KR102432521B1 - biomass fuel manufacturing device - Google Patents

biomass fuel manufacturing device Download PDF

Info

Publication number
KR102432521B1
KR102432521B1 KR1020200104151A KR20200104151A KR102432521B1 KR 102432521 B1 KR102432521 B1 KR 102432521B1 KR 1020200104151 A KR1020200104151 A KR 1020200104151A KR 20200104151 A KR20200104151 A KR 20200104151A KR 102432521 B1 KR102432521 B1 KR 102432521B1
Authority
KR
South Korea
Prior art keywords
methylimidazolium
ethyl
butyl
chloride
methyl imidazolium
Prior art date
Application number
KR1020200104151A
Other languages
Korean (ko)
Other versions
KR20220022777A (en
Inventor
권무현
Original Assignee
우석대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 우석대학교 산학협력단 filed Critical 우석대학교 산학협력단
Priority to KR1020200104151A priority Critical patent/KR102432521B1/en
Publication of KR20220022777A publication Critical patent/KR20220022777A/en
Application granted granted Critical
Publication of KR102432521B1 publication Critical patent/KR102432521B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/40Solid fuels essentially based on materials of non-mineral origin
    • C10L5/44Solid fuels essentially based on materials of non-mineral origin on vegetable substances
    • C10L5/447Carbonized vegetable substances, e.g. charcoal, or produced by hydrothermal carbonization of biomass
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/02Solid fuels such as briquettes consisting mainly of carbonaceous materials of mineral or non-mineral origin
    • C10L5/06Methods of shaping, e.g. pelletizing or briquetting
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/40Solid fuels essentially based on materials of non-mineral origin
    • C10L5/42Solid fuels essentially based on materials of non-mineral origin on animal substances or products obtained therefrom, e.g. manure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L5/00Solid fuels
    • C10L5/40Solid fuels essentially based on materials of non-mineral origin
    • C10L5/46Solid fuels essentially based on materials of non-mineral origin on sewage, house, or town refuse
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L9/00Treating solid fuels to improve their combustion
    • C10L9/08Treating solid fuels to improve their combustion by heat treatments, e.g. calcining
    • C10L9/083Torrefaction
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/08Drying or removing water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/24Mixing, stirring of fuel components
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/32Molding or moulds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Treatment Of Sludge (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

본 발명은 유기질 바이오매스 원료, 특히 목질 바이오매스 원료를 반탄화 처리함으로써 바이오매스 연료를 제조하는 장치에 관한 것으로 연소실로 생성된 열풍과 탄화실 내 공간 사이의 열교환 효율을 비약적으로 상승시키고 복사열로서의 열풍이 가지는 열에너지를 최대한 이용해 비교적 낮은 열에너지라도 단시간에 안정된 반탄화 처리를 실현하는 효과가 있다.The present invention relates to an apparatus for producing biomass fuel by torrefaction of an organic biomass raw material, particularly a woody biomass raw material, and dramatically increases the heat exchange efficiency between the hot air generated in the combustion chamber and the space in the carbonization chamber, and the hot air as radiant heat This branch has the effect of realizing stable torrefaction treatment in a short time even with relatively low thermal energy by maximizing thermal energy.

Description

바이오매스 연료제조 장치{biomass fuel manufacturing device}biomass fuel manufacturing device

본 발명은 유기질 바이오매스 원료, 특히 목질 바이오매스 원료를 반탄화 처리함으로써 바이오매스 연료를 제조하는 장치에 관한 것이다.The present invention relates to an apparatus for producing biomass fuel by torrefaction of an organic biomass raw material, in particular a woody biomass raw material.

가정 및 공장에서 발생하는 하수의 처리 시 발생하는 하수슬러지, 또는 일반 가정이나 음식점에서 배출되는 음식물쓰레기, 축산농가에서 배출되는 우분, 돈분, 계분 등의 축산분뇨 등의 유기성폐기물 처리는 사회적 문제로 대두되고 있다. 이는 하수슬러지, 음식물쓰레기 및 축산분뇨와 같은 유기성폐기물의 해양배출이 금지되고, 유기성폐기물을 이용한 퇴비나 연료 등의 활용도가 낮기 때문이다.Disposal of organic wastes such as sewage sludge generated during the treatment of sewage from homes and factories, food waste discharged from households and restaurants, and livestock manure such as cow manure, pig manure, and chicken manure from livestock farms is emerging as a social problem. is becoming This is because the discharge of organic wastes such as sewage sludge, food waste and livestock manure to the sea is prohibited, and the utilization of organic wastes such as compost or fuel is low.

이러한 문제점을 해소하기 위하여 다양한 수단들이 제시되었으며, 예를 들면 하수 슬러지와 음식물쓰레기 및 가연성 폐기물을 이용한 고체연료의 제조방법이 개시되었다.In order to solve this problem, various means have been proposed, for example, a method for manufacturing a solid fuel using sewage sludge, food waste, and combustible waste has been disclosed.

음식물 쓰레기와 가연성 폐기물을 이용한 고체연료 제조방법은, 하수 슬러지를 함수율 10~20% 이하로 건조시킨 다음 분쇄하는 과정과, 음식물쓰레기 70%(중량비)를 황토 10%(중량비):갈탄 10%(중량비): 코우크스 10%(중량비)의 첨가제와 혼합하는 과정과, 가연성 폐기물을 입도 30~50mm의 크기로 분쇄시키는 과정과, 건조시킨 하수 슬러지, 첨가제를 혼합한 음식물쓰레기, 분쇄시킨 가연성 폐기물을 하수 슬러지 30%(중량비): 음식물쓰레기 30%(중량비): 가연성 폐기물 40%(중량비)의 비율로 혼합하는 과정과, 혼합물을 수분함유율이 10% 이하가 되도록 건조시키는 과정과, 혼합과 건조가 이루어진 혼합물에 조연제를 첨가하여 일정 크기로 압출, 성형하는 과정으로 이루어진 것이다.The solid fuel manufacturing method using food waste and combustible waste is the process of drying sewage sludge to a moisture content of 10 to 20% or less and then pulverizing it, and 70% (weight ratio) of food waste is converted to loess 10% (weight ratio): lignite 10% ( Weight ratio): The process of mixing with coke 10% (weight ratio) additive, the process of crushing combustible waste to a particle size of 30-50 mm, dried sewage sludge, food waste mixed with additives, and pulverized combustible waste The process of mixing sewage sludge 30% (weight ratio): food waste 30% (weight ratio): combustible waste 40% (weight ratio), drying the mixture so that the water content is 10% or less, mixing and drying It consists of a process of extruding and molding to a predetermined size by adding a supporting agent to the resulting mixture.

이러한 방법에 의하면, 하수 슬러지와 음식물 쓰레기 및 가연성 폐기물을 건조하고 혼합하고, 갈탄과 코우크스 등을 혼합한 후 일정한 크기로 압출 성형함으로써 음식물 쓰레기와 하수 슬러지 등을 재활용하여 사용할 수 있었다.According to this method, food waste and sewage sludge can be recycled and used by drying and mixing sewage sludge, food waste, and combustible waste, mixing lignite and coke, and then extruding to a predetermined size.

그러나, 이와 같은 종래기술에 의한 음식물 쓰레기를 이용한 고체연료 제조방법은 다음과 같은 문제점이 있었다.However, the solid fuel manufacturing method using food waste according to the prior art has the following problems.

함수량이 높은 하수슬러지, 음식물쓰레기 및 축산분뇨의 함수량을 낮추기 위한 비용이 많이 소요되어, 하수 슬러지와 음식물 쓰레기를 건조시키는데 많은 에너지가 사용되는 문제점이 있었던 것이다.There is a problem in that a lot of energy is used to dry the sewage sludge and food waste because it takes a lot of money to lower the water content of sewage sludge with high water content, food waste and livestock manure.

또한, 전술한 방법에 의해 제조된 음식물 쓰레기와 하수 슬러지를 이용한 고체연료는, 음식물 쓰레기와 하수 슬러지 등은 연료로서 충분한 발열량을 내지 못했기 때문에 발열량을 높이기 위해서 갈탄이나 코우크스 등을 혼합함으로써, 발열량을 높이기 위한 비용이 증가하는 문제점이 있었던 것이다.In addition, in the solid fuel using food waste and sewage sludge produced by the above method, food waste and sewage sludge did not generate sufficient calorific value as fuel. There was a problem in that the cost to increase was increased.

2016년 세계 경제 포럼(WEF : World Economic Forum)에서 처음 언급된 4차 산업혁명과 더불어 미래의 환경기술 및 환경문제에 대해 다양하게 논의되고 있다. 특히 환경정보화 발전방안으로 사물인터넷(IoT), 빅데이터, 인공지능(AI) 등의 발전방안이 이루어지고 있고, 환경문제와 관련해서 지능형 대기오염물질 관리예측, 가축분뇨 전자인계관리시스템 적용 등의 접근이 이루어지고 있으며 환경적인 문제에 대한 관심도 증가하고 있다.Along with the 4th industrial revolution, which was first mentioned at the World Economic Forum (WEF) in 2016, future environmental technologies and environmental issues are being discussed in various ways. In particular, development plans such as the Internet of Things (IoT), big data, and artificial intelligence (AI) are being implemented as environmental informatization development plans. approaches are taking place and interest in environmental issues is increasing.

대기, 수질, 생태계 등 다양한 환경문제 중 수질문제는 점오염원으로 생활오염원, 산업오폐수, 축산폐수 등이 있고, 비점오염원은 강수에 의한 유출로 넓은 면적에서 발생하는 특징을 가지고 있다. 특히 수질오염원 중 하수슬러지와 가축분뇨 등을 활용한 유기성 바이오매스는 과거 해양에 투기했지만 런던협약 발효로 더 이상 해양 배출이 불가능하게 됐다. 또한 유기성 바이오매스는 자원 재활용이 가능한 폐자원인 동시에 심각한 환경 오염원이기도 하다.Among various environmental problems such as air, water quality, and ecosystem, water quality problems are point sources of pollution, such as living pollutants, industrial wastewater, and livestock wastewater. In particular, organic biomass using sewage sludge and livestock manure among water pollutants was dumped into the sea in the past, but with the enforcement of the London Convention, it is no longer possible to discharge to the sea. In addition, organic biomass is a waste resource that can be recycled and is also a serious environmental pollutant.

국가하수도정보시스템에 따르면 하수슬러지의 발생량은 하수시설 확충, 총인처리시설 설치 등에 따라 지속적으로 늘어나고, 이로 인해 악취의 문제도 가속화되고 있는 실정이다. 하수슬러지 발생량을 살펴보면 2007년 7,518 톤/일에서 2011년 8,438 톤/일로 증가하였고, 2020년 12,728 톤/일로 추정되며, 연평균 5.9%의 증가추세에 있다.According to the National Sewerage Information System, the amount of sewage sludge generated continues to increase in accordance with the expansion of sewage facilities and the installation of total phosphorus treatment facilities. The amount of sewage sludge generated increased from 7,518 tons/day in 2007 to 8,438 tons/day in 2011, and is estimated to be 12,728 tons/day in 2020, with an average annual increase of 5.9%.

한편, 축산폐수는 유기물질 함량이 높아 발생량에 비해서 수질오염 부하량이 큰 특징을 가지고 있다. 국가의 축산진흥정책과 국민들의 육류 및 유제품 소비 증가 등 식생활 변화에 따라 과거 가내 축산농업에서 기업형 대규모로 변화하면서 가축분뇨의 배출량도 증가하였다. 농림축산식품부에 따르면 가축분뇨 발생량은 2013년 기준 약 47,232천 톤 정도가 배출되고 있으며, 처리현황은 퇴비화 80.7%, 액비화 8.5%, 개별농가 정화방류 3.3%, 공공처리 정화방류 5.3%, 기타(증발 등) 2.2%, 해양배출 0%로 나타났다.On the other hand, livestock wastewater has a large amount of water pollution load compared to the amount generated due to its high organic matter content. In accordance with the national livestock promotion policy and dietary changes such as the increase in consumption of meat and dairy products of the people, the domestic livestock farming in the past changed to a large-scale corporate type, resulting in an increase in the emission of livestock manure. According to the Ministry of Agriculture, Food and Rural Affairs, about 47,232 thousand tons of livestock manure was discharged as of 2013, and the treatment status is composting 80.7%, liquid composting 8.5%, individual farms purifying and discharging 3.3%, public treatment purifying discharge 5.3%, and others (evaporation). etc.) 2.2%, and 0% marine emissions.

환경부 발표 자료(가축분뇨공공처리시설 성능평가 및 운영기술지원, 2007)에 따르면 가축분뇨 배출량이 우리나라 전체 하·폐수 대비 0.6% 정도에 불과하지만 공공수역에 배출 시 미치는 오염물질 발생부하는 25.8%로 동일 유량 대비 '생활하수보다 67배(BOD 발생부하량 기준)가 많은 것으로 추정'할 만큼, 오염부하량이 높아 상수원 수질저하의 심각한 원인을 초래하고 있다.According to the data released by the Ministry of Environment (Performance Evaluation and Operational Technical Support for Public Livestock Manure Treatment Facilities, 2007), the amount of livestock excretion is only about 0.6% of the total sewage and wastewater in Korea, but the pollutant load on public waters is 25.8%. Compared to the same flow rate, it is estimated that '67 times more than domestic sewage (based on the load generated by BOD)', the pollutant load is high, causing a serious deterioration in the quality of the water source.

특히 가축분뇨가 혐기 분해되는 과정에서 발생되는 메탄가스는 이산화탄소보다 20~25배 더 높은 온난화 효과가 있는 것으로 알려져 있어 이에 대한 처리가 시급한 상황이다. 또한 유기성 바이오매스는 화석연료를 대체하고 온실가스 발생을 줄여 기후변화에 대응하는 수단으로서 폐자원 에너지화 추진에 있어 2015년 12월 채택된 파리협정에서 이야기하는 기후변화 대응과 온실가스 감축 활동이 강조되고, UN에 제출한 기여방안(INDC)에 따라 2030년까지 배출전망치(BAU) 대비 37% 감축목표를 국제사회에 공표하면서 더욱 중요할 실정이다.In particular, methane gas generated in the process of anaerobic decomposition of livestock manure is known to have a warming effect 20 to 25 times higher than carbon dioxide, so treatment is urgently needed. In addition, organic biomass is a means of responding to climate change by replacing fossil fuels and reducing the generation of greenhouse gases. In promoting the conversion of waste resources into energy, the climate change response and greenhouse gas reduction activities discussed in the Paris Agreement adopted in December 2015 are emphasized. In accordance with the contribution plan (INDC) submitted to the United Nations, it will be even more important as it announces to the international community a reduction target of 37% compared to the projected emission level (BAU) by 2030.

유럽·미국·일본 등은 지속가능 국가발전의 원동력을 "에너지 안보"로 규정하고 "경쟁력 있는 에너지 확보"라는 목표 아래 기후변화협약과 연계한 재생에너지 정책을 추진하고 있다. 특히 신재생에너지 분야에 대해 선진국은 에너지 안보 및 온실가스 감축정책의 핵심으로 신재생에너지 확보를 통해 Post-2020 신기후체제에 대응하고자 하고 있다. 독일은 1990년대부터 폐자원 에너지화사업을 추진하여 에너지화 기술 우월 선점 및 국가 성장동력으로 활용하고 있으며, 미국은 2001년 국가 에너지 정책을 수립하였고, 바이오에너지 확대 보급을 추진하고 있었다. 또한 일본은 2002년 바이오매스 일본 종합전략을 발표하고 바이오매스 에너지 정책을 추진하여, 2009년 바이오매스 기본법을 제정하였고, 2016년 현재 바이오매스 중 가축분뇨의 발생 및 이용 정도가 가장 높은 구조로 바이오매스에 대한 사업의 실효성을 제고하고 있었다.Europe, the United States, and Japan define “energy security” as the driving force for sustainable national development, and are promoting renewable energy policies in connection with the climate change agreement under the goal of “securing competitive energy”. In particular, in the field of renewable energy, advanced countries are trying to respond to the Post-2020 new climate system by securing new and renewable energy as the core of energy security and greenhouse gas reduction policies. Germany has been promoting the waste-to-energy business since the 1990s, taking advantage of the superiority of energy-to-energy technology and using it as a national growth engine. In addition, Japan announced the Biomass Japan Comprehensive Strategy in 2002 and promoted the biomass energy policy, enacting the Basic Biomass Act in 2009. was improving the effectiveness of the business.

또한, 우리나라에서도 2009년 환경부와 농식품부 등 관계부처합동으로 폐자원 및 바이오매스 에너지로 저탄소녹색성장을 선도하고자 폐자원 고형연료에 대한 연구 및 정책이 진행되었고, 하수슬러지, 가축분뇨, 음식물폐기물 등 유기성폐기물에 대한 활용방안과 재생에너지에 대한 논의가 지속되고 있는 실정이며, 최근 유기성 폐기물 발생량 증가 및 처리비용 상승에 대한 대책마련이 필요한 실정이다.Also, in 2009, in Korea, research and policies were conducted on solid fuels from waste resources to lead low-carbon green growth with waste resources and biomass energy in cooperation with related ministries such as the Ministry of Environment and the Ministry of Agriculture, Food and Rural Affairs, sewage sludge, livestock manure, food waste, etc. Discussion on the use of organic waste and renewable energy continues, and it is necessary to prepare countermeasures for the increase in the amount of organic waste generated and the increase in treatment cost.

유기성 폐기물처리방법으로 열화학적 전환방법이 주목을 받고 있는데, 열화학적 전환 방법으로는 저속 열분해(Slow pyrolysis), 고속 연분해(Fast pyrolysis), 그리고 열수가압탄화반응(HTC : Hydrothermal carbonization)이 있다. 특히 열수가압탄화반응은 수분을 함유한 원재료를 상대적으로 저온(180 ℃ ~ 250 ℃)에서 탄화시키는 방법으로, 탄화 반응조건에 따라 Biogas, Bioliquid, 탄소격리체 등이 있다.Thermochemical conversion methods are attracting attention as organic waste treatment methods. Thermochemical conversion methods include slow pyrolysis, fast pyrolysis, and hydrothermal carbonization (HTC). In particular, hydrothermal carbonization is a method of carbonizing raw materials containing moisture at a relatively low temperature (180 ℃ ~ 250 ℃), and there are biogas, bioliquid, carbon sequestrant, etc. depending on the carbonization reaction conditions.

바이오매스를 산소가 차단된 상태에서 열분해하여 생산한 탄소격리체는 토양에 처리 시, 탄소격리, CEC 증진 및 산도 조절, 보수력 및 보비력 향상, 토양 미생물 활성 등 토양의 질을 개선하여 작물 생산성을 높여 준다(Atkinson et al., 2010; Lehmann et al., 2003). 또한 N2O와 같은 온실가스 배출을 저감시키며(Zhang et al., 2010), 오염원의 흡착 및 안정화(Beesley et al., 2011; Chen et al., 2011) 등 다양한 기능이 있다.Carbon sequestrant produced by thermal decomposition of biomass in a state in which oxygen is blocked increases crop productivity by improving soil quality such as carbon sequestration, CEC enhancement and acidity control, water holding capacity and retention capacity, and soil microbial activity when treated in soil. gives (Atkinson et al., 2010; Lehmann et al., 2003). In addition, it has various functions such as reducing greenhouse gas emissions such as N2O (Zhang et al., 2010), adsorption and stabilization of pollutants (Beesley et al., 2011; Chen et al., 2011).

탄소격리체는 바이오매스 종류, 열분해 온도 등에 따라 매우 다른 특성을 지닌다(Lehmann, 2007b). 따라서 넓은 지역에 사용할 목적으로 탄소격리체를 생산하려면 주변 환경에서 쉽게 구할 수 있고, 대량 생산이 가능한 바이오매스를 선택해야 한다.Carbon sequestrants have very different properties depending on the type of biomass and the pyrolysis temperature (Lehmann, 2007b). Therefore, in order to produce carbon sequestrant for use in a wide area, it is necessary to select biomass that can be easily obtained from the surrounding environment and can be mass-produced.

현재 하수슬러지 발생량은 매년 증가하고 높은 수분과 염분, 악취 등으로 처리에 어려움을 겪고 있고, 가축분뇨 발생량 중 가장 많은 비중을 차지하는 우분도 직접적인 퇴비화 및 액비화로 이용 시 악취발생 및 부숙기간이 필요하며 장거리 이송이 어렵고 살포 시에도 취급에 한계가 있다. 또한, 하수슬러지 및 가축분뇨 등은 하수처리장 연계처리에도 부담이 있으며, 하수슬러지는 탈수효율 감소 등 발생되는 슬러지 발생량 증가로 위탁처리비 증가, 연간 하수처리장 운영비 증가 등의 어려움이 있는 실정이다.Currently, the amount of sewage sludge generated is increasing every year, and it is difficult to treat due to high moisture, salt, and odor, etc., and cattle manure, which accounts for the largest portion of the amount of livestock excreta, is directly composted and liquefied. It is difficult to transport and there is a limit to handling even when spraying. In addition, sewage sludge and livestock excreta are burdened with the treatment of sewage treatment plants, and sewage sludge has difficulties such as an increase in consignment treatment costs and an increase in annual operating costs of sewage treatment plants due to an increase in the amount of sludge generated, such as a decrease in dewatering efficiency.

가축분뇨인 우분은 오염부하량이 매우 높은 고농도의 오염물질이기 때문에 유출될 시 수질 및 토양오염의 영향이 큰 반면에 작물생육에 필요한 성분인 질소, 인, 칼슘, 마그네슘, 나트륨 등과 같은 물질도 포함하고 있어 적절한 처리 과정을 거치면 토양개량제로서의 가치가 높아질 수 있다.Cattle manure, which is livestock manure, is a high-concentration pollutant with a very high pollutant load, so it has a large effect on water quality and soil contamination when it is spilled. Therefore, if it is treated appropriately, its value as a soil improver can be increased.

우리나라의 가축분뇨 처리방법으로 자원화, 정화방류, 해양투기 등으로 시행되고 있으며, 2012년 가축분뇨의 해양배출 금지로 전체 발생량 대비 해양투기의 비중이 2010년 약 2.3%에서 2012년 0%로 감소하였고, 자원화 비중은 2010년 약 86.6%에서 2012년 약 88.7%로 증가하여 가축분뇨의 자원화가 활발하게 적용되는 것을 알 수 있다.In Korea, livestock excreta treatment methods are being implemented as resources, purification and discharge, and dumping at sea. Due to the prohibition of the discharge of livestock excreta to the sea in 2012, the proportion of marine dumping in the total amount of waste decreased from about 2.3% in 2010 to 0% in 2012. As a result, the proportion of resource conversion increased from about 86.6% in 2010 to about 88.7% in 2012, indicating that livestock manure is actively applied to resources.

가축분뇨의 자원화 방법으로 퇴비화, 액비화 등이 있으며, 퇴비화 처리기술은 요와 분에 따라 구분되어진다. 퇴비화는 일반적으로 유기물이 미생물에 의해 분해되어 안정화되는 과정을 의미한다. 이로 인해 발생되는 최종 물질이 환경에 악영향을 주지 않으며, 토양에 사용 가능하고, 저장하기에 충분한 부식토 상태의 물질로 변화시키는 생화학적 공정 또는 고체 유기성분을 인위적인 조건 하에서 연속적으로 생물학적 처리를 하는 것으로 정의된다. 퇴비화는 고형물 처리에 효과적이고 장거리 운송이 가능하다는 장점을 가진다. 또한 가축분으로 제조된 퇴비는 산업부산물로 제조되는 퇴비보다 품질이 우수하기 때문에 토양의 물리성, 화학성 및 미생물상이 개선되어 작물이 생육하기 좋은 환경을 만든다.There are composting and liquid composting methods for converting livestock manure into resources, and composting treatment technology is classified according to urine and waste. Composting generally refers to a process in which organic matter is decomposed and stabilized by microorganisms. It is defined as a biochemical process or continuous biological treatment of solid organic components under artificial conditions to change the resulting final material into a material in a humus state sufficient for storage and use in the soil without adversely affecting the environment. do. Composting has the advantage of being effective in treating solids and enabling long-distance transport. In addition, the compost made from livestock meal has better quality than compost made from industrial by-products, so the physical properties, chemical properties, and microflora of the soil are improved, creating a favorable environment for crops to grow.

퇴비화의 방법으로는 퇴비사 처리, 깔짚우사의 퇴비사 처리, 통풍식 톱밥발효, 교반식 톱밥발효 등이 있다Composting methods include composting, composting of straw barns, ventilated sawdust fermentation, and agitated sawdust fermentation.

액비화는 가축의 사육과정에서 발생되는 분, 요 및 청소수의 혼합물인 액상분뇨 또는 기타 가축분뇨 처리과정(혐기발효 폐액 등)에서 발생되는 물질을 비료로 활용할 목적으로 수집, 저장하고 일정기간 동안 부숙시켜 병원성 미생물, 충란, 잡초종자 등을 사멸시키고 난분해성 물질 등을 분해하여 환경에 노출되어도 위해성이 없고 경종적으로 안정화된 액상물을 말한다.Liquid manure is collected, stored, and fermented for a certain period of time for the purpose of using liquid manure, which is a mixture of manure, urine and cleaning water, or other substances generated in the process of treating livestock manure (anaerobic fermentation waste liquid, etc.) It refers to a liquid product that is stabilized in seedlings without any risk even when exposed to the environment by destroying pathogenic microorganisms, eggs, weed seeds, etc. and decomposing difficult-to-decompose substances

액비화의 처리방법은 혐기성 처리법과 호기성 처리법이 있으며, 일반적으로 호기성 처리법이 혐기성 처리법보다 부숙속도가 빠르나 우리나라에 설치되어 있는 액비 저장시설의 대부분은 주로 일정기간 저장하여 자연부숙시킨 후 토양으로 환원하는 혐기성 처리시설이다. 혐기적 처리시설은 악취발생이 심할 뿐 아니라, 긴 부숙기간 필요, 고형물의 침전, 병원성 미생물 발생 등의 문제점을 가지고 있다. 반면 호기성 처리시설은 저장조에 폭기 및 교반장치를 설치하여 공기가 액비 내에 공급되도록 하는 방법으로서 짧은 부숙기간, 악취저감, 병원성 미생물 발생 저감 등의 장점을 갖고 있다.There are two types of liquid fertilizer treatment methods: anaerobic treatment and aerobic treatment. In general, aerobic treatment is faster than anaerobic treatment. However, most of the liquid manure storage facilities installed in Korea are mainly anaerobic, which is stored for a certain period of time, aged naturally, and then returned to the soil. processing facility. Anaerobic treatment facilities not only generate a strong odor, but also have problems such as the need for a long incubation period, sedimentation of solids, and the generation of pathogenic microorganisms. On the other hand, the aerobic treatment facility is a method to supply air into the liquid manure by installing an aeration and agitation device in the storage tank, and has advantages such as a short dwelling period, reduction of odor, and reduction of the occurrence of pathogenic microorganisms.

이러한 액비화는 가축분뇨를 액상 처리하여 부수적인 재료구입의 문제점을 최소화 할 수 있을 뿐 아니라, 부수적으로 대체연료를 생산하여 분뇨 처리비용을 퇴비화보다 크게 절감시킬 수 있는 장점이 있다. 하지만 장거리 이송이 어렵고 살포시 취급이 퇴비보다 불리하다는 단점을 가지고 있다.This liquid manure treatment not only minimizes the problem of ancillary material purchases by liquid-processing livestock manure, but also has the advantage of significantly reducing the cost of manure treatment compared to composting by producing alternative fuels incidentally. However, it has the disadvantage that it is difficult to transport over long distances and that handling when spraying is more disadvantageous than compost.

정화방류 처리방법은 가축분뇨를 별도 처리하는 단독처리방법과 관련 환경기초시설인 하수종말처리장 등에 연계하여 처리하는 방법이 있다.There are two types of purification and discharge treatment methods: a single treatment method that separates livestock manure, and a treatment method in connection with a sewage treatment plant, which is an environmental basic facility.

단독처리의 경우 방류수질을 만족할 수 있는 처리시설을 계획하여야 하나, 투자비와 유지관리의 어려움 등이 있으며, 연계처리의 경우 처리시설이 단순하고 투자비가 저렴하며 유지관리가 다소 쉽다. 다만, 연계처리의 경우 "가축분뇨의 관리 및 이용에 관한 법률 시행규칙 제21조"에 의거하여 「공공처리시설에서 중간 처리한 가축분뇨를 공공하수처리시설로 유입하는 기준은 1. 공공처리시설에서 유입되는 오염물질부하량은 공공하수처리시설의 운영에 지장을 주지 아니하는 정도일 것, 2. 공공처리시설로부터 유입되는 총 질소 및 총 인의 양은 공공하수처리시설에서 처리할 수 있는 질소와 인의 100분의 10 이내일 것」규정된 내용과 같이 하수종말처리시설의 처리능력을 검토하여 BOD, COD, SS, T-N, T-P의 연계가능수질을 검토해야 한다In the case of single treatment, a treatment facility that can satisfy the quality of the discharged water must be planned, but there are difficulties in investment and maintenance. However, in the case of linked treatment, in accordance with "Article 21 of the Enforcement Regulations of the Act on the Management and Use of Livestock Manure," the criteria for the introduction of "livestock manure intermediately treated in a public treatment facility into a public sewage treatment facility is 1. 2. The amount of pollutant load flowing in from the public sewage treatment facility shall be such that it does not interfere with the operation of the public sewage treatment facility. It should be within 10 of the”, it is necessary to review the treatment capacity of the sewage terminal treatment facility and review the possible water quality for BOD, COD, SS, T-N, and T-P.

본 발명은 본 출원인에 의해서 등록받은 대한민국 등록특허공보 제10-1860037호를 개량한 발명으로 이러한 종래의 석탄 등의 고형 연료는 고온 건조 시 일정 온도 이상의 고온의 열풍을 이용할 경우 휘발분이 증발하여 휘발가스가 발생하고, 미분이 발생되어 휘발분과 미분분진이 발화온도에 도달하면 내부에서 착화되어 연소하게 된다. The present invention is an improved invention of Korean Patent Publication No. 10-1860037 registered by the present applicant, and the conventional solid fuel such as coal evaporates volatiles when hot air of a certain temperature or higher is used during high-temperature drying. is generated and fine powder is generated, and when the volatile and fine dust reaches the ignition temperature, it ignites and burns inside.

즉, 일반적인 열교환된 고온의 건공기(산소농도 21%)를 이용할 때, 건조는 빠르게 진행되지만, 가연성 물질은 발화가 일어나게 된다.That is, when using general heat-exchanged high-temperature dry air (oxygen concentration of 21%), drying proceeds quickly, but inflammable materials are ignited.

가연성 물질의 발화를 막기 위하여 지금까지의 가연성 물질의 건조는 아주 낮은 온도(60~80℃)의 건공기를 이용하여 건조하거나, 직접 고온의 열풍과 접촉하지 못하게 스팀튜브 등과 표면접촉을 간접적으로 하게 하여 건조하였다.In order to prevent ignition of combustible materials, drying of combustible materials so far has been done using dry air at a very low temperature (60~80℃), or indirectly contact the surface with a steam tube to avoid direct contact with high-temperature hot air. and dried.

저온의 공기 또는 간접 전달열에 의한 건조는 시간이 오래 걸리고 장치 또한 매우 커지게 되는데, 이때 고온의 직접적인 열풍을 이용하지 못하므로 저온으로 건조해야 하는데, 저온 건조 시스템의 규모가 커지게 되고, 에너지를 과다 소비해야 한다는 문제점을 개선하기 위한 발명이다.Drying by low-temperature air or indirect heat transfer takes a long time and the device becomes very large. It is an invention to improve the problem of consumption.

한국공개특허공보 특2000-0033294호Korean Patent Publication No. 2000-0033294 한국공개실용신안공보 1998-0005225호Korea Public Utility Model Publication No. 1998-0005225

본 발명은 상술한 문제점을 해결하기 위해 안출된 것으로, 본 발명은 이러한 문제점을 감안해 열교환 효율이 높은 탄화 처리 설비를 콤팩트화해 운반 가능하고 바이오매스 처리 대상물 발생 현장에서 바이오매스 연료화의 처리 작업을 수행할 수 있음과 동시에, 탄화 처리 바이오매스 원료의 그 후의 파쇄, 성형 등의 바이오매스 연료로서의 처리도 용이하게 수행할 수 있도록 구성한 바이오매스 연료 제조 방법을 제공하는 것을 목적으로 한다.The present invention has been devised to solve the above problems, and the present invention is capable of compacting and transporting a carbonization treatment facility with high heat exchange efficiency in consideration of these problems, and performing the treatment of biomass to fuel at the site where the biomass treatment object is generated. It aims to provide the biomass fuel manufacturing method comprised so that processing as biomass fuel, such as subsequent crushing and shaping|molding, of a carbonization-treated biomass raw material can also be performed easily at the same time.

상기 문제점을 해결하기 위한 본 발명은 반탄화로와 상기 반탄화로 내부에 형성된 반탄화실과 상기 반탄화실은 이중관 형태로 상기 이중관의 외측관 내에 형성된 육각형의 벌집구조의 2 면이상이 타공된 복수의 육각열유로층;과 상기 육각열유로층에 열풍 공급로를 통해 연통된 연소실과 상기 반탄화실과 상기 연소실 사이에 연통된 건류가스이송관과 상기 연소실에 연통한 연소가스관과 상기 반탄화실을 냉각하기 위해 상기 육각열유로층에 냉풍을 송풍하기 위한 송풍기로 구성한 반탄화 장치에 있어서, 상기 열풍의 온도는 150℃~550℃의 범위에서 바이오매스 원료를 반탄화 처리하고, 선택적으로 상기 반탄화 처리된 목질 바이오매스 원료와 건조 하수슬러지, 건조 축분 또는 건조 음식물쓰레기 중 어느 하나 또는 2 이상을 각각 분쇄해 혼련하고 그 후 가압 성형하는 것을 특징으로 하는 바이오매스 연료 제조 장치일 수 있다.The present invention for solving the above problems is a torrefaction furnace and a torrefaction chamber formed inside the torrefaction furnace, and the torrefaction chamber is a double tube shape, a plurality of perforated surfaces of a hexagonal honeycomb structure formed in the outer tube of the double tube. Hexagonal heat flow path layer; and a combustion chamber communicating with the hexagonal heat flow path layer through a hot air supply path, a carbonization gas transfer pipe communicating between the torrefaction chamber and the combustion chamber, and a combustion gas pipe communicating with the combustion chamber and cooling the torrefaction chamber In the torrefaction apparatus composed of a blower for blowing cold air to the hexagonal heat flow path layer for torrefaction, the temperature of the hot air is torrefied of the biomass raw material in the range of 150 °C to 550 °C, and optionally the torrefied process It may be a biomass fuel manufacturing apparatus, characterized in that any one or two or more of woody biomass raw material, dry sewage sludge, dry livestock meal, and dry food waste are respectively pulverized and kneaded and then press-molded.

또한, 상기 육각열유로층은 상기 육각형의 벌집구조를 형성하는 유로판에 열전달핀 역할을 수행할 수 있다.In addition, the hexagonal heat flow path layer may serve as a heat transfer fin to the flow path plate forming the hexagonal honeycomb structure.

또한, 상기 유로판은 표면에 요철형상이 형성되거나 상기 유로판이 복수의 굴곡이 형성될 수 있다.In addition, the channel plate may have a concave-convex shape formed on a surface thereof or a plurality of curves may be formed on the channel plate.

또한, 상기 건조 하수슬러지, 건조 축분 또는 건조 음식물쓰레기의 수분량은 10 내지 20wt%일 수 있다.In addition, the moisture content of the dried sewage sludge, dried livestock manure, or dried food waste may be 10 to 20 wt%.

또한, 상기 혼련 시 추가로 이온성 액체를 전체 혼합량 기준 0.1 내지 5wt%를 공급하며, 상기 혼련에 참여하는 이온성 액체로는 이미다졸륨계 화합물로 1-에틸아크릴레이트-3-메틸이미다졸륨 클로라이드 (1-ethylacrylate-3- methylimidazolium chloride), 1-부틸-3-메틸이미다졸륨 클로라이드 (1-buthyl- 3-methylimidazolium chloride), 1-부틸-3-메틸이미다졸륨 테트라플루오로보레이트(1-butyl-3-methylimidazolium tetrafluoroborate), 1-부틸-3-메틸이미다졸륨 헥사플루오로포스페이트(1-butyl-3-methylimidazolium hexafluoro phosphate), 1-부틸-3-메틸이미다졸륨 트리플루오로메탄설포네이트(1-butyl-3-methylimidazolium trifluoromethanesulfonate), 1-에틸-3-메틸이미다졸륨 아세테이트(1-ethyl-3-methylimidazolium acetate), 1-벤질-3-메틸이미다졸륨 클로라이드(1-benzyl-3-methylimidazoliumchloride), 1,3-디메틸이미다졸륨 메틸설페이트(1,3-dimethylimidazolium methylsulfate), 1-부틸-3-메틸이미다졸륨 클로라이드, 1-에틸-3-메틸이미다졸륨 아세테이트 등이 있을 수 있으며, 에틸메틸이미다졸리엄 클로라이드([EMIM]Cl), 에틸메틸이미다졸리엄 브로민([EMIM]Br), 에틸메틸이미다졸리엄 요오드([EMIM]I), 1-에틸-3-메틸 이미다졸륨, 1-에틸 이미다졸륨 니트레이트, 1-에틸 이미다졸륨 브로마이드, 1-에틸-3-메틸 이미다졸륨 클로라이드, 1-에틸-이미다졸륨 클로라이드, 1,2,3-트리메틸 이미다졸륨 메틸 설페이트, 1-메틸 이미다졸륨 클로라이드, 1-부틸-3-메틸 이미다졸륨, 1-부틸-3-메틸 이미다졸륨 테트라클로로알루미네이트, 1-에틸-3-메틸 이미다졸륨 테트라클로로알루미네이트, 1-에틸-3-메틸 이미다졸륨 하이드로겐설페이트, 1-부틸-3-메틸 이미다졸륨 하이드로겐설페이트, 메틸이미다졸륨 클로라이드, 1-에틸-3-메틸 이미다졸륨 아세테이트, 1-부틸-3-메틸 이미다졸륨 아세테이트, Tris-2(하이드록시 에틸) 메틸암모늄 메틸설페이트, 1-에틸-3-메틸 이미다졸륨 에틸설페이트, 1-에틸-3-메틸 이미다졸륨 메탄설포네이트, 메틸-트리-n-부틸암모늄 메틸설페이트, 1-부틸-3-메틸 이미다졸륨 클로라이드, 1-에틸-3-메틸 이미다졸륨 클로라이드, 1-에틸-3-메틸 이미다졸륨 티오시아네이트, 1-부틸-3-메틸 이미다졸륨 티오시아네이트, 1-뷰틸-3-메틸이미다졸륨클로라이드, 1-뷰틸-3-메틸이미다졸륨나이트레이트, 1-뷰틸-3-메틸이미다졸륨아세테이트, 1-뷰틸-3-메틸이미다졸륨테트라플로로보레이트, 1-에틸-3-메틸이미다졸륨클로라이드, 1-에틸-3-메틸이미다졸륨나이트레이트, 1-에틸-3-메틸이미다졸륨아세테이트, 1-에틸-3-메틸이미다졸륨테트라플로로보레이트, 1-알리-3-메틸이미다졸륨클로라이드, 1-알리-3-메틸이미다졸륨나이트레이트, 1-알리-3-메틸이미다졸륨아세테이트, 1-알리-3-메틸이미다졸륨테트라플로로보레이트가 있을 수 있다.In addition, during the kneading, 0.1 to 5 wt% of the ionic liquid is additionally supplied based on the total mixing amount, and the ionic liquid participating in the kneading is 1-ethyl acrylate-3-methylimidazolium chloride as an imidazolium-based compound. (1-ethylacrylate-3-methylimidazolium chloride), 1-butyl-3-methylimidazolium chloride (1-butyl-3-methylimidazolium chloride), 1-butyl-3-methylimidazolium tetrafluoroborate (1- butyl-3-methylimidazolium tetrafluoroborate), 1-butyl-3-methylimidazolium hexafluorophosphate (1-butyl-3-methylimidazolium hexafluoro phosphate), 1-butyl-3-methylimidazolium trifluoromethanesulfonate (1-butyl-3-methylimidazolium trifluoromethanesulfonate), 1-ethyl-3-methylimidazolium acetate (1-ethyl-3-methylimidazolium acetate), 1-benzyl-3-methylimidazolium chloride (1-benzyl-3 -methylimidazoliumchloride), 1,3-dimethylimidazolium methylsulfate (1,3-dimethylimidazolium methylsulfate), 1-butyl-3-methylimidazolium chloride, 1-ethyl-3-methylimidazolium acetate, etc. ethylmethylimidazolium chloride ([EMIM]Cl), ethylmethylimidazolium bromine ([EMIM]Br), ethylmethylimidazolium iodide ([EMIM]I), 1-ethyl-3 -Methyl imidazolium, 1-ethyl imidazolium nitrate, 1-ethyl imidazolium bromide, 1-ethyl-3-methyl imidazolium chloride, 1-ethyl-imidazolium chloride, 1,2,3- Trimethyl imidazolium methyl sulfate, 1-methyl imidazolium chloride, 1-butyl-3-methyl imidazolium, 1-butyl-3-methyl imidazolium tetrachloroaluminate, 1-ethyl-3-methyl imida Zolium Tetrachloroaluminate, 1-ethyl-3-methyl Tyl imidazolium hydrogensulfate, 1-butyl-3-methyl imidazolium hydrogensulfate, methylimidazolium chloride, 1-ethyl-3-methyl imidazolium acetate, 1-butyl-3-methyl imidazolium Acetate, Tris-2 (hydroxyethyl) methylammonium methylsulfate, 1-ethyl-3-methyl imidazolium ethylsulfate, 1-ethyl-3-methyl imidazolium methanesulfonate, methyl-tri-n-butylammonium Methylsulfate, 1-butyl-3-methyl imidazolium chloride, 1-ethyl-3-methyl imidazolium chloride, 1-ethyl-3-methyl imidazolium thiocyanate, 1-butyl-3-methyl imida Zolium thiocyanate, 1-butyl-3-methylimidazolium chloride, 1-butyl-3-methylimidazolium nitrate, 1-butyl-3-methylimidazolium acetate, 1-butyl-3-methyl Midazolium tetrafluoroborate, 1-ethyl-3-methylimidazolium chloride, 1-ethyl-3-methylimidazolium nitrate, 1-ethyl-3-methylimidazolium acetate, 1-ethyl-3- Methylimidazolium tetrafluoroborate, 1-ali-3-methylimidazolium chloride, 1-ali-3-methylimidazolium nitrate, 1-ali-3-methylimidazolium acetate, 1-ali- 3-methylimidazolium tetrafluoroborate.

본 발명의 바이오매스 연료제조 장치에 의하면 탄화 처리 설비를 콤팩트화해 목질 바이오매스 원료 발생 현장에서 반탄화 처리할 수 있는 것은 물론, 연소실로 생성된 열풍과 탄화실 내 공간 사이의 열교환 효율을 비약적으로 상승시키고 복사열로서의 열풍이 가지는 열에너지를 최대한 이용해 비교적 낮은 열에너지라도 단시간에 안정된 반탄화 처리를 실현하는 효과가 있다. According to the biomass fuel manufacturing apparatus of the present invention, the carbonization treatment facility can be compacted to allow torrefaction treatment at the site where the woody biomass raw material is generated, and the heat exchange efficiency between the hot air generated in the combustion chamber and the space in the carbonization chamber is dramatically increased. It has the effect of realizing stable torrefaction treatment in a short time even with relatively low thermal energy by maximizing the thermal energy of the hot wind as radiant heat.

최적의 온도 범위에서 목질 바이오매스 원료를 반탄화 처리하기 위해 열에너지의 이용 효율이 양호해져 바이오매스 원료의 건조와 10~40%의 단위 발열량의 개선을 하면서도 그에 따르는 열 손실은 30% 이하로 억제해 열효율이 좋은 바이오매스 원료의 반탄화 처리가 가능해 처리 경비, 제조 비용의 절감에 도움이 되는 효과가 있다.For torrefaction of woody biomass raw materials in the optimum temperature range, the efficiency of thermal energy utilization is improved, so that the drying of biomass raw materials and the unit calorific value of the biomass raw materials are improved by 10 to 40%, while the accompanying heat loss is suppressed to 30% or less. It is possible to torrefoil biomass raw materials with good thermal efficiency, which helps to reduce processing costs and manufacturing costs.

본 출원에서 포함한다, 가지다 또는 구비하다 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.In the present application, terms such as include, have, or have are intended to designate that a feature, number, step, component, part, or combination thereof described in the specification exists, and includes one or more other features, number, step, It should be understood that the existence or addition of operations, components, parts or combinations thereof is not precluded in advance.

또한, 다르게 정의되지 않는 한 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련기술의 문맥상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.In addition, unless otherwise defined, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art to which the present invention pertains. Terms such as those defined in a commonly used dictionary should be interpreted as having a meaning consistent with the meaning in the context of the related art, and should not be interpreted in an ideal or excessively formal meaning unless explicitly defined in the present application. does not

목질 바이오매스 원료는 통상 500℃ 이상의 열로 탄화를 수행해 결과적으로의 탄화물을 그대로 연료로서 사용하는 것을 중요한 기술 구성으로 하고 있지만, 본 발명에서는 탄화 처리 온도를 500℃보다 낮은 온도, 예를 들면 200~450℃ 적합하게는 250~300℃으로 탄화 처리를 한다.Woody biomass raw materials are usually carbonized with heat of 500 ° C. or higher, and the resulting carbide is used as a fuel as an important technical configuration. However, in the present invention, the carbonization treatment temperature is set to a temperature lower than 500 ° C. ℃ Preferably, the carbonization treatment is carried out at 250 to 300°C.

보다 구체적으로는 200~450℃의 저탄화 온도 및 저산소 또는 무산소 환경조건 하에서 탄화 처리를 하면, 목질 바이오매스 원료의 주성분인 셀룰로오스나 리그닌, 헤미셀룰로오스 등의 섬유질이 열분해의 진행에 따라 탄소 성분이 증가함으로써 탄화물의 파쇄성이 향상됨과 동시에, 목질 바이오매스 원료 중의 수분이 증발해 수분 함유량이 저하함으로써 탄화물 단위질량당의 발열량이 증가한다.More specifically, when carbonization is performed at a low carbonization temperature of 200 to 450 ° C and under low or anoxic environmental conditions, fibers such as cellulose, lignin, and hemicellulose, which are the main components of woody biomass raw materials, increase the carbon component as the pyrolysis proceeds. While the crushability of the carbide is improved, the water content in the wood biomass raw material evaporates and the water content decreases, so that the calorific value per unit mass of the carbide increases.

나아가서는 원료 조성 중에 일부 완전 탄화되지 않는 조직이 잔존하거나 열분해에 수반해 생성되는 유기 화합물 등의 가연성 성분이 일부 잔류함으로써 반탄화물의 착화성을 향상시킨다.Furthermore, the ignitability of torrefoils is improved by partially remaining incompletely carbonized structures in the raw material composition or by partially remaining combustible components such as organic compounds generated by thermal decomposition.

즉, 이러한 성과물로서의 저온 처리 탄화물을 본 발명에서는 반탄화물이라고 칭해, 본 발명의 요지는 이러한 반탄화물 상태에서 폐기용 합성수지와 혼련해 바이오매스 연료에 적합한 형상으로 성형화하는 데 있다.That is, the low-temperature treated carbide as such a product is referred to as torrefoil in the present invention, and the gist of the present invention is to knead with a synthetic resin for disposal in such a torrefied state to shape it into a shape suitable for biomass fuel.

또한 반탄화실 내에서는 목질 바이오매스 원료를 그물형 상방 개구의 상자형 탄화 트레이에 수납해 겹쳐 단적재해 반탄화실을 밀폐해 이젝터 기능에 의해 탄화실 내의 공기를 흡인해 무산소 상태로서 열 유로층으로부터의 500℃이하, 최적으로는 200℃~450℃의 범위 복사열에 의해 목질 바이오매스 원료를 가열해 탄화한다.In addition, in the torrefaction chamber, woody biomass raw materials are stored in a box-type carbonization tray with an upper opening in the net shape, stacked and stacked, and the torrefaction chamber is sealed. The woody biomass raw material is heated and carbonized by radiant heat below 500°C, optimally in the range of 200°C to 450°C.

또한 반탄화 처리된 목질 바이오매스 원료와 혼련하는 건조 하수슬러지, 건조 축분 또는 건조 음식물쓰레기 중 어느 하나 또는 2 이상은 다양한 발생원으로부터 나오는 성분일 수 있으며 추가적으로 폐합성수지일 수 있으며 이는 농업용 폐기 폴리에틸렌 혹은 염화비닐이다.In addition, any one or two or more of dry sewage sludge, dry animal manure, or dry food waste kneaded with torrefied wood biomass raw material may be a component from various sources and may additionally be waste synthetic resin, which may be agricultural waste polyethylene or vinyl chloride. to be.

또한 반탄화 처리된 목질 바이오매스 원료는 상기 혼련물과 약 3대 1의 중량 비율로 각각 분쇄해 혼련하고 있다.In addition, the torrefied wood biomass raw material is pulverized and kneaded in a weight ratio of about 3 to 1 with the kneaded material.

추가적으로 이온성 액체를 전체 혼합량 기준 0.1 내지 5wt%를 공급하며, 상기 혼련에 참여하는 이온성 액체로는 이미다졸륨계 화합물로 1-에틸아크릴레이트-3-메틸이미다졸륨 클로라이드 (1-ethylacrylate-3- methylimidazolium chloride), 1-부틸-3-메틸이미다졸륨 클로라이드 (1-buthyl- 3-methylimidazolium chloride), 1-부틸-3-메틸이미다졸륨 테트라플루오로보레이트(1-butyl-3-methylimidazolium tetrafluoroborate), 1-부틸-3-메틸이미다졸륨 헥사플루오로포스페이트(1-butyl-3-methylimidazolium hexafluoro phosphate), 1-부틸-3-메틸이미다졸륨 트리플루오로메탄설포네이트(1-butyl-3-methylimidazolium trifluoromethanesulfonate), 1-에틸-3-메틸이미다졸륨 아세테이트(1-ethyl-3-methylimidazolium acetate), 1-벤질-3-메틸이미다졸륨 클로라이드(1-benzyl-3-methylimidazoliumchloride), 1,3-디메틸이미다졸륨 메틸설페이트(1,3-dimethylimidazolium methylsulfate), 1-부틸-3-메틸이미다졸륨 클로라이드, 1-에틸-3-메틸이미다졸륨 아세테이트 등이 있을 수 있으며, 에틸메틸이미다졸리엄 클로라이드([EMIM]Cl), 에틸메틸이미다졸리엄 브로민([EMIM]Br), 에틸메틸이미다졸리엄 요오드([EMIM]I), 1-에틸-3-메틸 이미다졸륨, 1-에틸 이미다졸륨 니트레이트, 1-에틸 이미다졸륨 브로마이드, 1-에틸-3-메틸 이미다졸륨 클로라이드, 1-에틸-이미다졸륨 클로라이드, 1,2,3-트리메틸 이미다졸륨 메틸 설페이트, 1-메틸 이미다졸륨 클로라이드, 1-부틸-3-메틸 이미다졸륨, 1-부틸-3-메틸 이미다졸륨 테트라클로로알루미네이트, 1-에틸-3-메틸 이미다졸륨 테트라클로로알루미네이트, 1-에틸-3-메틸 이미다졸륨 하이드로겐설페이트, 1-부틸-3-메틸 이미다졸륨 하이드로겐설페이트, 메틸이미다졸륨 클로라이드, 1-에틸-3-메틸 이미다졸륨 아세테이트, 1-부틸-3-메틸 이미다졸륨 아세테이트, Tris-2(하이드록시 에틸) 메틸암모늄 메틸설페이트, 1-에틸-3-메틸 이미다졸륨 에틸설페이트, 1-에틸-3-메틸 이미다졸륨 메탄설포네이트, 메틸-트리-n-부틸암모늄 메틸설페이트, 1-부틸-3-메틸 이미다졸륨 클로라이드, 1-에틸-3-메틸 이미다졸륨 클로라이드, 1-에틸-3-메틸 이미다졸륨 티오시아네이트, 1-부틸-3-메틸 이미다졸륨 티오시아네이트, 1-뷰틸-3-메틸이미다졸륨클로라이드, 1-뷰틸-3-메틸이미다졸륨나이트레이트, 1-뷰틸-3-메틸이미다졸륨아세테이트, 1-뷰틸-3-메틸이미다졸륨테트라플로로보레이트, 1-에틸-3-메틸이미다졸륨클로라이드, 1-에틸-3-메틸이미다졸륨나이트레이트, 1-에틸-3-메틸이미다졸륨아세테이트, 1-에틸-3-메틸이미다졸륨테트라플로로보레이트, 1-알리-3-메틸이미다졸륨클로라이드, 1-알리-3-메틸이미다졸륨나이트레이트, 1-알리-3-메틸이미다졸륨아세테이트, 1-알리-3-메틸이미다졸륨테트라플로로보레이트 중 어느 하나가 투입될 수 있다. 상기 이온성 액체의 투입으로 그 혼련을 통한 연료 특성이 개선될 수 있음은 자명하다.In addition, 0.1 to 5 wt% of the ionic liquid is supplied based on the total mixing amount, and the ionic liquid participating in the kneading is 1-ethylacrylate-3-methylimidazolium chloride (1-ethylacrylate-3) as an imidazolium-based compound. - methylimidazolium chloride), 1-butyl-3-methylimidazolium chloride (1-butyl-3-methylimidazolium chloride), 1-butyl-3-methylimidazolium tetrafluoroborate (1-butyl-3-methylimidazolium tetrafluoroborate) ), 1-butyl-3-methylimidazolium hexafluoro phosphate (1-butyl-3-methylimidazolium hexafluoro phosphate), 1-butyl-3-methylimidazolium trifluoromethanesulfonate (1-butyl-3 -methylimidazolium trifluoromethanesulfonate), 1-ethyl-3-methylimidazolium acetate (1-ethyl-3-methylimidazolium acetate), 1-benzyl-3-methylimidazolium chloride (1-benzyl-3-methylimidazoliumchloride), 1, 3-dimethylimidazolium methylsulfate (1,3-dimethylimidazolium methylsulfate), 1-butyl-3-methylimidazolium chloride, 1-ethyl-3-methylimidazolium acetate, and the like, and ethylmethylimida Zolium chloride ([EMIM]Cl), ethylmethylimidazolium bromine ([EMIM]Br), ethylmethylimidazolium iodide ([EMIM]I), 1-ethyl-3-methylimidazolium, 1-ethyl imidazolium nitrate, 1-ethyl imidazolium bromide, 1-ethyl-3-methyl imidazolium chloride, 1-ethyl-imidazolium chloride, 1,2,3-trimethyl imidazolium methyl sulfate , 1-methyl imidazolium chloride, 1-butyl-3-methyl imidazolium, 1-butyl-3-methyl imidazolium tetrachloroaluminate, 1-ethyl-3-methyl imidazolium tetrachloroaluminate, 1-ethyl-3-methyl imidazolium high Drogensulfate, 1-butyl-3-methyl imidazolium hydrogensulfate, methylimidazolium chloride, 1-ethyl-3-methyl imidazolium acetate, 1-butyl-3-methyl imidazolium acetate, Tris- 2 (hydroxy ethyl) methylammonium methyl sulfate, 1-ethyl-3-methyl imidazolium ethyl sulfate, 1-ethyl-3-methyl imidazolium methanesulfonate, methyl-tri-n-butylammonium methyl sulfate, 1 -Butyl-3-methyl imidazolium chloride, 1-ethyl-3-methyl imidazolium chloride, 1-ethyl-3-methyl imidazolium thiocyanate, 1-butyl-3-methyl imidazolium thiocyanate , 1-Butyl-3-methylimidazolium chloride, 1-butyl-3-methylimidazolium nitrate, 1-butyl-3-methylimidazolium acetate, 1-butyl-3-methylimidazolium tetrafluoro Roborate, 1-ethyl-3-methylimidazolium chloride, 1-ethyl-3-methylimidazolium nitrate, 1-ethyl-3-methylimidazolium acetate, 1-ethyl-3-methylimidazolium Tetrafluoroborate, 1-ali-3-methylimidazolium chloride, 1-ali-3-methylimidazolium nitrate, 1-ali-3-methylimidazolium acetate, 1-ali-3-methyl Any one of midazolium tetrafluoroborate may be added. It is obvious that the fuel properties through the kneading can be improved by the input of the ionic liquid.

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것은 아니며, 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연하다.As described above in detail a specific part of the content of the present invention, to those of ordinary skill in the art, these specific descriptions are only preferred embodiments, and the scope of the present invention is not limited thereby, It is obvious to those skilled in the art that various changes and modifications can be made within the scope and spirit of the present invention, and it is natural that such variations and modifications fall within the scope of the appended claims.

Claims (5)

반탄화로와 상기 반탄화로 내부에 형성된 반탄화실과 상기 반탄화실은 이중관 형태로 상기 이중관의 외측관 내에 형성된 육각형의 벌집구조의 2면 이상이 타공된 복수의 육각열유로층;과
상기 육각열유로층에 열풍 공급로를 통해 연통된 연소실과 상기 반탄화실과 상기 연소실 사이에 연통된 건류가스이송관과
상기 연소실에 연통한 연소가스관과 상기 반탄화실을 냉각하기 위해 상기 육각열유로층에 냉풍을 송풍하기 위한 송풍기로 구성한 반탄화 장치에 있어서,
상기 열풍의 온도는 150℃~550℃의 범위에서 바이오매스 원료를 반탄화 처리하고, 선택적으로 상기 반탄화 처리된 목질 바이오매스 원료와 건조 하수슬러지, 건조 축분 또는 건조 음식물쓰레기 중 어느 하나 또는 2 이상을 각각 분쇄해 혼련하고 그 후 가압 성형하며,
상기 육각열유로층은 상기 육각형의 벌집구조를 형성하는 유로판에 열전달핀 역할을 수행하고,
상기 유로판은 표면에 요철형상이 형성되거나 상기 유로판이 복수의 굴곡이 형성되는 것을 특징으로 하는 바이오매스 연료 제조 장치.
The torrefaction furnace and the torrefaction chamber formed inside the torrefaction furnace and the torrefaction chamber are in the form of a double tube, and a plurality of hexagonal heat flow path layers having a hexagonal honeycomb structure formed in the outer tube of the double tube is perforated on at least two sides; And
a combustion chamber communicating with the hexagonal heat flow path layer through a hot air supply path, and a dry distillation gas transfer pipe communicating between the torrefaction chamber and the combustion chamber;
In the torrefaction apparatus comprising a combustion gas pipe communicating with the combustion chamber and a blower for blowing cold air to the hexagonal heat flow path layer to cool the torrefaction chamber,
The temperature of the hot air is torrefied biomass raw material in the range of 150°C to 550°C, and optionally any one or two or more of the torrefied wood biomass raw material, dry sewage sludge, dry livestock manure, or dry food waste. Each is crushed and kneaded, and then press-molded,
The hexagonal heat flow path layer serves as a heat transfer fin to the flow path plate forming the hexagonal honeycomb structure,
The flow path plate is an apparatus for producing biomass fuel, characterized in that the concavo-convex shape is formed on the surface or the flow path plate is formed with a plurality of curves.
삭제delete 삭제delete 청구항 제1항에 있어서
상기 건조 하수슬러지, 건조 축분 또는 건조 음식물쓰레기의 수분량은 10 내지 20wt%인 바이오매스 연료 제조 장치.
2. The method of claim 1
The water content of the dry sewage sludge, dry livestock manure or dry food waste is 10 to 20 wt% of a biomass fuel manufacturing apparatus.
청구항 제1항에 있어서,
상기 혼련 시 추가로 이온성 액체를 전체 혼합량 기준 0.1 내지 5wt%를 공급하며, 상기 혼련에 참여하는 이온성 액체로는 이미다졸륨계 화합물로 1-에틸아크릴레이트-3-메틸이미다졸륨 클로라이드 (1-ethylacrylate-3- methylimidazolium chloride), 1-부틸-3-메틸이미다졸륨 클로라이드 (1-buthyl- 3-methylimidazolium chloride), 1-부틸-3-메틸이미다졸륨 테트라플루오로보레이트(1-butyl-3-methylimidazolium tetrafluoroborate), 1-부틸-3-메틸이미다졸륨 헥사플루오로포스페이트(1-butyl-3-methylimidazolium hexafluoro phosphate), 1-부틸-3-메틸이미다졸륨 트리플루오로메탄설포네이트(1-butyl-3-methylimidazolium trifluoromethanesulfonate), 1-에틸-3-메틸이미다졸륨 아세테이트(1-ethyl-3-methylimidazolium acetate), 1-벤질-3-메틸이미다졸륨 클로라이드(1-benzyl-3-methylimidazoliumchloride), 1,3-디메틸이미다졸륨 메틸설페이트(1,3-dimethylimidazolium methylsulfate), 1-부틸-3-메틸이미다졸륨 클로라이드, 1-에틸-3-메틸이미다졸륨 아세테이트 등이 있을 수 있으며, 에틸메틸이미다졸리엄 클로라이드([EMIM]Cl), 에틸메틸이미다졸리엄 브로민([EMIM]Br), 에틸메틸이미다졸리엄 요오드([EMIM]I), 1-에틸-3-메틸 이미다졸륨, 1-에틸 이미다졸륨 니트레이트, 1-에틸 이미다졸륨 브로마이드, 1-에틸-3-메틸 이미다졸륨 클로라이드, 1-에틸-이미다졸륨 클로라이드, 1,2,3-트리메틸 이미다졸륨 메틸 설페이트, 1-메틸 이미다졸륨 클로라이드, 1-부틸-3-메틸 이미다졸륨, 1-부틸-3-메틸 이미다졸륨 테트라클로로알루미네이트, 1-에틸-3-메틸 이미다졸륨 테트라클로로알루미네이트, 1-에틸-3-메틸 이미다졸륨 하이드로겐설페이트, 1-부틸-3-메틸 이미다졸륨 하이드로겐설페이트, 메틸이미다졸륨 클로라이드, 1-에틸-3-메틸 이미다졸륨 아세테이트, 1-부틸-3-메틸 이미다졸륨 아세테이트, Tris-2(하이드록시 에틸) 메틸암모늄 메틸설페이트, 1-에틸-3-메틸 이미다졸륨 에틸설페이트, 1-에틸-3-메틸 이미다졸륨 메탄설포네이트, 메틸-트리-n-부틸암모늄 메틸설페이트, 1-부틸-3-메틸 이미다졸륨 클로라이드, 1-에틸-3-메틸 이미다졸륨 클로라이드, 1-에틸-3-메틸 이미다졸륨 티오시아네이트, 1-부틸-3-메틸 이미다졸륨 티오시아네이트, 1-뷰틸-3-메틸이미다졸륨클로라이드, 1-뷰틸-3-메틸이미다졸륨나이트레이트, 1-뷰틸-3-메틸이미다졸륨아세테이트, 1-뷰틸-3-메틸이미다졸륨테트라플로로보레이트, 1-에틸-3-메틸이미다졸륨클로라이드, 1-에틸-3-메틸이미다졸륨나이트레이트, 1-에틸-3-메틸이미다졸륨아세테이트, 1-에틸-3-메틸이미다졸륨테트라플로로보레이트, 1-알리-3-메틸이미다졸륨클로라이드, 1-알리-3-메틸이미다졸륨나이트레이트, 1-알리-3-메틸이미다졸륨아세테이트, 1-알리-3-메틸이미다졸륨테트라플로로보레이트 중 어느 하나 인 바이오매스 연료 제조 장치.
2. The method of claim 1,
During the kneading, 0.1 to 5 wt% of the ionic liquid is additionally supplied based on the total mixing amount, and as the ionic liquid participating in the kneading, 1-ethyl acrylate-3-methylimidazolium chloride (1 -ethylacrylate-3-methylimidazolium chloride), 1-butyl-3-methylimidazolium chloride (1-butyl-3-methylimidazolium chloride), 1-butyl-3-methylimidazolium tetrafluoroborate (1-butyl- 3-methylimidazolium tetrafluoroborate), 1-butyl-3-methylimidazolium hexafluoro phosphate (1-butyl-3-methylimidazolium hexafluoro phosphate), 1-butyl-3-methylimidazolium trifluoromethanesulfonate (1 -butyl-3-methylimidazolium trifluoromethanesulfonate), 1-ethyl-3-methylimidazolium acetate (1-ethyl-3-methylimidazolium acetate), 1-benzyl-3-methylimidazolium chloride (1-benzyl-3-methylimidazoliumchloride) ), 1,3-dimethylimidazolium methylsulfate, 1-butyl-3-methylimidazolium chloride, 1-ethyl-3-methylimidazolium acetate, and the like. Ethylmethylimidazolium chloride ([EMIM]Cl), ethylmethylimidazolium bromine ([EMIM]Br), ethylmethylimidazolium iodide ([EMIM]I), 1-ethyl-3-methyl Imidazolium, 1-ethyl imidazolium nitrate, 1-ethyl imidazolium bromide, 1-ethyl-3-methyl imidazolium chloride, 1-ethyl-imidazolium chloride, 1,2,3-trimethyl imidazole Dazolium methyl sulfate, 1-methyl imidazolium chloride, 1-butyl-3-methyl imidazolium, 1-butyl-3-methyl imidazolium tetrachloroaluminate, 1-ethyl-3-methyl imidazolium tetra Chloroaluminate, 1-ethyl-3-methylimi dazolium hydrogensulfate, 1-butyl-3-methyl imidazolium hydrogensulfate, methylimidazolium chloride, 1-ethyl-3-methyl imidazolium acetate, 1-butyl-3-methyl imidazolium acetate, Tris-2 (hydroxyethyl) methylammonium methylsulfate, 1-ethyl-3-methyl imidazolium ethylsulfate, 1-ethyl-3-methyl imidazolium methanesulfonate, methyl-tri-n-butylammonium methylsulfate , 1-Butyl-3-methyl imidazolium chloride, 1-ethyl-3-methyl imidazolium chloride, 1-ethyl-3-methyl imidazolium thiocyanate, 1-butyl-3-methyl imidazolium thio Cyanate, 1-butyl-3-methylimidazolium chloride, 1-butyl-3-methylimidazolium nitrate, 1-butyl-3-methylimidazolium acetate, 1-butyl-3-methylimidazolium Tetrafluoroborate, 1-ethyl-3-methylimidazolium chloride, 1-ethyl-3-methylimidazolium nitrate, 1-ethyl-3-methylimidazolium acetate, 1-ethyl-3-methyl Midazolium tetrafluoroborate, 1-ali-3-methylimidazolium chloride, 1-ali-3-methylimidazolium nitrate, 1-ali-3-methylimidazolium acetate, 1-ali-3- An apparatus for producing biomass fuel, which is any one of methylimidazolium tetrafluoroborate.
KR1020200104151A 2020-08-19 2020-08-19 biomass fuel manufacturing device KR102432521B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200104151A KR102432521B1 (en) 2020-08-19 2020-08-19 biomass fuel manufacturing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200104151A KR102432521B1 (en) 2020-08-19 2020-08-19 biomass fuel manufacturing device

Publications (2)

Publication Number Publication Date
KR20220022777A KR20220022777A (en) 2022-02-28
KR102432521B1 true KR102432521B1 (en) 2022-08-16

Family

ID=80497215

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200104151A KR102432521B1 (en) 2020-08-19 2020-08-19 biomass fuel manufacturing device

Country Status (1)

Country Link
KR (1) KR102432521B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001354969A (en) 2000-06-11 2001-12-25 Kenji Yamane Charcoal cooling method and charcoal cooling apparatus
JP2018506637A (en) * 2015-02-12 2018-03-08 ブラックウッド・テクノロジー・ベーフェー Method for cooling semi-carbonized biomass
JP2019045078A (en) 2017-09-04 2019-03-22 株式会社大和三光製作所 Method of semi-carbonizing biomass and device therefor
KR102014980B1 (en) 2019-04-04 2019-08-27 (주)엔키이앤씨 A manufacturing method for solid refuse fuel comprising wastewater sludge
KR102028442B1 (en) 2016-08-23 2019-10-04 한국에너지기술연구원 Improvement on Co-firing of Biomass with Coal Biomass Blending ratio, Manufacturing Method and System of Boiler-Torrefaction Fuel Production thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100407489B1 (en) 1996-06-08 2004-02-25 파츠닉(주) Method for molding flat coil for non-coil deflection yoke
KR100296618B1 (en) 1998-11-19 2001-10-26 구자홍 Optical disc rotation stop device and method
KR20090117973A (en) * 2008-05-12 2009-11-17 굴람후세인 레흐맛 아미랄리 Gas distribution arrangement for a rotary reactor
KR20160081027A (en) * 2014-12-30 2016-07-08 한국에너지기술연구원 Hydrophobic surfaces coal mixed fuel containing lignin and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001354969A (en) 2000-06-11 2001-12-25 Kenji Yamane Charcoal cooling method and charcoal cooling apparatus
JP2018506637A (en) * 2015-02-12 2018-03-08 ブラックウッド・テクノロジー・ベーフェー Method for cooling semi-carbonized biomass
US20180273868A1 (en) 2015-02-12 2018-09-27 Blackwood Technology Bv Cooling process of torrefied biomass
KR102028442B1 (en) 2016-08-23 2019-10-04 한국에너지기술연구원 Improvement on Co-firing of Biomass with Coal Biomass Blending ratio, Manufacturing Method and System of Boiler-Torrefaction Fuel Production thereof
JP2019045078A (en) 2017-09-04 2019-03-22 株式会社大和三光製作所 Method of semi-carbonizing biomass and device therefor
KR102014980B1 (en) 2019-04-04 2019-08-27 (주)엔키이앤씨 A manufacturing method for solid refuse fuel comprising wastewater sludge

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
학술논문, Han, S.-Y. et al, Ionic Liquid Pretreatment of Lignocellulosic Biomass, Journal of Forest and Environmental Science, 36(2), pp.69-77 (2020.06.30)
학술논문, Review Paper : Torrefaction Technologies of Biomass, http://journal.kswm.or.kr/past/view.asp?a_key=3421464&v_key=31%20&n_key=5

Also Published As

Publication number Publication date
KR20220022777A (en) 2022-02-28

Similar Documents

Publication Publication Date Title
Khoshnevisan et al. A critical review on livestock manure biorefinery technologies: Sustainability, challenges, and future perspectives
CN104150987B (en) A kind of method of animal waste recycling
CN102173888B (en) Sludge carbon fertilizer and production method thereof
Singh et al. Anaerobic digestion of poultry litter: a review
Manyi-Loh et al. Microbial anaerobic digestion: process dynamics and implications from the renewable energy, environmental and agronomy perspectives
CN112830821A (en) Biomass and livestock and poultry manure coupling poly-generation method
CN101987984A (en) Method for making compound solid waste derived fuel
Salamat et al. Drying of biogas digestate: A review with a focus on available drying techniques, drying kinetics, and gaseous emission behavior
Parihar et al. Livestock waste management: A review
Czekała et al. Sustainable management and recycling of anaerobic digestate solid fraction by composting: A review
El-Mashad et al. Reuse potential of agricultural wastes in semi-arid regions: Egypt as a case study
El-Mashad Solar thermophilic anaerobic reactor (STAR) for renewable energy production
Vovk et al. Ecologization of Agricultural Production Based on the Use of Waste-Free Technologies to Ensure Energy Autonomy of AIC
Sinha et al. Agricultural waste management policies and programme for environment and nutritional security
KR20220032699A (en) Biomass fuel production apparatus for the development of the hydrophobic fouling is suppressed by using superheated steam
KeChrist et al. Slurry utilization and impact of mixing ratio in biogas production
US10196569B2 (en) Method and system of treating biomass wastes by biochemistry-thermochemistry multi-point interconnection
KR102432521B1 (en) biomass fuel manufacturing device
KR102395723B1 (en) biomass torrefaction fuel manufacturing method
KR102395729B1 (en) biomass torrefaction fuel cooling method
KR101691723B1 (en) Manufacturing method of fuel pellet comprising wasted organics
KR101347930B1 (en) Manufacturing method of solid fuel using pig ordure and peat
KR102651638B1 (en) Bio-char production apparatus by using agricultural by-products for carbon storage
Belete et al. A review on alternative technologies to manage manure: Cost effective and environmentally beneficial
WO2019169786A1 (en) Organic fertilizer produced with sludge and production method therefor

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant