KR102316361B1 - Dispersion liquid having silver nano wire and method for manufacturing high flexible, transparent and conductive coating substrate using the same - Google Patents

Dispersion liquid having silver nano wire and method for manufacturing high flexible, transparent and conductive coating substrate using the same Download PDF

Info

Publication number
KR102316361B1
KR102316361B1 KR1020170026043A KR20170026043A KR102316361B1 KR 102316361 B1 KR102316361 B1 KR 102316361B1 KR 1020170026043 A KR1020170026043 A KR 1020170026043A KR 20170026043 A KR20170026043 A KR 20170026043A KR 102316361 B1 KR102316361 B1 KR 102316361B1
Authority
KR
South Korea
Prior art keywords
silver
weight
dispersion
reducing agent
silver nanowires
Prior art date
Application number
KR1020170026043A
Other languages
Korean (ko)
Other versions
KR20180099987A (en
Inventor
신권우
장덕진
Original Assignee
한국전자기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전자기술연구원 filed Critical 한국전자기술연구원
Priority to KR1020170026043A priority Critical patent/KR102316361B1/en
Publication of KR20180099987A publication Critical patent/KR20180099987A/en
Application granted granted Critical
Publication of KR102316361B1 publication Critical patent/KR102316361B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02603Nanowires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings

Abstract

본 발명은 은나노와이어를 포함한 분산액 및 그를 이용한 고유연성 투명 전도성 코팅 기판의 제조방법에 관한 것으로, 은나노와이어, 산화은, 환원제 및 점도조절제가 포함된 분산액을 이용하여 안정적인 분산상을 형성하여 휨 환경에서도 저항 안정성을 제공하기 위한 것이다. 본 발명의 일 실시예에 따른 은나노와이어를 포함한 분산액은 은나노와이어 0.01~0.5 중량 %, 산화은 0.01~0.1 중량%, 환원제 0.001~0.1 중량%, 및 점도조절제 0.05~0.3 중량%을 포함할 수 있다.The present invention relates to a dispersion containing silver nanowires and a method for manufacturing a highly flexible transparent conductive coating substrate using the same, and by using a dispersion containing silver nanowires, silver oxide, a reducing agent and a viscosity modifier to form a stable dispersed phase, resistance stability even in a bending environment is to provide The dispersion containing silver nanowires according to an embodiment of the present invention may contain 0.01 to 0.5% by weight of silver nanowires, 0.01 to 0.1% by weight of silver oxide, 0.001 to 0.1% by weight of a reducing agent, and 0.05 to 0.3% by weight of a viscosity modifier.

Description

은나노와이어를 포함한 분산액 및 그를 이용한 고유연성 투명 전도성 코팅 기판의 제조방법{DISPERSION LIQUID HAVING SILVER NANO WIRE AND METHOD FOR MANUFACTURING HIGH FLEXIBLE, TRANSPARENT AND CONDUCTIVE COATING SUBSTRATE USING THE SAME}Dispersion solution containing silver nanowires and manufacturing method of highly flexible transparent conductive coating substrate using the same

본 발명은 은나노와이어를 포함한 분산액 및 그를 이용한 고유연성 투명 전도성 코팅 기판의 제조방법에 관한 것으로, 더욱 상세하게는 안정적인 분산상을 형성하여 휨 환경에서도 저항 안정성을 가질 수 있는 은나노와이어, 산화은 및 환원제가 포함된 은나노와이어를 포함한 분산액 및 그를 이용한 고유연성 투명 전도성 코팅 기판의 제조방법에 관한 것이다. The present invention relates to a dispersion containing silver nanowires and a method for manufacturing a highly flexible transparent conductive coating substrate using the same, and more particularly, to form a stable dispersed phase to have resistance stability even in a bending environment, including silver nanowires, silver oxide and a reducing agent It relates to a dispersion containing silver nanowires and a method for manufacturing a highly flexible transparent conductive coating substrate using the same.

은나노와이어를 포함한 분산액은 기판에 코팅되어 전도막을 형성할 수 있다. 분산액이 기판에 코팅되었을 때 은나노와이어는 네트워크 구조로 연결되어 전도막을 형성한다. 이러한 전도막은 전극, 투명전극, 면발열체, 전자파 차폐 필름, 투명 단열 필름 등 다양한 분야에 응용될 수 있다.The dispersion including silver nanowires may be coated on a substrate to form a conductive film. When the dispersion is coated on the substrate, the silver nanowires are connected in a network structure to form a conductive film. Such a conductive film can be applied to various fields such as an electrode, a transparent electrode, a surface heating element, an electromagnetic wave shielding film, a transparent insulating film, and the like.

은나노와이어를 포함한 분산액을 이용한 전도막은 은나노와이어가 네트워크 구조로 서로 연결되어 형성되기 때문에 은나노와이어 간의 접촉 구조에 따라 전도막의 저항 특성이 크게 달라지는 특성이 있다. A conductive film using a dispersion containing silver nanowires is formed by connecting silver nanowires to each other in a network structure, so the resistance characteristics of the conductive film vary greatly depending on the contact structure between the silver nanowires.

특히 휨, 구부림을 요구하는 고유연성 투명 전도성 필름의 경우, 필름에 반복적인 휨이 발생하면 코팅된 은나노와이어의 안정적인 네트워크 접촉 구조 유지가 어렵기 때문에 일정한 저항을 유지하기 어려운 문제점이 있다. 특히 폴더블(foldable) 정보기기에서는 거의 접힘(folding) 수준의 고굴곡 환경에서도 안정적인 저항을 유지해야 하기 때문에, 극한 휨 환경에서도 안정적인 네트워크 접촉 특성을 유지할 필요성이 요청된다. In particular, in the case of a highly flexible transparent conductive film that requires bending and bending, it is difficult to maintain a constant resistance because it is difficult to maintain a stable network contact structure of the coated silver nanowire when repeated bending occurs in the film. In particular, since it is necessary to maintain stable resistance even in a highly bending environment of a nearly folding level in a foldable information device, it is necessary to maintain stable network contact characteristics even in an extreme bending environment.

한국등록특허 제10-1186801호 (2012.08.05.)Korean Patent Registration No. 10-1186801 (2012.08.05.)

본 발명의 목적은 은나노와이어 및 산화은, 환원제를 포함하면서 안정적인 분산상을 형성할 수 있는 은나노와이어를 포함한 분산액 및 그를 이용한 고유연성 투명 전도성 코팅 기판의 제조방법을 제공하는 데 있다. It is an object of the present invention to provide a dispersion containing silver nanowires, silver oxide, and a reducing agent capable of forming a stable dispersed phase, and a method for manufacturing a highly flexible transparent conductive coating substrate using the same.

본 발명의 다른 목적은 유연 기판에 코팅했을 때 은나노와이어가 서로 접합되어 고굴곡의 휨 환경에서도 안정적인 네트워크 구조를 이루어, 휨 환경에서도 저항 안정성을 가질 수 있는 은나노와이어를 포함한 분산액 및 그를 이용한 고유연성 투명 전도성 코팅 기판의 제조방법을 제공하는 데 있다. Another object of the present invention is a dispersion containing silver nanowires that can have resistance stability even in a bending environment by bonding silver nanowires to each other when coated on a flexible substrate to form a stable network structure even in a bending environment of high bending and highly flexible transparent using the same To provide a method for manufacturing a conductive coating substrate.

본 발명의 일 실시예에 따른 은나노와이어를 포함한 분산액은, 은나노와이어 0.01~0.5 중량 %, 산화은 0.01~0.1 중량%, 환원제 0.001~0.1 중량%, 및 점도조절제 0.05~0.3 중량%을 포함할 수 있다. The dispersion containing silver nanowires according to an embodiment of the present invention may contain 0.01 to 0.5% by weight of silver nanowires, 0.01 to 0.1% by weight of silver oxide, 0.001 to 0.1% by weight of a reducing agent, and 0.05 to 0.3% by weight of a viscosity modifier. .

또한, 상기 산화은은 AgO 또는 Ag2O일 수 있다. In addition, the silver oxide may be AgO or Ag 2 O.

또한, 상기 환원제는 글리옥살(glyoxal) 또는 글루타르알데히드 (glutaraldehyde)일 수 있다. In addition, the reducing agent may be glyoxal or glutaraldehyde.

또한, 상기 점도조절제는 하이드록시 프로필 메틸 셀룰로오스(hydroxy propyl methyl cellulose), 2-하이드록시 에틸 셀룰로오스(2-hydroxy ethyl cellulose)및 카르복시 메틸 셀룰로오스(carboxy methyl cellulose) 중 적어도 하나 이상을 포함할 수 있다. In addition, the viscosity modifier may include at least one of hydroxy propyl methyl cellulose, 2-hydroxy ethyl cellulose, and carboxy methyl cellulose.

또한, 상기 은나노와이어는 직경 5~100nm, 길이 2~100㎛ 일 수 있다.In addition, the silver nanowire may have a diameter of 5 to 100 nm and a length of 2 to 100 μm.

또한, 탄소나노튜브, 전도성 고분자, 그래핀 및 나노카본 중 적어도 하나 이상을 더 포함할 수 있다. In addition, it may further include at least one or more of carbon nanotubes, conductive polymers, graphene, and nano-carbon.

본 발명의 일 실시예에 따른 은나노와이어를 이용한 분산액을 이용한 고유연성 투명 전도성 코팅 기판의 제조 방법은, 은나노와이어 0.01~0.5 중량 %, 산화은 0.01~0.1 중량%, 환원제 0.001~0.1 중량%, 및 점도조절제 0.05~0.3 중량%를 포함하는 은나노와이어를 포함한 분산액을 기판에 도포하여 코팅층을 형성하는 단계와 상기 코팅층을 열처리하여 전도막을 형성하는 단계를 포함할 수 있다. The method for manufacturing a highly flexible transparent conductive coating substrate using a dispersion using silver nanowires according to an embodiment of the present invention is 0.01 to 0.5 wt% of silver nanowires, 0.01 to 0.1 wt% of silver oxide, 0.001 to 0.1 wt% of a reducing agent, and viscosity Forming a coating layer by applying a dispersion containing silver nanowires containing 0.05 to 0.3% by weight of a modifier to a substrate, and heat-treating the coating layer to form a conductive film.

또한, 상기 전도막을 형성하는 단계에서, 상기 열처리는 100~130에서 3분~50분간 수행할 수 있다.In addition, in the step of forming the conductive film, the heat treatment may be performed at 100 to 130 for 3 minutes to 50 minutes.

본 발명에 따른 은나노와이어를 포함한 분산액은 은나노와이어, 산화은, 환원제 및 점도조절제를 포함시킴으로써 안정적인 분산상을 형성할 수 있는 분산액을 제공할 수 있다. The dispersion including silver nanowires according to the present invention can provide a dispersion capable of forming a stable dispersed phase by including silver nanowires, silver oxide, a reducing agent and a viscosity modifier.

또한, 본 발명에 따른 은나노와이어를 포함한 분산액 및 그를 이용한 고유연성 투명 전도성 코팅 기판의 제조방법은 고굴곡의 휨 환경에서도 우수한 저항 안정성을 가지는 고유연성 투명 전도성 코팅 기판을 제조할 수 있다.In addition, the dispersion containing silver nanowires and the method for manufacturing a highly flexible transparent conductive coating substrate using the same according to the present invention can produce a highly flexible transparent conductive coating substrate having excellent resistance stability even in a highly bending and bending environment.

도 1은 본 발명에 따른 은나노와이어를 포함한 분산액을 이용하여 전도막이 형성된 고유연성 투명 전도성 코팅 기판을 나타낸 도면이다.
도 2는 도 1의 고유연성 투명 전도성 코팅 기판의 제조 방법에 따른 흐름도이다.
도 3 및 도 4는 열처리 온도 및 시간에 따라 산화은 및 환원제의 포함여부에 따른 전도막의 광투과도, 헤이즈 및 면저항 값을 나타낸 표이다.
도 5는 열처리 온도 및 시간에 따라 산화은 및 환원제의 함량에 따른 전도막의 광투과도, 헤이즈 및 면저항 값을 나타낸 표이다.
도 6는 열처리 온도 및 시간에 따라 산화은(Ag2O)이 포함된 전도막의 광투과도, 헤이즈 및 면저항 값을 나타낸 표이다.
도 7은 휨 안정성 테스트를 나타낸 개략도이다.
도 8은 투명전극 1 및 투명전극 2의 휨 안정성 테스트 결과를 나타낸 그래프이다.
1 is a view showing a highly flexible transparent conductive coating substrate on which a conductive film is formed using a dispersion containing silver nanowires according to the present invention.
FIG. 2 is a flowchart according to the method of manufacturing the highly flexible transparent conductive coating substrate of FIG. 1 .
3 and 4 are tables showing the light transmittance, haze, and sheet resistance values of the conductive film according to the inclusion of silver oxide and a reducing agent according to the heat treatment temperature and time.
5 is a table showing the light transmittance, haze, and sheet resistance values of the conductive film according to the content of silver oxide and reducing agent according to the heat treatment temperature and time.
6 is a table showing the light transmittance, haze, and sheet resistance values of the conductive film containing silver oxide (Ag 2 O) according to the heat treatment temperature and time.
7 is a schematic diagram showing a bending stability test.
8 is a graph showing the bending stability test results of the transparent electrode 1 and the transparent electrode 2;

첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 유사한 구성 요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다. A preferred embodiment according to the present invention will be described in detail with reference to the accompanying drawings, but the same or similar components are assigned the same reference numerals regardless of reference numerals, and overlapping descriptions thereof will be omitted.

또한, 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 첨부된 도면은 본 발명의 사상을 쉽게 이해할 수 있도록 하기 위한 것일 뿐, 첨부된 도면에 의해 본 발명의 사상이 제한되는 것으로 해석되어서는 아니 됨을 유의해야 한다.In addition, in the description of the present invention, if it is determined that a detailed description of a related known technology may obscure the gist of the present invention, the detailed description thereof will be omitted. In addition, it should be noted that the accompanying drawings are only for easy understanding of the spirit of the present invention, and should not be construed as limiting the spirit of the present invention by the accompanying drawings.

도 1은 본 발명에 따른 은나노와이어를 포함한 분산액을 이용하여 전도막이 형성된 고유연성 투명 전도성 코팅 기판을 나타낸 도면이다. 1 is a view showing a highly flexible transparent conductive coating substrate on which a conductive film is formed using a dispersion containing silver nanowires according to the present invention.

도 1을 참조하면, 본 발명에 따른 고유연성 투명 전도성 코팅 기판(10)은 기판(12) 및 기판(12)의 일면에 형성된 전도막(14)을 포함한다.Referring to FIG. 1 , a highly flexible transparent conductive coated substrate 10 according to the present invention includes a substrate 12 and a conductive film 14 formed on one surface of the substrate 12 .

기판(12)으로는 유리, 석영(quartz), 글라스 웨이퍼, 실리콘 웨이퍼, 투명 및 불투명 플라스틱 기판, 투명 및 불투명 고분자 필름, 금속 중 어느 하나가 사용될 수 있다. 플라스틱 기판의 소재로는 PET, PC, PEN, PES, PMMA, PI, PEEK 등이 사용될 수 있으며, 이것에 한정되는 것은 아니다. 기판(12)은 10~ 10,000㎛의 두께를 가질 수 있다. 이러한 기판(12)은 선택적으로 피라나(piranha) 용액 처리, 산 처리, 염기 처리, 플라즈마 처리, 상압 플라즈마 처리, 오존 처리, UV 처리, SAM (self assembled monolayer) 처리 및 고분자 또는 단분자 코팅 방법 중 적어도 하나의 방법을 이용하여 표면 처리를 수행할 수 있다.As the substrate 12, any one of glass, quartz, a glass wafer, a silicon wafer, a transparent and opaque plastic substrate, a transparent and opaque polymer film, and a metal may be used. As a material of the plastic substrate, PET, PC, PEN, PES, PMMA, PI, PEEK, etc. may be used, but is not limited thereto. The substrate 12 may have a thickness of 10 to 10,000 μm. The substrate 12 may be selectively prepared by piranha solution treatment, acid treatment, base treatment, plasma treatment, atmospheric pressure plasma treatment, ozone treatment, UV treatment, SAM (self assembled monolayer) treatment, and polymer or monomolecular coating method. At least one method may be used to perform the surface treatment.

분산액은 은나노와이어, 금속산화물, 환원제 및 점도조절제를 포함한다. 이때 분산액은 바인더, 탄소나노튜브, 전도성 고분자, 그래핀, 나노카본 등이 0.001~0.5 중량% 수준에서 더 포함될 수 있으며, 주로 헤이즈를 감소시키고, 균일도, 환경안정성, 접착성 등을 향상시키는 역할을 할 수 있다.The dispersion contains silver nanowires, a metal oxide, a reducing agent and a viscosity modifier. At this time, the dispersion may further contain binder, carbon nanotube, conductive polymer, graphene, nano-carbon, etc. at a level of 0.001 to 0.5 wt %, mainly reducing haze, and improving uniformity, environmental stability, adhesion, etc. can do.

은나노와이어는 직경 5~100nm, 길이 2~100㎛ 크기의 은나노와이어가 사용될 수 있다. 직경이 5nm보다 작은 경우에는 기계적인 안정성이 매우 약해 잘 끊어질 수 있어, 안정적인 네트워크 형상을 유지하기 힘든 문제가 있을 수 있고, 100nm를 초과하는 경우에는 투명도(광투과율)가 70% 이하로 급격히 낮아지는 문제가 발생할 수 있다. 또한, 길이가 2㎛보다 작은 경우에는 네트워크를 구성하는 은나노와이어의 길이가 너무 짧아져서, 많은 수의 은나노와이어가 필요하게 되고, 투명도가 낮아지고, 많은 접촉점에 의한 전기전도 특성의 저하의 문제도 있을 수 있다. 길이가 100㎛보다 긴 경우에는, 은나노와이어의 제조가 곤란해지는 문제와 은나노와이어가 너무 길어서 코팅시에 잘 끊어지는 문제가 발생할 수 있다.As the silver nanowire, a silver nanowire having a diameter of 5 to 100 nm and a length of 2 to 100 μm may be used. If the diameter is smaller than 5 nm, the mechanical stability is very weak and can be easily broken, so there may be a problem that it is difficult to maintain a stable network shape. There may be problems with losing. In addition, when the length is less than 2 μm, the length of the silver nanowire constituting the network becomes too short, a large number of silver nanowires are required, the transparency is lowered, and the problem of lowering the electrical conductivity properties due to many contact points there may be When the length is longer than 100 μm, there may be a problem in that the production of the silver nanowire becomes difficult and the silver nanowire is too long and breaks easily during coating.

산화은은 은나노와이어 사이에 융착되어 전도성 브리지 역할을 하며 면저항을 개선시킨다. 이 때 산화은은 AgO 또는 Ag2O가 사용될 수 있다. AgO의 경우 코팅 전도막에서 열소결로 인한 저항 감소 효과가 크다. 이는 AgO가 Ag2O에 비해 녹는점이 낮아서 박막 건조 과정에서 융해되어 나노와이어 간 접촉 저항을 감소시키는데 유리하기 때문이다. 또한 AgO, Ag2O는 물에 녹았을 때 은나노와이어를 부식시키는 특성이 없기 때문에 장기간 분산액을 보관할 수 있다.Silver oxide is fused between silver nanowires to act as a conductive bridge and improve sheet resistance. In this case, AgO or Ag 2 O may be used as silver oxide. In the case of AgO, the effect of reducing resistance due to thermal sintering in the coated conductive film is large. This is because AgO has a lower melting point than Ag 2 O, so it is melted during the drying process of the thin film, which is advantageous in reducing the contact resistance between nanowires. In addition, AgO, Ag 2 O can be stored for a long time because there is no property to corrode silver nanowires when dissolved in water.

환원제는 물에 완전히 녹거나, 또는 혼합될 수 있는 것으로 은나노와이어의 부식 특성이 없으면서, 기판(12)에 코팅되어 열처리되면 AgO, Ag2O를 빠른 시간 내에 환원시킬 수 있다. 이 때 환원제는 글리옥살(glyoxal) 또는 글루타르알데히드(glutaraldehyde)가 사용될 수 있다. The reducing agent is completely soluble in water, or can be mixed with, without corrosion properties of silver nanowires, and is coated on the substrate 12 and heat-treated to reduce AgO, Ag 2 O within a short time. In this case, the reducing agent may be glyoxal or glutaraldehyde.

점도조절제는 분산액 코팅시에 기판(12)에 대한 코팅성을 향상시키고, 코팅액의 점도를 증가시켜 분산성 및 분산 안정성을 향상시키는 용도로 사용된다. 예컨대 점도조절제로는 하이드록시 프로필 메틸 셀룰로오스(hydroxy propyl methyl cellulose), 2-하이드록시 에틸 셀룰로오스(2-hydroxy ethlyl cellulose), 카르복시 메틸 셀룰로오스(carboxy methyl cellulose) 중에 적어도 하나 이상 포함될 수 있다.The viscosity modifier is used to improve coating properties on the substrate 12 during dispersion coating, and to increase the viscosity of the coating solution to improve dispersibility and dispersion stability. For example, the viscosity modifier may include at least one of hydroxy propyl methyl cellulose, 2-hydroxy ethlyl cellulose, and carboxy methyl cellulose.

이러한 분산액은 기판(12)에 분사 코팅(spray coating), 그라비아 코팅(gravure coating), 마이크로그라비아 코팅(micro-gravure coating), 바코팅(bar-coating), 나이프 코팅(knife coating), 리버스 롤 코팅(reverse roll coating), 롤 코팅(roll coating), 캘린더 코팅(calender coating), 커튼 코팅(curtain coating), 압출 코팅(extrustion coating), 캐스트 코팅(cast coating), 침지 코팅(dip coating), 에어 나이프코팅(air-knife coating), 거품 코팅(foam coating), 슬릿 코팅(slit coating) 중 하나 이상의 방법으로 도포하여 코팅층을 형성한다.The dispersion is applied to the substrate 12 by spray coating, gravure coating, micro-gravure coating, bar-coating, knife coating, and reverse roll coating. (reverse roll coating), roll coating (roll coating), calendar coating (calender coating), curtain coating (curtain coating), extrusion coating (extrustion coating), cast coating (cast coating), dip coating (dip coating), air knife The coating layer is formed by applying one or more methods of air-knife coating, foam coating, and slit coating.

전도막(14)은 기판(12)에 코팅된 코팅층을 열처리하여 형성한다. 이때 열처리는 소결 또는 가열이며, 소결은 광소결 또는 열소결이다. 가열은 번-오프(burn-off), 마이크로 펄스 포토닉(micro pulse photonic) 가열, 연속 포토닉 가열, 마이크로웨이브 가열, 또는 오븐 가열 중 하나 이상의 조합으로 한다. 기판(12)에 코팅된 전도막(14)의 은나노와이어는 기판(12)의 일면에 균일하게 분산되어 네트워크 구조를 형성한다. 이때 산화은은 환원제를 통하여 은으로 환원된다. 전도막(14)에 포함된 환원된 은은 은나노와이어들 사이에 위치하여 전도성 브리지 역할을 하며, 면 저항을 감소 시키고 접촉 저항을 안정화시켜 환경 안정성을 개선시킬 수 있다. The conductive film 14 is formed by heat-treating the coating layer coated on the substrate 12 . At this time, the heat treatment is sintering or heating, and the sintering is optical sintering or thermal sintering. The heating is a combination of one or more of burn-off, micro pulse photonic heating, continuous photonic heating, microwave heating, or oven heating. The silver nanowires of the conductive film 14 coated on the substrate 12 are uniformly dispersed on one surface of the substrate 12 to form a network structure. At this time, the silver oxide is reduced to silver through a reducing agent. The reduced silver included in the conductive film 14 is positioned between the silver nanowires to serve as a conductive bridge, and may improve environmental stability by reducing sheet resistance and stabilizing contact resistance.

이와 같은 본 발명에 따른 고유연성 투명 전도성 코팅 기판의 제조 방법에 대해서 도 1 내지 도 2를 참조하여 설명하면 다음과 같다. 여기서 도 2는 도 1의 고유연성 투명 전도성 코팅 기판의 제조 방법에 따른 흐름도이다.A method of manufacturing a highly flexible transparent conductive coating substrate according to the present invention will be described with reference to FIGS. 1 to 2 as follows. Here, FIG. 2 is a flowchart according to the method of manufacturing the highly flexible transparent conductive coating substrate of FIG. 1 .

본 발명에 따른 고유연성 투명 전도성 코팅 기판(10)의 제조 방법은 기판(12)을 준비하는 단계(S20)와, 은나노와이어, 산화은, 환원제 및 점도조절제를 포함한 분산액을 기판(12)에 도포하여 코팅층을 형성하는 단계(S30)와, 코팅층을 열처리하여 전도막을 형성하는 단계(S40)를 포함한다.The method of manufacturing the highly flexible transparent conductive coating substrate 10 according to the present invention comprises the steps of preparing the substrate 12 (S20), and applying a dispersion solution including silver nanowires, silver oxide, a reducing agent and a viscosity modifier to the substrate 12, It includes a step of forming a coating layer (S30) and a step of heat-treating the coating layer to form a conductive film (S40).

먼저 S20단계에서 기판(12)을 준비한다. 기판(12)에 대한 표면 처리를 선택적으로 수행할 수 있다. 기판(12)의 표면 처리 방법으로는 피라나 용액처리, 산 처리, 염기 처리, 플라즈마 처리, 상압 플라즈마처리, 오존 처리, UV 처리, SAM 처리 및 고분자 또는 단분자 코팅 방법 중 적어도 하나의 방법이 사용될 수 있다.First, the substrate 12 is prepared in step S20. Surface treatment of the substrate 12 may be selectively performed. At least one method of pirana solution treatment, acid treatment, base treatment, plasma treatment, atmospheric pressure plasma treatment, ozone treatment, UV treatment, SAM treatment, and polymer or monomolecular coating method may be used as a method for surface treatment of the substrate 12 . can

다음으로 S30단계에서 은나노와이어, 산화은, 환원제 및 점도조절제가 포함된 분산액을 기판(12)에 도포하여 코팅층을 형성한다. 여기서 점도조절제는 은나노와이어의 분산성을 확보하면서, 코팅시 균일한 전도막을 형성하기 위해 분산액에 포함한다. 산화은은 산, 증류수 또는 염기 중 어느 하나에 녹여서 분산액에 포함한다.Next, in step S30, a dispersion solution containing silver nanowires, silver oxide, a reducing agent and a viscosity modifier is applied to the substrate 12 to form a coating layer. Here, the viscosity modifier is included in the dispersion to form a uniform conductive film during coating while ensuring the dispersibility of the silver nanowires. Silver oxide is dissolved in any one of acid, distilled water, or a base and included in the dispersion.

은나노와이어의 농도는 0.01~0.5 중량% 수준이 바람직하다. 은나노와이어가 0.5 중량%을 초과하게 되면 전도막(14)의 헤이즈가 높고, 광투과율이 낮아지게 된다. 은나노와이어의 농도가 0.001 중량% 미만이 되면, 은나노와이어 함량이 낮아져 일반적인 상용 코팅법으로는 전도막(14)을 형성하기 어렵다. 은나노와이어 농도가 0.5 중량% 초과하게 되면, 코팅 전도막의 헤이즈가 높고, 광투과율이 낮아지는 단점이 있다. The concentration of the silver nanowire is preferably 0.01 to 0.5% by weight. When the amount of silver nanowires exceeds 0.5 wt%, the haze of the conductive film 14 is high, and the light transmittance is low. When the concentration of the silver nanowires is less than 0.001% by weight, the silver nanowire content is lowered and it is difficult to form the conductive film 14 by a general commercial coating method. When the silver nanowire concentration exceeds 0.5 wt%, the haze of the conductive coating film is high and the light transmittance is low.

산화은의 농도는 0.01~0.1 중량% 수준이 바람직하다. 산화은이 0.1 중량%를 초과하게 되면 코팅시 저항이 증가하고, 헤이즈가 증가한다. 반면, 산화은의 농도가 0.001 중량% 미만이 되면, 산화은 첨가로 인한 저항 감소 효과가 거의 없다.The concentration of silver oxide is preferably 0.01 to 0.1 wt%. When the amount of silver oxide exceeds 0.1% by weight, the coating resistance increases and the haze increases. On the other hand, when the concentration of silver oxide is less than 0.001 wt %, there is little effect of reducing the resistance due to the addition of silver oxide.

환원제의 농도는 0.001~0.1 중량% 수준이 바람직하다. 0.1 중량% 초과하게 되면 점도조절제와 반응하여 저항을 증가시킨다. 환원제의 농도가 0.001 중량% 이하로 되면 산화은을 환원시킬 수 없거나, 환원시키는데 시간이 오래 걸려 투명전극 제조 공정 시간이 길어지는 단점이 있다.The concentration of the reducing agent is preferably 0.001 to 0.1% by weight. When it exceeds 0.1% by weight, it reacts with the viscosity modifier to increase the resistance. When the concentration of the reducing agent is less than 0.001% by weight, silver oxide cannot be reduced, or it takes a long time to reduce the transparent electrode manufacturing process time.

점도조절제의 농도는 0.05~0.3 중량% 수준이 바람직하다. 이러한 점도조절제는 은나노와이어의 분산성을 확보하면서 코팅시 균일한 전도막(14)을 형성하기 위해 코팅액에 포함된다. 점도조절제의 농도가 0.05~0.3 중량% 수준일 때 슬롯다이, 마이크로그라비아, 바코팅 등에서 코팅성이 확보된다. 점도조절제의 농도가 0.001 중량% 미만이 되면 코팅액을 기판(12)에 코팅시, 코팅이 제대로 이루어지지 않는다. 점도조절제의 농도가 0.3중량% 를 초과하면, 전도막(14)의 접착성이 약해지고 전도막(14)의 면저항이 증가한다. The concentration of the viscosity modifier is preferably 0.05 to 0.3% by weight. Such a viscosity modifier is included in the coating solution to form a uniform conductive film 14 during coating while ensuring the dispersibility of the silver nanowires. When the concentration of the viscosity modifier is at a level of 0.05 to 0.3% by weight, coating properties are secured in slot die, microgravure, bar coating, and the like. When the concentration of the viscosity modifier is less than 0.001 wt %, the coating is not performed properly when the coating solution is coated on the substrate 12 . When the concentration of the viscosity modifier exceeds 0.3% by weight, the adhesiveness of the conductive film 14 is weakened and the sheet resistance of the conductive film 14 is increased.

그리고 S40단계에서 기판(12)의 일면에 도포된 코팅층을 열처리하여 전도막(14)을 형성한다. 열처리 방법으로는 열처리온도 100~130, 열처리시간 3분~50분에서 가열할 수 있다. 여기서 은나노와이어는 기판(12)의 일면에 균일하게 분산되어 네트워크 구조를 형성한다. 이때 산화은은 환원제를 통하여 은으로 환원되고, 분산된 은나노와이어 사이에 위치된다. 환원된 은은 전도성을 향상시키며 은나노와이어가 뭉치지 않게 하여 균일한 두께의 전도막(14)을 형성할 수 있게 한다. Then, the conductive film 14 is formed by heat-treating the coating layer applied to one surface of the substrate 12 in step S40. As a heat treatment method, it can be heated at a heat treatment temperature of 100 to 130 and a heat treatment time of 3 minutes to 50 minutes. Here, the silver nanowires are uniformly dispersed on one surface of the substrate 12 to form a network structure. At this time, the silver oxide is reduced to silver through a reducing agent, and is located between the dispersed silver nanowires. The reduced silver improves conductivity and prevents the silver nanowires from being agglomerated to form a conductive film 14 having a uniform thickness.

본 발명에 따른 은나노와이어를 포함하는 분산액 및 그를 이용한 고유연성 투명 전도성 코팅 기판(10)에 대해서 실시예 및 비교예를 통하여 보다 상세히 설명하면 다음과 같다. 한편 본 실시예에 따른 제조 방법으로 제조된 은나노와이어를 포함하는 분산액은 하나의 실시예에 불과하며, 본 발명에 따른 제조 방법 및 그 제조 방법으로 제조된 전도막(14)이 본 실시예로 한정되는 것은 아니다.The dispersion containing silver nanowires according to the present invention and the highly flexible transparent conductive coating substrate 10 using the same will be described in more detail through Examples and Comparative Examples as follows. Meanwhile, the dispersion containing silver nanowires manufactured by the manufacturing method according to the present embodiment is only one embodiment, and the manufacturing method according to the present invention and the conductive film 14 manufactured by the manufacturing method are limited to this embodiment. it's not going to be

실시예Example 1 및 1 and 비교예comparative example 1 One

실시예 1 및 비교예 1에 따른 전도막은 다음과 같은 방법으로 형성하였다.Conductive films according to Example 1 and Comparative Example 1 were formed in the following manner.

실시예 1의 경우, 은나노와이어 0.1 중량%, 산화은(AgO) 0.02 중량%, 환원제(글루타르알데히드) 0.01 중량%가 포함되어 있으며 점도조절제(하이드록시 프로필 메틸 셀룰로오스) 0.2 중량%가 포함된 분산액 1로 형성된 전도막이다.In the case of Example 1, 0.1 wt% of silver nanowire, 0.02 wt% of silver oxide (AgO), 0.01 wt% of a reducing agent (glutaraldehyde), and 0.2 wt% of a viscosity modifier (hydroxypropyl methyl cellulose) are included Dispersion 1 It is a conductive film formed by

한편 비교예 1인 경우, 대조군 전도막으로 산화은 및 환원제를 포함하지 않은 전도막이다. 여기서 비교예 1은 은나노와이어 0.1 중량% 및 점도조절제(하이드록시 프로필 메틸 셀룰로오스) 0.2 중량%가 포함된 분산액으로 형성된 전도막이다. On the other hand, in Comparative Example 1, the conductive film does not contain silver oxide and a reducing agent as a control conductive film. Here, Comparative Example 1 is a conductive film formed of a dispersion containing 0.1 wt% of silver nanowires and 0.2 wt% of a viscosity modifier (hydroxypropyl methyl cellulose).

도 3은 열처리 온도 및 시간에 따라 산화은 및 환원제의 포함여부에 따른 전도막의 광투과도, 헤이즈 및 면저항 값을 나타낸 표이다. 기판에 분산액을 코팅하고 110℃로 열처리 시간은 3분, 10분, 20분, 50분으로 각각 측정하였다. 3 is a table showing values of light transmittance, haze, and sheet resistance of a conductive film according to whether silver oxide and a reducing agent are included according to heat treatment temperature and time. The dispersion was coated on the substrate and the heat treatment time at 110° C. was measured for 3 minutes, 10 minutes, 20 minutes, and 50 minutes, respectively.

도 3을 참조하면 실시예 1에 따른 산화은 및 환원제가 포함된 분산액 1로 형성된 전도막(14)의 경우 열처리 시간이 증가할수록 광투과도 및 헤이즈 값은 큰 변화가 없지만, 면저항은 초기 110℃, 3분과 비교할 때 크게 감소된 것을 알 수 있다. 실시예 1에 따른 전도막(14)은 20분 정도 열소결 후 면저항이 유지되는 특성을 보이는데, 20분 경과 시간 동안 산화은이 환원제에 의해 은으로 환원되어 은나노와이어가 서로 접합되어 면저항이 감소되었기 때문이다. 이에 비하여 비교예 1은 같은 열처리 조건에서 면저항 값이 감소하지 않고 증가하는 경향을 보인다. 즉, 산화은 및 환원제가 전도막(14) 속에 포함되어 있지 않을 경우, 같은 열처리 조건에서 은나노와이어 간의 접촉 저항이 개선되지 않고, 오히려 열처리에 의해 전도막(14)의 면저항이 증가하는 것을 확인할 수 있다. Referring to FIG. 3 , in the case of the conductive film 14 formed of the dispersion 1 containing silver oxide and the reducing agent according to Example 1, the light transmittance and haze value do not change significantly as the heat treatment time increases, but the sheet resistance is initially 110° C., 3 It can be seen that there is a significant decrease when compared to minutes. The conductive film 14 according to Example 1 shows a characteristic that the sheet resistance is maintained after thermal sintering for about 20 minutes. During the 20-minute elapsed time, the silver oxide is reduced to silver by the reducing agent, and the silver nanowires are bonded to each other, so that the sheet resistance is reduced. am. On the contrary, in Comparative Example 1, the sheet resistance value does not decrease but increases under the same heat treatment condition. That is, when the silver oxide and the reducing agent are not included in the conductive film 14, the contact resistance between the silver nanowires is not improved under the same heat treatment conditions, but rather, it can be seen that the sheet resistance of the conductive film 14 is increased by the heat treatment. .

실시예Example 2 및 2 and 비교예comparative example 2 2

실시예 2 및 비교예 2에 따른 전도막은 아래와 같은 방법으로 형성하였다.Conductive films according to Example 2 and Comparative Example 2 were formed in the following manner.

실시예 2의 경우, 은나노와이어 0.1 중량%, 산화은(AgO) 0.02 중량%, 환원제(글리옥살) 0.01 중량%가 포함되어 있으며, 점도조절제(하이드록시 프로필 메틸 셀룰로오스) 0.2 중량%가 포함된 분산액 2로 형성된 전도막이다.In the case of Example 2, 0.1 wt% of silver nanowires, 0.02 wt% of silver oxide (AgO), 0.01 wt% of a reducing agent (glyoxal), and 0.2 wt% of a viscosity modifier (hydroxypropyl methyl cellulose) are included Dispersion 2 It is a conductive film formed by

한편 비교예 2인 경우, 대조군 전도막으로 산화은 및 환원제를 포함하지 않은 전도막이다. 여기서 비교예 2은 은나노와이어 0.1 중량% 및 점도조절제(하이드록시 프로필 메틸 셀룰로오스) 0.2 중량%이 포함된 분산액으로 형성된 전도막이다. On the other hand, in Comparative Example 2, a conductive film not containing silver oxide and a reducing agent as a control conductive film. Here, Comparative Example 2 is a conductive film formed of a dispersion containing 0.1 wt% of silver nanowires and 0.2 wt% of a viscosity modifier (hydroxypropyl methyl cellulose).

도 4는 열처리 온도 및 시간에 따라 산화은 및 환원제의 포함여부에 따른 전도막의 광투과도, 헤이즈 및 면저항 값을 나타낸 표이다. 기판에 분산액을 코팅하고 130℃로 열처리 시간은 3분, 10분, 20분, 50분으로 각각 측정하였다. 4 is a table showing values of light transmittance, haze, and sheet resistance of a conductive film according to whether silver oxide and a reducing agent are included according to heat treatment temperature and time. The dispersion was coated on the substrate, and the heat treatment time at 130° C. was measured for 3 minutes, 10 minutes, 20 minutes, and 50 minutes, respectively.

실시예 2에 따른 전도막(14)의 경우 열처리에 따른 면저항 감소 현상이 나타났으며, 비교예 2의 경우는 열처리 시간 증가에 따라 면저항이 다소 증가하는 결과를 보였다. 따라서 실시예 1 및 비교예 1과 비교할 때, 환원제로 글리옥살을 적용하고 열처리 온도를 130℃로 한 실시예 2 및 비교예 2의 경우에도 유사한 경향성을 보이는 결과를 확인할 수 있다.In the case of the conductive film 14 according to Example 2, the sheet resistance decreased due to heat treatment, and in the case of Comparative Example 2, the sheet resistance slightly increased as the heat treatment time increased. Therefore, when compared with Example 1 and Comparative Example 1, it can be seen that the results showing a similar tendency in the case of Example 2 and Comparative Example 2 in which glyoxal was applied as a reducing agent and the heat treatment temperature was 130 °C.

실시예Example 3 및 3 and 실시예Example 4 4

실시예 3 및 실시예 4에 따른 전도막은 아래와 같은 방법으로 형성하였다.Conductive films according to Examples 3 and 4 were formed in the following manner.

실시예 3의 경우, 은나노와이어 0.1 중량%, 산화은(AgO) 0.04 중량%, 환원제 (글루타르알데히드) 0.01 중량 %가 포함되어 있으며, 점도조절제 (하이드록시 프로필 메틸 셀룰로오스) 0.2 중량%가 포함된 분산액 3으로 형성된 전도막이다. In the case of Example 3, 0.1% by weight of silver nanowires, 0.04% by weight of silver oxide (AgO), 0.01% by weight of a reducing agent (glutaraldehyde), and 0.2% by weight of a viscosity modifier (hydroxypropyl methyl cellulose) are included. It is a conductive film formed of 3.

실시예 4의 경우, 은나노와이어 0.1 중량%, 산화은(AgO) 0.06 중량%, 환원제 (글루타르알데히드) 0.02 중량 %가 포함되어 있으며, 점도조절제(하이드록시 프로필 메틸 셀룰로오스) 0.2 중량%가 포함된 분산액 4로 형성된 전도막이다.In the case of Example 4, 0.1% by weight of silver nanowire, 0.06% by weight of silver oxide (AgO), 0.02% by weight of a reducing agent (glutaraldehyde), and 0.2% by weight of a viscosity modifier (hydroxypropyl methyl cellulose) are included. It is a conductive film formed of 4.

도 5는 열처리 온도 및 시간에 따라 산화은 및 환원제의 함량에 따른 전도막의 광투과도, 헤이즈 및 면저항 값을 나타낸 표이다. 기판에 분산액을 코팅하고 120℃로 열처리 시간은 3분, 10분, 20분, 50분으로 각각 측정하였다. 실험 결과, 실시예 1 및 실시예 2와 같이 열처리에 따라 면저항이 감소되는 현상이 나타남을 확인할 수 있다. 5 is a table showing the light transmittance, haze, and sheet resistance values of the conductive film according to the content of silver oxide and reducing agent according to the heat treatment temperature and time. The dispersion was coated on the substrate and the heat treatment time at 120° C. was measured for 3 minutes, 10 minutes, 20 minutes, and 50 minutes, respectively. As a result of the experiment, as in Examples 1 and 2, it can be confirmed that the sheet resistance is reduced according to the heat treatment.

실시예Example 5 5

실시예 5의 경우, 은나노와이어 0.1 중량%, 산화은(Ag2O) 0.02 중량%, 환원제(글루타르알데히드) 0.01 중량 %가 포함되어 있으며, 점도조절제 (하이드록시 프로필 메틸 셀룰로오스) 0.2 중량%가 포함된 분산액 5로 형성된 전도막이다. In the case of Example 5, 0.1 wt% of silver nanowires , 0.02 wt% of silver oxide (Ag 2 O), 0.01 wt% of a reducing agent (glutaraldehyde), and 0.2 wt% of a viscosity modifier (hydroxypropyl methyl cellulose) were included. It is a conductive film formed of the dispersed solution 5.

도 6은 열처리 온도 및 시간에 따라 산화은(Ag2O)이 포함된 전도막의 광투과도, 헤이즈 및 면저항 값을 나타낸 표이다. 기판에 분산액을 코팅하고 120℃로 열처리 시간은 3분, 10분, 20분, 50분으로 각각 측정하였다. 실험 결과, 실시예 1 내지 4와 같이 열처리에 따라 면저항이 감소되는 현상이 나타났다. 그러나, AgO가 포함된 분산액(분산액 1 내지 4)에 비해 면저항이 감소되는 정도의 폭이 작은 것을 확인할 수 있다. 이것은 Ag2O의 녹는점이 AgO와 비교하여 높기 때문에 열처리를 하는 동안 은나노와이어에 대하여 산화은(Ag2O)의 융착이 활발하게 일어나지 않기 때문이다.6 is a table showing the light transmittance, haze, and sheet resistance values of the conductive film containing silver oxide (Ag 2 O) according to the heat treatment temperature and time. The dispersion was coated on the substrate and the heat treatment time at 120° C. was measured for 3 minutes, 10 minutes, 20 minutes, and 50 minutes, respectively. As a result of the experiment, as in Examples 1 to 4, a phenomenon in which the sheet resistance was decreased according to the heat treatment was observed. However, it can be seen that the extent to which the sheet resistance is reduced is smaller than that of the dispersions containing AgO (dispersions 1 to 4). This is because the melting point of Ag 2 O is higher than that of AgO, so the fusion of silver oxide (Ag 2 O) does not occur actively with respect to the silver nanowire during heat treatment.

실시예Example 6 6

산화은과 환원제의 첨가에 따른 은나노와이어의 접합성을 평가하기 위해 휨 안정성 테스트를 진행하였다. 도 7은 휨 안정성 테스트를 나타낸 개략도이고, 도 8은 투명전극 1 및 투명전극 2의 휨 안정성 테스트 결과를 나타낸 그래프이다. In order to evaluate the bondability of silver nanowires according to the addition of silver oxide and a reducing agent, a bending stability test was performed. 7 is a schematic diagram showing the bending stability test, and FIG. 8 is a graph showing the bending stability test results of the transparent electrode 1 and the transparent electrode 2 .

휨 안정성 테스트는 곡률반경 1mm의 휨 환경의 접힘(folding) 횟수에 따른 저항 변화율을 측정한 것이다. 휨 안정성 테스트는 은나노와이어 코팅면 안쪽으로 접히게 되는 인-폴딩(in-folding) 테스트와, 은나노와이어 코팅면 바깥쪽으로 접히게 되는 아웃-폴딩(out-folding) 테스트로 나누어 진행되었다.The bending stability test measures the resistance change rate according to the number of times of folding in a bending environment with a radius of curvature of 1 mm. The bending stability test was divided into an in-folding test in which the silver nanowires were folded inside the coated surface and an out-folding test in which the silver nanowires were folded out of the coated surface.

AgO와 글루타르알데히드, 은나노와이어, 점도조절제를 포함한 분산액을 코팅하여 형성한 투명전극 1과, AgO와 글루타르알데히드를 포함하지 않고 은나노와이어 및 점도조절제를 포함한 대조용액을 코팅한 투명전극 2를 형성하여 휨 안정성 테스트를 진행했다. 그 결과 투명전극 1의 10만회의 인-폴딩 테스트, 아웃-폴딩 테스트에서 면저항 변화율이 3% 이하로 측정되었다. 반면 투명전극 2의 경우 10만회 반복 테스트에서 저항변화율이 각각 7%, 13% 수준으로 높게 측정되었다. 즉 투명전극 1의 경우, 산화은이 환원제에 의해 은으로 환원되어 은나노와이어가 서로 접합되어 면저항이 감소되어 투명전극의 면저항 변화율이 낮게 측정된 것을 확인할 수 있다. A transparent electrode 1 formed by coating a dispersion containing AgO, glutaraldehyde, silver nanowires, and a viscosity modifier, and a transparent electrode 2 coated with a control solution containing silver nanowires and a viscosity modifier without AgO and glutaraldehyde were formed. Thus, a bending stability test was performed. As a result, in the in-folding test and out-folding test of the transparent electrode 1 for 100,000 times, the change rate of the sheet resistance was measured to be 3% or less. On the other hand, in the case of transparent electrode 2, the resistance change rate was measured to be high at 7% and 13%, respectively, in the 100,000 repetition test. That is, in the case of the transparent electrode 1, silver oxide is reduced to silver by the reducing agent, and the silver nanowires are bonded to each other to reduce the sheet resistance, and it can be seen that the change rate of the sheet resistance of the transparent electrode is low.

실시예와 첨부된 도면은 본 발명에 포함되는 기술적 사상의 일부를 예시적으로 설명하는 것에 불과하다. 따라서 본 명세서에 개시된 실시예들은 본 발명의 기술적 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이므로, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것이 아님은 자명하다. 본 발명의 명세서 및 도면에 포함된 기술적 사상의 범위 내에서 당해 기술분야에 있어서의 통상의 지식을 가진 자가 용이하게 유추할 수 있는 변형 예와 구체적인 실시예는 모두 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다. The embodiments and the accompanying drawings are merely illustrative of some of the technical ideas included in the present invention. Therefore, since the embodiments disclosed in the present specification are for explanation rather than limitation of the technical spirit of the present invention, it is obvious that the scope of the technical spirit of the present invention is not limited by these embodiments. Modifications and specific embodiments that can be easily inferred by a person of ordinary skill in the art within the scope of the technical idea included in the specification and drawings of the present invention are included in the scope of the present invention. will have to be interpreted.

10 : 고유연성 투명 전도성 코팅 기판
12 : 기판
14 : 전도막
10: highly flexible transparent conductive coating substrate
12: substrate
14: conductive film

Claims (8)

분산액 전체 100 중량% 대비 은나노와이어 0.01~0.5 중량 %, 산화은 0.01~0.1 중량%, 환원제 0.001~0.1 중량% 및 점도조절제 0.05~0.3 중량%를 포함하고,
상기 산화은 100 중량% 대비 상기 환원제를 30~100 중량% 포함하며,
상기 환원제는 글루타르알데히드(glutaraldehyde)인 것을 특징으로 하는 은나노와이어를 포함한 분산액.
Containing 0.01 to 0.5 wt% of silver nanowires, 0.01 to 0.1 wt% of silver oxide, 0.001 to 0.1 wt% of a reducing agent, and 0.05 to 0.3 wt% of a viscosity modifier based on 100 wt% of the total dispersion,
30 to 100% by weight of the reducing agent relative to 100% by weight of the silver oxide,
The reducing agent is a dispersion including a silver nanowire, characterized in that glutaraldehyde (glutaraldehyde).
제 1 항에 있어서,
상기 산화은은
AgO 또는 Ag2O인 것을 특징으로 하는 은나노와이어를 포함한 분산액.
The method of claim 1,
the silver oxide
Dispersion including silver nanowires, characterized in that AgO or Ag 2 O.
삭제delete 제 1 항에 있어서,
상기 점도조절제는
하이드록시 프로필 메틸 셀룰로오스(hydroxy propyl methyl cellulose), 2-하이드록시 에틸 셀룰로오스(2-hydroxy ethyl cellulose) 및 카르복시 메틸 셀룰로오스(carboxy methyl cellulose) 중 적어도 하나 이상을 포함하는 은나노와이어를 포함한 분산액.
The method of claim 1,
The viscosity modifier
A dispersion comprising silver nanowires comprising at least one of hydroxy propyl methyl cellulose, 2-hydroxy ethyl cellulose, and carboxy methyl cellulose.
제 1 항에 있어서,
상기 은나노와이어는 직경 5~100nm, 길이 2~100㎛인 것을 특징으로 하는 은나노와이어를 포함한 분산액.
The method of claim 1,
The silver nanowire is a dispersion including a silver nanowire, characterized in that the diameter 5 ~ 100nm, length 2 ~ 100㎛.
제 1 항에 있어서,
탄소나노튜브, 전도성 고분자, 그래핀 및 나노카본 중 적어도 하나 이상을 더 포함하는 은나노와이어를 포함하는 분산액.
The method of claim 1,
A dispersion comprising silver nanowires further comprising at least one of carbon nanotubes, conductive polymers, graphene, and nanocarbons.
분산액 전체 100 중량% 대비 은나노와이어 0.01~0.5 중량 %, 산화은 0.01~0.1 중량%, 환원제 0.001~0.1 중량%, 및 점도조절제 0.05~0.3 중량%를 포함하고, 상기 산화은 100 중량% 대비 상기 환원제를 30~100 중량% 포함하는 은나노와이어를 포함한 분산액을 기판에 도포하여 코팅층을 형성하는 단계;
상기 코팅층을 열처리하여, 상기 산화은이 은으로 환원되어 은나노와이어를 접합시켜 네트워크 결합 구조를 가진 전도막을 형성하는 단계;
를 포함하고,
상기 환원제는 글루타르알데히드(glutaraldehyde)인 것을 특징으로 하는 은나노와이어를 이용한 분산액을 이용한 고유연성 투명 전도성 코팅 기판의 제조 방법.
Silver nanowire 0.01 to 0.5% by weight, silver oxide 0.01 to 0.1% by weight, reducing agent 0.001 to 0.1% by weight, and viscosity modifier 0.05 to 0.3% by weight, based on 100% by weight of the total dispersion, and 30% by weight of the reducing agent compared to 100% by weight of the silver oxide Forming a coating layer by applying a dispersion containing silver nanowires containing ~100% by weight on a substrate;
heat-treating the coating layer to reduce the silver oxide to silver to bond the silver nanowires to form a conductive film having a network bonding structure;
including,
The method of manufacturing a highly flexible transparent conductive coating substrate using a dispersion using silver nanowires, characterized in that the reducing agent is glutaraldehyde.
제 7 항에 있어서,
상기 전도막을 형성하는 단계에서,
상기 열처리는 100~130에서 3분~50분간 수행한 것을 특징으로 하는 은나노와이어를 포함한 분산액을 이용한 고유연성 투명 전도성 코팅 기판의 제조 방법.
8. The method of claim 7,
In the step of forming the conductive film,
The heat treatment is a method of manufacturing a highly flexible transparent conductive coating substrate using a dispersion containing silver nanowires, characterized in that performed at 100 to 130 for 3 minutes to 50 minutes.
KR1020170026043A 2017-02-28 2017-02-28 Dispersion liquid having silver nano wire and method for manufacturing high flexible, transparent and conductive coating substrate using the same KR102316361B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170026043A KR102316361B1 (en) 2017-02-28 2017-02-28 Dispersion liquid having silver nano wire and method for manufacturing high flexible, transparent and conductive coating substrate using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170026043A KR102316361B1 (en) 2017-02-28 2017-02-28 Dispersion liquid having silver nano wire and method for manufacturing high flexible, transparent and conductive coating substrate using the same

Publications (2)

Publication Number Publication Date
KR20180099987A KR20180099987A (en) 2018-09-06
KR102316361B1 true KR102316361B1 (en) 2021-10-25

Family

ID=63593869

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170026043A KR102316361B1 (en) 2017-02-28 2017-02-28 Dispersion liquid having silver nano wire and method for manufacturing high flexible, transparent and conductive coating substrate using the same

Country Status (1)

Country Link
KR (1) KR102316361B1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102313837B1 (en) * 2019-09-30 2021-10-19 한국전자기술연구원 Silver nanowire dispersion with nickel compound and Method for manufacturing transparent conductive film using the same
KR20210070635A (en) 2019-12-05 2021-06-15 동우 화인켐 주식회사 Electrode pattern structure, method of fabricating the same and touch sensor including the same
KR102189795B1 (en) * 2019-12-06 2020-12-15 한국전자기술연구원 Conductive coating liquid, conductive film substrate, planar heater and method for manufacturing conductive substrate using same
KR20210087784A (en) 2020-01-03 2021-07-13 동우 화인켐 주식회사 Electrode pattern structure, method of fabricating the same and touch sensor including the same
KR102519130B1 (en) * 2020-12-16 2023-04-10 한국전자기술연구원 Method of manufacturing nanowire network having Ag-based composite structure using metal-based organic or inorganic compounds and Ag-nanowire network manufactured by the method
CN115592124B (en) * 2022-09-14 2023-12-15 苏州大学 Nanometer colloidal gold and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005267900A (en) * 2004-03-16 2005-09-29 Sumitomo Osaka Cement Co Ltd Conductive paste and its manufacturing method
JP2006514713A (en) 2002-09-20 2006-05-11 ノーブル ファイバ テクノロジーズ,インク. Improved silver plating method and article formed by the method
JP2014139343A (en) * 2006-08-07 2014-07-31 Inktec Co Ltd Method for manufacturing silver nanoparticle, silver ink composition containing silver nanoparticle manufactured by the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101186801B1 (en) 2009-08-31 2012-09-28 전자부품연구원 Post treatment processing method and its formulation of polymer solution for electric and thermal conductive thin film
KR20160095236A (en) * 2015-02-02 2016-08-11 전자부품연구원 Silver nano wire coating solution having silver oxide, conductive coating substrate and manufacturing thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006514713A (en) 2002-09-20 2006-05-11 ノーブル ファイバ テクノロジーズ,インク. Improved silver plating method and article formed by the method
JP2005267900A (en) * 2004-03-16 2005-09-29 Sumitomo Osaka Cement Co Ltd Conductive paste and its manufacturing method
JP2014139343A (en) * 2006-08-07 2014-07-31 Inktec Co Ltd Method for manufacturing silver nanoparticle, silver ink composition containing silver nanoparticle manufactured by the same

Also Published As

Publication number Publication date
KR20180099987A (en) 2018-09-06

Similar Documents

Publication Publication Date Title
KR102316361B1 (en) Dispersion liquid having silver nano wire and method for manufacturing high flexible, transparent and conductive coating substrate using the same
KR101693486B1 (en) Coating solution having silver nano wire, conductive thin film and manufacturing thereof
Jo et al. Highly flexible, stretchable, patternable, transparent copper fiber heater on a complex 3D surface
JP6291587B2 (en) Method for producing transparent conductive electrode containing dissolved metal nanowire
KR101305710B1 (en) Nano wire composition and method for fabrication transpatent electrode
US9708712B2 (en) Conductive transparent film and method for making same
TW201606010A (en) Composition comprising silver nanowires and fibers of crystalline cellulose for the preparation of electroconductive transparent layers
KR101637920B1 (en) Transparent film heater and manufacturing method thereof
Kim et al. Electrically and mechanically enhanced Ag nanowires-colorless polyimide composite electrode for flexible capacitive sensor
JP2008201635A (en) Method for forming micro-carbon monomolecular film, surface coating method and coated object
Yang et al. Printed flexible transparent electrodes for harsh environments
JP2011082165A (en) Method of manufacturing electrode substrate
KR101328427B1 (en) Complex conductive thin film using metal nano wire and cnt, method of manufacturing thereof
KR20160095236A (en) Silver nano wire coating solution having silver oxide, conductive coating substrate and manufacturing thereof
Kim et al. Transparent and Multi‐Foldable Nanocellulose Paper Microsupercapacitors
Oytun et al. Coupling layer-by-layer assembly and multilayer transfer to fabricate flexible transparent film heater
JP5928029B2 (en) Method for manufacturing conductive film and laminate
KR20080107688A (en) Preparation of transparent conductive film composed of carbon nanotubes for display
KR101690840B1 (en) Method of fabricating mirco/nano structure using intense pulsed light
KR102313837B1 (en) Silver nanowire dispersion with nickel compound and Method for manufacturing transparent conductive film using the same
KR20210059835A (en) Heat insulating film and heat insulating substrate comprising the same
WO2022153958A1 (en) Transparent conductive film
KR102316362B1 (en) Nanocomposite composition and nanocomposite conductive film using the same
WO2022153959A1 (en) Production method for transparent conductive film
KR102536980B1 (en) Silver nanowire coating solution and method for manufacturing a three-dimensional transparent electrode using the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant