KR102319331B1 - Cryogenic rapid refrigeration system - Google Patents

Cryogenic rapid refrigeration system Download PDF

Info

Publication number
KR102319331B1
KR102319331B1 KR1020210063329A KR20210063329A KR102319331B1 KR 102319331 B1 KR102319331 B1 KR 102319331B1 KR 1020210063329 A KR1020210063329 A KR 1020210063329A KR 20210063329 A KR20210063329 A KR 20210063329A KR 102319331 B1 KR102319331 B1 KR 102319331B1
Authority
KR
South Korea
Prior art keywords
refrigerant
temperature
condenser
pressure
compressor
Prior art date
Application number
KR1020210063329A
Other languages
Korean (ko)
Inventor
박원재
Original Assignee
주식회사 우진이앤지
박원재
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 우진이앤지, 박원재 filed Critical 주식회사 우진이앤지
Priority to KR1020210063329A priority Critical patent/KR102319331B1/en
Application granted granted Critical
Publication of KR102319331B1 publication Critical patent/KR102319331B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/33Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant
    • F25B41/335Expansion valves with the valve member being actuated by the fluid pressure, e.g. by the pressure of the refrigerant via diaphragms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/006Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant containing more than one component
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/29High ambient temperatures

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid Mechanics (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

A cryogenic rapid refrigeration system according to the present invention comprises a high-temperature unit (101) and a low-temperature unit (102). The low-temperature unit includes: a first compressor (1) for compressing a gaseous refrigerant by operating with an electric motor; a first condenser (2) for liquefying the refrigerant compressed by the first compressor; a first expansion valve (10) for reducing the high-temperature and high-pressure refrigerant condensed and liquefied in the first condenser to a pressure capable of causing evaporation by a throttling action; a first evaporator (12) for cooling the inside of a container by absorbing heat from surroundings by rapid expansion and vaporization from the first expansion valve; and a cascade first heat exchanger (13) for inducing an increase in the pressure of the refrigerant returning to the compressor at a low pressure after the evaporation in the first evaporator and condensing the condensed liquid tube refrigerant secondarily to lower an evaporation temperature. The high-temperature unit includes: a second compressor (1') for compressing a gaseous refrigerant; a second condenser (2') for liquefying the refrigerant compressed by the second compressor; a second expansion valve (10') for reducing the high-temperature and high-pressure refrigerant condensed and liquefied in the second condenser to a pressure capable of causing evaporation through the throttling action; and a second cascade heat exchanger (13') for secondarily condensing the refrigerant from the first condenser of the low-temperature unit by rapid expansion and vaporization. The present invention can reduce power consumption.

Description

초저온 급속냉동 시스템{Cryogenic rapid refrigeration system}Cryogenic rapid refrigeration system

본 발명은 초저온 급속냉동 시스템에 관한 것으로서, 더욱 상세하게는 초저온을 빨리 얻기 위해 비등점이 서로 다른 냉매를 사용하는 이원 냉동시스템에 관한 것이다.The present invention relates to a cryogenic rapid refrigeration system, and more particularly, to a dual refrigeration system using refrigerants having different boiling points to quickly obtain a cryogenic temperature.

냉동 또는 냉장 장치는 밀폐된 용기의 온도를 주위 온도보다 낮추는 장치로 냉매의 기화열을 이용하여 열을 흡수한다.A refrigeration or refrigeration device is a device that lowers the temperature of a closed container than the ambient temperature, and absorbs heat by using the heat of vaporization of a refrigerant.

가장 일반적인 냉동기는 증기 압축식 냉동기로 압축기, 응축기, 증발기 및 팽창밸브로 구성되어, 전동기로 압축기를 운전하여 기체 상태인 냉매를 압축하여 응축기로 보내고, 응축기에서 액화하여 팽창밸브로 보내고, 팽창밸브에서 유량이 조절되면서 증발기로 분사되면 급팽창 기화하여 증발기에서 주위로부터 열을 흡수하여 용기 속을 냉각한다. 기화된 냉매는 다시 압축기로 돌아와 압축되어 액체 상태가 된다. 이처럼 반복되는 압축, 응축, 팽창, 기화의 4단계 변화를 냉동 사이클이라 한다.The most common refrigerator is a vapor compression type refrigerator and consists of a compressor, a condenser, an evaporator and an expansion valve. When the flow rate is controlled and sprayed to the evaporator, it rapidly expands and vaporizes to absorb heat from the surroundings in the evaporator to cool the inside of the container. The vaporized refrigerant returns to the compressor and is compressed into a liquid state. This repeated four-step change of compression, condensation, expansion, and vaporization is called a refrigeration cycle.

냉동기는 가정용 냉동고, 식품냉동용 냉동창고, 에어컨 등 다방면에 사용되고 있으며, 목적에 따라 적절한 냉매를 선택하며 영하 30~40℃까지는 1단 압축 냉동기로 얻을 수 있으나, 그 이하의 저온을 얻고자 할 때는 2단 압축냉동기를 사용한다.Refrigerators are used in various fields such as household freezers, freezer warehouses for food freezing, air conditioners, etc. The appropriate refrigerant is selected according to the purpose. A two-stage compression refrigerator is used.

냉매는 단일냉매로 원하는 특성을 얻을 수 없는 경우 2개 이상의 순수냉매를 혼합한 혼합냉매를 이용한다. 혼합냉매는 오존층 파괴 억제 효과도 있어 대체냉매로서 상업화되고 있다.When the desired characteristics cannot be obtained with a single refrigerant, a mixed refrigerant obtained by mixing two or more pure refrigerants is used. Mixed refrigerants also have the effect of suppressing ozone layer depletion, so they are being commercialized as alternative refrigerants.

종래의 냉동기는 주로 R-22와 R404A 냉매를 사용하여 공랭식 응축기를 사용하여 응축냉매를 팽창밸브로 보내준다. 계절에 따라 차이가 있지만, 한여름 날씨에는 팽창밸브의 액관온도가 약 40℃~48℃에 달하여 냉동 효율이 떨어지는 문제점이 있다. The conventional refrigerator mainly uses R-22 and R404A refrigerants and sends the condensed refrigerant to the expansion valve using an air-cooled condenser. Although there is a difference according to the season, there is a problem in that the liquid pipe temperature of the expansion valve reaches about 40°C to 48°C in midsummer weather, and the refrigeration efficiency is lowered.

한국등록특허 제10-0337791호Korean Patent No. 10-0337791

상기의 문제점을 해결하고자 본 발명은 초저온을 얻기 위하여 혼합냉매를 사용하고 2단으로 열교환기를 통과시켜 낮은 증발온도를 얻어 온도 하강을 급속하게 하는 초저온 급속냉동 시스템을 제공하고자 한다.In order to solve the above problems, the present invention is to provide a cryogenic rapid freezing system that uses a mixed refrigerant to obtain a cryogenic temperature and rapidly lowers the temperature by obtaining a low evaporation temperature by passing a heat exchanger in two stages.

상기의 해결하고자 하는 과제를 위한 본 발명에 따른 초저온 급속냉동 시스템은 고온부(101)와 저온부(102)로 구성되고, 상기 저온부는, 전동기로 운전하여 기체 상태인 냉매를 압축하는 제1 압축기(1); 상기 제1 압축기에서 압축한 냉매를 액화하는 제1 응축기(2); 상기 제1 응축기에서 응축 액화된 고온 고압의 냉매를 교축작용으로 증발을 일으킬 수 있는 압력까지 감압하는 제1 팽창밸브(10); 상기 제1 팽창밸브로부터 급팽창 기화하여 주위로부터 열을 흡수하여 용기 속을 냉각하는 제1 증발기(12) 및 상기 제1 증발기에서 증발 후 저압으로 압축기로 돌아오는 냉매의 압력 상승을 유도하고 응축된 액관 냉매를 2차로 응축시켜 증발온도를 낮게 하는 캐스케이드 제1 열교환기(13)를 포함하고, 상기 고온부는, 기체 상태인 냉매를 압축하는 제2 압축기(1'); 상기 제2 압축기에서 압축한 냉매를 액화하는 제2 응축기(2'); 상기 제2 응축기에서 응축 액화된 고온 고압의 냉매를 교축작용으로 증발을 일으킬 수 있는 압력까지 감압하는 제2 팽창밸브(10') 및 급팽창 기화하여 상기 저온부의 제1 응축기에서 나온 냉매를 2차로 응축하는 제2 캐스케이드 열교환기(13')를 포함한다.The cryogenic rapid freezing system according to the present invention for the above-mentioned problem is composed of a high temperature part 101 and a low temperature part 102, and the low temperature part is operated by an electric motor to compress a gaseous refrigerant in a first compressor (1) ); a first condenser (2) for liquefying the refrigerant compressed by the first compressor; a first expansion valve 10 for reducing the high-temperature and high-pressure refrigerant condensed and liquefied in the first condenser to a pressure capable of causing evaporation by a throttling action; The first evaporator 12, which rapidly expands and vaporizes from the first expansion valve to absorb heat from the surroundings to cool the inside of the container, and the first evaporator to induce an increase in the pressure of the refrigerant returning to the compressor at a low pressure after evaporating and condensed and a cascade first heat exchanger 13 for secondarily condensing the liquid refrigerant to lower the evaporation temperature, and the high temperature part includes: a second compressor 1' for compressing the refrigerant in a gaseous state; a second condenser (2') for liquefying the refrigerant compressed by the second compressor; A second expansion valve 10 ′ for reducing the high-temperature and high-pressure refrigerant condensed and liquefied in the second condenser to a pressure capable of causing evaporation through a throttling action, and rapid expansion and vaporization of the refrigerant from the first condenser of the low-temperature part to secondary and a second cascade heat exchanger (13') for condensing.

상기 고온부의 냉매는 R-134A는 61%, R-32는 30%, R-116 9%의 질량비로 혼합한 것을 특징으로 한다.The refrigerant of the high temperature part is characterized in that R-134A is mixed in a mass ratio of 61%, R-32 is 30%, and R-116 is 9%.

상기 저온부의 냉매는 저온부 혼합 냉매는 R-134A 55%, R-116 20%, R-23 17%, R-170 5% 및 R-744 3%의 질량비로 혼합한 것을 특징으로 한다.The low-temperature part refrigerant is characterized in that the low-temperature part mixed refrigerant is mixed in a mass ratio of R-134A 55%, R-116 20%, R-23 17%, R-170 5% and R-744 3%.

상기 팽창밸브는, 모세관(21)과 감온통(22)으로 연결된 상부실이 주입 냉매와 다이어프램으로 균형을 이루다 어느 한쪽의 압력이 약하면 약한 쪽으로 다이아프램이 밀려 밸브를 여닫게 하는 것을 특징으로 한다.The expansion valve is characterized in that the upper chamber connected by the capillary tube 21 and the thermosensitive tube 22 is balanced by the injected refrigerant and the diaphragm, and when the pressure of either side is weak, the diaphragm is pushed to the weak side, and the valve is opened and closed.

상기 감온통은 R-1150 냉매가 충전된 것을 특징으로 한다.The thermal chamber is characterized in that the R-1150 refrigerant is charged.

본 발명에 따른 초저온 급속냉동 시스템은 에너지 절감과 저온부 냉동 능력을 향상시켜 기존 시중 초저온 이원 냉동시스템 대비 전력소모를 줄이고 능력은 기존 대비 35~40% 정도 향상시킬 수 있다.The cryogenic quick freezing system according to the present invention can reduce energy consumption and improve the low-temperature part refrigeration ability, thereby reducing power consumption compared to the existing commercial cryogenic dual refrigeration system and improving the ability by about 35-40% compared to the conventional one.

또한, 저온부의 냉매 회로구성은 액상냉매와 기상냉매를 별도로 구분하여 분리한 후 합류 혼합함으로써 기동 시 고압 압력을 최대한 낮게 하여 냉동기 손상을 방지하고, 응축된 액상냉매가 증발기로 증발하고 열교환기를 통과한 기상 냉매가 합류하여 증발함으로써 보다 낮은 증발 온도를 얻어 고내온도 하강속도를 빠르게 할 수 있다.In addition, the refrigerant circuit configuration of the low temperature part separates the liquid refrigerant and the gaseous refrigerant separately and mixes them together to minimize the high pressure pressure at startup to prevent damage to the refrigerator, and the condensed liquid refrigerant evaporates to the evaporator and passes through the heat exchanger. By merging and evaporating gaseous refrigerants, a lower evaporation temperature can be obtained, and the rate of decrease of the internal temperature can be increased.

종래의 시스템은 1차 열교환 후 팽창밸브를 통과시켜 온도를 낮추는 시스템이나, 본 발명은 기상냉매를 1차로 열교환기에 의해 응축된 후 2차로 흡입쪽 열교환기를 통과함으로써 보다 낮은 증발 온도를 가지고 팽창밸브를 통과하게 되어 증발후 흡입되는 열량까지도 사용하므로 열효율이 높은 장점이 있다.The conventional system is a system in which the temperature is lowered by passing through the expansion valve after the primary heat exchange, but the present invention provides an expansion valve with a lower evaporation temperature by first condensing the gaseous refrigerant by the heat exchanger and then passing it through the suction side heat exchanger secondarily. It has the advantage of high thermal efficiency because it uses even the amount of heat absorbed after evaporation.

종래의 기술로는 단일 냉매 또는 다단 압축을 하여도 냉매의 특성 때문에 초저온을 얻을 수 없으나, 본 발명은 혼합냉매를 사용하여 비등점이 다른 2개의 냉동사이클을 병렬로 사용하여 -70℃까지 온도를 급속히 하강시킬 수 있다.In the prior art, even if a single refrigerant or multi-stage compression is performed, an ultra-low temperature cannot be obtained due to the characteristics of the refrigerant, but the present invention uses a mixed refrigerant and uses two refrigeration cycles with different boiling points in parallel to rapidly increase the temperature to -70°C. can be lowered

도 1은 본 발명에 따른 초저온 급속냉동 시스템의 구성도이다.
도 2는 본 발명에 따른 팽창밸브의 구성도이다.
도 3은 본 발명에 따른 열교환기의 구성 단면도이다.
1 is a block diagram of a cryogenic rapid freezing system according to the present invention.
2 is a block diagram of an expansion valve according to the present invention.
3 is a configuration cross-sectional view of a heat exchanger according to the present invention.

이하, 본 발명의 실시를 위한 구체적인 실시예와 도면을 참고하여 설명한다. 본 발명의 실시예는 하나의 발명을 설명하기 위한 것으로서 권리범위는 예시된 실시예에 한정되지 아니하고, 예시된 도면은 발명의 명확성을 위하여 핵심적인 내용만 확대 도시하고 부수적인 것을 생략하였으므로 도면에 한정하여 해석하여서는 아니 된다.Hereinafter, with reference to specific examples and drawings for the practice of the present invention will be described. The embodiment of the present invention is intended to explain one invention, and the scope of rights is not limited to the illustrated embodiment, and the illustrated drawings are limited to the drawings because only the essential content is enlarged and illustrated for the clarity of the invention and incidental elements are omitted. should not be interpreted as such.

이원 냉동기는 고온용 냉동기에 의하여 저온용 냉동기의 응축기를 냉각시키는 조합의 냉동기로서 응축기와 증발기 사이의 온도차를 크게 할 수 있어 영하 40℃ 이하로 급속 냉동을 할 수 있다. 저온부에 압력이 높은 냉매를 사용하고 고온부에 압력이 낮은 냉매를 사용한다.The dual refrigerator is a combination refrigerator that cools the condenser of the low-temperature refrigerator by the high-temperature refrigerator, and the temperature difference between the condenser and the evaporator can be increased, so that rapid freezing can be performed at minus 40°C or less. A refrigerant with high pressure is used for the low temperature part and a refrigerant with a low pressure is used for the high temperature part.

도 1은 본 발명에 따른 초저온 급속냉동 시스템의 구성도로서 고온부(101)와 저온부(102)로 구성된다. 1 is a block diagram of a cryogenic rapid freezing system according to the present invention, and is composed of a high temperature part 101 and a low temperature part 102 .

저온부는 전동기로 운전하여 기체 상태인 냉매를 압축하는 제1 압축기(1), 제1 압축기에서 압축한 냉매를 액화하는 제2 응축기(2), 제2 응축기에서 응축 액화된 고온 고압의 냉매를 교축작용(throttling)으로 증발을 일으킬 수 있는 압력까지 감압하는 제1 팽창밸브(10), 급팽창 기화하여 주위로부터 열을 흡수하여 용기 속을 냉각하는 제1 증발기(12) 및 제1 증발기에서 증발 후 저압으로 압축기로 돌아오는 냉매의 압력 상승을 유도하고 응축된 액관 냉매를 2차로 응축시켜 증발온도를 낮게 하는 제1 캐스케이드 열교환기(13)를 포함한다.The low-temperature part is operated by an electric motor to throttle the first compressor (1) that compresses the refrigerant in gaseous state, the second condenser (2) that liquefies the refrigerant compressed by the first compressor, and the high-temperature and high-pressure refrigerant condensed and liquefied in the second condenser The first expansion valve 10, which reduces the pressure to a pressure that can cause evaporation by throttling, the first evaporator 12 that cools the inside of the container by absorbing heat from the surroundings through rapid expansion and vaporization, and after evaporation in the first evaporator and a first cascade heat exchanger 13 for inducing an increase in the pressure of the refrigerant returning to the compressor at a low pressure and for secondarily condensing the condensed liquid tube refrigerant to lower the evaporation temperature.

고온부는 저온부와 마찬가지로 기체 상태인 냉매를 압축하는 제2 압축기(1'), 압축기에서 압축한 냉매를 액화하는 제2 응축기(2'), 응축기에서 응축 액화된 고온 고압의 냉매를 교축작용으로 증발을 일으킬 수 있는 압력까지 감압하는 제2 팽창밸브(10') 및 급팽창 기화하여 저온부의 응축기에서 나온 냉매를 2차로 응축하는 제2 캐스케이드 열교환기(13')를 포함한다.Like the low temperature part, the second compressor 1' compresses the refrigerant in gaseous state, the second condenser 2' liquefies the refrigerant compressed by the compressor, and the high-temperature and high-pressure refrigerant condensed in the condenser is evaporated by a throttling action. and a second expansion valve 10' for reducing pressure to a pressure capable of causing

상기 제2 캐스케이드 열교환기(13')는 저온부 응축기와 고온부 증발기를 조합하여 저온부 냉매의 열을 효과적으로 제거하여 응축액화를 촉진한다. 제3 열교환기(13")도 압축기(1')로 돌아오는 냉매의 잠열을 이용하여 혼합 냉매를 2차로 응축하거나 온도를 강하한다.The second cascade heat exchanger 13' effectively removes the heat of the low-temperature refrigerant by combining the low-temperature condenser and the high-temperature evaporator to promote condensate. The third heat exchanger 13" also uses the latent heat of the refrigerant returning to the compressor 1' to secondarily condense or lower the temperature of the mixed refrigerant.

기존 냉동/냉장창고는 냉동 -20℃, 냉장 +2℃를 기준으로 냉매는 R-22, R-404A, R-507를 주로 사용하여 운용한다. 이러한 냉매들은 시운전시 고내온도 -20℃ 경우 고압은 약 10bar~15bar, 저압은 약 0.5bar~1bar의 운전압력이 형성된다. 이 경우 응축온도가 35~45℃로 높아서 팽창밸브쪽 증발온도에 한계가 있어 고내온도의 하강속도가 느리며, 초기 운전시 압축기 부하량이 커 고장원인이 될 수 있다.Refrigerants R-22, R-404A, and R-507 are mainly used for operation based on refrigeration -20℃ and refrigeration +2℃ in existing refrigeration/refrigeration warehouses. When these refrigerants have a high internal temperature of -20°C during test operation, a high pressure of about 10 bar to 15 bar and a low pressure of about 0.5 bar to 1 bar are formed. In this case, since the condensing temperature is high as 35~45℃, there is a limit to the evaporation temperature on the expansion valve side, so the rate of decrease of the internal temperature is slow, and the load of the compressor during initial operation is large, which may cause a malfunction.

본 발명의 고온부 혼합 냉매는 R-134A(-26.07℃) 61%, R-32(-51.65℃) 30%, R-116(-78.15℃) 9%의 질량비로 혼합하여 사용하여 순차적으로 증발온도를 얻어 냉각시킨다.The high-temperature mixed refrigerant of the present invention is mixed and used in a mass ratio of R-134A (-26.07 ℃) 61%, R-32 (-51.65 ℃) 30%, R-116 (-78.15 ℃) 9% to sequentially evaporate temperature obtained and cooled.

본 발명의 저온부 혼합 냉매는 R-134A 55%, R-116 20%, R-23 17%, R-170 5% 및 R-744 3%의 질량비로 혼합하여 단계적인 응축과정과 팽창과정 및 증발과정을 거쳐 -70℃까지 온도를 하강시킨다.The low-temperature mixed refrigerant of the present invention is mixed in a mass ratio of R-134A 55%, R-116 20%, R-23 17%, R-170 5%, and R-744 3% to step-by-step condensation process, expansion process and evaporation Through the process, the temperature is lowered to -70°C.

R-134A 냉매는 임계온도가 101.1℃이고 끓는점이 -26.07℃이며, R-32는 임계온도가 78.11℃이고 끓는점이 -51.65℃이고, R-744는 임계온도가 30.98℃이고 끓는점이 -62.89℃이다.R-134A refrigerant has a critical temperature of 101.1°C and a boiling point of -26.07°C, R-32 has a critical temperature of 78.11°C and a boiling point of -51.65°C, and R-744 has a critical temperature of 30.98°C and a boiling point of -62.89°C. am.

혼합 냉매는 응축기의 초기 부하를 줄이기 위하여 모두 응축되지 않고 R-134A 및 R-32와 같이 높은 응축온도의 냉매만을 응축하고 캐스케이드 열교환기(13)를 거쳐 응축한다.In order to reduce the initial load of the condenser, the mixed refrigerant is not condensed at all, but only refrigerants having a high condensing temperature such as R-134A and R-32 and condensed through the cascade heat exchanger 13 .

응축된 혼합 냉매는 분주기(4)에서 나누어져 R-134A R-32가 먼저 팽창밸브(10) 통과하여 증발기(12) 온도를 내려준다. 분주기는 냉매의 양을 나누어 분기하는 분기관이다.The condensed mixed refrigerant is divided by the divider (4), and R-134A R-32 first passes through the expansion valve (10) to lower the temperature of the evaporator (12). The divider is a branch pipe that divides and branches the amount of refrigerant.

R-744 경우 기상냉매로 열교환기(13)를 통과한 후 액상으로 합류하여 액관 온도를 보다 낮게 형성하고 기존 냉매보다 내부압력을 상승시키는 효과가 있다.In the case of R-744, after passing through the heat exchanger 13 as a gaseous refrigerant, it merges into the liquid phase to form a lower liquid pipe temperature and to increase the internal pressure compared to the existing refrigerant.

분주기(4)에서 R-744 기상 냉매는 진행방향으로 그대로 통과하여 캐스케이드 열교환기(13)에서 응축되고, 액상냉매는 중력에 의해 분리되어 혼합기(7)에서 R-744 액상 냉매와 혼합된다. 분주기에는 액상냉매의 흐름을 막아 방향을 전환시키는 가로막이 형성될 수 있다. 가로막은 도 1과 같이 제1 동관과 서로 다른 직경을 가져 제1 동관 속에 삽입되는 제2 동관의 끝단을 45°정도 경사지게 잘라내어 형성한다.In the dispenser (4), the R-744 gaseous refrigerant passes as it is in the traveling direction and is condensed in the cascade heat exchanger (13), and the liquid refrigerant is separated by gravity and mixed with the R-744 liquid refrigerant in the mixer (7). A diaphragm may be formed in the dispenser to block the flow of the liquid refrigerant to change the direction. The diaphragm is formed by cutting the end of the second copper tube inserted into the first copper tube at an angle of 45° to have a diameter different from that of the first copper tube as shown in FIG. 1 .

본 발명의 혼합냉매는 기존의 R-22, R-404A 및 R-507의 혼합냉매보다 흡입압력이 1bar정도가 높음으로 배관 내 오일 회수가 원활하며 흡입압력이 높아서 증발기(12) 내 냉매 유동량이 많아서 낮은 증발온도로 온도 하강속도가 기존대비 약 40% 이상 상승되는 장점이 있다. 표 1은 본 발명에 따른 이원 냉동시스템의 제원이다,The mixed refrigerant of the present invention has a suction pressure of about 1 bar higher than that of the conventional mixed refrigerants of R-22, R-404A and R-507, so oil recovery in the pipe is smooth, and the refrigerant flow rate in the evaporator 12 is high because of the high suction pressure It has the advantage of increasing the temperature drop rate by about 40% or more compared to the existing one due to the low evaporation temperature. Table 1 is the specification of the binary refrigeration system according to the present invention,

이원 냉동시스템의 제원Specifications of binary refrigeration system 종류Kinds 10.5HP 냉동기 10.5HP Freezer 15HP 냉동기15HP Freezer 구성Configuration 고온부 3HP/저온부 7.5HPHigh temperature part 3HP / Low temperature part 7.5HP 고온부 5HP/저온부 10HPHigh temperature part 5HP / Low temperature part 10HP 냉매Refrigerant 고온부 R-134, R-32, R116
저온부 R-23,R116,R-170
High temperature part R-134, R-32, R116
Low temperature part R-23,R116,R-170
고온부 R-134,R-32,R116
저온부 R-23,R-116,R-170
High temperature part R-134,R-32,R116
Low temperature part R-23,R-116,R-170
사용온도operating temperature -50 ~ -70℃-50 ~ -70℃ -50 ~ -70℃-50 ~ -70℃ 사용전력power used 7.87kW7.87kW 11.25kW11.25kW

도 2는 본 발명에 따른 팽창밸브(10)의 구성도로서, 모세관(21)과 감온통(22)으로 연결된 상부실이 주입 냉매와 다이어프램으로 균형을 이루다 어느 한쪽의 압력이 약하면 약한 쪽으로 다이아프램이 밀려 밸브를 여닫게 한다. 감온통이 뜨거워(과열) 압력이 높으면 균압관과 스프링을 밀어내어 밸브를 더 열고 가스 통과량을 증가시켜 과열도를 낮아지게 한다.2 is a block diagram of the expansion valve 10 according to the present invention, in which the upper chamber connected by the capillary tube 21 and the thermal tube 22 is balanced with the injected refrigerant and the diaphragm. This pushes the valve open and close. If the thermostat is hot (overheated) and the pressure is high, the pressure equalization tube and spring are pushed out to open the valve more and increase the gas flow to lower the superheat.

종래에는 감온통내의 가스를 사용냉매를 충전하여 종류별로 사용하여 온도 응답성이 떨어지는 문제점이 있다. 본 발명에서는 R-1150 냉매를 사용하여 2~103.8 ℃ 넓은 온도조정이 가능하여 빠른 온도 응답성을 갖는 것이 특징이다.Conventionally, there is a problem in that the temperature responsiveness is poor because the gas in the thermostat is filled with the used refrigerant and used for each type. In the present invention, using R-1150 refrigerant, a wide temperature control of 2 to 103.8 ℃ is possible, and it is characterized in that it has a fast temperature response.

도 3은 본 발명에 따른 증발기와 압축기 사이에 설치된 열교환기의 구성 단면도로서, 저압의 흡입관(23)과 모세관(21), 복수의 액관(24) 및 전자밸브로 구성된다.3 is a cross-sectional view of a heat exchanger installed between an evaporator and a compressor according to the present invention, and is composed of a low-pressure suction pipe 23 and a capillary tube 21, a plurality of liquid pipes 24, and an electromagnetic valve.

일반적으로 열교환기는 판형 열교환기를 사용하나, 본 발명에 따른 열교환기(13)는 캐스케이드 열교환기로 열전달 면적을 증가시키기 위하여 유체의 흐름이 서로 평행이 되게 저압 냉매 배관에 직접 삽입하는 대향류 열교환기를 사용한다. 증발기에서 증발 후 저압으로 압축기로 돌아오는 냉매의 폐열을 이용함으로써 압력 상승을 유도하고 응축된 액관 냉매를 2차로 응축시켜 증발온도를 낮게 할 수 있다.In general, the heat exchanger uses a plate heat exchanger, but the heat exchanger 13 according to the present invention uses a counter-flow heat exchanger directly inserted into the low-pressure refrigerant pipe so that the flow of the fluid is parallel to each other in order to increase the heat transfer area as a cascade heat exchanger. . By using the waste heat of the refrigerant returning to the compressor at low pressure after evaporating in the evaporator, the pressure increase is induced and the condensed liquid tube refrigerant is condensed secondarily to lower the evaporation temperature.

종래의 열교환기는 저온부 사이클의 열원을 고온부 사이클에 전달하는 역할만하기에 과열도와 과냉도의 제어가 불가능하고, 그에 따라 냉동 사이클의 효율이 떨어지는 문제점이 있다.The conventional heat exchanger only serves to transfer the heat source of the low-temperature part cycle to the high-temperature part cycle, so it is impossible to control the degree of superheat and the degree of subcooling, so there is a problem in that the efficiency of the refrigeration cycle decreases.

동관 스파이럴 열교환액관의 경우 열교환전달 효과를 극대화시킴과 동시에 일반 판형 열교환기에서 얻을 수 없는 온도범위까지 얻을 수 있어 냉동기 부하를 줄일 수 있는 장점이 있다.In the case of a copper tube spiral heat exchange liquid tube, it maximizes the heat exchange transfer effect and at the same time can obtain a temperature range that cannot be obtained in a general plate heat exchanger, thereby reducing the load on the refrigerator.

초저온 혼합냉매의 경우에는 주로 저압 및 고압가스가 사용되므로 고압가스 경우 임계온도가 낮기 때문에 초기 가동시 액화가 되지 않아서 냉동기 고압 상승원인으로 작용하여 냉동기 밸브손상과 고장원인이 될 수 있다.In the case of cryogenic mixed refrigerant, low-pressure and high-pressure gas is mainly used, and in the case of high-pressure gas, because the critical temperature is low, it does not liquefy during initial operation, which may cause damage to the refrigerator valve and malfunction.

응축기에서 응축된 냉매 일부는 동관 직경을 달리한다. 수액기로 향하는 동관은 9.52mm 직경을 사용하여 응축된 냉매의 30% 정도를 분주하고, 증발기로 향하는 동관은 15.88mm 직경을 사용하여 70% 정도로 냉매량을 조절하며 캐스케이드 열교환기로 유도한다.Some of the refrigerant condensed in the condenser has a different copper tube diameter. The copper tube to the receiver uses a diameter of 9.52mm to dispense about 30% of the condensed refrigerant, and the copper tube to the evaporator uses a diameter of 15.88mm to control the amount of refrigerant to about 70% and leads to a cascade heat exchanger.

본 발명은 팬제어 온도조절기(11)를 사용하여 증발기 팬지연을 통해 증발기의 증발시점을 조절함으로써 고압 냉매에 빠른 액화를 통해서 작동시 최대한 낮은온도에 증발온도를 얻음으로써 고압상승을 방지할 수 있다.The present invention uses the fan control temperature controller 11 to control the evaporation time of the evaporator through the evaporator fan delay, so that the high pressure can be prevented from rising by obtaining the evaporation temperature at the lowest possible temperature during operation through fast liquefaction to the high-pressure refrigerant. .

수액기(6)는 액화한 냉매를 일시 모아두는 용기로 증발기 내의 부하변동에 따른 냉매량의 변화를 흡수하고 불완전 응축된 불응축 가스를 제거한다. 냉동 장치를 휴지할 때나 저압측 수리시 냉매를 회수하여 저장한다.The receiver 6 is a container for temporarily storing the liquefied refrigerant, and absorbs the change in the refrigerant amount according to the load change in the evaporator and removes the incompletely condensed non-condensing gas. Refrigerant is recovered and stored when the refrigeration system is stopped or when the low pressure side is repaired.

필터드라이어(8)는 냉매에 포함된 습기와 이물질을 제거한다.The filter dryer 8 removes moisture and foreign substances contained in the refrigerant.

본 발명에 따른 초저온 급속냉동 시스템은 혼합냉매를 사용하고 2단으로 열교환기를 통과시켜 낮은 증발온도를 얻어 온도 하강을 급속하게 할 수 있다.The cryogenic quick freezing system according to the present invention uses a mixed refrigerant and passes through a heat exchanger in two stages to obtain a low evaporation temperature and rapidly decrease the temperature.

1,1': 압축기 2,2': 응축기
4: 분주기 6: 수액기
7: 혼합기 8.8': 필터드라이어
9,9': 전자밸브 10,10': 팽창밸브
11': 팬제어 온도조절기 12: 증발기
13,13',13": 열교환기 14: 흡입압력조절밸브
1,1': compressor 2,2': condenser
4: Dispenser 6: Receiver
7: Mixer 8.8': Filter Dryer
9,9': Solenoid valve 10,10': Expansion valve
11': fan control thermostat 12: evaporator
13,13',13": heat exchanger 14: suction pressure control valve

Claims (5)

고온부(101)와 저온부(102)로 구성되는 초저온 급속냉동 시스템에 있어서,
상기 저온부는, 전동기로 운전하여 기체 상태인 냉매를 압축하는 제1 압축기(1);
상기 제1 압축기에서 압축한 냉매를 액화하는 제1 응축기(2);
상기 제1 응축기에서 응축 액화된 고온 고압의 냉매를 교축작용으로 증발을 일으킬 수 있는 압력까지 감압하는 제1 팽창밸브(10);
상기 제1 팽창밸브로부터 급팽창 기화하여 주위로부터 열을 흡수하여 용기 속을 냉각하는 제1 증발기(12) 및
상기 제1 증발기에서 증발 후 저압으로 압축기로 돌아오는 냉매의 압력 상승을 유도하고 응축된 액관 냉매를 2차로 응축시켜 증발온도를 낮게 하는 캐스케이드 제1 열교환기(13)를 포함하되,
상기 제1 응축기에서 응축되지 않은 기상 냉매는 진행방향으로 그대로 통과하여 제1 열교환기에서 응축되고, 제1 응축기에서 응축된 액상 냉매는 분주기(4)에서 분리된 후, 제1 열교환기에서 응축된 액상 냉매와 혼합기(7)에서 혼합되고,
상기 분주기는 제1 동관속에 제2 동관의 끝단을 45°경사지게 형성한 가로막이 형성되고,
상기 고온부는, 기체 상태인 냉매를 압축하는 제2 압축기(1');
상기 제2 압축기에서 압축한 냉매를 액화하는 제2 응축기(2');
상기 제2 응축기에서 응축 액화된 고온 고압의 냉매를 교축작용으로 증발을 일으킬 수 있는 압력까지 감압하는 제2 팽창밸브(10') 및
급팽창 기화하여 상기 저온부의 제1 응축기에서 나온 냉매를 2차로 응축하는 제2 캐스케이드 열교환기(13')를 포함하는 것을 특징으로 하는 초저온 급속냉동 시스템.
In the ultra-low temperature rapid freezing system consisting of a high temperature part 101 and a low temperature part 102,
The low-temperature unit may include: a first compressor (1) for compressing a gaseous refrigerant by operating with an electric motor;
a first condenser (2) for liquefying the refrigerant compressed by the first compressor;
a first expansion valve 10 for reducing the high-temperature and high-pressure refrigerant condensed and liquefied in the first condenser to a pressure capable of causing evaporation by a throttling action;
a first evaporator 12 that rapidly expands and vaporizes from the first expansion valve to absorb heat from the surroundings to cool the inside of the container; and
A cascade first heat exchanger 13 for inducing an increase in the pressure of the refrigerant returning to the compressor at a low pressure after evaporation in the first evaporator and condensing the condensed liquid tube refrigerant secondarily to lower the evaporation temperature,
The gaseous refrigerant not condensed in the first condenser passes as it is in the traveling direction and is condensed in the first heat exchanger, and the liquid refrigerant condensed in the first condenser is separated by the divider 4 and condensed in the first heat exchanger mixed with the liquid refrigerant in the mixer (7),
In the dispenser, a diaphragm is formed in which the end of the second copper tube is inclined at 45° in the first copper tube,
The high temperature part, the second compressor (1') for compressing the refrigerant in a gaseous state;
a second condenser (2') for liquefying the refrigerant compressed by the second compressor;
a second expansion valve 10 ′ for reducing the high-temperature and high-pressure refrigerant condensed and liquefied in the second condenser to a pressure capable of causing evaporation through a throttling action; and
Cryogenic rapid freezing system comprising a second cascade heat exchanger (13') for secondarily condensing the refrigerant from the first condenser of the low temperature part by rapid expansion and vaporization.
제1항에 있어서,
상기 고온부의 냉매는 R-134A는 61%, R-32는 30%, R-116 9%의 질량비로 혼합한 것을 특징으로 하는 초저온 급속냉동 시스템.
According to claim 1,
The cryogenic rapid freezing system, characterized in that the refrigerant of the high temperature part is mixed in a mass ratio of 61% R-134A, 30% R-32, and 9% R-116.
제1항에 있어서,
상기 저온부의 혼합 냉매는 R-134A 55%, R-116 20%, R-23 17%, R-170 5% 및 R-744 3%의 질량비로 혼합한 것을 특징으로 하는 초저온 급속냉동 시스템.
According to claim 1,
The mixed refrigerant of the low temperature part is a cryogenic rapid freezing system, characterized in that it is mixed in a mass ratio of R-134A 55%, R-116 20%, R-23 17%, R-170 5% and R-744 3%.
제1항에 있어서,
상기 제1 팽창밸브 및 제2 팽창밸브는, 모세관(21)과 감온통(22)으로 연결된 상부실이 주입 냉매와 다이어프램으로 균형을 이루다 어느 한쪽의 압력이 약하면 약한 쪽으로 다이아프램이 밀려 밸브를 여닫게 하는 것을 특징으로 하는 초저온 급속냉동 시스템.
According to claim 1,
As for the first expansion valve and the second expansion valve, the upper chamber connected by the capillary tube 21 and the thermocouple 22 is balanced by the injected refrigerant and the diaphragm. Cryogenic rapid freezing system, characterized in that it closes.
제4항에 있어서,
상기 감온통은 R-1150 냉매가 충전된 것을 특징으로 하는 초저온 급속냉동 시스템.
5. The method of claim 4,
The cryogenic rapid freezing system, characterized in that the thermostat is filled with R-1150 refrigerant.
KR1020210063329A 2021-05-17 2021-05-17 Cryogenic rapid refrigeration system KR102319331B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210063329A KR102319331B1 (en) 2021-05-17 2021-05-17 Cryogenic rapid refrigeration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020210063329A KR102319331B1 (en) 2021-05-17 2021-05-17 Cryogenic rapid refrigeration system

Publications (1)

Publication Number Publication Date
KR102319331B1 true KR102319331B1 (en) 2021-10-29

Family

ID=78231249

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210063329A KR102319331B1 (en) 2021-05-17 2021-05-17 Cryogenic rapid refrigeration system

Country Status (1)

Country Link
KR (1) KR102319331B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102409357B1 (en) * 2022-02-08 2022-06-16 유니셈(주) Cryogenic cooling device based on mixed refrigerant

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100337791B1 (en) 2000-10-05 2002-05-22 박희준 cryogenic refrigerating system
KR20060067838A (en) * 2004-12-14 2006-06-20 산요덴키가부시키가이샤 Refrigeration apparatus
JP2006220407A (en) * 2005-01-13 2006-08-24 Denso Corp Expansion valve for refrigeration cycle
KR20150022490A (en) * 2013-08-23 2015-03-04 나이스텍(주) Duality for refrigerating/heating cycle type Heat pump system
WO2017221382A1 (en) * 2016-06-23 2017-12-28 三菱電機株式会社 Binary refrigeration device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100337791B1 (en) 2000-10-05 2002-05-22 박희준 cryogenic refrigerating system
KR20060067838A (en) * 2004-12-14 2006-06-20 산요덴키가부시키가이샤 Refrigeration apparatus
JP2006220407A (en) * 2005-01-13 2006-08-24 Denso Corp Expansion valve for refrigeration cycle
KR20150022490A (en) * 2013-08-23 2015-03-04 나이스텍(주) Duality for refrigerating/heating cycle type Heat pump system
WO2017221382A1 (en) * 2016-06-23 2017-12-28 三菱電機株式会社 Binary refrigeration device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102409357B1 (en) * 2022-02-08 2022-06-16 유니셈(주) Cryogenic cooling device based on mixed refrigerant

Similar Documents

Publication Publication Date Title
Arpagaus et al. Multi-temperature heat pumps: A literature review
JP3604973B2 (en) Cascade type refrigeration equipment
Bansal et al. Cascade systems: past, present, and future
JP5595245B2 (en) Refrigeration equipment
WO2012066763A1 (en) Freezer
KR101811957B1 (en) Cascade Heat Pump with Two Stage Expansion Structure using CO2 Refrigerant and Method for Circulating thereof
WO2015140870A1 (en) Refrigeration cycle apparatus
JPWO2015140879A1 (en) Refrigeration cycle equipment
KR102319331B1 (en) Cryogenic rapid refrigeration system
CA3068016A1 (en) Refrigeration systems and methods
KR102380369B1 (en) Cryocooler
Saturday et al. Computer Aided Comparative Analysis of the Effects of Superheating and Subcooling on the Performance of R134a and R717 in Simple Vapour Compression Systems
CN206593361U (en) A kind of vehicle-mounted energy-saving refrigerator
JP2012202678A (en) Refrigerating cycle apparatus
US20190024948A1 (en) Deep freezer
CN212253305U (en) Refrigerator with a door
JP6991866B2 (en) Steam compression refrigerator
CN113432366A (en) Refrigerator with a door
CN113432325A (en) Cascade compression refrigeration system and refrigeration equipment with same
CN113432324A (en) Cascade compression refrigeration system and refrigeration equipment with same
KR102446555B1 (en) Refrigerator for super-freezing a storing chamber
JP2814697B2 (en) Refrigeration cycle device
CN212253306U (en) Refrigerator with a door
TWI568984B (en) Gas - liquid heat exchange type refrigeration device
JPH0742074Y2 (en) Freezer refrigerator

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant