KR102401568B1 - Porphyrin-metaloxide composite and method for preparing the same - Google Patents

Porphyrin-metaloxide composite and method for preparing the same Download PDF

Info

Publication number
KR102401568B1
KR102401568B1 KR1020200075515A KR20200075515A KR102401568B1 KR 102401568 B1 KR102401568 B1 KR 102401568B1 KR 1020200075515 A KR1020200075515 A KR 1020200075515A KR 20200075515 A KR20200075515 A KR 20200075515A KR 102401568 B1 KR102401568 B1 KR 102401568B1
Authority
KR
South Korea
Prior art keywords
porphyrin
metal oxide
formula
diisocyanate
oxide complex
Prior art date
Application number
KR1020200075515A
Other languages
Korean (ko)
Other versions
KR20210157572A (en
Inventor
박지웅
남준식
Original Assignee
광주과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 광주과학기술원 filed Critical 광주과학기술원
Priority to KR1020200075515A priority Critical patent/KR102401568B1/en
Publication of KR20210157572A publication Critical patent/KR20210157572A/en
Application granted granted Critical
Publication of KR102401568B1 publication Critical patent/KR102401568B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • B01J35/004
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/06Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/14Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1616Coordination complexes, e.g. organometallic complexes, immobilised on an inorganic support, e.g. ship-in-a-bottle type catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/08Drying; Calcining ; After treatment of titanium oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 포피린-금속산화물 복합체 및 그 제조방법에 관한 것으로, 보다 상세하게는 금속산화물 층 위에 포피린 유도체(TAPP)로부터 형성된 가교된 포피린 기반 고분자 코팅층을 형성시킴으로써, 안정성 향상 및 높은 광촉매 성능은 물론이고 보다 용이하게 간단한 용액공정에 의해 가교된 코팅층을 형성 가능한 포피린-금속산화물 복합체 및 그 제조방법에 관한 것이다.The present invention relates to a porphyrin-metal oxide complex and a method for preparing the same, and more particularly, by forming a cross-linked porphyrin-based polymer coating layer formed from a porphyrin derivative (TAPP) on a metal oxide layer, as well as improving stability and high photocatalytic performance It relates to a porphyrin-metal oxide complex capable of forming a cross-linked coating layer by a simple solution process more easily and a method for manufacturing the same.

Description

포피린-금속산화물 복합체 및 이의 제조방법{Porphyrin-metaloxide composite and method for preparing the same}Porphyrin-metal oxide composite and method for preparing same {Porphyrin-metaloxide composite and method for preparing the same}

본 발명은 포피린-금속산화물 복합체 및 이의 제조방법에 관한 것으로, 보다 상세하게는 금속산화물 나노입자층과 그 위에 포피린을 함유한 불용성의 코팅층을 형성함으로써, 장시간 높은 과산화수소 생성율의 광촉매 효과를 안정적으로 보이는 포피린 금속산화물 복합체와, 이를 용이하게 제조하는 방법에 관한 것이다.The present invention relates to a porphyrin-metal oxide complex and a method for manufacturing the same, and more particularly, by forming a metal oxide nanoparticle layer and an insoluble coating layer containing porphyrin thereon, porphyrin stably showing the photocatalytic effect of high hydrogen peroxide production rate for a long time It relates to a metal oxide composite and a method for easily manufacturing the same.

통상 광촉매(Photocatalyst)란 자신은 반응 전후에 변화하지 않지만 빛을 흡수하여 반응을 촉진시키는 물질을 의미한다. 최근 이러한 광촉매는 빛에너지의 이용만으로도 다양한 화학물질을 안전하고 용이하게 분해할 수 있는 장점과 항균, 살균 초친수성 등의 특성을 지니고 있는 재료로서 21세기 유망 기술 분야로 크게 각광 받고 있다.In general, a photocatalyst refers to a substance that does not change before and after the reaction, but absorbs light to accelerate the reaction. Recently, these photocatalysts are receiving great spotlight as a promising technology field in the 21st century as a material that has the advantage of being able to safely and easily decompose various chemicals only by using light energy, and properties such as antibacterial, sterilizing and superhydrophilic properties.

기존의 광촉매로서 유기물이나 무기물 단독으로 구성된 광촉매의 단점을 보완하기 위해 유무기 복합 구조를 사용한 예가 있다. 이와 같은 복합 광촉매 구조를 적용함으로써 보다 넓은 파장 범위의 빛을 흡수하거나, 보다 효율적인 빛에너지 사용을 하도록 할 수 있다. 유무기 복합 광촉매는 일반적으로 금속 또는 금속 산화물과 유기물 염료를 화학적으로 결합한 구조를 필요로 한다.As a conventional photocatalyst, there is an example of using an organic-inorganic composite structure to compensate for the shortcomings of a photocatalyst composed of an organic or inorganic material alone. By applying such a complex photocatalytic structure, it is possible to absorb light in a wider wavelength range or to use light energy more efficiently. Organic-inorganic composite photocatalysts generally require a structure in which a metal or metal oxide and an organic dye are chemically combined.

무기물 광촉매에 혼합 또는 결합할 염료로서 포피린 구조를 함유하는 분자 또는 고분자를 사용한다. 그러나 무기물 입자나 박막 표면에 유기분자를 결합하는 화학적 반응이 추가적으로 필요하다는 단점이 있고, 이렇게 형성된 구조는 장기간 빛에 노출 시 포피린이 쉽게 분해되거나 이탈되는 단점이 있다. 또한, 포피린을 함유한 작은 분자나 고분자를 무기물 광촉매 위에 물리적으로 코팅한 경우 복합체의 제조과정 중이나 광촉매 반응 중에 분자들의 응집 및 탈리 등이 발생하여 광촉매로서의 활성이 쉽게 감소하는 문제점이 있다. A molecule or polymer containing a porphyrin structure is used as a dye to be mixed or bound to the inorganic photocatalyst. However, there is a disadvantage that an additional chemical reaction is required to bind the organic molecules to the surface of the inorganic particles or thin film, and the formed structure has the disadvantage that the porphyrin is easily decomposed or separated when exposed to light for a long period of time. In addition, when small molecules or polymers containing porphyrin are physically coated on an inorganic photocatalyst, aggregation and desorption of molecules occur during the manufacturing process of the complex or during the photocatalytic reaction, so that the activity as a photocatalyst is easily reduced.

따라서 간단한 방법으로 제조 가능하고, 제조 후에는 그 구조가 장기간 안정하고, 그 광촉매 활성이 높은 광촉매용 유무기 복합체가 요구된다. Therefore, there is a need for an organic-inorganic composite for a photocatalyst that can be manufactured by a simple method, whose structure is stable for a long period of time after manufacturing, and whose photocatalytic activity is high.

대한민국 등록특허공보 제10-1421572호 (등록일자 : 2014.07.15.)Republic of Korea Patent Publication No. 10-1421572 (Registration Date: 2014.07.15.)

이에, 본 발명은 금속산화물 층 위에 수 나노미터 두께로 가교된 포피린 코팅층을 용이한 방법으로 도입할 수 있으면서 그 안정성 및 광촉매 성능은 향상된 포피린-금속산화물 복합체 및 그 제조 방법을 제공하는 데 목적이 있다.Accordingly, an object of the present invention is to provide a porphyrin-metal oxide composite having improved stability and photocatalytic performance while easily introducing a cross-linked porphyrin coating layer to a thickness of several nanometers on a metal oxide layer and a method for preparing the same. .

이를 위하여, 본 발명에 따른 포피린-금속산화물 복합체는; 2 내지 4개의 이소시아네이트기를 가지는 단량체가 용해된 용액과 2 내지 4개의 아미노기 치환기를 포함하는 포피린 유도체를 반응시켜 형성된 포피린을 함유한 가교된 고분자를 금속산화물 층 위에 코팅층으로 도포하는 것을 특징으로 한다.To this end, the porphyrin-metal oxide complex according to the present invention is; A crosslinked polymer containing porphyrin formed by reacting a solution in which a monomer having 2 to 4 isocyanate groups is dissolved with a porphyrin derivative containing 2 to 4 amino group substituents is applied as a coating layer on the metal oxide layer.

상기 포피린 유도체는 하기 화학식 1 또는 화학식 2로 표시되는 화합물일 수 있다. The porphyrin derivative may be a compound represented by Formula 1 or Formula 2 below.

[화학식 1][Formula 1]

Figure 112020063721892-pat00001
Figure 112020063721892-pat00001

[화학식 2][Formula 2]

Figure 112020063721892-pat00002
Figure 112020063721892-pat00002

단, 상기 화학식 2에서, M은 Fe, Co, Ni, Cu, Zn, Ga, V, Ti, Pd, Pt 또는 Ag이다.However, in Formula 2, M is Fe, Co, Ni, Cu, Zn, Ga, V, Ti, Pd, Pt or Ag.

상기 가교된 포피린 고분자 코팅층은 상기 포피린 유도체가 하기 화학식 1일 경우 상기 화학식 3으로 표시되는 네트워크 형태의 구조를 가질 수 있으며, 상기 포피린 유도체가 상기 화학식 2일 경우 하기 화학식 4로 표시되는 네트워크 형태의 구조를 가질 수 있다.The crosslinked porphyrin polymer coating layer may have a network structure represented by Formula 3 when the porphyrin derivative is the following Formula 1, and a network structure represented by Formula 4 when the porphyrin derivative is Formula 2 can have

[화학식 3][Formula 3]

Figure 112020063721892-pat00003
Figure 112020063721892-pat00003

[화학식 4][Formula 4]

Figure 112020063721892-pat00004
Figure 112020063721892-pat00004

상기 화학식 3 및 화학식 4에서, R은 아릴렌 또는 알킬렌이며,In Formulas 3 and 4, R is arylene or alkylene,

상기 화학식 4에서 M은 화학식 2에서의 정의와 같다.In Formula 4, M is the same as defined in Formula 2.

상기 2 내지 4개의 이소시아네이트기를 가지는 단량체는 PDI (p-phenylene diisocyanate), HDI(hexamethylene diisocyanate), ODI(octamethylene diisocyanate), DDI(decamethylene diisocyanate), 3DI(dodecamethylene diisocyanate), TDI(toluenediisocyanate), 일 수 있으며 뿐만 아니라 2개이상의 탄소로 이어진 2개 내지 4개의 isocyanate를 포함하는 유기분자일 수 있다. 또한 이로 이루어진 군 중에서 선택되는 적어도 하나 이상의 단량체일 수 있다.The monomer having 2 to 4 isocyanate groups may be PDI (p-phenylene diisocyanate), HDI (hexamethylene diisocyanate), ODI (octamethylene diisocyanate), DDI (decamethylene diisocyanate), 3DI (dodecamethylene diisocyanate), TDI (toluenediisocyanate), and In addition, it may be an organic molecule containing two to four isocyanates joined by two or more carbons. In addition, it may be at least one or more monomers selected from the group consisting of them.

상기 금속산화물 층은 TiO2, SrTiO3, ZnO, CdS 및 SnO2로 이루어진 군에서 선택되는 1종 이상일 수 있다.The metal oxide layer may be at least one selected from the group consisting of TiO 2 , SrTiO 3 , ZnO, CdS and SnO 2 .

과산화수소 생성능력을 보다 향상시키기 위하여, 상기 포피린-금속산화물 복합체에 일정한 온도 범위로 열처리할 수 있다.In order to further improve the hydrogen peroxide generating ability, the porphyrin-metal oxide complex may be heat-treated in a certain temperature range.

또한, 본 발명에 따른 포피린-금속산화물 복합체 제조방법은 2 내지 4개의 이소시아네이트기를 가지는 단량체가 용해된 용액과 2 내지 4개의 아미노기를 가지는 포피린 유도체를 반응시켜 가교된 포피린 고분자 입자가 분산된 용액을 제조하는 단계 및 상기 제조한 용액을 금속산화물 층 위에 스핀 코팅 후 증발시켜 가교된 포피린 고분자 코팅층을 형성하는 단계를 포함한다.In addition, the method for preparing a porphyrin-metal oxide complex according to the present invention reacts a solution in which a monomer having 2 to 4 isocyanate groups is dissolved with a porphyrin derivative having 2 to 4 amino groups to prepare a solution in which cross-linked porphyrin polymer particles are dispersed and spin-coating the prepared solution on the metal oxide layer and then evaporating to form a crosslinked porphyrin polymer coating layer.

상기 아미노기 치환기를 포함하는 포피린 유도체는 상기 화학식 1 또는 상기 화학식 2로 표시되는 화합물일 수 있다.The porphyrin derivative including the amino group substituent may be a compound represented by Formula 1 or Formula 2 above.

상기 2 내지 4개의 이소시아네이트기를 가지는 단량체는 PDI (p-phenylene diisocyanate), HDI(hexamethylene diisocyanate), ODI(octamethylene diisocyanate), DDI(decamethylene diisocyanate) , 3DI(dodecamethylene diisocyanate), 일 수 있으며 뿐만 아니라 2개이상의 탄소로 이어진 2개 내지 4개의 isocyanate를 포함하는 유기분자일 수 있다. 또한 이로 이루어진 군 중에서 선택되는 적어도 하나 이상의 단량체일 수 있다.The monomer having 2 to 4 isocyanate groups may be p-phenylene diisocyanate (PDI), hexamethylene diisocyanate (HDI), octamethylene diisocyanate (ODI), decamethylene diisocyanate (DDI), dodecamethylene diisocyanate (3DI), as well as two or more It may be an organic molecule containing 2 to 4 isocyanates followed by carbon. In addition, it may be at least one or more monomers selected from the group consisting of them.

상기 금속산화물 층은 TiO2, SrTiO3, ZnO, CdS 및 SnO2로 이루어진 군에서 선택되는 1종 이상일 수 있다.The metal oxide layer may be at least one selected from the group consisting of TiO 2 , SrTiO 3 , ZnO, CdS and SnO 2 .

또한, 본 발명에 따른 포피린-금속산화물 복합체 제조방법은 상기 코팅층이 형성된 포피린-금속산화물 복합체에 금속 원소를 담지하는 단계를 포함할 수 있다.In addition, the method for manufacturing the porphyrin-metal oxide complex according to the present invention may include the step of supporting a metal element on the porphyrin-metal oxide complex on which the coating layer is formed.

또한, 광촉매 성능을 보다 향상시키기 위하여, 상기 코팅층이 형성된 포피린-금속산화물 복합체에 열처리하는 단계를 더 포함할 수 있다.In addition, in order to further improve the photocatalytic performance, the method may further include heat-treating the porphyrin-metal oxide complex on which the coating layer is formed.

이때 상기 열처리는 250 내지 400 ℃ 온도에서 이루어질 수 있다.In this case, the heat treatment may be performed at a temperature of 250 to 400 °C.

본 발명에 따르면, 금속산화물 층 위에 가교된 포피린 고분자 입자가 분산된 용액을 스핀 코팅함으로써 보다 용이하게 코팅층 형성이 가능하며, 분산된 용액이 증발하면서 가교된 포피린 고분자 입자 간에 공유결합을 형성하는 반응이 추가적으로 진행되면서 코팅층 전체가 가교되고, 금속산화물 표면에 밀착한 형태로 형성되게 되므로, 가열이나 용매의 접촉에도 코팅층이 분리 또는 탈리되지 않는 장점을 가진다. 또한, 얇은 가교된 포피린 코팅층이 코팅된 금속산화물은 그 단일 성분일 ‹š에 비해 높은 광촉매 효율과 더 오랜 시간 동안 과산화수소 생성이 가능하다는 장점을 가진다. 추가로 코팅층에 열처리를 하게 되면 복합체의 광촉매 성능이 증가한다.According to the present invention, the coating layer can be formed more easily by spin-coating a solution in which the cross-linked porphyrin polymer particles are dispersed on the metal oxide layer, and the reaction of forming a covalent bond between the cross-linked porphyrin polymer particles as the dispersed solution evaporates is performed. As the additional process progresses, the entire coating layer is crosslinked and formed in a form in close contact with the surface of the metal oxide, so that the coating layer is not separated or detached even by heating or contact with a solvent. In addition, the metal oxide coated with a thin cross-linked porphyrin coating layer has advantages in that it is possible to produce hydrogen peroxide for a longer period of time and high photocatalytic efficiency compared to its single component. If the coating layer is additionally heat-treated, the photocatalytic performance of the composite is increased.

도 1은 TiO2 광촉매 층에 본 발명에 따른 포피린 코팅층을 형성하여 제조한 포피린-금속산화물 복합체의 개념도.
도 2는 본 발명에 따라 TAPP 포피린 유도체와 HDI 단량체를 중합시켜 제조한 포피린 기반 고분자 용액을 TiO2 층에 코팅하는 과정을 나타내는 순서도.
도 3은 본 발명에 따라 TAPP 포피린 유도체와 HDI 단량체를 중합시켜 제조한 포피린 기반 고분자의 구조를 나타내는 개념도.
도 4는 TiO2 층과 본 발명에 따른 포피린-금속산화물 복합체의 표면 확대도.
도 5는 TiO2 금속산화물 층, 포피린 층 및 본 발명에 따른 포피린-금속산화물 복합체의 UV-Vis 흡수 성능 측정 그래프.
도 6는 TiO2 광촉매층, 가교된 포피린 고분자층, 및 본 발명에 따른 포피린-금속산화물 복합체 각각의 H2O2 생성량 측정 그래프.
도 7은 본 발명에 따른 포피린-금속산화물 복합체의 H2O2 생성 안정성 시험 그래프.
도 8은 본 발명에 따른 열처리한 포피린-금속산화물 복합체의 제조과정을 나타내는 순서도.
도 9는 열처리된 포피린-금속산화물 복합체의 표면 확대도.
도 10은 본 발명에 따른 열처리 여부별 포피린-금속산화물 복합체의 H2O2 생성량 비교 측정 그래프.
도 11는 본 발명에 따른 열처리 여부별 UV-Vis 흡수 성능 측정 그래프.
1 is a conceptual diagram of a porphyrin-metal oxide complex prepared by forming a porphyrin coating layer according to the present invention on a TiO 2 photocatalyst layer.
2 is a flowchart showing a process of coating a porphyrin-based polymer solution prepared by polymerizing a TAPP porphyrin derivative and an HDI monomer according to the present invention on a TiO 2 layer.
3 is a conceptual diagram showing the structure of a porphyrin-based polymer prepared by polymerizing a TAPP porphyrin derivative and an HDI monomer according to the present invention.
Figure 4 is a TiO 2 layer and a porphyrin according to the present invention - an enlarged view of the surface of the metal oxide complex.
5 is a TiO 2 metal oxide layer, a porphyrin layer, and a porphyrin-metal oxide composite according to the present invention UV-Vis absorption performance measurement graph.
6 is a TiO 2 photocatalyst layer, a cross-linked porphyrin polymer layer, and a porphyrin-metal oxide complex according to the present invention H 2 O 2 A measurement graph of each.
7 is a H 2 O 2 production stability test graph of the porphyrin-metal oxide complex according to the present invention.
8 is a flowchart showing a process of manufacturing a heat-treated porphyrin-metal oxide complex according to the present invention.
9 is an enlarged view of the surface of the heat-treated porphyrin-metal oxide complex.
10 is a comparative measurement graph of H 2 O 2 production of the porphyrin-metal oxide complex according to whether or not heat treatment according to the present invention is performed.
11 is a graph of measuring UV-Vis absorption performance by heat treatment according to the present invention.

이하, 도면을 참고로 본 발명에 따른 포피린-금속산화물 복합체 및 그 제조방법을 상세히 설명한다.Hereinafter, a porphyrin-metal oxide complex and a method for manufacturing the same according to the present invention will be described in detail with reference to the drawings.

도 1은 TiO2 층에 본 발명에 따른 가교된 포피린 코팅층을 형성하여 제조한 포피린-금속산화물 복합체의 개념도이며, 도 2는 본 발명에 따라 TAPP 포피린 유도체와 HDI 단량체를 중합시켜 제조한 가교된 포피린 고분자가 분산된 용액을 TiO2 금속산화물 층에 코팅하는 과정을 나타내는 순서도이다.1 is a conceptual diagram of a porphyrin-metal oxide complex prepared by forming a cross-linked porphyrin coating layer according to the present invention on a TiO 2 layer, and FIG. 2 is a cross-linked porphyrin prepared by polymerizing a TAPP porphyrin derivative and an HDI monomer according to the present invention. A flow chart showing the process of coating the polymer-dispersed solution on the TiO 2 metal oxide layer.

본 발명에 따른 포피린-금속산화물 복합체는 금속산화물 층 위에, 2 내지 4개의 이소시아네이트기를 가지는 단량체가 용해된 용액과 2 내지 4개의 아미노기 치환기를 포함하는 포피린 유도체를 반응시켜 형성된 가교된 포피린 고분자가 분산된 용액을 코팅시켜 가교된 포피린 고분자 코팅층을 형성한다. 가교된 구조를 가지는 고분자가 용액 중에 잘 분산된 특징으로 인해 액상의 코팅제를 스핀 코팅 등으로 보다 용이하게 적용할 수 있는 장점을 가지며, 용액의 조성, 농도 및 코팅 두께 등을 적절하게 조절하여 형성시키기 용이하다. 이때 가교된 포피린 고분자 용액의 농도는 0.01 g/ml에서 0.1 g/ml 일 수 있으며 바람직하게는 0.03 g/ml 이며 반응시간은 100시간 이내일 수 있으나 바람직하게는 30 내지 60 시간이다.The porphyrin-metal oxide complex according to the present invention is a cross-linked porphyrin polymer formed by reacting a solution in which a monomer having 2 to 4 isocyanate groups is dissolved with a porphyrin derivative containing 2 to 4 amino group substituents on a metal oxide layer is dispersed. The solution is coated to form a cross-linked porphyrin polymer coating layer. Because the polymer having a crosslinked structure is well dispersed in a solution, it has the advantage of being able to more easily apply a liquid coating agent by spin coating, etc. Easy. At this time, the concentration of the crosslinked porphyrin polymer solution may be 0.01 g/ml to 0.1 g/ml, preferably 0.03 g/ml, and the reaction time may be within 100 hours, but preferably 30 to 60 hours.

상기 아미노기 치환기를 포함하는 포피린 유도체는 아민기가 적어도 2 내지 4개 치환된 형태의 포피린 유도체일 수 있으며, 일 예로 하기 화학식 1 또는 화학식 2로 표시되는 화합물일 수 있다.The porphyrin derivative including an amino group substituent may be a porphyrin derivative in which at least 2 to 4 amine groups are substituted, and for example, may be a compound represented by the following Chemical Formula 1 or Chemical Formula 2.

[화학식 1][Formula 1]

Figure 112020063721892-pat00005
Figure 112020063721892-pat00005

[화학식 2][Formula 2]

Figure 112020063721892-pat00006
Figure 112020063721892-pat00006

참고로, 상기 화학식 2에서, M은 금속원자로서 Fe, Co, Ni, Cu, Zn, Ga, V, Ti, Pd, Pt 또는 Ag가 될 수 있다.For reference, in Formula 2, M is a metal atom and may be Fe, Co, Ni, Cu, Zn, Ga, V, Ti, Pd, Pt, or Ag.

상기 화학식 1로 표시되는 포피린 유도체가 2 내지 4개의 이소시아네이트기를 가지는 단량체가 용해된 용액에서 고분자 입자를 가지게 되며, 포피린 기반 고분자 용액을 코팅 후 증발시키면 이웃하는 입자 간 하기 화학식 3 또는 화학식 4와 같은 3차원 네트워크 결합이 형성되면서 용매에 녹지 않는 형태를 취하게 된다.The porphyrin derivative represented by Chemical Formula 1 has polymer particles in a solution in which a monomer having 2 to 4 isocyanate groups is dissolved, and when the porphyrin-based polymer solution is coated and evaporated, 3 as shown in Chemical Formula 3 or Chemical Formula 4 below As a dimensional network bond is formed, it takes a form insoluble in a solvent.

[화학식 3][Formula 3]

Figure 112020063721892-pat00007
Figure 112020063721892-pat00007

[화학식 4][Formula 4]

Figure 112020063721892-pat00008
Figure 112020063721892-pat00008

상기 화학식 3 및 화학식 4에서, R은 아릴렌 또는 알킬렌이며,In Formulas 3 and 4, R is arylene or alkylene,

상기 화학식 4에서 M은 화학식 2에서의 정의와 같다.In Formula 4, M is the same as defined in Formula 2.

상기 화학식 3 및 화학식 4에서, R은 아릴렌 또는 알킬렌이며, 반응한 이소시아네이트기를 가지는 단량체에 의해 결정된다. 또한, 상기 화학식 4에서 M은 화학식 2에서의 정의와 같다In Formulas 3 and 4, R is arylene or alkylene, and is determined by a monomer having a reacted isocyanate group. In addition, in Formula 4, M is the same as defined in Formula 2

상기 2 내지 4개의 이소시아네이트기를 가지는 단량체는 테트라 메틸렌 디이소시아네이트 (TMDI), 헥사 메틸렌 디이소시아네이트 (HDI), 1,4- 시클로 헥 실렌 디이소시아네이트 (CHDI), 옥타 메틸렌 디이소시아네이트 (ODI), 데카 메틸렌 디이소시아네이트 (DDI), 도데카 메틸렌 디이소시아네이트 (3DI), p-페닐렌 디이소시아네이트 (P-pheny lene diisocyanate)-페닐렌 디이소시아네이트 (MBDI), 톨루엔 디이소시아네이트 (TDI), 디페닐-4,4'-디이소시아네이트 (DPDI), 메틸렌 디페닐-4,4'-디이소시아네이트 (MDI), 메틸렌-디사이클로 헥실렌 -4,4'-디이소시아네이트 ( HMDI), 트리메틸 헥사 메틸렌 디이소시아네이트 (TMHDI), 나프탈렌 디이소시아네이트 (NDI), 클로로펜닐렌 디이소시아네이트 (CDI), p- 크실릴렌 디이소시아네이트 (PXDI), m-자일릴렌 디이소시아네이트 (MXDI), 디메틸 헥사 메틸렌 디이소시아네이트 (DMHDI) 또는 디페닐 디임틸 메탄 -4,4'-디이소시아네이트 (DMMDI)일 수 있으며, 보다 바람직하게는 PDI (p-phenylene diisocyanate), HDI(hexamethylene diisocyanate), ODI(octamethylene diisocyanate), DDI(decamethylene diisocyanate) 및 3DI(dodecamethylene diisocyanate), 일 수 있으며 뿐만 아니라 2개이상의 탄소로 이어진 2개 내지 4개의 isocyanate를 포함하는 유기분자일 수 있다. 또한 이로 이루어진 군 중에서 선택되는 적어도 하나 이상의 단량체일 수 있다.The monomer having 2 to 4 isocyanate groups is tetramethylene diisocyanate (TMDI), hexamethylene diisocyanate (HDI), 1,4-cyclohexylene diisocyanate (CHDI), octamethylene diisocyanate (ODI), decamethylene di Isocyanate (DDI), dodecamethylene diisocyanate (3DI), p-phenylene diisocyanate (P-pheny lene diisocyanate)-phenylene diisocyanate (MBDI), toluene diisocyanate (TDI), diphenyl-4,4' -diisocyanate (DPDI), methylene diphenyl-4,4'-diisocyanate (MDI), methylene-dicyclohexylene-4,4'-diisocyanate (HMDI), trimethyl hexamethylene diisocyanate (TMHDI), naphthalene diisocyanate (NDI), chloropennylene diisocyanate (CDI), p-xylylene diisocyanate (PXDI), m-xylylene diisocyanate (MXDI), dimethyl hexamethylene diisocyanate (DMHDI) or diphenyl diimtyl methane -4,4'-diisocyanate (DMMDI), more preferably PDI (p-phenylene diisocyanate), HDI (hexamethylene diisocyanate), ODI (octamethylene diisocyanate), DDI (decamethylene diisocyanate), and 3DI (dodecamethylene diisocyanate) , and may also be organic molecules containing 2 to 4 isocyanates followed by 2 or more carbons. In addition, it may be at least one or more monomers selected from the group consisting of them.

본 발명에 따른 포피린-금속산화물 복합체의 금속산화물 층 위에 형성된 포피린 고분자 코팅층은 금속산화물 층과 공유결합을 통해 코팅층이 고정된다. 이때 사용되는 포피린 고분자 용액의 경우 100시간 이내에 제조된 것이며 바람직하게는 60시간일수 있으며 농도는 0.01 g/ml에서 0.1 g/ml 일수 있으며 바람직하게는 0.03 g/ml 이다.The porphyrin polymer coating layer formed on the metal oxide layer of the porphyrin-metal oxide complex according to the present invention is fixed to the coating layer through a covalent bond with the metal oxide layer. In the case of the porphyrin polymer solution used at this time, it is prepared within 100 hours, preferably 60 hours, and the concentration is 0.01 g/ml to 0.1 g/ml, preferably 0.03 g/ml.

상기 금속산화물 층을 이루는 것은 TiO2, SrTiO3, ZnO, CdS 및 SnO2로 이루어진 군에서 선택되는 1종 이상일 수 있으며, 바람직하게는 TiO2일 수 있다.Forming the metal oxide layer may be one or more selected from the group consisting of TiO 2 , SrTiO 3 , ZnO, CdS and SnO 2 , preferably TiO 2 .

도 4는 TiO2 와 본 발명에 따른 포피린-금속산화물 복합체의 표면 확대도를 나타내는데, 이를 통해 TiO2 사이의 공간을 메우면서 금속산화물 상면에 일정한 두께를 가지는 포피린 고분자 코팅층이 형성됨을 알 수 있다.4 shows an enlarged view of the surface of TiO 2 and the porphyrin-metal oxide composite according to the present invention. It can be seen that a porphyrin polymer coating layer having a constant thickness is formed on the upper surface of the metal oxide while filling the space between TiO 2 .

추가로, 도 8에서와 같이 상기 본 발명에 따른 가교된 포피린-금속산화물 복합체에 일정한 온도 범위에서 열처리를 할 경우 도 9와 같이 표면에 결정형태의 응집체가 형성되며, 결과적으로 H2O2 생성량이 크게 상향됨을 실험을 통해 확인하였다. 상기 열처리는 250 내지 400 ℃ 온도일 수 있으며, 바람직하게는 320 내지 360 ℃ 일 수 있다.In addition, as shown in FIG. 8, when the crosslinked porphyrin-metal oxide complex according to the present invention is heat-treated in a certain temperature range, crystalline aggregates are formed on the surface as shown in FIG. 9, and as a result, H 2 O 2 production amount It was confirmed through the experiment that this was greatly increased. The heat treatment may be at a temperature of 250 to 400 °C, preferably 320 to 360 °C.

이런 성능의 증가는 열처리된 실시예의 UV-Vis 흡수 그래프 도 11에서 볼 수 있듯 빛 흡수의 증가와 포피린 분자간 응집형성의 결과임을 알 수 있다. It can be seen that this increase in performance is a result of the increase in light absorption and the formation of aggregation between porphyrin molecules, as shown in FIG. 11 of the UV-Vis absorption graph of the heat-treated embodiment.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.Hereinafter, preferred examples are presented to help the understanding of the present invention. However, the following examples are only provided for easier understanding of the present invention, and the content of the present invention is not limited by the examples.

[제조예] : [Production Example] :

제조예 1. 포피린-TiOPreparation Example 1. Porphyrin-TiO 22 복합체 (PUT) 및 열처리한 포피린-TiO Composite (PUT) and heat-treated porphyrin-TiO 22 복합체 (PRUT) 제조 Composite (PRUT) manufacturing

유리판에 2-methoxyethanol에 희석 시킨 TiO2 반죽을 스핀 코팅하고 건조하여 TiO2층을 제조한다.A TiO 2 layer diluted in 2-methoxyethanol is spin-coated on a glass plate and dried to prepare a TiO 2 layer.

포피린 고분자 층의 제조는 테트라키스(4-아미노페닐)_)포피린 (TAPP)을 dimethyl sulfoxide (DMSO)에 녹여 유기용액을 제조하였다. 또한 hexamethylene diisocyanate (HDI)를 DMSO에 녹여 유기용액을 제조하였다. 다음으로 테트라키스(4-아미노페닐)포피린 용액을 HDI 용액과 혼합하였다. 제조한 혼합용액 중 일부를 상온, 질소를 흘려주며 60시간 반응시켜 가교된 포피린 고분자가 분산된 용액을 형성하였다. For the preparation of the porphyrin polymer layer, an organic solution was prepared by dissolving tetrakis(4-aminophenyl)_)porphyrin (TAPP) in dimethyl sulfoxide (DMSO). In addition, an organic solution was prepared by dissolving hexamethylene diisocyanate (HDI) in DMSO. Next, the tetrakis (4-aminophenyl) porphyrin solution was mixed with the HDI solution. A part of the prepared mixed solution was reacted for 60 hours at room temperature while flowing nitrogen to form a solution in which the cross-linked porphyrin polymer was dispersed.

상기 제조한 가교된 포피린 고분자의 용액을 상기 제조한 TiO2 층에 일정량 올린 후 스핀 코팅하였다. 이후 진공오븐을 이용해 건조시켜 제조하였다.A certain amount of the prepared solution of the cross-linked porphyrin polymer was placed on the prepared TiO 2 layer, and then spin-coated. Thereafter, it was prepared by drying using a vacuum oven.

또한 상기 제조된 포피린-TiO2 복합체를 질소를 지속적으로 흘려주면서 340℃ 에서 1시간 가열하여 열처리한 포피린-TiO2 (PRUT) 복합체를 제조하였다.In addition, the porphyrin-TiO 2 composite prepared above was heated at 340° C. for 1 hour while continuously flowing nitrogen to prepare a porphyrin-TiO 2 (PRUT) composite.

제조예 2. 철 원소가 담지된 가교된 포피린-TiO 2 복합체(M-PUT) 제조 FeCl2 Preparation Example 2. Cross-linked porphyrin-TiO 2 composite (M-PUT) supported with iron element FeCl 2

FeClH2O 가 녹아있는 DMF 용액에 PUT의 분말을 넣고 150도에서 1시간 교반한다. 고체를 여과하여 DMF로 세척한 후 진공오븐을 이용해 150℃에서 48시간 건조시켜 제조하였다. Put the powder of PUT in the DMF solution in which FeCl 2 · H 2 O is dissolved and stir at 150°C for 1 hour. The solid was filtered, washed with DMF, and dried at 150° C. for 48 hours using a vacuum oven.

[실험예][Experimental example]

실험예 1. TiOExperimental Example 1. TiO 22 , 포피린 그리고 포피린-TiO, porphyrins and porphyrin-TiO 2 2 (PUT)(PUT) 의 UV-Vis 흡수 실험UV-Vis absorption experiment

도 5의 UV-Vis 실험은 유리에 코팅된 TiO2와 가교된 포피린 고분자로 만든 박막 그리고 PUT의 흡수를 측정한 것이다. PUT의 흡수는 가교된 포피린 고분자와 TiO2 흡수가 합쳐진 모양을 보인다. 이 결과는 포피린이 TiO2 표면에 고르게 혼합된 것을 보인다.The UV-Vis experiment of FIG. 5 measures the absorption of a thin film made of TiO 2 coated on glass and a cross-linked porphyrin polymer, and PUT. The absorption of PUT shows the combined shape of the cross-linked porphyrin polymer and the absorption of TiO 2 . This result shows that the porphyrin is evenly mixed on the TiO 2 surface.

실험예 2. PRUT의 UV-Vis 흡수 실험Experimental Example 2. UV-Vis absorption experiment of PRUT

도 11의 UV-Vis 실험은 열처리된 PUT인 PRUT의 빛 흡수 강도를 측정한 것이다. PRUT의 흡수는 열처리 온도가 높아짐에 따라 흡수 강도가 높아진다.The UV-Vis experiment of FIG. 11 measures the light absorption intensity of PRUT, which is a heat-treated PUT. The absorption strength of PRUT increases as the heat treatment temperature increases.

실험예 3. 과산화수소 생성량 측정 실험Experimental Example 3. Hydrogen peroxide production amount measurement experiment

도 6과 7에서 산소가 포화된 에탄올: 물 혼합용액 (9:1비율, 100 μL) 용액을 TiO2, 포피린 고분자, PUT 그리고 PRUT에 올리고 500 W Xenon lamp를 이용해 1분간 빛을 조사한 후의 과산화수소 생성량 측정값이다. 빛을 조사 후 필름 위에 있는 에탄올:물 혼합용액을 10 μL 채취하여 tetramethlybenzidine 용액 (0.5 mL, 0.1 mg/mL in 10 mM citrate buffer; pH 3.8)과 phosphorous buffer 용액 (0.5 mL)에 넣어 색변화를 UV-Vis의 흡수 강도 변화를 이용해 측정하였다. 정량 분석은 동일 농도의 과산화수소의 양을 변화시켜 색변화에 따른 UV-Vis 흡수 강도 변화를 이용해 정량 분석하였다.In Figures 6 and 7, the oxygen-saturated ethanol:water mixed solution (9:1 ratio, 100 μL) solution was placed on TiO 2, porphyrin polymer, PUT and PRUT, and the amount of hydrogen peroxide produced after irradiating with light for 1 minute using a 500 W Xenon lamp is a measure After irradiating with light, collect 10 μL of the ethanol:water mixed solution on the film and add it to tetramethlybenzidine solution (0.5 mL, 0.1 mg/mL in 10 mM citrate buffer; pH 3.8) and phosphorous buffer solution (0.5 mL) to UV-detect the color change. It was measured using the change in absorption intensity of -Vis. Quantitative analysis was performed by changing the amount of hydrogen peroxide at the same concentration and using the change in UV-Vis absorption intensity according to color change.

실험예 4. 촉매 재사용성 실험Experimental Example 4. Catalyst Reusability Test

상기 실험예 3의 과산화수소 생성량 측정 실험과 동일한 방법을 이용하여 5분 동안 빛을 조사하여 PUT의 과산화수소의 생성량을 측정하였고, 60회 반복 실험하여 재사용성 및 장기 안정성 실험을 수행하였다. Using the same method as the hydrogen peroxide production amount measurement experiment of Experimental Example 3, the amount of hydrogen peroxide production of the PUT was measured by irradiating light for 5 minutes, and reusability and long-term stability experiments were performed by repeating the experiment 60 times.

실험예 5 열처리에 따른 과산화 수소 생성량 측정 실험 Experimental Example 5 Hydrogen peroxide production amount measurement experiment according to heat treatment

상기 실험예 3의 과산화수소 생성량 측정 실험과 동일한 방법을 이용하여 PRUT의 과산화수소 생성량 측정 실험을 수행하였고, 도 10에서와 같이, PRUT의 활성이 PUT 보다 우수함을 확인할 수 있었다.The hydrogen peroxide production amount measurement experiment of the PRUT was performed using the same method as the hydrogen peroxide production amount measurement experiment of Experimental Example 3, and as shown in FIG. 10 , it was confirmed that the PRUT activity was superior to that of the PUT.

Claims (13)

2 내지 4개의 이소시아네이트기를 가지는 단량체가 용해된 용액과 2 내지 4개의 아미노기 치환기를 포함하는 포피린 유도체를 반응시켜 형성된, 가교된 포피린 고분자를 광촉매 금속산화물 층에 코팅한 후 상기 포피린 고분자를 250 내지 400 ℃ 로 열처리한 포피린 고분자 코팅층;을 포함하는 포피린-금속산화물 복합체.
A crosslinked porphyrin polymer formed by reacting a solution in which a monomer having 2 to 4 isocyanate groups is dissolved with a porphyrin derivative containing 2 to 4 amino group substituents is coated on a photocatalytic metal oxide layer, and then the porphyrin polymer is heated at 250 to 400 ° C. A porphyrin-metal oxide complex comprising a porphyrin polymer coating layer heat-treated with
제1항에 있어서,
상기 포피린 유도체는 하기 화학식 1 또는 화학식 2로 표시되는 화합물인 것을 특징으로 하는 포피린-금속산화물 복합체:
[화학식 1]
Figure 112020063721892-pat00009

[화학식 2]
Figure 112020063721892-pat00010

단, 상기 화학식 2에서, M은 Fe, Co, Ni, Cu, Zn, Ga, V, Ti, Pd, Pt 또는 Ag이다.
According to claim 1,
The porphyrin derivative is a porphyrin-metal oxide complex, characterized in that it is a compound represented by the following Chemical Formula 1 or Chemical Formula 2:
[Formula 1]
Figure 112020063721892-pat00009

[Formula 2]
Figure 112020063721892-pat00010

However, in Formula 2, M is Fe, Co, Ni, Cu, Zn, Ga, V, Ti, Pd, Pt or Ag.
제2항에 있어서,
상기 포피린 고분자 코팅층은
상기 포피린 유도체가 하기 화학식 1일 경우 상기 화학식 3으로 표시되는 네트워크 형태의 구조를 가지며,
상기 포피린 유도체가 상기 화학식 2일 경우 하기 화학식 4로 표시되는 네트워크 형태의 구조를 가지는 것을 특징으로 하는 포피린-금속산화물 복합체:
[화학식 3]

Figure 112020063721892-pat00011

[화학식 4]
Figure 112020063721892-pat00012

상기 화학식 3 및 화학식 4에서, R은 아릴렌 또는 알킬렌이며,
상기 화학식 4에서 M은 화학식 2에서의 정의와 같다.
3. The method of claim 2,
The porphyrin polymer coating layer is
When the porphyrin derivative is represented by Formula 1, it has a network structure represented by Formula 3,
When the porphyrin derivative is the formula (2), the porphyrin-metal oxide complex, characterized in that it has a network structure represented by the following formula (4):
[Formula 3]

Figure 112020063721892-pat00011

[Formula 4]
Figure 112020063721892-pat00012

In Formulas 3 and 4, R is arylene or alkylene,
In Formula 4, M is the same as defined in Formula 2.
제1항에 있어서,
상기 2 내지 4개의 이소시아네이트기를 가지는 단량체는 PDI (p-phenylene diisocyanate), HDI(hexamethylene diisocyanate), ODI(octamethylene diisocyanate), DDI(decamethylene diisocyanate) 및 3DI(dodecamethylene diisocyanate)로 이루어진 군 중에서 선택되는 적어도 하나 이상의 단량체인 것을 특징으로 하는 포피린-금속산화물 복합체.
According to claim 1,
The monomer having 2 to 4 isocyanate groups is at least one selected from the group consisting of p-phenylene diisocyanate (PDI), hexamethylene diisocyanate (HDI), octamethylene diisocyanate (ODI), decamethylene diisocyanate (DDI), and dodecamethylene diisocyanate (3DI). A porphyrin-metal oxide complex, characterized in that it is a monomer.
제1항에 있어서,
상기 금속산화물 층은 TiO2, SrTiO3, ZnO, CdS 및 SnO2로 이루어진 군에서 선택되는 1종 이상을 포함하는 것을 특징으로 하는 포피린-금속산화물 복합체.
According to claim 1,
The metal oxide layer is TiO 2 , SrTiO 3 , ZnO, CdS and SnO 2 Porphyrin-metal oxide composite, characterized in that it comprises at least one selected from the group consisting of.
삭제delete 2 내지 4개의 이소시아네이트기를 가지는 단량체가 용해된 용액과 2 내지 4개의 아미노기를 가지는 포피린 유도체를 반응시켜 포피린 기반 고분자가 분산된 용액을 제조하는 단계;
상기 제조한 용액을 광촉매 금속산화물 층 위에 스핀코팅 후 증발시켜 포피린 고분자 코팅층을 형성하는 단계; 및
상기 코팅층에 250 내지 400 ℃ 로 열처리하는 단계;
를 포함하는 포피린-금속산화물 복합체 제조방법.
preparing a solution in which a porphyrin-based polymer is dispersed by reacting a solution in which a monomer having 2 to 4 isocyanate groups is dissolved with a porphyrin derivative having 2 to 4 amino groups;
forming a porphyrin polymer coating layer by spin-coating the prepared solution on the photocatalytic metal oxide layer and then evaporating; and
heat-treating the coating layer at 250 to 400°C;
A porphyrin-metal oxide complex manufacturing method comprising a.
제7항에 있어서,
상기 포피린 유도체는 하기 화학식 1 또는 하기 화학식 2로 표시되는 화합물인 것을 특징으로 하는 포피린-금속산화물 복합체 제조방법:
[화학식 1]
Figure 112020063721892-pat00013

[화학식 2]
Figure 112020063721892-pat00014

단, 상기 화학식 2에서, M은 Fe, Co, Ni, Cu, Zn, Ga, V, Ti, Pd, Pt 또는 Ag이다.
8. The method of claim 7,
The porphyrin derivative is a porphyrin-metal oxide complex preparation method, characterized in that it is a compound represented by the following Chemical Formula 1 or the following Chemical Formula 2:
[Formula 1]
Figure 112020063721892-pat00013

[Formula 2]
Figure 112020063721892-pat00014

However, in Formula 2, M is Fe, Co, Ni, Cu, Zn, Ga, V, Ti, Pd, Pt or Ag.
제7항에 있어서,
상기 2 내지 4개의 이소시아네이트기를 가지는 단량체는 PDI (p-phenylene diisocyanate), HDI(hexamethylene diisocyanate), ODI(octamethylene diisocyanate), DDI(decamethylene diisocyanate) 및 3DI(dodecamethylene diisocyanate)로 이루어진 군 중에서 선택되는 적어도 하나 이상의 단량체인 것을 특징으로 하는 포피린-금속산화물 복합체 제조방법.
8. The method of claim 7,
The monomer having 2 to 4 isocyanate groups is at least one selected from the group consisting of p-phenylene diisocyanate (PDI), hexamethylene diisocyanate (HDI), octamethylene diisocyanate (ODI), decamethylene diisocyanate (DDI), and dodecamethylene diisocyanate (3DI). A method for producing a porphyrin-metal oxide complex, characterized in that it is a monomer.
제7항에 있어서,
상기 금속산화물 층은 TiO2, SrTiO3, ZnO, CdS 및 SnO2로 이루어진 군에서 선택되는 1종 이상을 포함하는 것을 특징으로 하는 포피린-금속산화물 복합체 제조방법.
8. The method of claim 7,
The metal oxide layer is TiO 2 , SrTiO 3 , ZnO, CdS and SnO 2 Porphyrin-metal oxide composite manufacturing method, characterized in that it comprises at least one selected from the group consisting of.
제7항에 있어서,
상기 코팅층이 형성된 포피린-금속산화물 복합체에 금속을 담지하는 단계; 를 포함하는 포피린-금속산화물 복합체 제조방법.
8. The method of claim 7,
supporting a metal on the porphyrin-metal oxide complex on which the coating layer is formed; A porphyrin-metal oxide complex manufacturing method comprising a.
삭제delete 삭제delete
KR1020200075515A 2020-06-22 2020-06-22 Porphyrin-metaloxide composite and method for preparing the same KR102401568B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200075515A KR102401568B1 (en) 2020-06-22 2020-06-22 Porphyrin-metaloxide composite and method for preparing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200075515A KR102401568B1 (en) 2020-06-22 2020-06-22 Porphyrin-metaloxide composite and method for preparing the same

Publications (2)

Publication Number Publication Date
KR20210157572A KR20210157572A (en) 2021-12-29
KR102401568B1 true KR102401568B1 (en) 2022-05-24

Family

ID=79176583

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200075515A KR102401568B1 (en) 2020-06-22 2020-06-22 Porphyrin-metaloxide composite and method for preparing the same

Country Status (1)

Country Link
KR (1) KR102401568B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114573826B (en) * 2022-02-28 2022-12-27 上海交通大学 Two-dimensional metal organic framework based on isocyano coordination, preparation method and application
CN116273191A (en) * 2023-03-28 2023-06-23 上海应用技术大学 Cobalt ion doped TiO 2 microsphere/TCPP (Cu) photocatalyst and preparation method and application thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101421572B1 (en) 2013-02-28 2014-07-22 금오공과대학교 산학협력단 Photocatalyst comprising TiO2-porphyrin derivatives complex and method for preparing the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Dogukan H. Apaydin 외, ChemCatChem, 2018, 10, 1793~1797 (2017.12.29.)
S. S. Nizam Udidin 외, Langmuir, 2017, 33, 12777~12784 (2017.10.12.)

Also Published As

Publication number Publication date
KR20210157572A (en) 2021-12-29

Similar Documents

Publication Publication Date Title
Acharyya et al. Organic imine cages: molecular marriage and applications
Wang et al. Covalent organic framework photocatalysts: structures and applications
Dong et al. Integrating single atoms with different microenvironments into one porous organic polymer for efficient photocatalytic CO2 reduction
KR102401568B1 (en) Porphyrin-metaloxide composite and method for preparing the same
Segura et al. Post-synthetic modification of covalent organic frameworks
Jayakumar et al. Recent advances in visible‐light‐driven hydrogen evolution from water using polymer photocatalysts
Zhou et al. Porphyrinic MOF film for multifaceted electrochemical sensing
Chang et al. Oxidation‐reduction molecular junction covalent organic frameworks for full reaction photosynthesis of H2O2
Li et al. Chemically robust covalent organic frameworks: progress and perspective
Friedman et al. Efficient bio-inspired oxygen reduction electrocatalysis with electropolymerized cobalt corroles
Day et al. Porphyrin polymers and organic frameworks
Osadchii et al. Revisiting nitrogen species in covalent triazine frameworks
Yue et al. Conductive metallophthalocyanine framework films with high carrier mobility as efficient chemiresistors
Stavila et al. MOF-based electronic and opto-electronic devices
So et al. Synthesis and photophysical properties of some benzoxazole and benzothiazole compounds
Huang et al. Nanocomposite multilayer film of preyssler-type polyoxometalates with fine tunable electrocatalytic activities
Cao et al. Silver Cluster‐Porphyrin‐Assembled Materials as Advanced Bioprotective Materials for Combating Superbacteria
Wang et al. In Situ Assembly of Hydrogen‐Bonded Organic Framework on Metal–Organic Framework: An Effective Strategy for Constructing Core–Shell Hybrid Photocatalyst
Majumdar et al. Polyaniline-coated filter papers: cost effective hybrid materials for adsorption of dyes
Huo et al. Synthesis and assembly with mesoporous silica MCM-48 of platinum (II) porphyrin complexes bearing carbazyl groups: spectroscopic and oxygen sensing properties
Xiao et al. Band structure engineering of schiff‐base microporous organic polymers for enhanced visible‐light photocatalytic performance
Leandri et al. Exploring the optical and electrochemical properties of homoleptic versus heteroleptic diimine copper (I) complexes
Li et al. 0D, 1D, and 2D supramolecular nanoassemblies of a porphyrin: controllable assembly, and dimensionality‐dependent catalytic performances
Sasaki et al. Osmium complex–chromophore conjugates with both singlet-to-triplet absorption and long triplet lifetime through tuning of the heavy-atom effect
Li et al. 2D Zn‐Porphyrin‐Based Co (II)‐MOF with 2‐Methylimidazole Sitting Axially on the Paddle–Wheel Units: An Efficient Electrochemiluminescence Bioassay for SARS‐CoV‐2

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant