KR102415728B1 - Self-healing GaP anode material and lithium secondary battery comprising the same - Google Patents

Self-healing GaP anode material and lithium secondary battery comprising the same Download PDF

Info

Publication number
KR102415728B1
KR102415728B1 KR1020200131673A KR20200131673A KR102415728B1 KR 102415728 B1 KR102415728 B1 KR 102415728B1 KR 1020200131673 A KR1020200131673 A KR 1020200131673A KR 20200131673 A KR20200131673 A KR 20200131673A KR 102415728 B1 KR102415728 B1 KR 102415728B1
Authority
KR
South Korea
Prior art keywords
gap
tio
self
healing
active material
Prior art date
Application number
KR1020200131673A
Other languages
Korean (ko)
Other versions
KR20220049064A (en
Inventor
허재현
김일태
팜 호앙 후이 보
소성준
Original Assignee
가천대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가천대학교 산학협력단 filed Critical 가천대학교 산학협력단
Priority to KR1020200131673A priority Critical patent/KR102415728B1/en
Publication of KR20220049064A publication Critical patent/KR20220049064A/en
Application granted granted Critical
Publication of KR102415728B1 publication Critical patent/KR102415728B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5805Phosphides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/08Other phosphides
    • C01B25/082Other phosphides of boron, aluminium, gallium or indium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

본 발명은 자기-치유가능한 GaP 음극소재 및 이를 포함하는 리튬이차전지에 관한 것이다. 본 발명에 따른 자기-치유가능한 GaP 음극소재는 음극의 구조적 안정성, 이차전지의 전기화학적 성능 및 충전·방전 용량을 보다 향상시킬 수 있다. The present invention relates to a self-healing GaP anode material and a lithium secondary battery comprising the same. The self-healing GaP negative electrode material according to the present invention can further improve the structural stability of the negative electrode, the electrochemical performance of the secondary battery, and the charge/discharge capacity.

Description

자기-치유가능한 GaP 음극소재 및 이를 포함하는 리튬이차전지 {Self-healing GaP anode material and lithium secondary battery comprising the same}Self-healing GaP anode material and lithium secondary battery comprising same

본 발명은 자기-치유가능한 GaP 음극소재 및 이를 포함하는 리튬이차전지에 관한 것이다. 보다 구체적으로, 본 발명은 인화갈륨(gallium phosphide, GaP), 이산화티탄(TiO2), 및 카본 블랙(C)으로 구성된 나노복합체를 포함하는 음극 활물질, 2단계 고-에너지 기계적 밀링(high-energy mechanical milling, HEMM) 공정을 이용한 자기-치유가능한 음극 활물질의 제조 방법, 상기 음극 활물질 및 바인더로서 폴리아크릴산(Poly(acrylic acid), PAA)을 포함하는 음극 활물질 조성물, 및 집전체 및 상기 집전체 상에 형성된 음극 활물질층을 포함하는 음극, 양극, 상기 음극과 양극 사이에 개재되는 분리막 및 전해액을 포함하는 리튬이차전지에 관한 것이다. 본 발명에 따른 자기-치유가능한 GaP 음극소재는 음극의 구조적 안정성, 이차전지의 전기화학적 성능 및 충전·방전 용량을 보다 향상시킬 수 있다. The present invention relates to a self-healing GaP anode material and a lithium secondary battery comprising the same. More specifically, the present invention relates to an anode active material comprising a nanocomposite composed of gallium phosphide (GaP), titanium dioxide (TiO 2 ), and carbon black (C), two-step high-energy mechanical milling (high-energy) A method for manufacturing a self-healing negative active material using a mechanical milling, HEMM) process, a negative active material composition comprising poly(acrylic acid), PAA as the negative electrode active material and a binder, and a current collector and the current collector It relates to a lithium secondary battery comprising a negative electrode comprising an anode active material layer formed on the negative electrode, a positive electrode, a separator interposed between the negative electrode and the positive electrode, and an electrolyte. The self-healing GaP negative electrode material according to the present invention can further improve the structural stability of the negative electrode, the electrochemical performance of the secondary battery, and the charge/discharge capacity.

최근 에너지 저장 기술에 대한 관심이 갈수록 높아지고 있다. 휴대폰, 캠코더 및 노트북 PC, 나아가서는 전기 자동차의 에너지까지 적용분야가 확대되면서 전기화학소자의 연구와 개발에 대한 노력이 점점 구체화되고 있다. 전기화학소자는 이러한 측면에서 가장 주목을 받고 있는 분야이고, 그 중에서도 충·방전이 가능한 이차전지의 개발은 관심의 초점이 되고 있으며, 최근에는 이러한 전지를 개발함에 있어서, 용량 밀도 및 비에너지를 향상시키기 위해 새로운 전극과 전지의 설계에 대한 연구 개발로 진행되고 있다.Recently, interest in energy storage technology is increasing. Efforts for research and development of electrochemical devices are becoming more concrete as the fields of application are expanding to cell phones, camcorders, notebook PCs, and even the energy of electric vehicles. Electrochemical devices are the field receiving the most attention in this respect, and among them, the development of rechargeable batteries capable of charging and discharging is the focus of interest. Recently, in developing these batteries, capacity density and specific energy are improved Research and development for the design of new electrodes and batteries is in progress.

현재 적용되고 있는 이차전지 중에서 1990년대 초에 개발된 리튬 이차전지는 수용액 전해액을 사용하는 N-MH, Ni-Cd, 황산-납 전지 등의 재래식 전지에 비해서 작동 전압이 높고 에너지 밀도가 월등히 크다는 장점으로 각광을 받고 있다.Among the currently applied secondary batteries, lithium secondary batteries developed in the early 1990s have a higher operating voltage and significantly higher energy density than conventional batteries such as N-MH, Ni-Cd, and lead sulfate batteries that use aqueous electrolyte solutions. is in the spotlight as

일반적으로 리튬 이차전지는 리튬 이온의 삽입/탈리(intercalation/deintercalation) 또는 합금/탈합금화(alloying/dealloying)가 가능한 물질을 음극 및 양극으로 사용하고, 음극과 양극 사이에 유기 전해액 또는 폴리머 전해액을 충전시켜 제조하며, 리튬 이온이 양극 및 음극에서 삽입 및 탈리될 때의 산화반응, 환원반응에 의하여 전기적 에너지를 생산한다.In general, a lithium secondary battery uses a material capable of intercalation/deintercalation or alloying/dealloying of lithium ions as a negative electrode and a positive electrode, and charging an organic electrolyte or a polymer electrolyte between the negative electrode and the positive electrode It produces electrical energy through oxidation and reduction reactions when lithium ions are inserted and desorbed from the positive and negative electrodes.

현재 리튬 이차전지의 음극을 구성하는 전극활물질로는 탄소계 물질이 주로 사용되고 있다. 이 중 흑연의 경우, 이론 용량이 약 372mAh/g 정도이며, 현재 상용화된 흑연의 실제 용량은 약 350 내지 360 mAh/g 정도까지 실현되고 있다. 그러나, 이러한 흑연과 같은 탄소계 물질의 용량으로는 고용량의 음극활물질을 요구하는 리튬 이차전지에 부합하지 못하고 있다.Currently, as an electrode active material constituting the negative electrode of a lithium secondary battery, a carbon-based material is mainly used. Among these, in the case of graphite, the theoretical capacity is about 372 mAh/g, and the actual capacity of currently commercialized graphite is realized up to about 350 to 360 mAh/g. However, the capacity of the carbon-based material such as graphite does not meet the lithium secondary battery that requires a high-capacity anode active material.

이러한 요구를 충족하기 위하여 탄소계 물질보다 높은 충방전 용량을 나타내고, 리튬과 전기화학적으로 합금화 가능한 금속인 Si, Sn 등, 이들의 산화물 또는 이들과의 합금을 음극화물질로서 이용하는 예가 있다. 그러나, 이러한 금속계 음극활물질은 리튬의 충방전에 수반된 큰 부피 변화로 인하여 균열이 생기고 미분화되며, 따라서 이러한 금속계 음극활물질을 사용한 이차전지는 충방전 사이클이 진행됨에 따라 용량이 급격하게 저하되고, 사이클 수명이 짧게 되는 문제점이 있다. 차세대 리튬이차전지 개발을 위하여 높은 용량과 안정성을 가진 새로운 음극소재의 개발에 대한 요구가 존재한다. In order to meet these requirements, there is an example of using an oxide thereof or an alloy thereof, such as Si, Sn, which is a metal that exhibits a higher charge/discharge capacity than a carbon-based material and can be electrochemically alloyed with lithium, as a negative electrode material. However, these metal-based negative active materials are cracked and undifferentiated due to the large volume change accompanying the charging and discharging of lithium. Therefore, the secondary battery using such a metal-based negative active material rapidly decreases in capacity as the charge/discharge cycle proceeds, and the cycle There is a problem that the lifespan is shortened. For the development of next-generation lithium secondary batteries, there is a demand for the development of new negative electrode materials with high capacity and stability.

대한민국 공개특허 제10-2006-0098137호Republic of Korea Patent Publication No. 10-2006-0098137

이에 본 발명자들은 높은 용량과 안정성을 가진 새로운 음극소재를 개발하기 위하여 예의 노력한 결과, 인화갈륨(gallium phosphide, GaP) 주변에 이산화티탄(TiO2)과 카본 블랙(C)이 균일하게 분산된 나노복합체를 포함하는 음극 활물질을 이용하는 경우, 리튬이차전지의 성능을 비약적으로 향상시킬 수 있으며, 또한 음극 제조시 바인더로서 폴리아크릴산(Poly(acrylic acid), PAA)를 사용하는 경우 리튬이차전지의 안정성이 현저히 증가할 수 있음을 확인하고, 본 발명을 완성하기에 이르렀다. As a result, the present inventors made diligent efforts to develop a new anode material with high capacity and stability. As a result, titanium dioxide (TiO 2 ) and carbon black (C) are uniformly dispersed around gallium phosphide (GaP). When using an anode active material containing It was confirmed that it can be increased, and the present invention was completed.

본 발명은 인화갈륨(gallium phosphide, GaP), 이산화티탄(TiO2), 및 카본 블랙(C)으로 구성된 나노복합체를 포함하는 자기-치유가능한 음극 활물질을 제공하는 것을 목적으로 한다. An object of the present invention is to provide a self-healing negative active material comprising a nanocomposite composed of gallium phosphide (GaP), titanium dioxide (TiO 2 ), and carbon black (C).

본 발명은 2단계 고-에너지 기계적 밀링(high-energy mechanical milling, HEMM) 공정을 이용한 자기-치유가능한 음극 활물질의 제조 방법을 제공하는 것을 목적으로 한다. An object of the present invention is to provide a method for manufacturing a self-healing negative active material using a two-step high-energy mechanical milling (HEMM) process.

본 발명은 인화갈륨(gallium phosphide, GaP), 이산화티탄(TiO2), 및 카본 블랙(C)으로 구성된 나노복합체를 포함하는 음극 활물질, 도전재 및 바인더로서 폴리아크릴산(Poly(acrylic acid), PAA)을 포함하는 자기-치유가능한 음극 활물질 조성물 제공하는 것을 목적으로 한다. The present invention provides an anode active material including a nanocomposite composed of gallium phosphide (GaP), titanium dioxide (TiO 2 ), and carbon black (C), a conductive material, and a binder as a polyacrylic acid (Poly (acrylic acid), PAA ) An object of the present invention is to provide a self-healing negative active material composition comprising a.

본 발명은 또한 집전체 및 상기 집전체 상에 형성된 자기-치유가능한 음극 활물질층을 포함하는 음극, 양극, 상기 음극과 양극 사이에 개재되는 분리막 및 전해액을 포함하는 리튬이차전지를 제공하는 것을 목적으로 한다. The present invention also provides a lithium secondary battery comprising a negative electrode comprising a current collector and a self-healing negative active material layer formed on the current collector, a positive electrode, a separator interposed between the negative electrode and the positive electrode, and an electrolyte solution do.

본 발명에 따른 자기-치유가능한 GaP 음극소재는 높은 용량과 안정성을 동시에 구현할 수 있으므로, 리튬이차전지의 성능을 비약적으로 향상시킬 수 있을 것으로 기대된다. Since the self-healing GaP anode material according to the present invention can realize high capacity and stability at the same time, it is expected to dramatically improve the performance of the lithium secondary battery.

도 1은 본 발명에 따른 GaP (III-V 화합물)의 결정 구조를 나타낸다.
도 2는 본 발명에 따른 2단계 HEMM 공정을 이용한 자기-치유가능한 음극 활물질 합성 개략도를 나타낸다.
도 3은 본 발명에 따른 자가-치유 가능한 음극 소재의 결정학적 및 표면화학적 특성을 나타낸다. (a) XRD 패턴, (b) XPS 조사 스펙트럼, (c-g) (c) Ga 3d, (d) P 2p, (e) Ti 2p, (f) O 1s의 고해상도 XPS 스펙트럼 및 (g) GaP @ TiO2-C에 대한 C 1s.
도 4는 GaP @ TiO2-C (10 %) 및 GaP @ TiO2-C (30 %)의 XRD 패턴을 나타낸다.
도 5는 본 발명에 따른 자가-치유 가능한 음극 소재의 형태학적 특성을 나타낸다. (a) SEM 이미지, (b) HRTEM 이미지 및 (c) GaP @ TiO2-C (20 %)의 Ga, P, C, Ti 및 O에 대한 EDS 원소 매핑.
도 6은 본 발명에 따른 자가-치유 가능한 음극 소재를 포함하는 반쪽 전지의 전기화학적 성능을 나타낸다. (a) 100 mA/g의 전류 밀도에서 GaP @ TiO2-C (20 %)의 GCD 프로파일, (b) 100m mA/g에서 복합체의 주기적 성능, (c) GaP @ TiO2-C (20 %)의 CV 곡선, (d) 복합체의 속도 능력, (e) 복합체의 용량 유지율, (f) 0.5A의 고전류 밀도에서 GaP @ TiO2-C (20 %)의 주기적 성능.
도 7은 GaP @ TiO2-C (10 %) 및 GaP @ TiO2-C (30 %)의 전압 프로파일을 나타낸다.
1 shows the crystal structure of GaP (III-V compound) according to the present invention.
2 shows a schematic diagram of synthesizing a self-healing anode active material using a two-step HEMM process according to the present invention.
3 shows the crystallographic and surface chemical properties of the self-healing anode material according to the present invention. (a) XRD pattern, (b) XPS irradiation spectrum, (cg) high-resolution XPS spectrum of (c) Ga 3d, (d) P 2p, (e) Ti 2p, (f) O 1s, and (g) GaP@TiO C 1s for 2 -C.
Figure 4 shows the XRD patterns of GaP@TiO 2 -C (10%) and GaP@TiO 2 -C (30%).
5 shows the morphological characteristics of the self-healing negative electrode material according to the present invention. (a) SEM images, (b) HRTEM images, and (c) EDS elemental mapping of GaP@TiO 2 -C (20%) for Ga, P, C, Ti and O.
6 shows the electrochemical performance of a half-cell comprising a self-healing negative electrode material according to the present invention. (a) GCD profile of GaP @ TiO 2 -C (20 %) at a current density of 100 mA/g, (b) periodic performance of the composite at 100 m mA/g, (c) GaP @ TiO 2 -C (20 %) CV curves in ), (d) rate capability of the composite, (e) capacity retention of the composite, and (f) periodic performance of GaP@TiO 2 -C (20%) at a high current density of 0.5A.
Figure 7 shows the voltage profiles of GaP@TiO 2 -C (10%) and GaP@TiO 2 -C (30%).

아하, 발명의 구체적인 구현예에 따른 자기-치유가능한 GaP 음극소재 및 이를 포함하는 리튬이차전지에 대하여 상세하게 설명하기로 한다. 다만, 이는 발명의 하나의 예시로서 제시되는 것으로, 이에 의해 발명의 권리범위가 한정되는 것은 아니며, 발명의 권리범위 내에서 구현예에 대한 다양한 변형이 가능함은 당업자에게 자명하다.Aha, a self-healing GaP negative electrode material according to a specific embodiment of the present invention and a lithium secondary battery including the same will be described in detail. However, this is presented as an example of the invention, thereby not limiting the scope of the invention, it is apparent to those skilled in the art that various modifications to the embodiment are possible within the scope of the invention.

본 명세서 전체에서 특별한 언급이 없는 한 "포함" 또는 "함유"라 함은 어떤 구성 요소(또는 구성 성분)를 별다른 제한 없이 포함함을 지칭하며, 다른 구성 요소(또는 구성 성분)의 부가를 제외하는 것으로 해석될 수 없다.Throughout this specification, unless otherwise specified, "including" or "containing" refers to including any component (or component) without particular limitation, and excludes the addition of other components (or components). cannot be construed as

본 발명에 따른 GaP (III-V 화합물)의 결정 구조를 도 1에 나타내었다. GaP는 자가-치유 가능한 소재로서, GaP에 리튬이온이 삽입될 때 형성되는 Ga의 녹는점이 29.8℃로 매우 낮기 때문에 통상적으로 리튬이온전지 내부 온도는 충정·방전시 30℃ 이상으로 올라가므로 GaP으로부터 액체 금속인 Ga이 생성된다. 여기에 액체 Ga는 부피팽창이 매우 큰 P 원소의 균열을 치유하는 역할 (즉, 자가-치유)에 있어서 부정적인 영향을 미치며, 이를 방지할 수 있는 매트릭스 물질과 바인더가 필요하다. The crystal structure of GaP (III-V compound) according to the present invention is shown in FIG. 1 . GaP is a self-healing material, and since the melting point of Ga, which is formed when lithium ions are inserted into GaP is very low (29.8℃), the internal temperature of lithium ion batteries usually rises to 30℃ or higher during charging and discharging. Metal Ga is produced. Here, liquid Ga has a negative effect on the role of crack healing (ie, self-healing) of P element, which has a very large volume expansion, and a matrix material and a binder that can prevent this are required.

본 발명에서 사용된 이산화티탄(TiO2) 매트릭스는 GaP 주위에서 기계적 장벽을 구성하여 GaP의 부피팽창을 추가적으로 방지하여 GaP의 장기간 충방전에 대하여 안정적인 성능을 유도할 수 있다. The titanium dioxide (TiO 2 ) matrix used in the present invention constitutes a mechanical barrier around GaP to additionally prevent volume expansion of GaP, thereby inducing stable performance against long-term charge and discharge of GaP.

본 발명에서 사용된 폴리아크릴산(Poly(acrylic acid), PAA)은 GaP 입자 표면에 존재하는 -OH 작용기에 대하여 수소결합을 형성하여 액체 Ga의 과도할 응집을 막아줌으로써 GaP의 장기간 충방전에 대하여 안정적인 성능을 유도할 수 있다. Poly(acrylic acid, PAA) used in the present invention is stable against long-term charge and discharge of GaP by preventing excessive aggregation of liquid Ga by forming hydrogen bonds with -OH functional groups present on the surface of GaP particles. performance can be derived.

제1구현예에 따르면, According to the first embodiment,

본 발명은 인화갈륨(gallium phosphide, GaP), 이산화티탄(TiO2), 및 카본 블랙(C)으로 구성된 나노복합체를 포함하는 자기-치유가능한 음극 활물질을 제공하고자 한다. An object of the present invention is to provide a self-healing negative active material including a nanocomposite composed of gallium phosphide (GaP), titanium dioxide (TiO 2 ), and carbon black (C).

본 발명에 따른 자기-치유가능한 음극 활물질에 있어서, 상기 카본 블랙은 전체 나노복합체의 질량을 중심으로 10 내지 30 중량%, 바람직하기는 20 중량%의 양으로 포함되는 것을 특징으로 한다. 상기 카본 블랙의 함량이 30 중량%를 초과하는 경우 카본 블랙이 과도하게 볼 밀링되어 리튬이차전지의 제1사이클에서 충전 및 방전용량 및 효율이 떨어지게 되어 결국 전체적인 용량과 효율이 떨어질 수 있다. In the self-healing negative active material according to the present invention, the carbon black is included in an amount of 10 to 30% by weight, preferably 20% by weight based on the mass of the entire nanocomposite. When the content of the carbon black exceeds 30% by weight, the carbon black is excessively ball milled, so that the charging and discharging capacity and efficiency in the first cycle of the lithium secondary battery are deteriorated, and consequently the overall capacity and efficiency may be reduced.

본 발명에 따른 자기-치유가능한 음극 활물질에 있어서, 상기 음극 활물질은 기계적 밀링을 통해 복합체를 형성하는 것을 특징으로 한다. 상기 기계적 밀링은, 롤밀(roll-mill), 볼밀(ball-mill), 고에너지 볼밀(high energy ball mill), 유성 밀(planetary mill), 교반 볼밀(stirred ball mill), 진동밀(vibrating mill) 또는 제트 밀(jet-mill)을 이용하여, 상기 인화갈륨, 이산화티탄 및 카본 블랙을 기계적으로 마찰시킴으로써 수행될 수 있으며, 예를 들면, 회전수 100 rpm 내지 1,000 rpm으로 회전시켜 기계적으로 압축응력을 가할 수 있다.In the self-healing negative active material according to the present invention, the negative active material is characterized in that the composite is formed through mechanical milling. The mechanical milling is a roll-mill, a ball-mill, a high energy ball mill, a planetary mill, a stirred ball mill, a vibrating mill. Alternatively, it may be performed by mechanically rubbing the gallium phosphide, titanium dioxide and carbon black using a jet-mill, for example, by rotating at a rotation speed of 100 rpm to 1,000 rpm to mechanically reduce the compressive stress can apply

제2구현예에 따르면, According to the second embodiment,

본 발명은 2단계 고-에너지 기계적 밀링(high-energy mechanical milling, HEMM) 공정을 이용한 자기-치유가능한 음극 활물질의 제조 방법을 제공하고자 하는 것으로, 상기 제조 방법은:An object of the present invention is to provide a method for preparing a self-healing negative active material using a two-step high-energy mechanical milling (HEMM) process, the method comprising:

(a) 갈륨산화물(Ga2O3), 티탄(Ti) 및 인(P) 전구체를 혼합하고, 제1 고-에너지 기계적 밀링(high-energy mechanical milling, HEMM) 공정을 수행하여 GaP 및 TiO2를 형성하는 단계; 및(a) GaP and TiO 2 by mixing gallium oxide (Ga 2 O 3 ), titanium (Ti) and phosphorus (P) precursors, and performing a first high-energy mechanical milling (HEMM) process forming a; and

(b) 상기 GaP 및 TiO2에 카본 블랙(C)를 첨가하고 제2 HEMM 공정을 수행하는 단계를 포함하는 것을 특징으로 한다. 본 발명에 따른 2단계 HEMM 공정을 이용한 자기-치유가능한 음극 활물질 합성 개략도를 도 2에 나타내었다. (b) adding carbon black (C) to the GaP and TiO 2 and performing a second HEMM process. A schematic diagram of synthesizing a self-healing anode active material using a two-step HEMM process according to the present invention is shown in FIG. 2 .

본 발명에 따른 자기-치유가능한 음극 활물질의 제조 방법에 있어서, 상기 단계 (a)에서, 갈륨산화물, 티탄 및 인 전구체의 몰비는 2:3;4인 것을 특징으로 한다. In the method for manufacturing a self-healing negative active material according to the present invention, in step (a), the molar ratio of gallium oxide, titanium, and phosphorus precursor is 2:3;4.

본 발명에 따른 자기-치유가능한 음극 활물질의 제조 방법에 있어서, 상기 HEMM 공정은 Ar 분위기 하에 100 rpm 내지 1,000 rpm에서, 5 시간 내지 15 시간 동안 수행되는 것을 특징으로 한다. In the method for manufacturing a self-healing negative active material according to the present invention, the HEMM process is performed at 100 rpm to 1,000 rpm in an Ar atmosphere for 5 hours to 15 hours.

본 발명에 따른 자기-치유가능한 음극 활물질의 제조 방법에 있어서, 상기 단계 (b)에서, 상기 카본 블랙은 전체 나노복합체 질량을 중심으로 10 내지 30 중량%, 바람직하기는 20 중량%의 양으로 포함되는 것을 특징으로 한다. In the method for producing a self-healing negative active material according to the present invention, in step (b), the carbon black is included in an amount of 10 to 30% by weight, preferably 20% by weight based on the total mass of the nanocomposite. characterized by being

제3구현예에 따르면,According to the third embodiment,

본 발명은 인화갈륨(gallium phosphide, GaP), 이산화티탄(TiO2), 및 카본 블랙(C)으로 구성된 나노복합체를 포함하는 음극 활물질, 도전재 및 바인더로서 폴리아크릴산(Poly(acrylic acid), PAA)을 포함하는 자기-치유가능한 음극 활물질 조성물을 제공하고자 한다. The present invention provides an anode active material including a nanocomposite composed of gallium phosphide (GaP), titanium dioxide (TiO 2 ), and carbon black (C), a conductive material, and a binder as a polyacrylic acid (Poly (acrylic acid), PAA ) to provide a self-healing negative active material composition comprising a.

본 발명에 따른 자기-치유가능한 음극 활물질 조성물에 있어서, 상기 나노복합체 활성물질, 도전재 및 폴리아크릴산은 각각 70 내지 80 중량%, 10 내지 20 중량% 및 10 내지 20 중량%의 양으로 함유되는 것을 특징으로 한다. In the self-healing negative active material composition according to the present invention, the nanocomposite active material, the conductive material and the polyacrylic acid are contained in an amount of 70 to 80% by weight, 10 to 20% by weight and 10 to 20% by weight, respectively. characterized.

본 발명에 따른 자기-치유가능한 음극 활물질 조성물에 있어서, 상기 도전재는 카본 블랙, 케첸 블랙, 아세틸렌 블랙, 인조 흑연, 천연 흑연, 구리 분말, 니켈 분말, 알루미늄 분말은 분말 및 폴리페닐렌으로 이루어진 군으로부터 하나 이상 선택되는 것을 특징으로 한다. In the self-healing negative active material composition according to the present invention, the conductive material is selected from the group consisting of carbon black, Ketjen black, acetylene black, artificial graphite, natural graphite, copper powder, nickel powder, aluminum powder and polyphenylene. It is characterized in that one or more are selected.

제4구현예에 따르면,According to the fourth embodiment,

본 발명은 또한 자기-치유가능한 음극 활물질 조성물을 포함하는 음극, 양극, 상기 음극과 양극 사이에 개재되는 분리막 및 전해액을 포함하는 리튬이차전지를 제공하고자 한다. Another object of the present invention is to provide a lithium secondary battery including a negative electrode including a self-healing negative active material composition, a positive electrode, a separator interposed between the negative electrode and the positive electrode, and an electrolyte.

본 발명에 따른 리튬이차전지에 있어서, 상기 리튬이차전지는 휴대전화, 노트북 컴퓨터, 디지털 카메라, 하이브리드 전기자동차(hybrid electric vehicle, HEV) 또는 중대형 전지모듈의 구성 전지로 사용되는 것을 특징으로 한다. In the lithium secondary battery according to the present invention, the lithium secondary battery is characterized in that it is used as a constituent battery of a mobile phone, a notebook computer, a digital camera, a hybrid electric vehicle (HEV) or a medium-large battery module.

이하, 본 발명을 보다 구체적으로 설명하기 위하여 본 발명에 따른 바람직한 실험예를 첨부된 도면을 참조하여 보다 상세하게 설명한다. 그러나, 본 발명은 여기서 설명되어지는 실시예에 한정되지 않고 다른 형태로 구체화될 수도 있다.Hereinafter, in order to explain the present invention in more detail, preferred experimental examples according to the present invention will be described in more detail with reference to the accompanying drawings. However, the present invention is not limited to the embodiments described herein and may be embodied in other forms.

<실시예> <Example>

실시예 1. GaP @ TiOExample 1. GaP @ TiO 22 -C의 합성-C synthesis

GaP @ TiO2-C를 2 단계 HEMM 공정으로 합성하였다. 첫 번째 단계에서, Ga2O3 (99.99 %, Sigma Aldrich), Ti (325 mesh, 99.99 %, Alfa Aesar) 및 P 분말 (98.9 %, Alfa Aesar)을 각각 2:3:4의 몰비로 혼합하고, 볼 대 분말의 비율을 20:1로 하여 ZrO2 볼이 있는 ZrO2 보울 (80cm3)에 넣은 다음, Ar 분위기에서 300rpm의 속도로 10 시간 동안 HEMM을 수행하였다. 두 번째 단계에서, 상기 분말 혼합물과 아세틸렌 카본 블랙 분말 (C)을 C 농도가 10 %, 20 % 및 30 %가 되도록, 9:1, 8:2 및 7:3의 질량 비율로 수동 분쇄하고 (즉, GaP @ TiO2-C (10 %), GaP @ TiO2-C (20 %), GaP @ TiO2-C (30 %)), 상기 첫 번째 단계와 동일한 조건 하에서 10 시간 동안 볼밀링하였다. GaP @ TiO 2 -C was synthesized by a two-step HEMM process. In the first step, Ga 2 O 3 (99.99%, Sigma Aldrich), Ti (325 mesh, 99.99%, Alfa Aesar) and P powder (98.9%, Alfa Aesar) were mixed in a molar ratio of 2:3:4, respectively, and , a ball-to-powder ratio of 20:1 was placed in a ZrO 2 bowl (80 cm 3 ) with ZrO 2 balls, and then HEMM was performed in an Ar atmosphere at a speed of 300 rpm for 10 hours. In the second step, the powder mixture and acetylene carbon black powder (C) are manually ground in mass ratios of 9:1, 8:2 and 7:3 so that the C concentration is 10%, 20% and 30% ( That is, GaP @ TiO 2 -C (10%), GaP @ TiO 2 -C (20%), GaP @ TiO 2 -C (30%)), ball milling was performed for 10 hours under the same conditions as in the first step. .

실시예 2. GaP @ TiOExample 2. GaP @ TiO 22 -C의 결정학적 특성 확인Confirmation of crystallographic properties of -C

상기 실시예 1에서 제조된 GaP @ TiO2-C의 결정구조를 Cu Kα (λ=1.54

Figure 112020107757283-pat00001
) 방사선을 갖는 분말 XRD (D/MAX 2200 Rigaku, Japan)로 확인하였다. 그 결과, GaP @ TiO2-C 복합체의 XRD 패턴은 GaP 위상에 대해 각각 (111), (220), (311) 및 (331) 평면에 해당하는 28.4 °, 47.2 °, 55.8 ° 및 76.4 ° 피크와 루타일 TiO2에 대해 (101), (111) 및 (221) 평면에 해당하는 35.8 °, 40.9 ° 및 53.9 ° 피크가 관찰됨으로써, 단사정계 GaP 및 TiO2와 일치하는 것으로 나타났으며, 피크의 강도는 C 농도가 증가함에 따라 감소하는 것으로 확인되었다 (도 3(a) 및 도 4). The crystal structure of GaP @ TiO 2 -C prepared in Example 1 was Cu Kα (λ=1.54).
Figure 112020107757283-pat00001
) was confirmed by powder XRD (D/MAX 2200 Rigaku, Japan) with radiation. As a result, the XRD pattern of the GaP@TiO 2 -C composite showed 28.4°, 47.2°, 55.8° and 76.4° peaks corresponding to the (111), (220), (311) and (331) planes, respectively, for the GaP phase. 35.8°, 40.9°, and 53.9° peaks corresponding to the (101), (111) and (221) planes were observed for and rutile TiO 2 , which was consistent with monoclinic GaP and TiO 2 , and the peaks were The intensity of was confirmed to decrease with increasing C concentration (Fig. 3(a) and Fig. 4).

실시예 3. GaP @ TiOExample 3. GaP @ TiO 22 -C의 표면 화학적 특성 확인Confirmation of surface chemical properties of -C

상기 실시예 1에서 제조된 GaP @ TiO2-C (20 %)의 표면 화학적 상태를 XPS (Kratos Axis Anova)로 확인하였다. 그 결과, 19.8 및 20.9 eV에서 XPS 신호는 Ga 3d 스펙트럼에서 Ga 3d5/2 및 Ga 3d3/2로 인덱싱될 수 있으며 (도 3c), 134.1 및 129.2 eV에서 피크는 각각 P 2p3/2 및 P 2p1/2로 인한 것으로서 (도 3d), HEMM 후 GaP 합금이 합성되었음이 확인되었다. 또한, GaP @ TiO2-C (20 %)의 표면에 21.6 eV의 신호 (도 3b)를 갖는 자연 산화물의 존재는 활성 GaP의 표면이 부분적으로 산화되었음을 나타낸다. Ti 2p 스펙트럼의 경우, 530.9 eV에서 O 1s (도 3f) 피크와 함께 464.9 및 459.1 eV에서 Ti 2p1/2 및 Ti 2p3/2 피크가 나타남으로써 (도 3e) GaP @ TiO2-C (20 %) 복합체에 TiO2가 존재하고 있음이 확인되었다. O 1s 스펙트럼에서532.6 eV에서 결합 결합 에너지를 갖는 수산화 그룹의 출현은 GaP 표면의 수산화물을 나타내며, 이로써 수소 결합을 형성할 수 있는 기능성 모이어티가를 갖는 중합체 결합제에 대한 높은 친화성을 가짐이 확인되었다 (도 3f). C 1s의 경우, 284.9, 285.8, 286.4 및 288.5 eV에 위치한 deconvolved 피크는 각각 C-C, C=C, C-O 및 O-C=O에 해당하며 (도 3g), 이 중에서 O-C=O 결합의 존재는 HEMM 동안 무정형 C에서 C-C 결합의 부분적인 변형이 발생하였음을 나타낸다. The surface chemical state of GaP @ TiO 2 -C (20%) prepared in Example 1 was confirmed by XPS (Kratos Axis Anova). As a result, the XPS signal at 19.8 and 20.9 eV can be indexed as Ga 3d5/2 and Ga 3d3/2 in the Ga 3d spectrum (Fig. 3c), and the peaks at 134.1 and 129.2 eV are P 2p3/2 and P 2p1/ 2 (Fig. 3d), it was confirmed that the GaP alloy was synthesized after HEMM. In addition, the presence of native oxide with a signal of 21.6 eV (Fig. 3b) on the surface of GaP@TiO 2 -C (20%) indicates that the surface of the active GaP was partially oxidized. For the Ti 2p spectrum, Ti 2p1/2 and Ti 2p3/2 peaks at 464.9 and 459.1 eV (Fig. 3e) along with O 1s (Fig. 3f) peak at 530.9 eV (Fig. 3e), resulting in GaP@TiO 2 -C (20%) It was confirmed that TiO 2 was present in the composite. The appearance of a hydroxyl group with a binding energy at 532.6 eV in the O 1s spectrum indicates a hydroxide on the GaP surface, thereby confirming that it has a high affinity for a polymer binder with a functional moiety capable of forming hydrogen bonds. (Fig. 3f). For C 1s, the deconvolved peaks located at 284.9, 285.8, 286.4 and 288.5 eV correspond to CC, C=C, CO and OC=O, respectively (Fig. 3g), among which the presence of OC=O bonds is amorphous during HEMM. It indicates that a partial modification of the C-C bond at C occurred.

실시예 3. GaP @ TiOExample 3. GaP @ TiO 22 -C의 형태학적 특성-C Morphological Characteristics

상기 실시예 1에서 제조된 GaP @ TiO2-C (20 %)의 형태를 SEM (Hitachi S4700, Japan) 및 HRTEM (JEOL JEM-2100F)을 통해 확인하고, Ga, P, Ti, O 및 C의 원소 농도와 분포를 EDS를 이용하여 조사하였다. 그 결과, 수 나노미터에서 수 마이크로미터의 크기를 갖는 GaP @ TiO2-C (20 %) 입자가 형성되었으며 (도 5a), GaP의 (220) 및 (111) 결정면에 해당하는 0.192 및 0.313nm의 격자 간격과 루타일 TiO2의 (111)면에 해당하는 0.247nm가 확인되었다 (도 5b). 또한, EDS 원소 매핑 결과, GaP @ TiO2-C (20 %)에서 5 가지 원소 (Ga, P, C, Ti, O)가 균일하게 분포하고 있음이 확인되었다 (도 5c).The form of GaP @ TiO 2 -C (20%) prepared in Example 1 was confirmed through SEM (Hitachi S4700, Japan) and HRTEM (JEOL JEM-2100F), and Ga, P, Ti, O and C Element concentration and distribution were investigated using EDS. As a result, GaP@TiO 2 -C (20%) particles with a size of several nanometers to several micrometers were formed (Fig. 5a), and 0.192 and 0.313 nm corresponding to the (220) and (111) crystal planes of GaP. 0.247 nm corresponding to the lattice spacing and the (111) plane of rutile TiO 2 was confirmed (Fig. 5b). In addition, as a result of EDS element mapping, it was confirmed that five elements (Ga, P, C, Ti, O) were uniformly distributed in GaP @ TiO 2 -C (20%) (Fig. 5c).

<실험예><Experimental example>

실험예 1. GaP @ TiOExperimental Example 1. GaP @ TiO 22 -C의 전기화학적 측정Electrochemical measurement of -C

상기 실시예 1에서 제조된 음극 활물질 70 중량 %, C 15 중량 % (Super-P, 99.9 %, Alfa Aesar) 및 PAA 15 중량 % (Mw ~ 45000, Sigma Aldrich) 결합제의 슬러리를 캐스팅(casting)하여 제작하였다. 상기 캐스팅된 전극을 진공 오븐에서 하룻밤 동안 70 ℃에서 건조시키고 Ar 가스로 채워진 글로브 박스로 이동시켜 셀 어샘블리하였다. 상대 전극으로서 Li 금속박 및 분리막으로서 폴리에틸렌 분리막을 사용하였다. 전해질은 에틸렌 카보네이트/디에틸 카보네이트 (EC/DEC, 1:1 v/v)에서 1M LiPF6로 구성하였다. C 농도가 다른 GaP @ TiO2-C의 전기화학적 성능은 배터리 테스트 장치 (WBCS3000, WonATech, South Korea)와 함께 코인-형 하프 셀 (CR 2032)을 사용하여 평가하였다. GCD (galvanostatic charge-discharge) 프로파일은 0.01 ~ 2.5V (vs Li/Li+)의 전압 창에 대해 얻었다. CV (cyclic voltammetry) 테스트는 0.1mV s-1의 스캐닝 속도로 수행하여 GaP @ TiO2-C와 Li+의 전기화학적 반응을 확인하였다. 속도 성능은 배터리 사이클러 (WBCS3000, WonATech, South Korea)를 사용하여 0.1, 0.5, 1, 3, 5 및 10A g-1의 전류 밀도에서 측정하였다. EIS (Electrochemical impedance spectroscopy) 측정은 ZIVE MP1 (WonaTech) 분석기를 사용하여 100kHz ~ 100mHz의 주파수로 10mV AC 진폭에서 수행하였다. 70% by weight of the negative active material prepared in Example 1, 15% by weight of C (Super-P, 99.9%, Alfa Aesar) and 15% by weight of PAA (Mw ~ 45000, Sigma Aldrich) By casting a slurry of binder produced. The cast electrodes were dried in a vacuum oven at 70° C. overnight and transferred to a glove box filled with Ar gas for cell assembly. As a counter electrode, Li metal foil and a polyethylene separator were used as a separator. The electrolyte consisted of 1M LiPF 6 in ethylene carbonate/diethyl carbonate (EC/DEC, 1:1 v/v). The electrochemical performance of GaP @ TiO 2 -C with different C concentrations was evaluated using a coin-type half cell (CR 2032) together with a battery test device (WBCS3000, WonATech, South Korea). Galvanostatic charge-discharge (GCD) profiles were obtained for a voltage window of 0.01 to 2.5 V (vs Li/Li + ). Cyclic voltammetry (CV) test was performed at a scanning speed of 0.1 mV s -1 to confirm the electrochemical reaction of GaP @ TiO 2 -C and Li + . The speed performance was measured at current densities of 0.1, 0.5, 1, 3, 5 and 10A g -1 using a battery cycler (WBCS3000, WonATech, South Korea). Electrochemical impedance spectroscopy (EIS) measurements were performed at 10 mV AC amplitude with a frequency of 100 kHz to 100 mHz using a ZIVE MP1 (WonaTech) analyzer.

그 결과, GaP @ TiO2-C (10 %), GaP @ TiO2-C (20 %) 및 GaP @ TiO2-C (30 %)의 초기 충전 및 방전 용량은 1365/1025, 1493/1072 및 1025/794 mAh/g으로서 (도 6a), 각각 75.1 %, 71.9 % 및 77.4 %의 초기 쿨롱 효율 (ICE)을 갖는 것으로 확인되었다. 상기 모든 전극에서의 첫 번째 사이클의 비가역적인 용량 손실은 고체 전해질 계면 (SEI) 층의 형성과 관련된다. C 농도가 가장 낮은 전극 (GaP @ TiO2-C (10 %))의 비용량은 처음에는 높지만 150 사이클 동안 큰 용량 감소가 나타나는 것으로 확인되었으며 (도 7a), 반대로, C 농도가 가장 높은 전극 (GaP @ TiO2-C (30 %))은 150 사이클 후에도 약 79.6 %의 용량을 유지율을 나타내어 안정적인 주기적 성능을 가지는 것으로 나타났으나, 방전 비용량은 150 사이클 후에 621mAh/g로서 상대적으로 낮은 것으로 확인되었다 (도 7b). 한편, GaP @ TiO2-C (20 %)의 경우 용량과 안정성 측면에서 더 나은 성능을 보였습니다. 이 제품은 150 사이클 후에도 695.7mAh/g의 방전 비용량 및 약 58.8 %의 용량 유지율을 나타내어 안정성과 용량 측면에서 가장 우수한 것으로 확인되었다 (도 6a). As a result, the initial charge and discharge capacities of GaP@TiO 2 -C (10%), GaP@TiO 2 -C (20%) and GaP@TiO 2 -C (30%) were 1365/1025, 1493/1072 and It was found to have an initial Coulombic efficiency (ICE) of 75.1%, 71.9% and 77.4%, respectively, as 1025/794 mAh/g ( FIG. 6A ). The irreversible capacity loss of the first cycle in all the electrodes is associated with the formation of a solid electrolyte interfacial (SEI) layer. It was confirmed that the specific capacity of the electrode with the lowest C concentration (GaP@TiO 2 -C (10%)) was initially high but exhibited a large capacity decrease during 150 cycles (Fig. 7a), and conversely, the electrode with the highest C concentration (Fig. GaP @ TiO 2 -C (30%)) showed a capacity retention rate of about 79.6% even after 150 cycles, showing stable periodic performance, but the specific discharge capacity was found to be relatively low as 621mAh/g after 150 cycles became (Fig. 7b). On the other hand, GaP@TiO 2 -C (20%) performed better in terms of capacity and stability. This product exhibited a specific discharge capacity of 695.7 mAh/g and a capacity retention rate of about 58.8% even after 150 cycles, confirming that it was the most excellent in terms of stability and capacity (FIG. 6a).

또한, 0.005-3.0 V vs. Li/Li+에서 처음 5 사이클 동안 GaP @ TiO2-C (20 %)에 대한 CV 곡선을 살펴보면, 전극 표면에 SEI 층이 형성되어 초기 곡선과 후속 사이클의 곡선은 다르게 나타났으며, 후속 스캔 동안 CV 곡선이 거의 겹쳐 존재함으로써 GaP @ TiO2-C (20 %)의 안정성이 뛰어난 것으로 확인되었다 (도 6c). 서로 다른 전류 밀도에서 GaP @ TiO2-C (20 %)의 속도 성능 및 정규화된 용량 유지율을 살펴보면, 전류 밀도 0.1, 0.5, 1.0, 3.0, 5.0 및 10.0 A/g에서 GaP @ TiO2-C (20 %)의 평균 방전 용량은 각각 877, 799, 770, 734, 718, 695 mAh/g로서 GaP @ TiO2-C (10 %) 및 GaP @ TiO2-C (30 %)에 비해 상당히 높은 것으로 확인되었으며 (도 6d), 특히 놀랍게도 10A/g의 공격적인 전류 밀도에서도 GaP @ TiO2-C (20 %)의 용량 유지율을 초기 용량의 81 %만큼 높은 것으로 나타났다 (도 6e). 방전율이 0.1 A/g로 감소하면 용량은 810 mAh/g (유지율 92.4 %)로 향상되어 GaP @ TiO2-C (20 %)에 대한 속도 성능의 가역성이 우수함을 나타낸다. 더욱이, 0.5 A/g의 높은 전류 밀도에서 GaP @ TiO2-C (20 %)의 장기 주기적 거동은 여전히 매우 안정적인 성능을 나타내었다 (도 6f). 두 번째 (1156 mAh/g) 부터 500 번째 (1012 mAh/g) 사이클까지 계산했을 때 용량 유지율은 상당히 높은 87.5 %를 가지는 것으로 확인되었다. Also, 0.005-3.0 V vs. Looking at the CV curves for GaP @ TiO 2 -C (20%) during the first 5 cycles in Li/Li + , the SEI layer was formed on the electrode surface, so that the initial curve and the curve of the subsequent cycle were different, and during the subsequent scans, the CV curve was different. It was confirmed that the stability of GaP @ TiO 2 -C (20%) was excellent ( FIG. 6c ) because the CV curves almost overlapped. Looking at the rate performance and normalized capacity retention of GaP @ TiO 2 -C (20%) at different current densities, GaP @ TiO 2 -C ( 20%) of 877, 799, 770, 734, 718, and 695 mAh/g, respectively, which is significantly higher than that of GaP @ TiO 2 -C (10%) and GaP @ TiO 2 -C (30%). was confirmed (Fig. 6d), and surprisingly, even at an aggressive current density of 10 A/g, the capacity retention rate of GaP @ TiO 2 -C (20%) was as high as 81% of the initial capacity (Fig. 6e). When the discharge rate was decreased to 0.1 A/g, the capacity was improved to 810 mAh/g (retention rate 92.4%), indicating excellent reversibility of the rate performance for GaP @ TiO 2 -C (20%). Moreover, the long-term periodic behavior of GaP @ TiO 2 -C (20%) at a high current density of 0.5 A/g still showed very stable performance (Fig. 6f). When calculated from the second (1156 mAh/g) to the 500th (1012 mAh/g) cycle, it was confirmed that the capacity retention rate was significantly high at 87.5%.

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시태양일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.As described above in detail a specific part of the content of the present invention, for those of ordinary skill in the art, this specific description is only a preferred embodiment, and it is clear that the scope of the present invention is not limited thereby. something to do. Accordingly, it is intended that the substantial scope of the present invention be defined by the appended claims and their equivalents.

Claims (10)

삭제delete 삭제delete 삭제delete (a) 갈륨산화물(Ga2O3), 티탄(Ti) 및 인(P) 전구체를 혼합하고, 제1 고-에너지 기계적 밀링(high-energy mechanical milling, HEMM) 공정을 수행하여 GaP 및 TiO2를 형성하는 단계; 및
(b) 상기 GaP 및 TiO2에 카본 블랙(C)를 첨가하고 제2 HEMM 공정을 수행하는 단계를 포함하는,
2단계 고-에너지 기계적 밀링(high-energy mechanical milling, HEMM) 공정을 이용한 자기-치유가능한 음극 활물질의 제조 방법.
(a) GaP and TiO 2 by mixing gallium oxide (Ga 2 O 3 ), titanium (Ti) and phosphorus (P) precursors, and performing a first high-energy mechanical milling (HEMM) process forming a; and
(b) adding carbon black (C) to the GaP and TiO 2 and performing a second HEMM process,
A method of manufacturing a self-healing negative active material using a two-step high-energy mechanical milling (HEMM) process.
제4항에 있어서,
상기 단계 (a)에서, 갈륨산화물, 티탄 및 인 전구체의 몰비는 2:3;4인 것을 특징으로 하는 것인, 자기-치유가능한 음극 활물질의 제조 방법.
5. The method of claim 4,
In the step (a), the molar ratio of gallium oxide, titanium, and phosphorus precursor is 2:3;
제4항에 있어서,
상기 HEMM 공정은 Ar 분위기 하에 100 rpm 내지 1,000 rpm에서, 5 시간 내지 15 시간 동안 수행되는 것을 특징으로 하는 것인, 자기-치유가능한 음극 활물질의 제조 방법.
5. The method of claim 4,
The HEMM process is a method of manufacturing a self-healing negative active material, characterized in that it is performed for 5 hours to 15 hours at 100 rpm to 1,000 rpm in an Ar atmosphere.
제4항에 있어서,
상기 단계 (b)에서, 상기 카본 블랙은 전체 나노복합체 질량을 중심으로 10 내지 30 중량%의 양으로 포함되는 것을 특징으로 하는 것인, 자기-치유가능한 음극 활물질의 제조 방법.
5. The method of claim 4,
In the step (b), the carbon black is characterized in that it is included in an amount of 10 to 30% by weight based on the total mass of the nanocomposite, the method for producing a self-healing negative active material.
삭제delete 삭제delete 삭제delete
KR1020200131673A 2020-10-13 2020-10-13 Self-healing GaP anode material and lithium secondary battery comprising the same KR102415728B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200131673A KR102415728B1 (en) 2020-10-13 2020-10-13 Self-healing GaP anode material and lithium secondary battery comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200131673A KR102415728B1 (en) 2020-10-13 2020-10-13 Self-healing GaP anode material and lithium secondary battery comprising the same

Publications (2)

Publication Number Publication Date
KR20220049064A KR20220049064A (en) 2022-04-21
KR102415728B1 true KR102415728B1 (en) 2022-07-06

Family

ID=81437404

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200131673A KR102415728B1 (en) 2020-10-13 2020-10-13 Self-healing GaP anode material and lithium secondary battery comprising the same

Country Status (1)

Country Link
KR (1) KR102415728B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110534712A (en) * 2019-07-26 2019-12-03 华南理工大学 A kind of black phosphorus-titanium dioxide-carbon compound cathode materials and preparation method and application

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100660949B1 (en) 2005-03-09 2006-12-26 재단법인서울대학교산학협력재단 Self-healing gallium alloy electrode, lithium secondary battery using thereof and manufacturing method of gallium alloy electrode

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110534712A (en) * 2019-07-26 2019-12-03 华南理工大学 A kind of black phosphorus-titanium dioxide-carbon compound cathode materials and preparation method and application

Also Published As

Publication number Publication date
KR20220049064A (en) 2022-04-21

Similar Documents

Publication Publication Date Title
Zhang et al. Ultra-high mass-loading cathode for aqueous zinc-ion battery based on graphene-wrapped aluminum vanadate nanobelts
CN107743659B (en) Ionic liquid type high-energy lithium ion battery
Fu et al. Highly stable operation of LiCoO2 at cut-off≥ 4.6 V enabled by synergistic structural and interfacial manipulation
JP5225615B2 (en) Lithium ion storage battery containing TiO2-B as negative electrode active material
JP5987401B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and secondary battery
JP2009224307A (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
Alfaruqi et al. Pyro-synthesis of nanostructured spinel ZnMn2O4/C as negative electrode for rechargeable lithium-ion batteries
JP4496366B2 (en) Negative electrode material for polymer solid electrolyte lithium secondary battery and method for producing the same
Han et al. Ce-doped Mn3O4 as high-performance anode material for lithium ion batteries
US20180175387A1 (en) High Energy Lithium Ion Secondary Battery with Improved Lifetime and Energy Density
JP6102727B2 (en) Composite negative electrode active material body, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2016076496A (en) Method of producing anode material for large output lithium ion battery
JP6338840B2 (en) Negative electrode material for lithium ion battery, negative electrode for lithium ion battery, and lithium ion battery
Kim et al. Highly reversible lithium-sulfur batteries with nitrogen-doped carbon encapsulated sulfur cathode and nitrogen-doped carbon-coated ZnS anode
Liu et al. Low-temperature and high-performance Si/graphite composite anodes enabled by sulfite additive
KR20160081689A (en) Composite anode active material, preparing method thereof, anode and lithium secondary battery comprising the same
US20150171426A1 (en) POROUS AMORPHOUS GeOx AND ITS APPLICATION AS AN ANODE MATERIAL IN LI-ION BATTERIES
KR20160059948A (en) Positive active material for rechargeable lithium battery, and positive active material layer and rechargeable lithium battery including the same
Dhaiveegan et al. Investigation of carbon coating approach on electrochemical performance of Li 4 Ti 5 O 12/C composite anodes for high-rate lithium-ion batteries
Zhao et al. Enhanced electrochemical properties of LiNiO2-based cathode materials by nanoscale manganese carbonate treatment
Wang et al. Polymer-chelation synthesis of compositionally homogeneous LiNi1/3Co1/3Mn1/3O2 crystals for lithium-ion cathode
Chen et al. Enhanced lithium storage capability of Li4Ti5O12 anode material with low content Ce modification
JP2012089464A (en) Nonaqueous electrolyte secondary battery and method for manufacturing nonaqueous electrolyte secondary battery
KR102364811B1 (en) Solid polymer electrolyte and Li ion battery comprising the same
Tsai et al. Effect of Single-Walled Carbon Nanotube Sub-carbon Additives and Graphene Oxide Coating for Enhancing the 5 V LiNi0. 5Mn1. 5O4 Cathode Material Performance in Lithium-Ion Batteries

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant