조성에 의해 광 흡수를 개선할 수 있다. 상기 제1 도전형 제2 반도체층(131) 및 제1 도전형 제4 반도체층(135)이 Al의 조성 c가 0이되어 Al을 포함하지 않을 경우, 즉 GaN으로 형성되는 경우 광을 흡수하게 되어 광도가 저하될 수 있다. Al의 조성 c가 0.04 초과할 경우, Al의 양이 증가하게 되어 상기 제1 도전형 제2 반도체층(131) 및 제1 도전형 제4 반도체층(135)가 상기 제2 도전형 반도체층(116) 및 반사층(173)과 오믹 접촉이 잘 형성되지 않을 수 있다.
상기 제1 도전형 제2 반도체층(131) 및 제1 도전형 제4 반도체층(135)의 두께는 1㎚ 이상일 수 있다. 예를 들어, 상기 제1 도전형 제2 반도체층(131) 및 제1 도전형 제4 반도체층(135)의 두께는 1㎚ 내지 3㎚일 수 있다. 상기 제1 도전형 제2 반도체층(131) 및 제1 도전형 제4 반도체층(135)의 두께가 1㎚ 미만일 경우, 상기 제2 도전형 반도체층(116) 및 반사층(173)과 오믹 접촉이 잘 형성되지 않을 수 있다. 상기 제1 도전형 제2 반도체층(131) 및 제1 도전형 제4 반도체층(135)의 두께가 3㎚ 초과일 경우, 광 흡수에 의해 광도가 저하될 수 있다.
실시 예는 상기 제1 도전형 제2 반도체층(131) 및 제1 도전형 제4 반도체층(135)이 서로 같은 도핑농도, Al 조성 및 두께를 포함하는 것으로 한정하고 있지만, 이에 한정되는 것은 아니다. 예컨대 상기 제1 도전형 제2 반도체층(131) 및 제1 도전형 제4 반도체층(135)의 도핑농도, Al 조성 및 두께는 이상의 범위 내에서 변경될 수 있다.
실시 예의 상기 제1 도전형 제3 반도체층(133)은 상기 상기 제1 도전형 제2 반도체층(131) 및 제1 도전형 제4 반도체층(135) 사이에 형성될 수 있다. 상기 제1 도전형 제3 반도체층(133)은 반도체 화합물, 예컨대 Ⅱ족-Ⅳ족 및 Ⅲ족-Ⅴ족 등의 화합물 반도체로 구현될 수 있고, 제1 도전형 도펀트가 도핑될 수 있다. 예컨대 제1 도전형 도펀트는 n형 도펀트로서, Si, Ge, Sn, Se, Te를 포함할 수 있으나 이에 한정되는 것은 아니다. 상기 제1 도전형 제3 반도체층(133)은 상기 제1 도전형 제2 반도체층(131) 및 제1 도전형 제4 반도체층(135)보다 낮은 도핑농도를 포함할 수 있다. 상기 제1 도전형 제3 반도체층(133)은 상기 제1 도전형 제2 반도체층(131) 및 제1 도전형 제4 반도체층(135) 사이에 배치되어 배리어 기능을 갖는 정도의 n형 도핑 농도가 요구될 수 있다. 상기 제1 도전형 제3 반도체층(133)은 1.0 x 1019 atoms/㎤ 내지 5.0 x 1019 atoms/㎤의 n형 도핑농도를 포함할 수 있다. 상기 제1 도전형 제3 반도체층(133)의 n형 도핑농도가 1.0 x 1019 atoms/㎤ 미만일 경우, 전류 퍼짐(current spreading) 효과가 저하될 수 있다. 상기 제1 도전형 제3 반도체층의 n형 도핑농도가 5.0 x 1019 atoms/㎤ 초과일 경우, 접촉저항 증가에 의해 동작전압이 높아질 수 있다.
상기 제1 도전형 제3 반도체층(133)은 AldGa1-dN(0.02≤d≤0.07)의 조성식을 갖는 반도체 물질을 포함할 수 있다. 상기 제1 도전형 제3 반도체층(133)의 Al의 조성비는 2% 내지 7%로써, 배리어 기능 및 전류 퍼짐기능을 포함할 수 있다. 좀 더 상세하게는 상기 제1 도전형 제3 반도체층(133)의 Al 조성비는 5% 내지 7%로 형성할 수도 있으며 이에 한정하지 않는다. 상기 Al의 조성d가 0.02 미만일 경우, 광 흡수에 의해 광도가 저하될 수 있다. Al의 조성d가 0.07 초과일 경우, 결정성이 저하될 수 있다. 실시 예의 도전형 AlGaN 계열 제3 반도체층(133)은 일정한 Al의 조성을 포함하고 있으나, 이에 한정되는 것은 아니다. 예컨대 상기 제1 도전형 제3 반도체층(133)의 Al 조성은 상기 Al의 조성 범위내에서 제1 도전형 제4 반도체층(135)으로 갈수록 커지거나, 작아질 수 있다.
상기 제1 도전형 제3 반도체층(133)의 두께는 10㎚ 이상일 수 있다. 예를 들어, 상기 제1 도전형 제3 반도체층(133)의 두께는 10㎚ 내지 20㎚일 수 있다. 상기 제1 도전형 제3 반도체층(133)의 두께가 10㎚ 미만일 경우, 전류 퍼짐 효과가 저하될 수 있다. 상기 제1 도전형 제3 반도체층(133)의 두께가 20㎚ 초과일 경우, 접촉저항 증가에 의해 동작전압이 높아질 수 있어 발광 효율이 저하될 수 있다.
상기 반사층(173)은 상기 전류 퍼짐층(130) 위에 형성될 수 있다. 상기 반사층(173)은 상기 반사층(173)은 상기 발광구조물(110)로부터 입사되는 빛을 반사시키는 기능을 포함할 수 있다. 상기 반사층(173)은 상기 발광구조물(110)로부터의 광을 외부로 반사시켜 광 추출 효율을 향상시킬 수 있다. 상기 반사층(173)은 금속일 수 있다. 예컨대 상기 반사층(173)은 Ag, Ni, Al, Rh, Pd, Ir, Ru, Mg, Zn, Pt, Cu, Au, Hf 중 적어도 하나를 포함하는 금속 또는 합금일 수 있으며, 단층 또는 다층으로 형성할 수 있다.
상기 캡핑층(175)은 상기 반사층(173) 위에 형성될 수 있다. 상기 캡핑층(175)은 상기 반사층(173)의 하부면과 직접 접촉될 수 있으나, 이에 한정되는 것은 아니다. 상기 캡핑층(175)은 도전성 물질일 수 있다. 예컨대 상기 캡핑층(175)은 Au, Cu, Ni, Ti, Ti-W, Cr, W, Pt, V, Fe, Mo 물질 중에서 적어도 하나를 포함할 수 있으며, 단층 또는 다층으로 형성될 수 있다. 상기 캡핑층(175)의 가장자리는 상기 발광구조물(110)의 가장자리보다 더 외측에 배치될 수 있으며, 이에 한정되는 것은 아니다.
도 5를 참조하면, 복수의 리세스(141)는 상기 발광구조물(110) 내에 형성될 수 있다. 상기 리세스(141)는 에칭 공정을 통해서 형성될 수 있다. 상기 리세스(141)는 상기 제1 도전형 제1 반도체층(112)의 일부를 외부에 노출시킬 수 있다. 상기 리세스(141)는 상기 캡핑층(175), 반사층(173), 전류 퍼짐층(130)의 측면을 외부에 노출시키고, 제2 도전형 반도체층(116) 및 활성층(114)의 측면을 외부에 노출시킬 수 있다. 상기 리세스(141)의 바닥면에는 상기 제1 도전형 제1 반도체층(112)이 노출될 수 있다.
도 6을 참조하면, 절연층(143)은 상기 캡핑층(175) 및 리세스(141) 위에 형성될 수 있고, 제2 전극(160)은 상기 절연층(143) 위에 형성될 수 있다.
상기 절연층(143)은 반사층(173) 및 캡핑층(175)과 제2 전극(160) 사이를 절연시킬 수 있다. 상기 절연층(143)은 제2 전극(160)과 상기 제2 도전형 반도체층(116) 사이를 절연시킬 수 있다. 상기 절연층(143)은 상기 리세스(141)의 측부에 형성될 수 있다. 즉, 상기 절연층(143)은 상기 리세스(141)의 측부에 노출되는 캡핑층(175), 반사층(173), 전류 퍼짐층(130), 제2 도전형 반도체층(116), 활성층(114) 및 상기 제1 도전형 제1 반도체층(112)을 절연시킬 수 있다. 상기 절연층(143)은 상기 리세스(141)의 바닥면에 위치한 제1 도전형 제1 반도체층(112)의 일부를 노출시킬 수 있다. 상기 절연층(143)은 산화물 또는 질화물일 수 있다. 상기 절연층(143)은 SiO2, SixOy, Si3N4, SixNy, SiOxNy, Al2O3, TiO2, AlN 등으로 이루어진 군에서 적어도 하나가 선택될 수 있다.
상기 제2 전극(160)은 상기 절연층(143) 상에 형성될 수 있다. 상기 제2 전극(160)은 상기 리세스(141)의 바닥면에 노출된 제1 도전형 제1 반도체층(112) 위에 형성될 수 있다. 상기 제2 전극(160)은 상기 제1 도전형 제1 반도체층(112)과 전기적으로 연결될 수 있다. 상기 제2 전극(160)은 확산 방지층(161), 본딩층(163) 및 지지부재(165)를 포함할 수 있다. 상기 제2 전극(160)은 상기 확산 방지층(161), 상기 본딩층(163), 상기 지지부재(165) 중에서 1 개 또는 2 개를 선택적으로 포함할 수 있다. 예컨대 상기 제2 전극(160)은 상기 확산 방지층(161) 및 상기 본딩층(163) 중 적어도 하나를 삭제할 수 있다.
상기 확산 방지층(161)은 상기 제1 전극(170)으로 상기 본딩층(163)에 포함된 물질의 확산을 방지하는 기능을 포함할 수 있다. 상기 확산 방지층(161)은 본딩층(163) 및 지지부재(165)와 전기적으로 연결될 수 있다. 상기 확산 방지층(161)은 Cu, Ni, Ti, Ti-W, Cr, W, Pt, V, Fe, Mo 물질 중에서 적어도 하나를 포함할 수 있으며, 단층 또는 다층으로 형성될 수 있다. 상기 확산 방지층(161)은 리세스(141)와 절연층(143)에 의해 상기 제2 전극(160), 전류 퍼짐층(130), 제2 도전형 반도체층(116) 및 활성층(114)과 절연되고, 상기 제1 도전형 제1 반도체층(112)과 전기적으로 연결될 수 있다.
상기 본딩층(163)은 상기 확산 방지층(161) 아래에 배치될 수 있다. 상기 본딩층(163)은 상기 확산 방지층(161)과 상기 지지부재(165) 사이에 배치될 수 있다. 상기 본딩층(163)은 베리어 금속 또는 본딩 금속 등을 포함할 수 있다. 예컨대 상기 본딩층(163)은 Ti, Au, Sn, Ni, Cr, Ga, In, Bi, Cu, Ag, Nb, Pd 또는 Ta 중 적어도 하나를 포함할 수 있으며 단층 또는 다층으로 형성될 수 있다.
상기 지지부재(165)는 금속 또는 캐리어 기판일 수 있다. 예컨대 상기 지지부재(165)는 Ti, Cr, Ni, Al, Pt, Au, W, Cu, Mo, Cu-W, Be, Zn, Ge 또는 불순물이 주입된 반도체 기판(예: Si, Ge, GaN, GaAs, ZnO, SiC, SiGe 등) 중에서 적어도 어느 하나로 형성될 수 있으며, 단층 또는 다층으로 형성될 수 있다.
도 7 및 도 8을 참조하면, 기판(도6의 5)은 발광구조물(110)로부터 제거될 수 있다. 상기 기판(도7의 5)의 제거 방법은 화학적 식각 방법을 사용할 수 있으나, 이에 한정되는 것은 아니다.
패드(177)는 발광구조물(110)로부터 노출된 캡핑층(175) 위에 형성될 수 있다. 상기 캡핑층(175)은 에칭 공정을 통해서 상기 발광구조물(110)로부터 상부면이 노출될 수 있고, 노출된 상기 캡핑층(175)은 발광 소자의 적어도 하나의 모서리 영역에 위치할 수 있으나, 이에 한정되는 것은 아니다.
상기 패드(177)는 상기 발광구조물(110)로부터 이격될 수 있다. 상기 패드(177)는 상기 발광구조물(110)보다 외측에 배치될 수 있다. 상기 패드(177)는 상기 발광구조물(110)보다 외측에 위치한 상기 제1 캡핑층(175) 위에 배치될 수 있다. 상기 패드(177)는 Ti, Cr, Ni, Al, Pt, Au, W, Cu, Mo, Cu-W, Be, Zn, Ge 중에서 적어도 하나를 포함할 수 있으며, 단층 또는 다층으로 형성될 수 있다.
상기 제1 도전형 제1 반도체층(112)은 광 추출 효율을 향상시키는 광 추출 패턴(113)이 형성될 수 있다. 상기 광 추출 패턴(113)은 기판(도6의 5)이 제거되어 노출된 상기 제1 도전형 제1 반도체층(112)의 상부면 상에 형성될 수 있다. 상기 광 추출 패턴(113)은 PEC 등의 방법으로 형성될 수 있으며 이에 한정되는 것은 아니다. 상기 광 추출 패턴(113)은 규칙적인 형상 및 배열을 갖도록 형성할 수 있고, 불규칙적인 형상 및 배열을 갖도록 형성할 수도 있다. 예를 들어, 상기 광 추출 패턴(113)의 단면은 다각형, 원형 또는 타원형일 수 있으나 이에 한정하지 않는다. 상기 광 추출 패턴(113)은 활성층(114)으로부터 생성된 빛 중에 상기 제1 도전형 제1 반도체층(112)의 상부면으로부터 전반사되어 재흡수되는 빛을 외부로 굴절시켜 광 추출 효율을 향상시킬 수 있다.
실시 예의 자외선 발광소자(100)는 발광구조물(110)과 제2 전극(160) 사이에 제1 도전형 의 반도체 구조가 배치되어 광 흡수를 줄여 광도를 개선할 수 있다.
또한, 실시 예의 자외선 발광소자(100)는 발광구조물(110)과 제2 전극(160) 사이에 제1 도전형 의 반도체 구조가 배치되어 전류 퍼짐 효과를 개선할 수 있다.
도 9은 다른 실시 예에 따른 자외선 발광소자를 도시한 단면도이다.
도 9에 도시된 바와 같이, 다른 실시 예에 따른 발광소자(200)는 발광구조물(110)의 상부에 배치된 제2 전극(260)과, 상기 발광구조물(110)의 하부에 배치된 제1 전극(270)을 포함할 수 있다. 다른 실시 예에 따른 발광소자(200)는 제1 도전형 GaN 계열 제1 반도체층(112)과 제1 전극(270) 사이에 전류 퍼짐층(130)이 배치될 수 있다.
다른 실시 예는 상기 발광구조물(110) 아래에 전류 블로킹층(145) 및 채널층(146)이 배치될 수 있다.
상기 전류 블로킹층(145)은 SiO2, SiOx, SiOxNy, Si3N4, Al2O3, TiO2 중에서 적어도 하나를 포함할 수 있으며, 발광구조물(110)과 상기 제1 전극(270) 사이에 적어도 하나가 형성될 수 있다. 상기 전류 블로킹층(145)은 상기 발광구조물(110) 상에 배치된 상기 제2 전극(260)과 수직한 방향으로 중첩될 수 있다. 여기서, 상기 제2 전극(260) 및 제1 전극(270)이 수직으로 중첩되는 경우, 수직으로 중첩된 영역에서 상기 제2 전극(260) 및 제1 전극(270)이 최단거리를 갖게 되므로 상기 수직으로 중첩된 영역에서 전류 밀집이 발생할 수 있다. 상기 전류 밀집은 국부적인 영역의 전자 및 전공의 결합으로 발광소자의 구동시간에 따라 광의 드룹(Droop)을 야기할 수 있다. 상기 전류 블로킹층(145)은 상기 제2 전극(260) 및 제1 전극(270)의 수직으로 중첩되는 최단거리의 전류를 차단하여, 다른 경로로 확산시켜 줄 수 있다. 실시 예의 발광소자(200)는 상기 제1 및 제2 전극(270, 260)이 수직으로 중첩되는 영역에 전류 블로킹층(145)이 배치되어 전류 밀집 및 광의 드룹(Droop)을 개선할 수 있다.
상기 채널층(146)은 상기 발광구조물(110)의 하부 가장자리를 따라 배치될 수 있다. 상기 채널층(146)은 탑뷰가 링, 루프 또는 프레임 형상일 수 있으나, 이에 한정되는 것은 아니다. 상기 채널층(146)은 ITO, IZO, IZTO, IAZO, IGZO, IGTO, AZO, ATO, SiO2, SiOx, SiOxNy, Si3N4, Al2O3, TiO2 중 적어도 하나를 포함하여 단층 또는 다층으로 배치할 수 있다. 상기 채널층(146)의 일부는 상기 제2 도전형 반도체층(116) 아래에 배치되고, 상기 채널층(146)의 다른 일부는 상기 발광구조물(110)의 측면보다 더 외곽에 배치될 수 있다.다른 실시 예는 제2 전극(260)과 발광구조물(110) 사이의 연결구조와 위치를 제외한 구성이 도 1 내지 도 8에 도시된 실시 예의 자외선 발광소자(100)와 대응되므로 상세한 설명을 생략하기로 한다.
상기 제1 전극(270)은 상기 전류 퍼짐층(130) 아래에 배치되고, 상기 제2 전극(260)은 발광구조물(110) 위에 배치될 수 있다.
다른 실시 예의 전류 퍼짐층(130)은 상기 발광구조물(110) 및 상기 제1 전극(270)과 오믹 접촉될 수 있다. 상기 전류 퍼짐층(130)은 AlGaN 계열 반도체층으로 구성되어 광 흡수에 의한 광도 저하를 개선할 수 있다. 예컨대 상기 전류 퍼짐층(130)은 자외선 파장의 광 흡수를 개선할 수 있다. 상기 전류 퍼짐층(130)은 상기 제2 도전형 반도체층(116)과 상기 제1 전극(270) 사이에 제1 도전형 도펀트를 포함하는 AlGaN 계열 반도체층으로 구성되어 오믹 접촉 및 전류 퍼짐을 개선할 수 있다.
도 10은 실시 예에 따른 발광소자 패키지를 도시한 단면도이다.
실시 예에 따른 발광 소자 패키지(300)는 패키지 몸체부(305)와, 상기 패키지 몸체부(305)에 설치된 제1 리드전극(313) 및 제2 리드전극(314)과, 상기 패키지 몸체부(305)에 설치되어 상기 제1 리드전극(313) 및 제2 리드전극(314)과 전기적으로 연결되는 자외선 발광소자(100)와, 상기 자외선 발광소자(100)를 포위하는 몰딩부재(330)가 포함된다.
상기 제1 리드전극(313) 및 제2 리드전극(314)은 서로 전기적으로 분리되며, 상기 자외선 발광소자(100)에 전원을 제공하는 역할을 한다. 또한, 상기 제1 리드전극(313) 및 제2 리드전극(314)은 상기 자외선 발광소자(100)에서 발광된 빛을 반사시켜 광 효율을 증가시키는 기능을 포함할 수 있으며, 상기 자외선 발광소자(100)에서 발생된 열을 외부로 배출시키는 기능을 포함 수도 있다.
상기 자외선 발광소자(100)는 상기 제1 리드전극(313) 또는 제2 리드전극(314)과 와이어 방식, 플립칩 방식 또는 다이 본딩 방식 중 어느 하나에 의해 전기적으로 연결될 수도 있다.
상기 자외선 발광소자(100)는 도 1 내지 도 8의 실시 예에 따른 자외선 발광소자(100)일 수 있으나 이에 한정되지 않으며, 도 9의 다른 실시 예에 따른 자외선 발광소자(200)일 수도 있다.
상기 몰딩부재(330)에는 형광체(332)가 포함되어 백색광의 발광소자 패키지가 될 수 있으나 이에 한정되는 것은 아니다.
상기 몰딩부재(330)의 상면은 평평하거나 오목 또는 볼록하게 형성될 수 있으며 이에 한정하지 않는다.
이상에서 실시예들에 설명된 특징, 구조, 효과 등은 적어도 하나의 실시예에 포함되며, 반드시 하나의 실시예에만 한정되는 것은 아니다. 나아가, 각 실시예에서 예시된 특징, 구조, 효과 등은 실시예들이 속하는 분야의 통상의 지식을 가지는 자에 의해 다른 실시예들에 대해서도 조합 또는 변형되어 실시 가능하다. 따라서 이러한 조합과 변형에 관계된 내용들은 실시예의 범위에 포함되는 것으로 해석되어야 할 것이다.
이상에서 실시예를 중심으로 설명하였으나 이는 단지 예시일 뿐 실시예를 한정하는 것이 아니며, 실시예가 속하는 분야의 통상의 지식을 가진 자라면 본 실시예의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 실시예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 설정하는 실시예의 범위에 포함되는 것으로 해석되어야 할 것이다.
130: 전류 차단층
131: 제1 도전형 제2 반도체층
133: 제1 도전형 제3 반도체층
135: 제1 도전형 제4 반도체층

Claims (6)

  1. 제1 도전형 제1 반도체층, 활성층, 제2 도전형 반도체층을 포함하는 발광구조물;
    상기 발광구조물 아래에 제1 전극; 및
    상기 발광구조물 및 상기 제1 전극과 접하는 전류 퍼짐층을 포함하고,
    상기 발광구조물 및 상기 전류 퍼짐층은 AlGaN 계열로 구성되고,
    상기 전류 퍼짐층은 제1 도전형 제2 반도체층, 제1 도전형 제3 반도체층 및 제1 도전형 제4 반도체층을 포함하고,
    상기 제1 도전형 제2 반도체층은 상기 제2 도전형 반도체층과 접촉하고,
    상기 제1 도전형 제3 반도체층은 상기 제1 도전형 제2 반도체층과 상기 제1 도전형 제4 반도체층 사이에 배치되고,
    상기 제1 도전형 제4 반도체층은 상기 제1 전극과 접촉하고,
    상기 제1 도전형 제3 반도체층의 두께는 상기 제1 도전형 제2 반도체층 및 상기 제1 도전형 제4 반도체층의 두께보다 두껍고,
    상기 제1 도전형 제3 반도체층은 상기 제1 도전형 제2 반도체층 및 상기 제1 도전형 제4 반도체층보다 낮은 도핑농도를 갖고,
    상기 제1 도전형 제2 반도체층 및 상기 제1 도전형 제4 반도체층 AlcGa1-cN(0<c≤0.04)의 조성식을 포함하고,
    상기 제1 도전형 제3 반도체층은 AldGa1-dN(0.02≤d≤0.07)의 조성식을 포함하는 자외선 발광소자.
  2. 제1 항에 있어서,
    제1 도전형 제3 반도체층의 두께는 10㎚ 내지 20㎚인 자외선 발광소자.
  3. 제1 항에 있어서,
    상기 제1 도전형 제3 반도체층은 1.0 x 1019 atoms/㎤ 내지 5.0 x 1019 atoms/㎤의 도핑농도를 포함하는 자외선 발광소자.
  4. 제1 항에 있어서,
    상기 제1 도전형 제2 반도체층 및 상기 제1 도전형 제4 반도체층의 두께는 1㎚ 내지 3㎚인 자외선 발광소자.
  5. 제1 항 내지 제4 항 중 어느 하나의 자외선 발광소자를 포함하는 발광소자 패키지.
  6. 삭제
KR1020150180114A 2015-12-16 2015-12-16 자외선 발광소자 및 발광소자 패키지 KR102447089B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150180114A KR102447089B1 (ko) 2015-12-16 2015-12-16 자외선 발광소자 및 발광소자 패키지

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150180114A KR102447089B1 (ko) 2015-12-16 2015-12-16 자외선 발광소자 및 발광소자 패키지

Publications (2)

Publication Number Publication Date
KR20170071906A KR20170071906A (ko) 2017-06-26
KR102447089B1 true KR102447089B1 (ko) 2022-09-26

Family

ID=59282734

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150180114A KR102447089B1 (ko) 2015-12-16 2015-12-16 자외선 발광소자 및 발광소자 패키지

Country Status (1)

Country Link
KR (1) KR102447089B1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114242862B (zh) * 2021-12-22 2024-02-27 淮安澳洋顺昌光电技术有限公司 Led芯片及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100869962B1 (ko) 2006-12-07 2008-11-24 한국전자통신연구원 전류 확산층을 포함하는 발광소자의 제조방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130044909A (ko) * 2011-10-25 2013-05-03 서울옵토디바이스주식회사 발광소자 및 그 제조방법
DE102012111245A1 (de) * 2012-11-21 2014-05-22 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung eines Anschlussbereichs eines optoelektronischen Halbleiterchips
KR20150128424A (ko) * 2014-05-09 2015-11-18 서울바이오시스 주식회사 발광 다이오드 및 그 제조 방법

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100869962B1 (ko) 2006-12-07 2008-11-24 한국전자통신연구원 전류 확산층을 포함하는 발광소자의 제조방법

Also Published As

Publication number Publication date
KR20170071906A (ko) 2017-06-26

Similar Documents

Publication Publication Date Title
KR101707118B1 (ko) 발광소자 및 그 발광 소자의 제조 방법
US10243103B2 (en) Ultraviolet light emitting diode, light emitting diode package, and lighting device
KR102268109B1 (ko) 발광 소자 및 이를 구비한 발광 소자 패키지
KR102303502B1 (ko) 발광 소자 및 이를 구비한 발광 소자 패키지
KR101729268B1 (ko) 발광소자 및 그 발광 소자의 제조 방법
KR102356232B1 (ko) 자외선 발광소자 및 발광소자 패키지
KR102447089B1 (ko) 자외선 발광소자 및 발광소자 패키지
KR102359824B1 (ko) 자외선 발광소자 및 발광소자 패키지
KR20170093614A (ko) 발광소자 및 조명시스템
KR102397266B1 (ko) 발광소자 및 조명장치
KR20160086603A (ko) 발광 소자
KR102425124B1 (ko) 발광소자 및 발광소자 패키지
KR102432015B1 (ko) 자외선 발광소자 및 발광소자 패키지
KR102175346B1 (ko) 발광소자 및 발광 소자 패키지
KR101231477B1 (ko) 발광소자
KR102376672B1 (ko) 발광소자 및 발광소자 패키지
KR102322696B1 (ko) 자외선 발광소자 및 발광소자 패키지
KR102350784B1 (ko) 자외선 발광소자 및 조명시스템
KR102299735B1 (ko) 발광소자 및 조명시스템
KR102353844B1 (ko) 자외선 발광소자 및 발광소자 패키지
KR102302855B1 (ko) 발광소자 및 조명시스템
KR102330022B1 (ko) 발광소자 및 발광소자 패키지
KR102250531B1 (ko) 발광 소자
KR102261958B1 (ko) 발광소자 및 조명장치
KR102336432B1 (ko) 발광소자 및 발광소자 패키지

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant