KR102316043B1 - Manufacturing Method of Nano Copper-Ceramic Composite Fabricated by Hot-Pressing - Google Patents

Manufacturing Method of Nano Copper-Ceramic Composite Fabricated by Hot-Pressing Download PDF

Info

Publication number
KR102316043B1
KR102316043B1 KR1020200004734A KR20200004734A KR102316043B1 KR 102316043 B1 KR102316043 B1 KR 102316043B1 KR 1020200004734 A KR1020200004734 A KR 1020200004734A KR 20200004734 A KR20200004734 A KR 20200004734A KR 102316043 B1 KR102316043 B1 KR 102316043B1
Authority
KR
South Korea
Prior art keywords
copper
ceramic
nano
composite
sintered composite
Prior art date
Application number
KR1020200004734A
Other languages
Korean (ko)
Other versions
KR20210091503A (en
Inventor
이상진
조영권
김승일
공헌
Original Assignee
목포대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 목포대학교산학협력단 filed Critical 목포대학교산학협력단
Priority to KR1020200004734A priority Critical patent/KR102316043B1/en
Publication of KR20210091503A publication Critical patent/KR20210091503A/en
Application granted granted Critical
Publication of KR102316043B1 publication Critical patent/KR102316043B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/624Sol-gel processing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/6342Polyvinylacetals, e.g. polyvinylbutyral [PVB]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • H05K7/20509Multiple-component heat spreaders; Multi-component heat-conducting support plates; Multi-component non-closed heat-conducting structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/407Copper
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Products (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

본 발명은 방열소재용 구리-세라믹 복합체는 나노구리폴리머 용액합성법을 이용하여 나노 구리-세라믹 전구체를 제조하고 이를 고온 고압에서 소결하여 나노 구리-세라믹 소결체를 제조하였다. 상기 나노 구리-세라믹 소결체는 치밀한 조직을 가져 열전도도는 향상된 반면 열팽창계수는 감소하였으므로 잔류응력을 발생시키지 않으면서도 적절히 열을 방출할 수 있는 방열소재로서 사용 가능한 장점이 있다.In the present invention, a copper-ceramic composite for a heat dissipation material was prepared by using a nano-copper polymer solution synthesis method to prepare a nano-copper-ceramic precursor and sintering it at high temperature and high pressure to prepare a nano-copper-ceramic sintered body. Since the nano-copper-ceramic sintered body has a dense structure, thermal conductivity is improved while the coefficient of thermal expansion is decreased, so it has an advantage that it can be used as a heat dissipation material capable of properly dissipating heat without generating residual stress.

Description

가압소결을 이용한 나노 구리-세라믹 복합체의 제조방법{Manufacturing Method of Nano Copper-Ceramic Composite Fabricated by Hot-Pressing}Manufacturing Method of Nano Copper-Ceramic Composite Fabricated by Hot-Pressing

본 발명은 가압소결을 이용한 나노 구리-세라믹 복합체의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a nano-copper-ceramic composite using pressure sintering.

전기, 전자소자의 소형화, 고성능화, 및 고집적화에 따라 전자기기의 발열량이 증가하고 있다. 소재의 발열량이 증가하면 기기의 주변소자의 기능저하 및 오작동, 그리고 기기의 내구성에 영향을 준다. 따라서 소자의 개발과 함께 이로부터 발생되는 열을 적절히 제어하는 기술에 대한 수요가 급증하고 있는 실정이다.The amount of heat generated by electronic devices is increasing due to miniaturization, high performance, and high integration of electric and electronic devices. If the amount of heat generated by the material increases, the function deteriorates and malfunctions of the peripheral devices of the device, and the durability of the device is affected. Accordingly, along with the development of the device, the demand for a technology for appropriately controlling the heat generated therefrom is rapidly increasing.

전자기기에서 발생하는 열을 제어하기 위하여 방열판을 사용할 수 있다. 상기 방열판의 제조에 사용되는 방열 재료는 높은 열전도도를 가져야하며 특히, 반도체 또는 LED와 같은 전자기기에 적합한 열팽창계수를 가져야 한다. A heat sink may be used to control the heat generated by the electronic device. The heat dissipation material used for manufacturing the heat sink must have high thermal conductivity and, in particular, must have a coefficient of thermal expansion suitable for electronic devices such as semiconductors or LEDs.

단일 금속으로 제조된 방열 재료는 열전도도가 우수한 장점이 있으나 열팽창계수가 높은 단점이 있다. 단일금속으로 제조된 방열 재료의 열팽창계수는 반도체 기판과 같은 다른 전자부품들의 열팽창계수와 차이가 있으며 상기 열팽창계수의 차이는 잔류응력을 발생시키므로 고장의 원인이 된다. 따라서 높은 열전도도를 가지면서도 다른 전자부품과 유사한 열팽창계수를 가져 잔류응력을 발생시키지 않으면서 적절히 열을 방출할 수 있는 방열 소재의 개발이 필요하다. A heat dissipation material made of a single metal has the advantage of excellent thermal conductivity, but has a disadvantage in that the thermal expansion coefficient is high. The thermal expansion coefficient of the heat dissipating material made of a single metal is different from the thermal expansion coefficient of other electronic components such as semiconductor substrates, and the difference in the thermal expansion coefficient generates a residual stress, which causes a failure. Therefore, it is necessary to develop a heat-dissipating material that can properly dissipate heat without generating residual stress by having a coefficient of thermal expansion similar to that of other electronic components while having high thermal conductivity.

본 명세서에서 언급된 특허문헌 및 참고문헌은 각각의 문헌이 참조에 의해 개별적이고 명확하게 특정된 것과 동일한 정도로 본 명세서에 참조로 삽입된다. The patents and references mentioned herein are hereby incorporated by reference to the same extent as if each publication were individually and expressly specified by reference.

K. Matsubara, H. Kuroki, N. Sawai and Y. Takahara, (2009). Development and Thermal Properties of Cu-Mo Composite Materials, J. Japan. Inst. Matals., 73(3). 211-215.

Figure 112020004079578-pat00001
K. M. Shu, G. C. Tu, (2002). The microstructure and the thermal expansion characteristics of Cu/SiC composites, Mater. Sci. Eng., 349. 236-247.
Figure 112020004079578-pat00002
Figure 112020004079578-pat00003
V. V. Rao, M. V. Krishna Murthy and J. Nagaraju, (2004). Thermal conductivity and thermal contact conductance studies on AlO/Al-AlN metal matrix composite, Compos. Sci. Technol., 64. 2459-2462. M. Chmielewski, W. Weglewski, (2013). Comparison of experimental and modelling results of thermal properties in Cu-AlN composite materials, Bull. Pol. Acad. Sci., 61, 507. K. M. Lee, D. K. Oh, W. S. Choi, T. Weissgarber and B. Kieback, (2007). Thermomechanical properties of AlN-Cu composite materials prepared by solid state processing, J. Alloy. Compd., 434. 375-377. W. J. Kim, D. K. Kim and C. H. Kim, (1996). Morphological Effect of Second Phase on the Thermal Conductivity of AlN Ceramics, J. Am. Ceram. Soc., 79(3). 1066-1072. A. L. Loeb, (1954). Thermal conductivity: VIII, a theory of thermal conductivity of porous materials, J. Am. Ceram. Soc., 37(2). 96-99. K. M. Shu, G. C. Tu, (2003). The microstructure and the thermal expansion characteristics of Cu/SiCp composites, Mater. Sci. Eng., 349. 236-247. K. Matsubara, H. Kuroki, N. Sawai and Y. Takahara, (2009). Development and Thermal Properties of Cu-Mo Composite Materials, J. Japan. Inst. Matals., 73(3). 211-215.
Figure 112020004079578-pat00001
KM Shu, G. C. Tu, (2002). The microstructure and the thermal expansion characteristics of Cu/SiC composites, Mater. Sci. Eng., 349. 236-247.
Figure 112020004079578-pat00002
Figure 112020004079578-pat00003
V. V. Rao, M. V. Krishna Murthy and J. Nagaraju, (2004). Thermal conductivity and thermal contact conductance studies on AlO/Al-AlN metal matrix composite, Compos. Sci. Technol., 64. 2459-2462. M. Chmielewski, W. Weglewski, (2013). Comparison of experimental and modeling results of thermal properties in Cu-AlN composite materials, Bull. Pol. Acad. Sci., 61, 507. KM Lee, DK Oh, WS Choi, T. Weissgarber and B. Kieback, (2007). Thermomechanical properties of AlN-Cu composite materials prepared by solid state processing, J. Alloy. Compd., 434. 375-377. WJ Kim, DK Kim and CH Kim, (1996). Morphological Effect of Second Phase on the Thermal Conductivity of AlN Ceramics, J. Am. Ceram. Soc., 79(3). 1066-1072. AL Loeb, (1954). Thermal conductivity: VIII, a theory of thermal conductivity of porous materials, J. Am. Ceram. Soc., 37(2). 96-99. KM Shu, G. C. Tu, (2003). The microstructure and the thermal expansion characteristics of Cu/SiCp composites, Mater. Sci. Eng., 349. 236-247.

본 발명의 목적은 상기 문제점을 해결하기 위하여, 폴리머 용액합성법을 이용하여 나노 구리에 세라믹 필러가 분산된 나노 구리-세라믹 전구체를 합성하고 이를 고온 고압의 조건에서 소결하여 열전도도가 우수하면서도 열팽창계수가 낮아 잔류응력을 발생시키지 않으면서 적절히 열을 방출할 수 있는 방열소재용 구리-세라믹 소결체를 제조하는 데 있다.An object of the present invention is to synthesize a nano-copper-ceramic precursor in which a ceramic filler is dispersed in nano-copper using a polymer solution synthesis method and sinter it under conditions of high temperature and high pressure in order to solve the above problems, so that the thermal conductivity is excellent and the coefficient of thermal expansion is high. The purpose of the present invention is to manufacture a copper-ceramic sintered body for a heat dissipating material that can properly radiate heat without generating a residual stress due to its low low profile.

본 발명의 다른 목적 및 기술적 특징은 이하의 발명의 상세한 설명, 청구의 범위 및 도면에 의해 보다 구체적으로 제시된다. Other objects and technical features of the present invention are more particularly set forth by the following detailed description of the invention, claims and drawings.

본 발명은 방열소재용 구리-세라믹 복합체의 제조방법을 제공한다.The present invention provides a method for manufacturing a copper-ceramic composite for a heat dissipation material.

상기 제조방법은 질산제이구리(cupric nitrate hydrate)을 포함하는 구리용액을 제조하는 제 1 단계; 상기 구리용액에 세라믹 분말을 첨가하여 구리-세라믹 혼합용액을 제조하는 제 2 단계; 상기 구리-세라믹 혼합용액에 폴리비닐부티랄(polyvinyl butyral)을 첨가하여 구리-세라믹 졸(sol) 용액을 제조하는 제 3 단계; 상기 구리-세라믹 졸 용액을 건조하여 나노 구리-세라믹 전구체 분말을 제조하는 제 4 단계; 상기 나노 구리-세라믹 전구체 분말을 450 내지 550℃에서 하소하여 유기물을 제거한 후 프레스를 이용하여 니노 구리-세라믹 전구체 분말 성형체를 제조하는 제 5 단계; 및 상기 나노 구리-세라믹 전구체 분말 성형체를 전기로에 넣고 분당 2 내지 4℃의 승온속도로 940 내지 960℃까지 상승시킨 후 50 내지 70 분 동안 30 내지 50MPa에서 소결하여 니노 구리-세라믹 소결체를 제조하는 제 6 단계를 포함한다.The manufacturing method is a first step of preparing a copper solution containing cupric nitrate (cupric nitrate hydrate); a second step of preparing a copper-ceramic mixed solution by adding ceramic powder to the copper solution; a third step of preparing a copper-ceramic sol solution by adding polyvinyl butyral to the copper-ceramic mixed solution; a fourth step of drying the copper-ceramic sol solution to prepare a nano-copper-ceramic precursor powder; a fifth step of calcining the nano-copper-ceramic precursor powder at 450 to 550° C. to remove organic matter, and then using a press to prepare a nano-copper-ceramic precursor powder compact; and placing the nano copper-ceramic precursor powder compact in an electric furnace, raising the temperature to 940 to 960 ° C at a rate of 2 to 4 ° C per minute, and then sintering at 30 to 50 MPa for 50 to 70 minutes to prepare a nino copper-ceramic sintered compact Includes 6 steps.

상기 세라믹은 질화알루미늄(aluminium nitrite) 또는 탄화규소(silicon carbide)이며, 상기 구리-세라믹 졸(sol) 용액은 상기 구리-세라믹 혼합용액 93 내지 97 중량%와 폴리비닐부티랄 3 내지 7 중량%가 혼합된 것을 특징으로 한다.The ceramic is aluminum nitrite or silicon carbide, and the copper-ceramic sol solution contains 93 to 97% by weight of the copper-ceramic mixed solution and 3 to 7% by weight of polyvinyl butyral. It is characterized by being mixed.

또한 상기 나노 구리-세라믹 전구체는 입경이 10 내지 20㎚인 나노 구리 입자에 상기 세라믹 입자가 분산되어 있으며 상기 나노 구리-세라믹 소결체는 구리와 세라믹이 9:1 내지 7:3의 몰비로 포함된 것을 특징으로 한다.In addition, in the nano-copper-ceramic precursor, the ceramic particles are dispersed in nano-copper particles having a particle diameter of 10 to 20 nm, and the nano-copper-ceramic sintered body includes copper and ceramic in a molar ratio of 9:1 to 7:3. characterized.

본 발명은 방열소재용 구리-세라믹 복합체는 나노구리폴리머 용액합성법을 이용하여 나노 구리-세라믹 전구체를 제조하고 이를 고온 고압에서 소결하여 나노 구리-세라믹 소결체를 제조하였다. 상기 나노 구리-세라믹 소결체는 치밀한 조직을 가져 열전도도는 향상된 반면 열팽창계수는 감소하였으므로 잔류응력을 발생시키지 않으면서도 적절히 열을 방출할 수 있는 방열소재로서 사용 가능한 장점이 있다.In the present invention, a copper-ceramic composite for a heat dissipation material was prepared by using a nano-copper polymer solution synthesis method to prepare a nano-copper-ceramic precursor and sintering it at high temperature and high pressure to prepare a nano-copper-ceramic sintered body. Since the nano-copper-ceramic sintered body has a dense structure, thermal conductivity is improved while the coefficient of thermal expansion is decreased, so it has an advantage that it can be used as a heat dissipation material capable of properly dissipating heat without generating residual stress.

도 1은 본 발명의 폴리비닐부티랄(PVB) 폴리머 용액합성법을 사용하여 제조하고 500℃에서 하소한 Cu/AlN(70:30) 전구체 분말 및 Cu/SiC(70:30) 전구체 분말의 미세구조를 전계방출 주사전자현미경(FE-SEM)을 통하여 분석한 결과를 보여준다.
도 2는 본 발명의 PVB 폴리머 용액합성법을 사용하여 제조한 Cu/AlN 전구체 분말 및 Cu/SiC 전구체 분말에 대하여 X선 회절분석을 수행한 결과를 보여준다.
도 3은 본 발명의 상압 소결을 통하여 제조한 Cu/AlN(70:30) 상압 소결 복합체, Cu/AlN(90:10) 상압 소결 복합체, Cu/SiC(70:30) 상압 소결 복합체의 미세구조를 전계방출 주사전자현미경(FE-SEM)을 통하여 분석한 결과를 보여준다.
도 4는 본 발명의 고압 소결을 통해 제조한 Cu/AlN(70:30) 고압 소결 복합체, 및 Cu/SiC(70:30) 고압 소결 복합체의 미세구조를 전계방출 주사전자현미경(FE-SEM)을 통하여 분석한 결과를 보여준다.
도 5는 본 발명의 고압 소결을 통해 제조한 Cu/AlN(70:30) 고압 소결 복합체, 및 Cu/SiC(70:30) 고압 소결 복합체의 기지재와 세라믹 필러간의 계면을 전계방출 주사전자현미경(FE-SEM)을 통하여 분석한 결과를 보여준다.
도 6은 본 발명의 고압 소결을 통해 제조한 Cu/AlN(70:30) 고압 소결 복합체, 및 Cu/SiC(70:30) 고압 소결 복합체의 EDS mapping결과를 보여준다.
도 7은 본 발명의 구리시편(Cu plate) 및 구리-세라믹 소결 복합체의 열전도도 측정값을 보여준다.
도 8은 본 발명의 구리 플레이트(plate), Cu/AIN(90:10) 상압 소결 복합체, Cu/SiC(70:30) 고압 소결 복합체, Cu/AIN(70:30) 고압 소결 복합체의 열팽창계수를 보여준다.
1 is a microstructure of Cu/AlN (70:30) precursor powder and Cu/SiC (70:30) precursor powder prepared using the polyvinyl butyral (PVB) polymer solution synthesis method of the present invention and calcined at 500° C. shows the results of analysis through field emission scanning electron microscopy (FE-SEM).
2 shows the results of X-ray diffraction analysis on Cu/AlN precursor powder and Cu/SiC precursor powder prepared by using the PVB polymer solution synthesis method of the present invention.
3 is a microstructure of Cu/AlN (70:30) atmospheric sintered composite, Cu/AlN (90:10) atmospheric sintered composite, and Cu/SiC (70:30) atmospheric sintered composite prepared through atmospheric sintering according to the present invention; shows the results of analysis through field emission scanning electron microscopy (FE-SEM).
4 is a field emission scanning electron microscope (FE-SEM) of the microstructure of the Cu/AlN (70:30) high-pressure sintered composite, and the Cu/SiC (70:30) high-pressure sintered composite prepared through high-pressure sintering of the present invention; shows the results of the analysis.
5 is a field emission scanning electron microscope showing the interface between the substrate and the ceramic filler of the Cu/AlN (70:30) high-pressure sintered composite and the Cu/SiC (70:30) high-pressure sintered composite prepared through high-pressure sintering of the present invention; The results of analysis through (FE-SEM) are shown.
6 shows the EDS mapping results of the Cu/AlN (70:30) high-pressure sintered composite and the Cu/SiC (70:30) high-pressure sintered composite prepared through high-pressure sintering according to the present invention.
7 shows the measured values of the thermal conductivity of the copper specimen (Cu plate) and the copper-ceramic sintered composite of the present invention.
8 is a copper plate, Cu / AIN (90:10) atmospheric pressure sintered composite, Cu / SiC (70:30) high pressure sintered composite, Cu / AIN (70:30) thermal expansion coefficient of the high pressure sintered composite of the present invention shows

본 발명은 열팽창계수의 차이로 인한 문제점을 보완하기 위해서 열전도도가 높은 금속을 기지재로 하고 열팽창계수가 낮은 세라믹을 강화제(필러)로 하여 제조한 방열소재용 금속기지재-세라믹 필러 복합체에 관한 것이다. The present invention relates to a metal base material for a heat dissipation material-ceramic filler composite prepared by using a metal with high thermal conductivity as a base material and a ceramic with a low coefficient of thermal expansion as a reinforcing agent (filler) in order to compensate for the problem caused by the difference in the coefficient of thermal expansion. .

본 발명에서는 세라믹 재료 중 상대적으로 열전도율이 높으면서 열팽창계수가 낮은 질화알루미늄(aluminium nitrite, AlN)과 탄화규소(silicon carbide, SiC)를 선택하여 금속기지재인 구리와 복합화 시킴으로써 높은 열전도도를 유지하며 낮은 열팽창계수를 가져 고기능 방열재료에 적용될 수 있도록 방열재료용 금속기지재-세라믹 필러 복합체를 제조하였다.In the present invention, high thermal conductivity is maintained and low thermal expansion is maintained by selecting aluminum nitrite (AlN) and silicon carbide (SiC), which are relatively high in thermal conductivity and low in thermal expansion coefficient, and complexing them with copper, which is a metal matrix, among ceramic materials. A metal matrix material for heat dissipation material-ceramic filler composite was prepared so that it could be applied to a high-functional heat dissipation material with a coefficient.

종래에는 기계적 혼합 방법을 이용하여 금속기지재-세라믹 필러 복합체를 제조하는 방법이 주로 사용되었다. 그러나 상기 기계적 혼용방법은 균질한 혼합이 불가능하여 금속기지재 또는 세라믹 필러 사이의 국부적인 결합이 형성되므로 열적특성이 저하되거나 불균일한 단점이 있었다. 이에 본 발명에서 소결성이 뛰어나고 구리상에 세라믹 필러인 질화알루미늄 또는 탄화규소의 분산성을 극대화할 수 있는 폴리머 용액합성법을 적용하여 나노 구리-세라믹 전구체 분말을 제조한 후 이를 고온, 고압에서 소결하여 열전도도가 우수하고 열팽창계수가 낮은 방열재료용 금속기지재-세라믹 필러 복합체를 제조하였다.Conventionally, a method of manufacturing a metal matrix material-ceramic filler composite by using a mechanical mixing method has been mainly used. However, the mechanical mixing method has disadvantages in that it is impossible to homogeneously mix, so that a local bond between the metal matrix material or the ceramic filler is formed, so that the thermal properties are deteriorated or non-uniform. Therefore, in the present invention, nano copper-ceramic precursor powder is prepared by applying a polymer solution synthesis method that has excellent sinterability and maximizes the dispersibility of aluminum nitride or silicon carbide, which are ceramic fillers on copper, and then sintered it at high temperature and high pressure to conduct heat. A metal matrix material-ceramic filler composite for heat dissipation material having excellent degree and low coefficient of thermal expansion was prepared.

상기 폴리머 용액합성법은 졸-갤법 중에 하나인 종래의 페치니 방법(Pechini method)을 응용한 것으로서 용매에 녹아있는 양이온간의 킬레이션(chelation) 작용과 금속-킬레이트(metal-chelate)복합체와 폴리 히드록시 알코올(poly hydroxyl alcohol)간의 공중합(polymerization)에 의한 작용이 양이온의 분산을 일으켜 화학적으로 균질하고 안정한 전구체(precursor)를 얻을 수 있는 분말 합성법이다. The polymer solution synthesis method is an application of the conventional Pechini method, which is one of the sol-gal methods, and includes a chelation action between cations dissolved in a solvent and a metal-chelate complex and polyhydroxy It is a powder synthesis method that can obtain a chemically homogeneous and stable precursor by causing dispersion of cations by the action of polymerization between polyhydroxy alcohols.

본 발명에서는 폴리머로서 폴리비닐부티랄(polyvinyl butyral)을 사용한다. 본 발명의 PVB 폴리머 용액합성법은 (OH)-기를 포함하는 폴리머를 이용함으로써 종래의 페치니 방법과 달리 킬레이션 공정이 생략되고, 단지 물리적 작용인 고착공정 (steric-entrapment)에 의해 양이온의 분산되는 특성이 있다. 본 발명의 폴리비닐부티랄 폴리머 용액합성법은 물에 용해된 폴리머의 히드록실 잔기(hydroxyl group)가 금속 양이온을 강하게 고착시켜 줌으로써 균일한 분산을 가능하게 하여 매우 안정된 전구체를 제조할 수 있는 장점이 있다. 또한 전구체 제조를 위한 고온 건조 과정에서 폴리비닐부티랄 폴리머와 아질산(nitrate) 형태의 금속 양이온에서 발생하는 CO, CO2 및 NOx 가스의 상호작용이 높은 점도의 액상 전구체에 많은 기포를 유발시키므로 다공성의 부드러운 전구체를 제조할 수 있을 뿐 아니라 하소 과정 시 폴리비닐부티랄의 뛰어난 열분해 성질에 의하여 낮은 온도에서도 폴리머의 탈지가 가능함으로, 비교적 낮은 온도에서 소결을 통한 분말합성이 가능하다는 장점이 있다. 상기 합성된 분말은 적절한 밀링 과정을 거치면 매우 미세한 분말로도 입도조절이 가능하다.In the present invention, polyvinyl butyral is used as the polymer. In the PVB polymer solution synthesis method of the present invention, the chelation process is omitted, unlike the conventional Peccini method, by using a polymer containing (OH) - There are characteristics. The polyvinyl butyral polymer solution synthesis method of the present invention has the advantage of enabling uniform dispersion by strongly fixing metal cations to the hydroxyl group of the polymer dissolved in water, thereby producing a very stable precursor. . In addition, the interaction of CO, CO 2 and NO x gas generated from the polyvinyl butyral polymer and the metal cation in the form of nitrate during the high-temperature drying process for precursor preparation causes many bubbles in the high-viscosity liquid precursor. In addition to being able to produce a soft precursor of polyvinyl butyral during the calcination process, the excellent thermal decomposition properties of polyvinyl butyral enable degreasing of the polymer even at low temperatures, so powder synthesis is possible at a relatively low temperature. The particle size of the synthesized powder can be controlled even with a very fine powder through an appropriate milling process.

본 발명에서는 세라믹 필러로 사용되는 질화알루미늄이 물과 반응하여 Al2O3로 분해될 수 있기 때문에 유기용매인 에틸아세테이트(ethyl acetate)를 사용하여 구리용액을 제조한 후 세라믹 필러를 첨가하였으며 금속기지재인 구리와 세라믹 필러인 질화알루미늄 및 탄화규소의 분산을 향상시키기 위해 유기용매에 용해성이 우수한 폴리머인 PVB를 사용하였다.In the present invention, since aluminum nitride used as a ceramic filler can be decomposed into Al 2 O 3 by reacting with water, a copper solution was prepared using an organic solvent, ethyl acetate, and then a ceramic filler was added. In order to improve the dispersion of copper, which is a material, and aluminum nitride and silicon carbide, which are ceramic fillers, PVB, a polymer with excellent solubility in organic solvents, was used.

본 발명의 방열소재용 구리-세라믹 복합체의 제조방법은 다음과 같다.The method of manufacturing the copper-ceramic composite for a heat dissipation material of the present invention is as follows.

질산제이구리(cupric nitrate hydrate)을 포함하는 구리용액을 제조하는 제 1 단계;A first step of preparing a copper solution containing cupric nitrate (cupric nitrate hydrate);

상기 구리용액에 질화알루미늄(aluminium nitrite) 또는 탄화규소(silicon carbide) 분말을 첨가하여 구리-세라믹 혼합용액을 제조하는 제 2 단계;a second step of preparing a copper-ceramic mixed solution by adding aluminum nitrite or silicon carbide powder to the copper solution;

상기 구리-세라믹 혼합용액에 폴리비닐부티랄(polyvinyl butyral)을 첨가하되 상기 구리-세라믹 혼합용액과 상기 폴리비닐부티랄이 각각 93 내지 97 중량% 및 3 내지 7 중량%가 되도록 구리-세라믹 졸(sol) 용액을 제조하는 제 3 단계;Add polyvinyl butyral to the copper-ceramic mixed solution, but copper-ceramic sol ( sol) a third step of preparing a solution;

상기 구리-세라믹 졸 용액을 건조하여 입경이 10 내지 20㎚인 나노 구리 입자에 상기 세라믹 입자가 분산된 나노 구리-세라믹 전구체 분말을 제조하는 제 4 단계;a fourth step of drying the copper-ceramic sol solution to prepare a nano-copper-ceramic precursor powder in which the ceramic particles are dispersed in nano-copper particles having a particle diameter of 10 to 20 nm;

상기 나노 구리-세라믹 전구체 분말을 450 내지 550℃에서 하소하여 유기물을 제거한 후 프레스를 이용하여 나노 구리-세라믹 전구체 분말 성형체를 제조하는 제 5 단계; 및a fifth step of calcining the nano-copper-ceramic precursor powder at 450 to 550° C. to remove organic matter, and then using a press to prepare a nano-copper-ceramic precursor powder compact; and

상기 나노 구리-세라믹 전구체 분말 성형체를 진공로에 넣고 분당 2 내지 4℃의 승온속도로 940 내지 960℃까지 상승시킨 후 50 내지 70 분동안 30 내지 50MPa에서 소결하여 나노 구리-세라믹 소결체를 제조하는 제 6 단계.The nano copper-ceramic precursor powder compact is placed in a vacuum furnace, the temperature is raised to 940 to 960 ° C at a rate of 2 to 4 ° C per minute, and then sintered at 30 to 50 MPa for 50 to 70 minutes to prepare a nano copper-ceramic sintered compact Step 6.

본 발명에서는 세라믹 필러로 사용되는 질화알루미늄이 물과 반응하여 Al2O3로 분해될 수 있기 때문에 유기용매인 에틸아세테이트(ethyl acetate)를 사용하여 구리용액을 제조한 후 세라믹 필러를 첨가하였다.In the present invention, since aluminum nitride used as a ceramic filler can be decomposed into Al 2 O 3 by reacting with water, a copper solution was prepared using an organic solvent, ethyl acetate, and then a ceramic filler was added.

또한 금속기지재인 구리와 세라믹 필러인 질화알루미늄 및 탄화규소의 분산을 향상시키기 위해 유기용매에 용해성이 우수한 폴리머인 PVB를 사용하였다. In addition, PVB, a polymer with excellent solubility in organic solvents, was used to improve the dispersion of copper as a metal matrix material and aluminum nitride and silicon carbide as ceramic fillers.

상기의 방법으로 제조한 나노 구리-세라믹 소결체는 구리와 세라믹이 9:1 내지 7:3의 몰비로 포함된 것을 특징으로 한다.The nano copper-ceramic sintered body prepared by the above method is characterized in that copper and ceramic are included in a molar ratio of 9:1 to 7:3.

하기에서 실시예를 통해 본 발명은 상세히 설명한다.Hereinafter, the present invention will be described in detail through examples.

실시예Example

1. 실험재료 및 방법1. Experimental materials and methods

1) 구리-세라믹 전구체 분말의 제조1) Preparation of copper-ceramic precursor powder

본 발명에서는 소결성이 우수하고 필러재료의 분산성이 향상된 금속기지-세라믹 필러 복합체를 제조하였다.In the present invention, a metal matrix-ceramic filler composite having excellent sinterability and improved dispersibility of the filler material was prepared.

본 발명의 금속기지-세라믹 필러 복합체의 금속기지재 및 세라믹 필러는 각각 나노 구리(nano-Cu) 및 질화알루미늄(Aluminum Nitride, AlN) 또는 탄화규소(silicon carbide, SiC)를 이용하였으며 나노 구리의 원료물질로서 질산제이구리(cupric nitrate hydrate, Cu(NO3)2·2.5H2O, 98% purity, Sigma-Aldrich,Co., USA), 세라믹 필러의 원료물질로서 고성분말인 질화알루미늄(Aluminum Nitride, AlN, 99% purity, Tokuyama, H type) 또는 탄화규소(silicon carbide, SiC, #10000, 99% purity, Dongkwang micron Co., Ltd., Korea)를 폴리머 용액합성법을 통하여 합성하였다.The metal matrix material and the ceramic filler of the metal matrix-ceramic filler composite of the present invention used nano-Cu and aluminum nitride (AlN) or silicon carbide (SiC), respectively, and the raw material of nano copper Cupric nitrate hydrate (Cupric nitrate hydrate, Cu(NO 3 ) 2 ·2.5H 2 O, 98% purity, Sigma-Aldrich, Co., USA), as a raw material for ceramic filler, aluminum nitride (Aluminum Nitride, AlN, 99% purity, Tokuyama, H type) or silicon carbide (silicon carbide, SiC, #10000, 99% purity, Dongkwang micron Co., Ltd., Korea) was synthesized through a polymer solution synthesis method.

먼저 질산제이구리 분말을 에틸아세테이트(ethyl acetate, 99%, Daejung Chemicals & Metals Co., Ltd., Korea)에 완전히 용해시켜 구리용액을 제조하였다. 상기 구리 용액에 AlN 분말 또는 SiC 분말을 첨가하여 구리-세라믹 혼합용액을 제조하였다(하기 표 1 참조).First, cupric nitrate powder was completely dissolved in ethyl acetate (ethyl acetate, 99%, Daejung Chemicals & Metals Co., Ltd., Korea) to prepare a copper solution. A copper-ceramic mixed solution was prepared by adding AlN powder or SiC powder to the copper solution (see Table 1 below).

구리-세라믹 혼합용액Copper-ceramic mixed solution 구리(wt%)Copper (wt%) 질산제이구리(wt%)Cupric Nitrate (wt%) 탄화규소(wt%)Silicon Carbide (wt%) Cu/AIN(90:10)Cu/AIN (90:10) 9090 1010 00 Cu/AIN(70:30)Cu/AIN (70:30) 7070 3030 00 Cu/SiC(90:10)Cu/SiC (90:10) 9090 00 1010 Cu/SiC(85:15)Cu/SiC (85:15) 8585 00 1515 Cu/SiC(80:20)Cu/SiC (80:20) 8080 00 2020 Cu/SiC(70:30)Cu/SiC (70:30) 7070 00 3030

상기 구리-세라믹 혼합용액의 금속 양이온 및 세라믹 필러의 분산을 극대화하기 위하여 폴리비닐부티랄(polyvinylbutyral, PVB, Sigma-Aldrich, molecular weight 50,000 ~ 80,000)을 상기 제조한 구리-세라믹 혼합용액에 첨가하여 구리-세라믹 졸(sol) 용액을 제조하였다. 상기 구리-세라믹 졸 용액은 구리-세라믹 혼합용액과 폴리비닐부티랄을 95:5(구리-세라믹 졸 용액 : 폴리비닐부티랄)의 중량비(wt%)로 혼합하여 제조하였다. 상기 구리-세라믹 졸 용액은 핫플레이트(hot plate)에서 교반하면서 건조시켜 겔(gel) 형의 구리-세라믹 전구체를 제조하였다. 상기 제조한 겔(gel) 형의 구리-세라믹 전구체는 24시간 동안 건조기에서 완전 건조시켜 구리-세라믹 전구체 분말을 제조하였다.In order to maximize the dispersion of metal cations and ceramic fillers in the copper-ceramic mixed solution, polyvinylbutyral (PVB, Sigma-Aldrich, molecular weight 50,000 to 80,000) was added to the prepared copper-ceramic mixed solution to obtain copper. - A ceramic sol solution was prepared. The copper-ceramic sol solution was prepared by mixing a copper-ceramic mixed solution and polyvinyl butyral in a weight ratio (wt%) of 95:5 (copper-ceramic sol solution: polyvinyl butyral). The copper-ceramic sol solution was dried while stirring on a hot plate to prepare a gel-type copper-ceramic precursor. The prepared gel-type copper-ceramic precursor was completely dried in a dryer for 24 hours to prepare a copper-ceramic precursor powder.

2) 구리-세라믹 소결 복합체의 제조2) Preparation of copper-ceramic sintered composite

상기 제조된 구리-세라믹 전구체 분말은 분당 3℃의 승온속도로 500℃까지 상승시킨 후 환원분위기(4% H2-Ar gas)하에서 한 시간 동안 튜브로(electric furnace)에서 하소한 다음 로냉하여 유기물을 제거하였다. 이때 가스의 흐름량은 70 N㎖/min으로 하였다. The prepared copper-ceramic precursor powder was raised to 500° C. at a temperature increase rate of 3° C. per minute , calcined in an electric furnace under a reducing atmosphere (4% H 2 -Ar gas) for one hour, and then furnace cooled to obtain organic materials. was removed. At this time, the flow rate of the gas was set to 70 Nml/min.

상기 하소된 구리-세라믹 전구체 분말은 프레스를 이용하여 2000 psi의 압력으로 일축가압 성형하여 구리-세라믹 전구체 분말 성형체를 제조하였다. The calcined copper-ceramic precursor powder was uniaxially pressed using a press at a pressure of 2000 psi to prepare a copper-ceramic precursor powder compact.

상기 구리-세라믹 전구체 분말 성형체에 대하여 상압 소결 또는 고압 소결을 실시하여 구리-세라믹 소결 복합체를 제조하였다. 먼저 상기 구리-세라믹 전구체 분말 성형체는 상압에서 소결하여 구리-세라믹 상압 소결 복합체를 제조하였다. 상기 구리-세라믹 상압 소결 복합체는 상기 구리-세라믹 전구체 분말 성형체를 전기로(electric furnace)에 넣고 분당 3℃의 승온 속도로 990℃까지 상승시킨 후 환원분위기(4% H2-Ar gas)로 1시간 동안 소결하여 제조하였다. 다음으로 상기 구리-세라믹 전구체 분말 성형체는 고압에서 소결하여 구리-세라믹 고압 소결 복합체를 제조하였다. 상기 구리-세라믹 고압 소결 복합체는 상기 구리-세라믹 전구체 분말 성형체를 진공 전기로(vacuum furnace)에 넣고 분당 3℃의 승온 속도로 950℃까지 상승시킨 후 환원분위기(4% H2 - Ar gas)로 1시간 동안 소결하여 제조하였다. 이때 흑연 몰드에 가해준 압력은 40 MPa로 하였다. The copper-ceramic precursor powder compact was subjected to atmospheric sintering or high-pressure sintering to prepare a copper-ceramic sintered composite. First, the copper-ceramic precursor powder compact was sintered at atmospheric pressure to prepare a copper-ceramic atmospheric pressure sintered composite. The copper-ceramic atmospheric pressure sintered composite is obtained by placing the copper-ceramic precursor powder compact in an electric furnace and raising it to 990°C at a temperature increase rate of 3°C per minute, and then using a reducing atmosphere (4% H 2 -Ar gas) 1 It was prepared by sintering for an hour. Next, the copper-ceramic precursor powder compact was sintered at high pressure to prepare a copper-ceramic high-pressure sintered composite. The copper-ceramic high-pressure sintered composite was prepared by placing the copper-ceramic precursor powder compact in a vacuum furnace and raising it to 950° C. at a temperature increase rate of 3° C. per minute, followed by a reducing atmosphere (4% H 2 -Ar gas). It was prepared by sintering for 1 hour. At this time, the pressure applied to the graphite mold was 40 MPa.

명칭designation 구리-세라믹 전구체Copper-ceramic precursor 소결방법Sintering method 실시예 1Example 1 Cu/AIN(90:10) 상압소결 복합체Cu/AIN (90:10) atmospheric pressure sintered composite Cu/AIN(90:10)Cu/AIN (90:10) 상압, 환원분위기, 990℃, 1시간 Normal pressure, reducing atmosphere, 990℃, 1 hour 실시예 2Example 2 Cu/AIN(70:30) 고압소결 복합체Cu/AIN (70:30) high pressure sintered composite Cu/AIN(70:30)Cu/AIN (70:30) 고압, 환원분위기, 950℃, 1시간High pressure, reducing atmosphere, 950℃, 1 hour 실시예 3Example 3 Cu/SiC(90:10) 상압소결 복합체Cu/SiC (90:10) atmospheric pressure sintered composite Cu/SiC(90:10)Cu/SiC (90:10) 상압, 환원분위기, 990℃, 1시간Normal pressure, reducing atmosphere, 990℃, 1 hour 실시예 4Example 4 Cu/SiC(85:15) 상압소결 복합체Cu/SiC (85:15) atmospheric pressure sintered composite Cu/SiC(85:15)Cu/SiC (85:15) 상압, 환원분위기, 990℃, 1시간Normal pressure, reducing atmosphere, 990℃, 1 hour 실시예 5Example 5 Cu/SiC(80:20) 상압소결 복합체Cu/SiC (80:20) atmospheric pressure sintered composite Cu/SiC(80:20)Cu/SiC (80:20) 상압, 환원분위기, 990℃, 1시간Normal pressure, reducing atmosphere, 990℃, 1 hour 실시예 6Example 6 Cu/SiC(70:30) 고압소결 복합체Cu/SiC (70:30) high pressure sintered composite Cu/SiC(70:30)Cu/SiC (70:30) 고압, 환원분위기, 950℃, 1시간High pressure, reducing atmosphere, 950℃, 1 hour

3) 구리-세라믹 전구체 및 구리-세라믹 소결 복합체의 분석3) Analysis of copper-ceramic precursor and copper-ceramic sintered composite

(1) X-선 회절 분석(1) X-ray diffraction analysis

본 발명의 폴리머 용액합성법을 이용하여 제조한 구리-세라믹 전구체 분말의 상변화 및 결정상을 분석하기 위하여 X-선 회절분석(X-ray diffraction, XRD, X'pert-pro MPD, PAN alytical, Netherlands)을 수행하였다. X-선 회절분석은 Cu-Kα (λ =1.542Å) 타겟을 사용하여, 40 kV, 30 mA에서 scan speed 4/min의 속도로 분석을 실시하였다. X-ray diffraction analysis (XRD, X'pert-pro MPD, PAN alytical, Netherlands) to analyze the phase change and crystal phase of the copper-ceramic precursor powder prepared using the polymer solution synthesis method of the present invention was performed. X-ray diffraction analysis was performed at a scan speed of 4/min at 40 kV and 30 mA using a Cu-Kα (λ = 1.542 Å) target.

(2) 주사전자현미경 분석(2) Scanning electron microscope analysis

본 발명의 구리-세라믹 전구체 분말 성형체 및 구리-세라믹 소결 복합체의 미세구조를 분석하기 위하여 전계방출 주사전자현미경(FE-SEM : JSM-7100F. JEOL, Japan)을 사용하였다. 전계방출주사전자현미경(FE-SEM) 분석은 알루미늄 홀더에 카본 테이프를 이용하여 샘플을 고정시키고 Au-Pd sputter로 코팅한 후 수행하였다. A field emission scanning electron microscope (FE-SEM: JSM-7100F. JEOL, Japan) was used to analyze the microstructure of the copper-ceramic precursor powder compact and the copper-ceramic sintered composite of the present invention. Field emission scanning electron microscopy (FE-SEM) analysis was performed after fixing the sample in an aluminum holder using carbon tape and coating it with Au-Pd sputter.

(3) 열전도도 분석(3) Thermal conductivity analysis

복합체의 열전도도를 측정하기 위하여 레이져 플레쉬(laser flash)를 이용한 열전도도 측정기(LFA : LFA447 Nanoflash. NETZSCH, Germany)를 사용하였다. 본 발명의 구리-세라믹 전구체 분말 및 구리-세라믹 소결 복합체에 대한 열전도도 측정은 원판형 디스크의 시편 한쪽 면에 상온에서 300℃의 온도범위까지 분당 10℃의 승온 속도로 레이저를 투사하여 가열한 후 반대 면에 열이 전달되는 시간을 적외선 센서로 측정하였다.To measure the thermal conductivity of the composite, a thermal conductivity meter (LFA: LFA447 Nanoflash. NETZSCH, Germany) using a laser flash was used. The measurement of thermal conductivity of the copper-ceramic precursor powder and copper-ceramic sintered composite of the present invention was performed by projecting a laser on one side of a specimen of a disk-shaped disk at a temperature increase rate of 10° C. per minute from room temperature to 300° C. The time for heat transfer to the opposite side was measured with an infrared sensor.

(4) 열팽창계수 분석 (4) Analysis of coefficient of thermal expansion

본 발명의 합성된 구리-세라믹 전구체 분말 및 구리-세라믹 소결 복합체에 대한 열팽창계수 측정은 열팽창계수 측정기(TMA : TMA402F1 Hyperion. NETZSCH, Germany)를 사용하였다. 열팽창계수 분석은 초기온도 상온에서 600℃의 온도 범위까지 분당 10℃ 의 승온 속도를 적용하여 열을 가한 후 시편의 길이변화율을 측정한 후 온도변화에 따른 시편의 열팽창율을 계수값으로 나타내었다.The thermal expansion coefficient of the synthesized copper-ceramic precursor powder and copper-ceramic sintered composite of the present invention was measured using a thermal expansion coefficient measuring instrument (TMA: TMA402F1 Hyperion. NETZSCH, Germany). In the analysis of the coefficient of thermal expansion, the rate of change in length of the specimen was measured after applying heat by applying a temperature increase rate of 10 °C per minute from the initial temperature to the temperature range of 600 °C.

2. 실험 결과 및 고찰2. Experimental results and consideration

1) 구리-세라믹 전구체 분말의 미세구조 분석결과1) Results of microstructure analysis of copper-ceramic precursor powder

도 1은 폴리비닐부티랄(PVB) 폴리머 용액합성법을 사용하여 제조하고 500℃에서 하소한 Cu/AlN(70:30) 전구체 분말 및 Cu/SiC(70:30) 전구체 분말의 미세구조를 전계방출 주사전자현미경(FE-SEM)을 통하여 분석한 결과를 보여준다. 도 1에 따르면 기지재(matrix)인 나노 구리 입자에 세라믹 필러(ceramic filler)인 AlN 또는 SiC가 균질하게 분산되어있는 것이 확인된다. 상기 결과는 기지재와 세라믹 필러의 혼합시 PVB 폴리머 용액합성법을 적용하였기 때문으로 판단된다. 본 발명은 상기 PVB 폴리머 용액합성법을 사용하므로 나노 구리 분말을 사용하였음에도 상용 구리 분말을 사용한 것에 비하여 졸(sol) 내에 구리 금속 이온의 분산이 극대화되었으므로 기지재(Cu matrix)와 필러(ceramic filler)가 균일하게 혼합된 전구체 분말을 얻을 수 있었던 것으로 판단된다.1 is a field emission view of the microstructure of Cu/AlN (70:30) precursor powder and Cu/SiC (70:30) precursor powder prepared using polyvinyl butyral (PVB) polymer solution synthesis method and calcined at 500 ° C. The results of analysis by scanning electron microscope (FE-SEM) are shown. According to FIG. 1 , it is confirmed that AlN or SiC, which is a ceramic filler, is homogeneously dispersed in nano-copper particles as a matrix. The above result is considered to be because the PVB polymer solution synthesis method was applied when mixing the base material and the ceramic filler. Since the present invention uses the PVB polymer solution synthesis method, the dispersion of copper metal ions in the sol is maximized compared to using a commercial copper powder even though nano copper powder is used, so the Cu matrix and the ceramic filler It is considered that a uniformly mixed precursor powder was obtained.

2) 구리-세라믹 전구체의 X-선 회절 분석2) X-ray diffraction analysis of copper-ceramic precursors

도 2는 PVB 폴리머 용액합성법을 사용하여 제조한 Cu/AlN 전구체 분말 및 Cu/SiC 전구체 분말에 대하여 X선 회절분석을 수행한 결과를 보여준다. 2 shows the results of X-ray diffraction analysis on Cu/AlN precursor powder and Cu/SiC precursor powder prepared using PVB polymer solution synthesis method.

분석결과 기지재와 세라믹 필러의 피크가 각각 관찰되었으며 대기 중의 산소와 반응하여 생성되는 산화물 또한 검출 되지 않았다. 따라서 상기 전구체에서는 기지재(Cu matrix)와 세라믹 필러(ceramic filler)사이의 반응에 의해 제 2 상이 형성되지 않은 것으로 판단된다. AlN의 경우 산소와의 반응성이 높은 특징이 있다. AIN이 대기 중의 산소에 노출되면 산소와 반응하여 표면에 Al2O3을 형성하게 되며 상기 반응은 그 표면에 공극을 형성하게 된다. AIN의 표면에 형성된 공극은 AIN의 열전도도를 감소시키는 원인이 되므로 본 발명에서는 격자내의 산소를 제거하여 하소 및 소결을 진행할 때 AIN의 표면에 공극이 발생하지 않도록 하였다. X선 회절분석 결과 본 발명의 Cu/AlN 전구체 분말에서 대기 중의 산소와 반응하여 생성되는 산화물이 검출 되지 않은 것으로 보아 상기 공극으로 인한 열전도도 감소는 없을 것으로 판단된다.As a result of the analysis, peaks of the matrix material and ceramic filler were observed, respectively, and oxides generated by reaction with oxygen in the atmosphere were not detected. Therefore, it is determined that the second phase is not formed in the precursor by the reaction between the Cu matrix and the ceramic filler. AlN has a high reactivity with oxygen. When AIN is exposed to oxygen in the atmosphere, it reacts with oxygen to form Al 2 O 3 on the surface, and the reaction forms pores on the surface. Since voids formed on the surface of AIN cause a decrease in the thermal conductivity of AIN, in the present invention, oxygen in the lattice is removed to prevent voids from occurring on the surface of AIN during calcination and sintering. As a result of X-ray diffraction analysis, it is judged that there is no decrease in thermal conductivity due to the voids, since oxides generated by reaction with oxygen in the atmosphere were not detected in the Cu/AlN precursor powder of the present invention.

3) 구리-세라믹 소결 복합체의 미세구조 분석결과3) Results of microstructure analysis of copper-ceramic sintered composites

먼저 PVB 폴리머 용액합성법으로 제조한 구리-세라믹 전구체 분말을 일축가압하여 설형체를 제조한 후 환원분위기(4% H2-Argas)에서 상압 소결 또는 고압 소결하여 구리-세라믹 소결 복합체를 제조하였다. First, the copper-ceramic precursor powder prepared by the PVB polymer solution synthesis method was uniaxially pressed to prepare a tongue, and then sintered at atmospheric pressure or high pressure in a reducing atmosphere (4% H 2 -Argas) to prepare a copper-ceramic sintered composite.

도 3은 상압 소결을 통하여 제조한 Cu/AlN(70:30) 상압 소결 복합체, Cu/AlN(90:10) 상압 소결 복합체, Cu/SiC(70:30) 상압 소결 복합체의 미세구조를 전계방출 주사전자현미경(FE-SEM)을 통하여 분석한 결과를 보여준다. AlN 세라믹 필러의 첨가량이 증가할수록 Cu/AlN 상압 소결 복합체에 많은 기공이 관찰되는 것으로 보아 기지재(Cu)의 치밀화가 저하된 것으로 판단된다. 상기에서 설명한 바와 같이 소결 복합체에 존재하는 기공은 열전도도를 저하시키므로 상기 기공의 수를 줄이는 것이 중요하다. SiC를 세라믹필러로 10wt% 첨가한 Cu/SiC(90:10) 상압 소결 복합체의 경우 AlN을 세라믹필러로 10wt% 첨가한 Cu/AIN(90:10) 상압 소결 복합체에 비하여 기지재의 치밀화가 향상된 것으로 보이나 소결 복합체 내의 기공이 여전히 존재하는 것이 확인되었다.3 is a field emission view of the microstructure of a Cu/AlN (70:30) atmospheric sintered composite, Cu/AlN (90:10) atmospheric sintered composite, and Cu/SiC (70:30) atmospheric sintered composite prepared through atmospheric sintering; The results of analysis by scanning electron microscope (FE-SEM) are shown. As the addition amount of the AlN ceramic filler increases, many pores are observed in the Cu/AlN atmospheric pressure sintered composite, indicating that the densification of the base material (Cu) is reduced. As described above, since pores present in the sintered composite lower thermal conductivity, it is important to reduce the number of pores. In the case of the Cu/SiC (90:10) atmospheric sintered composite in which SiC is added 10wt% as a ceramic filler, the densification of the base material is improved compared to the Cu/AIN (90:10) atmospheric sintered composite in which 10wt% of AlN is added as a ceramic filler. However, it was confirmed that pores in the sintered composite were still present.

본 발명의 구리-세라믹 소결 복합체 내의 기공을 줄이기 위하여 고온-고압 소결(hot-press sintering, 이하 고압 소결)을 수행하였다. 도 4는 고압 소결을 통해 제조한 Cu/AlN(70:30) 고압 소결 복합체, 및 Cu/SiC(70:30) 고압 소결 복합체의 미세구조를 전계방출 주사전자현미경(FE-SEM)을 통하여 분석한 결과를 보여준다. AlN이 30 wt%로 많은 양의 필러가 첨가되었음에도 상압 소결하여 제조한 소결 복합체에 비하여 그 기공이 상대적으로 많이 감소하여 치밀한 미세구조를 가지는 것으로 확인되었다. 상기 결과는 Cu/SiC 소결 복합체에서도 동일한 것으로 확인되었다.In order to reduce the pores in the copper-ceramic sintered composite of the present invention, hot-press sintering (hereinafter referred to as high-pressure sintering) was performed. 4 is an analysis of the microstructure of the Cu/AlN (70:30) high-pressure sintered composite prepared through high-pressure sintering, and the Cu/SiC (70:30) high-pressure sintered composite through field emission scanning electron microscopy (FE-SEM). show one result. Although a large amount of filler was added at 30 wt% of AlN, the pores were relatively reduced compared to the sintered composite prepared by atmospheric sintering, and it was confirmed to have a dense microstructure. The above results were confirmed to be the same in the Cu/SiC sintered composite.

도 5는 고압 소결을 통해 제조한 Cu/AlN(70:30) 고압 소결 복합체, 및 Cu/SiC(70:30) 고압 소결 복합체의 기지재와 세라믹 필러간의 계면을 전계방출 주사전자현미경(FE-SEM)을 통하여 분석한 결과를 보여준다. 분석결과 기지재 및 세라믹 필러간의 계면이 아무런 반응 없이 잘 접합되어 있는 것이 확인되었다. 5 is a field emission scanning electron microscope (FE-) of the interface between the matrix material and the ceramic filler of the Cu/AlN (70:30) high-pressure sintered composite prepared through high-pressure sintering, and the Cu/SiC (70:30) high-pressure sintered composite. SEM) and analysis results are shown. As a result of the analysis, it was confirmed that the interface between the base material and the ceramic filler was well bonded without any reaction.

기지개와 세라믹 필러로 구성된 복합재료에서 관찰되는 기공은 세라믹 필러 내부에서 확인되는 내부기공 및 기지재와 세라믹 필러의 계면에서 확인되는 계면기공이 있다. The pores observed in the composite material composed of the matrix material and the ceramic filler include internal pores found inside the ceramic filler and interfacial pores found at the interface between the matrix material and the ceramic filler.

고압 소결을 통해 제조한 Cu/AIN 소결 복합체의 경우 계면 기공은 거의 관찰 되지 않은 반면 내부기공은 관찰되었다. 상기 결과는 고압 소결을 하였음에도 AlN의 소결온도가 1600℃ 이상으로 매우 높았기 때문에 AlN 필러 입자 내부에 기공이 잔류하였기 때문으로 판단된다.In the case of the Cu/AIN sintered composite prepared through high-pressure sintering, interfacial pores were hardly observed while internal pores were observed. The above result is considered to be due to the presence of pores inside the AlN filler particles because the sintering temperature of AlN was very high at 1600° C. or higher even after high-pressure sintering.

상압 소결을 통해 제조한 구리-세라믹 소결 복합체의 경우 Cu/AIN 상압 소결 복합체가 Cu/SiC 상압 소결 복합체보다 더 많은 내부 기공 및 계면 기공을 나타내는 것으로 확인되었다. 그러나 고압 소결을 통해 제조한 구리-세라믹 소결 복합체의 경우, 상기 상압 소결의 결과와 반대로 Cu/SiC 고압 소결 복합체가 Cu/AlN 고압 소결 복합체보다 더 많은 내부기공 및 계면기공을 가지는 것이 확인 되었다. 상기 차이점은 고상으로 넣어준 AIN과 SiC의 입자형상 및 입도분포의 차이점에 기인한 것으로 판단된다. AlN은 평균 0.2㎛의 입도분포를 갖는 구형의 입도형상을 가지는 반면, SiC는 평균 0.1 내지 0.5㎛의 넓은 입도분포를 갖는 각형의 입자형상을 가지는 차이점이 있다. 상기 세라믹 필러의 입도분포 및 입도형상의 차이점은 소결시 세라믹 필러 내부의 기공형성 및 기지재와 세라믹 필러 사이의 기공형성에 영향을 미쳐 소결 복합체의 치밀화를 다르게 하는 것으로 판단된다.In the case of the copper-ceramic sintered composite prepared through atmospheric sintering, it was confirmed that the Cu/AIN atmospheric sintered composite exhibited more internal pores and interfacial pores than the Cu/SiC atmospheric sintered composite. However, in the case of the copper-ceramic sintered composite prepared through high-pressure sintering, it was confirmed that the Cu/SiC high-pressure sintered composite had more internal pores and interfacial pores than the Cu/AlN high-pressure sintered composite, contrary to the result of the atmospheric sintering. The above difference is considered to be due to the difference in the particle shape and particle size distribution of AIN and SiC put in the solid phase. AlN has a spherical particle shape with an average particle size distribution of 0.2 μm, whereas SiC has a prismatic particle shape with an average wide particle size distribution of 0.1 to 0.5 μm. It is determined that the difference in particle size distribution and particle size shape of the ceramic filler affects the pore formation inside the ceramic filler and the pore formation between the base material and the ceramic filler during sintering, thereby making the densification of the sintered composite different.

고압 소결을 통해 제조한 구리-세라믹 소결 복합체의 기지재에 분산되어 있는 세라믹 필러를 확인하기 위하여 에너지 분산 X선 분광(Energy Dispersive X-ray Spectroscopy, EDS)분석을 수행하였다. 도 6은 고압 소결을 통해 제조한 Cu/AlN(70:30) 고압 소결 복합체, 및 Cu/SiC(70:30) 고압 소결 복합체의 EDS mapping결과를 보여준다. 분석결과 Cu/AlN(70:30) 고압 소결 복합체와 Cu/SiC(70:30) 고압 소결 복합체 모두 기지재내에 존재하는 세라믹 필러가 큰 응집이 없이 잘 분산되어 넓은 범위에 걸쳐 분포되어 있는 것을 확인 할 수 있었다.Energy Dispersive X-ray Spectroscopy (EDS) analysis was performed to confirm the ceramic filler dispersed in the base material of the copper-ceramic sintered composite prepared through high-pressure sintering. 6 shows the EDS mapping results of the Cu/AlN (70:30) high-pressure sintered composite prepared through high-pressure sintering, and the Cu/SiC (70:30) high-pressure sintered composite. As a result of the analysis, both the Cu/AlN (70:30) high-pressure sintered composite and the Cu/SiC (70:30) high-pressure sintered composite confirmed that the ceramic filler present in the matrix was well dispersed without large agglomeration and distributed over a wide range. Could.

4) 구리-세라믹 소결 복합체의 열전도도 분석결과4) Results of thermal conductivity analysis of copper-ceramic sintered composites

구리-세라믹 소결 복합체의 열전도도를 분석하기 위하여 Cu/AIN 소결 복합체 및 Cu/SiC 소결 복합체에 대하여 상온에서 300℃의 온도범위까지 분당 10℃의 승온 속도로 레이저를 투사하여 가열한 후 반대 면에 열이 전달되는 시간을 적외선 센서로 측정하였다. 또한 기공이 전혀 없는 이상적인 Cu/AIN 소결 복합체 및 Cu/SiC 소결 복합체를 가정하고 기지재와 세라믹필러의 혼합비율을 고려하여 이론적 열전도도 값을 계산하였다. 상기 이론적 열전도도 값은 혼합법칙(Rule of mixture)을 사용하여 계산하였으며 상기 혼합법칙은 하기 수학식 1로 나타낼 수 있다. In order to analyze the thermal conductivity of the copper-ceramic sintered composite, the Cu/AIN sintered composite and the Cu/SiC sintered composite were heated by projecting a laser at a temperature increase rate of 10°C per minute from room temperature to a temperature range of 300°C. The heat transfer time was measured with an infrared sensor. In addition, assuming an ideal Cu/AIN sintered composite and Cu/SiC sintered composite without any pores, the theoretical thermal conductivity value was calculated by considering the mixing ratio of the base material and the ceramic filler. The theoretical thermal conductivity value was calculated using the rule of mixture, which can be expressed by the following equation (1).

Figure 112020004079578-pat00004
Figure 112020004079578-pat00004

상기 수학식 1에 있어서 α m 은 기지재인 Cu의 열전도도(447.242 W/(m·K))를 의미하며, V m 은 기지재인 Cu의 부피분율을 의미하며, α f 는 필러인 AlN의 열전도도(285 W/(m·K)) 또는 SiC의 열전도도(170 W/(m·K))를 의미하며, V f 는 필러인 AlN 또는 SiC의 부피분율을 의미한다. In Equation 1, α m means the thermal conductivity of Cu as the matrix material (447.242 W/(m·K)), V m means the volume fraction of Cu as the matrix material, and α f is the thermal conductivity of AlN as the filler. degree (285 W/(m·K)) or thermal conductivity of SiC (170 W/(m·K)), and V f refers to the volume fraction of AlN or SiC as filler.

Cu/AIN 복합체 및 Cu/SiC 복합체의 열전도도 측정 결과와 열전도도 계산 결과를 정리하면 하기 표 3과 같다.Table 3 below summarizes the thermal conductivity measurement results and thermal conductivity calculation results of the Cu/AIN composite and Cu/SiC composite.

명칭designation 이론적 열전도도값
(50℃)
Theoretical thermal conductivity value
(50℃)
측정한 열전도도값
(50℃)
Measured thermal conductivity value
(50℃)
실시예 1Example 1 Cu/AIN(90:10) 상압 소결 복합체Cu/AIN (90:10) atmospheric pressure sintered composite 411 W/(m·K)411 W/(m K) 134.2 W/(m·K)134.2 W/(m K) 실시예 2Example 2 Cu/AIN(70:30) 상압 소결 복합체Cu/AIN (70:30) atmospheric pressure sintered composite 360 W/(m·K)360 W/(m K) -- 실시예 3Example 3 Cu/AIN(70:30) 고압 소결 복합체Cu/AIN (70:30) high pressure sintered composite 360 W/(m·K)360 W/(m K) 285.8 W/(m·K)285.8 W/(m K) 실시예 4Example 4 Cu/SiC(90:10) 상압 소결 복합체Cu/SiC (90:10) atmospheric pressure sintered composite 382 W/(m·K)382 W/(m K) 58 W/(m·K)58 W/(m K) 실시예 5Example 5 Cu/SiC(85:15) 상압 소결 복합체Cu/SiC (85:15) atmospheric pressure sintered composite 356 W/(m·K)356 W/(m K) 51 W/(m·K)51 W/(m K) 실시예 6Example 6 Cu/SiC(80:20) 상압 소결 복합체Cu/SiC (80:20) atmospheric pressure sintered composite 333 W/(m·K)333 W/(m K) 61 W/(m·K)61 W/(m K) 실시예 7Example 7 Cu/SiC(70:30) 상압 소결 복합체Cu/SiC (70:30) atmospheric pressure sintered composite 296 W/(m·K)296 W/(m K) -- 실시예 8Example 8 Cu/SiC(70:30) 고압 소결 복합체Cu/SiC (70:30) high pressure sintered composite 296 W/(m·K)296 W/(m K) --

도 7은 구리시편(Cu plate) 및 구리-세라믹 소결 복합체의 열전도도 측정값을 보여준다. 순수한 구리시편(Cu plate)을 측정한 결과 50℃에서의 열전도도는 447.24 W/(m·K)이었다. 이에 반하여 Cu/AIN(90:10) 소결 복합체의 경우 50℃에서 열전도도가 134.15 W/(m·K)로 감소된 것이 확인 되었다. 또한 상기 Cu/AIN(90:10) 소결 복합체에 대한 이론적인 열전도도를 계산한 결과 409 W/(m·K)로 계산되어 50℃에서 실제 측정값과의 차이가 큰 것으로 확인 되었다. 고온-압축 소결로 제조한 Cu/AIN(70:30) 복합체의 경우 측정한 열전도도 값은 50℃에서 285.8 W/(m·K)인 것으로 확인 되었다. 이는 상온-압축 소결로 제조한 Cu/AIN(70:30) 복합체의 열전도도보다 높은 값으로서 이론적인 열전도도에 근접한 것으로 평가된다. 7 shows a measurement value of thermal conductivity of a copper specimen (Cu plate) and a copper-ceramic sintered composite. As a result of measuring a pure copper specimen (Cu plate), the thermal conductivity at 50°C was 447.24 W/(m·K). In contrast, in the case of the Cu/AIN (90:10) sintered composite, it was confirmed that the thermal conductivity was reduced to 134.15 W/(m·K) at 50°C. In addition, as a result of calculating the theoretical thermal conductivity of the Cu/AIN (90:10) sintered composite, it was calculated as 409 W/(m·K), and it was confirmed that the difference from the actual measured value at 50° C. was large. In the case of the Cu/AIN (70:30) composite prepared by high-temperature-compression sintering, it was confirmed that the measured thermal conductivity value was 285.8 W/(m·K) at 50°C. This is higher than the thermal conductivity of the Cu/AIN (70:30) composite prepared by room temperature-compression sintering, and is evaluated to be close to the theoretical thermal conductivity.

상기 결과는 도 4의 FE-SEM 분석 결과에 의해 지지된다. 도 4에 따르면 고온-압축 소결로 제조한 구리-세라믹 필러 복합체는 상온-압축 소결을 통해 제조한 구리-세라믹 필러 복합체에 비하여 치밀한 조직을 가지고 있는 것으로 확인되었으며 이는 낮은 기공률을 가지는 것으로 판단되었다.The above results are supported by the FE-SEM analysis results of FIG. 4 . According to FIG. 4, it was confirmed that the copper-ceramic filler composite prepared by high-temperature-compression sintering had a denser structure than the copper-ceramic filler composite prepared by room temperature-compression sintering, and it was determined to have a low porosity.

Cu/SiC 소결 복합체에 대한 결과 역시 Cu/AIN 소결 복합체의 결과와 유사하였다. 기공이 형성되지 않은 것을 가정한 이상적인 Cu/SiC 소결 복합체를 Cu와 SiC의 혼합비율에 따라 설정하고 이론적인 열전도도를 계산하였다. 계산결과 Cu/SiC(90:10) 소결 복합체의 경우 368W/(m·K)의 열전도도값을 가지는 것으로 계산되었으며, Cu/SiC(85:15) 소결 복합체의 경우, 357W/(m·K)의 열전도도값을 가지는 것으로 계산되었으며, Cu/SiC(80:20) 소결 복합체의 경우, 346W/(m·K)의 열전도도값을 가지는 것으로 계산되었다. 상기 계산된 Cu/SiC 소결 복합체의 열전도도와 실제 측정한 열전도도 값은 큰 차이를 나타내었는데 이러한 차이는 SiC 필러의 첨가량을 10 wt% 이상으로 할 경우, 기지의 치밀화가 이루어지지 않아 다량의 기공으로 인해 나타나는 현상으로 판단된다. The results for the Cu/SiC sintered composite were also similar to those of the Cu/AIN sintered composite. An ideal Cu/SiC sintered composite assuming that no pores are formed was set according to the mixing ratio of Cu and SiC, and theoretical thermal conductivity was calculated. As a result of the calculation, the Cu/SiC (90:10) sintered composite was calculated to have a thermal conductivity of 368 W/(m K), and in the case of the Cu/SiC (85:15) sintered composite, 357 W/(m K) ) was calculated to have a thermal conductivity value, and in the case of a Cu/SiC (80:20) sintered composite, it was calculated to have a thermal conductivity value of 346 W/(m·K). The calculated thermal conductivity of the Cu/SiC sintered composite and the actually measured thermal conductivity value showed a large difference. This difference is due to the fact that when the amount of SiC filler added is 10 wt% or more, densification of the matrix is not made and a large number of pores are formed. It is considered to be a phenomenon caused by

5) 구리-세라믹 복합체의 열팽창계수 분석결과5) Analysis result of thermal expansion coefficient of copper-ceramic composite

도 8은 구리 플레이트(plate), Cu/AIN(90:10) 상압 소결 복합체, Cu/SiC(70:30) 고압 소결 복합체, Cu/AIN(70:30) 고압 소결 복합체의 열팽창계수를 보여준다. 본 발명의 기지재인 구리만으로 구성된 구리 플레이트의 경우 200℃에서 8.39x10-6/℃의 높은 열팽창계수를 가지는 것으로 확인되었으며 Cu/AIN(90:10) 상압 소결 복합체의 경우 200℃에서 열팽창계수 값이 7.29 x10-6/℃로 약간 감소하는 것이 확인 되었다. 또한 고온-압축 소결을 통해 제조한 결과 열팽창계수 값이 감소하였음을 확인하였다.8 shows the coefficient of thermal expansion of a copper plate, a Cu/AIN (90:10) atmospheric sintered composite, a Cu/SiC (70:30) high-pressure sintered composite, and a Cu/AIN (70:30) high-pressure sintered composite. In the case of a copper plate composed only of copper, which is the base material of the present invention, it was confirmed to have a high coefficient of thermal expansion of 8.39x10 -6 /°C at 200°C. A slight decrease was confirmed to 7.29 x10 -6 /℃. In addition, it was confirmed that the value of the coefficient of thermal expansion decreased as a result of manufacturing through high-temperature-compression sintering.

명칭designation 이론적 열팽창계수값
(200℃)
Theoretical coefficient of thermal expansion
(200℃)
측정한 열팽창계수값
(200℃)
Measured coefficient of thermal expansion
(200℃)
실시예 1Example 1 Cu/AIN(90:10) 상압 소결 복합체Cu/AIN (90:10) atmospheric pressure sintered composite 13.59 x10-6/℃13.59 x10 -6 /℃ 7.29 x10-6/℃7.29 x10 -6 /℃ 실시예 2Example 2 Cu/AIN(70:30) 상압 소결 복합체Cu/AIN (70:30) atmospheric pressure sintered composite 9.79 x10-6/℃9.79 x10 -6 /℃ -- 실시예 3Example 3 Cu/AIN(70:30) 고압 소결 복합체Cu/AIN (70:30) high pressure sintered composite 9.79 x10-6/℃9.79 x10 -6 /℃ 5.01 x10-6/℃5.01 x10 -6 /℃ 실시예 4Example 4 Cu/Si(90:10) 상압 소결 복합체Cu/Si(90:10) atmospheric pressure sintered composite 13.43 x10-6/℃13.43 x10 -6 /℃ 10.67 x10-6/℃10.67 x10 -6 /℃ 실시예 5Example 5 Cu/Si(85:15) 상압 소결 복합체Cu/Si(85:15) atmospheric pressure sintered composite 12.23 x10-6/℃12.23 x10 -6 /℃ 10.88 x10-6/℃10.88 x10 -6 /℃ 실시예 6Example 6 Cu/Si(80:20) 상압 소결 복합체Cu/Si(80:20) atmospheric pressure sintered composite 11.19 x10-6/℃11.19 x10 -6 /℃ 10.5 x10-6/℃10.5 x10 -6 /℃ 실시예 7Example 7 Cu/Si(70:30) 상압 소결 복합체Cu/Si (70:30) atmospheric pressure sintered composite 9.47 x10-6/℃9.47 x10 -6 /℃ -- 실시예 8Example 8 Cu/Si(70:30) 고압 소결 복합체Cu/Si(70:30) high pressure sintered composite 9.47 x10-6/℃9.47 x10 -6 /℃ 3.56 x10-6/℃3.56 x10 -6 /℃

구리-세라믹 복합체에서 열팽창계수는 기지재와 필러의 열팽창계수뿐만 아니라 계면에서의 접착, 필러의 분산성, 형상 등 다양한 변수에 영향을 받는다. 열팽창계수가 큰 Cu에 낮은 열팽창 계수를 갖는 세라믹 필러를 첨가하여 제조한 복합체가 가지는 평균 열팽창계수 값 또한 영향을 받게 되고, 열팽창계수의 값이 낮은 필러의 함량이 많아질수록 복합체의 열팽창계수는 낮아질 것으로 예상된다. In the copper-ceramic composite, the coefficient of thermal expansion is affected not only by the coefficient of thermal expansion between the matrix material and the filler, but also by various variables such as adhesion at the interface, dispersibility of the filler, and shape. The average coefficient of thermal expansion of the composite prepared by adding a ceramic filler having a low coefficient of thermal expansion to Cu having a large coefficient of thermal expansion is also affected. it is expected

기공이 전혀 없는 이상적인 Cu/AIN 복합체 및 Cu/SiC 복합체를 가정하고 기지재와 세라믹필러의 혼합비율을 고려하여 이상적인 Cu/AIN 복합체 및 Cu/SiC 복합체에 대한 이론적 열평창계수를 계산하였다. Assuming an ideal Cu/AIN composite and Cu/SiC composite without any pores, the theoretical thermal expansion coefficient for the ideal Cu/AIN composite and Cu/SiC composite was calculated by considering the mixing ratio of the base material and the ceramic filler.

상기 이론적 열팽창계수값은 혼합법칙(Rule of mixture)을 사용하여 계산하였으며 상기 혼합법칙은 하기 수학식 2로 나타낼 수 있다.The theoretical value of the coefficient of thermal expansion was calculated using the rule of mixture, which can be expressed by the following equation (2).

Figure 112020004079578-pat00005
Figure 112020004079578-pat00005

상기 수학식 2에 있어서?誓? m 은 기지재인 Cu의 열팽창계수(8.39x10-6/℃)를 의미하며, ??V m 은 기지재인 Cu의 부피분율을 의미하며, α f 는 필러인 AlN의 열팽창계수(4.1 x10-6/℃) 또는 SiC의 열팽창계수(3.7 x10-6/℃)를 의미하며,??V f 는 필러인 AlN 또는 SiC의 부피분율을 의미한다. In Equation 2, ?誓? m is the coefficient of thermal expansion of Cu as a base material (8.39x10 -6 /℃), ??V m is the volume fraction of Cu as a base material, and α f is the coefficient of thermal expansion of AlN as a filler (4.1 x 10 -6 / ℃) or the coefficient of thermal expansion of SiC (3.7 x 10 -6 /℃), ??V f means the volume fraction of AlN or SiC filler.

혼합법칙을 사용하여 계산한 열팽창계수의 계산값과 실제 측정치에 3~4 x 10-6/℃의 차이가 있었다. 상기 차이는 구리-세라믹 복합체의 냉각과공정중에 기지재와 세라믹필러 간의 열팽창계수의 차이로 인하여 내부응력이 발생하고 이로 인하여 온도가 상승시 기지재와 필러의 팽창이 영향을 받아 나타난 결과라 생각 된다. 추기적으로 기공의 존재는 열팽창계수에서는 큰 영향을 미치지는 않으나, 일정 이상의 기공이 존재할 경우는, 열팽창계수를 낮추는 요인이 될 수도 있다.There was a difference of 3~4 x 10 -6 /℃ between the calculated value of the coefficient of thermal expansion calculated using the mixing law and the actual measured value. The above difference is thought to be a result of the internal stress occurring due to the difference in the coefficient of thermal expansion between the base material and the ceramic filler during the cooling and processing of the copper-ceramic composite, and thus the expansion of the base material and the filler is affected when the temperature rises. . In addition, the presence of pores does not have a significant effect on the coefficient of thermal expansion, but when there are more than a certain number of pores, it may be a factor to lower the coefficient of thermal expansion.

3. 결론3. Conclusion

본 발명에서는 균일한 구리-세라믹 소결 복합체를 제조하기 위하여 폴리머 용액 합성법을 사용하여 구리-세라믹 전구체 분말을 제조하고 상기 제조한 전구체 분말에 대하여 상압 소결 또는 고압 소결을 실시하여 조직이 치밀한 구리-세라믹 소결 복합체 제조하였다.In the present invention, in order to prepare a uniform copper-ceramic sintered composite, a copper-ceramic precursor powder is prepared using a polymer solution synthesis method, and atmospheric pressure sintering or high pressure sintering is performed on the prepared precursor powder to sinter the copper-ceramic with a dense structure. A complex was prepared.

본 발명의 장점을 정리하면 다음과 같다.The advantages of the present invention are summarized as follows.

1) 폴리머 용액 합성법을 적용한 결과 나노 구리 기지재(matrix)와 세라믹 필러(ceramic filler) 간의 분산이 극대화된 균질한 나노 구리-세라믹 필러 전구체 분말을 얻을 수 있었다.1) As a result of applying the polymer solution synthesis method, it was possible to obtain a homogeneous nano-copper-ceramic filler precursor powder with maximized dispersion between the nano-copper matrix and the ceramic filler.

2) 상기 나노 구리-세라믹 필러 전구체 분말을 성형한 후 상압 소결 및 고압 소결을 수행하게 되면 소결 복합체의 조직이 치밀화되며 특히, 고온 압축 소결을 적용하는 경우에서 그 조직이 더 치밀해 진다. 2) When atmospheric pressure sintering and high pressure sintering are performed after molding the nano-copper-ceramic filler powder, the structure of the sintered composite is densified, and in particular, when high-temperature compression sintering is applied, the structure becomes more dense.

3) 소결 복합체에 포함된 세라믹 필러의 양이 증가 할수록 치밀화 정도는 저하되었는데 이는 기공이 증가하였기 때문이며 늘어난 기공에 대한 열전도도 또한 이론적 계산값에 비하여 낮은 값을 보였다.3) As the amount of ceramic filler included in the sintered composite increased, the degree of densification decreased because of the increase in pores, and the thermal conductivity of the increased pores also showed a lower value than the theoretical calculated value.

4) 고압 소결을 수행하게 되면 기공이 감소하여 치밀한 구리-세라믹 소결 복합체를 제조할 수 있으며 상압 소결로 제조한 구리-세라믹 소결 복합체보다 이론적 계산값에 더 가까운 열전도도를 보이는 것이 확인되었으며 열팽창 계수 또한 감소된 것이 확인되었다.4) When high-pressure sintering is performed, pores are reduced and a dense copper-ceramic sintered composite can be manufactured. decreased was confirmed.

본 명세서에서 설명된 구체적인 실시예는 본 발명의 바람직한 구현예 또는 예시를 대표하는 의미이며, 이에 의해 본 발명의 범위가 한정되지는 않는다. 본 발명의 변형과 다른 용도가 본 명세서 특허청구범위에 기재된 발명의 범위로부터 벗어나지 않는다는 것은 당업자에게 명백하다. The specific examples described herein are meant to represent preferred embodiments or examples of the present invention, and the scope of the present invention is not limited thereby. It will be apparent to those skilled in the art that modifications and other uses of the present invention do not depart from the scope of the invention as set forth in the claims herein.

Claims (5)

질산제이구리(cupric nitrate hydrate)을 포함하는 구리용액을 제조하는 제 1 단계;
상기 구리용액에 세라믹 분말을 첨가하여 구리-세라믹 혼합용액을 제조하는 제 2 단계;
상기 구리-세라믹 혼합용액에 폴리비닐부티랄(polyvinyl butyral)을 첨가하여 구리-세라믹 졸(sol) 용액을 제조하는 제 3 단계;
상기 구리-세라믹 졸 용액을 건조하여 나노 구리-세라믹 전구체 분말을 제조하는 제 4 단계;
상기 나노 구리-세라믹 전구체 분말을 450 내지 550℃에서 하소하여 유기물을 제거한 후 프레스를 이용하여 나노 구리-세라믹 전구체 분말 성형체를 제조하는 제 5 단계; 및
상기 나노 구리-세라믹 전구체 분말 성형체를 진공 전기로에 넣고 분당 2 내지 4℃의 승온속도로 940 내지 960℃까지 상승시킨 후 50 내지 70 분동안 30 내지 50MPa에서 소결하여 나노 구리-세라믹 소결체를 제조하는 제 6 단계;
를 포함하는 방열소재용 구리-세라믹 복합체의 제조방법이며,
상기 세라믹은 질화알루미늄(aluminium nitrite) 또는 탄화규소(silicon carbide)인 것을 특징으로 하는 방열소재용 구리-세라믹 복합체의 제조방법.
A first step of preparing a copper solution containing cupric nitrate (cupric nitrate hydrate);
a second step of preparing a copper-ceramic mixed solution by adding ceramic powder to the copper solution;
a third step of preparing a copper-ceramic sol solution by adding polyvinyl butyral to the copper-ceramic mixed solution;
a fourth step of drying the copper-ceramic sol solution to prepare a nano-copper-ceramic precursor powder;
a fifth step of calcining the nano-copper-ceramic precursor powder at 450 to 550° C. to remove organic matter, and then using a press to prepare a nano-copper-ceramic precursor powder compact; and
The nano-copper-ceramic precursor powder compact is placed in a vacuum electric furnace, the temperature is raised to 940 to 960 °C at a rate of 2 to 4 °C per minute, and then sintered at 30 to 50 MPa for 50 to 70 minutes to prepare a nano copper-ceramic sintered compact Step 6;
It is a method of manufacturing a copper-ceramic composite for a heat dissipation material comprising a,
The ceramic is aluminum nitride (aluminium nitrite) or silicon carbide (silicon carbide), a method of manufacturing a copper-ceramic composite for heat dissipation material, characterized in that.
삭제delete 제 1 항에 있어서, 상기 구리-세라믹 졸(sol) 용액은 상기 구리-세라믹 혼합용액 93 내지 97 중량%와 폴리비닐부티랄 3 내지 7 중량%가 혼합된 것을 특징으로 하는 방열소재용 구리-세라믹 복합체의 제조방법.
The copper-ceramic for heat dissipation material according to claim 1, wherein the copper-ceramic sol solution contains 93 to 97 wt% of the copper-ceramic mixed solution and 3 to 7 wt% of polyvinyl butyral. A method for preparing the composite.
제 1 항에 있어서 상기 나노 구리-세라믹 전구체는 입경이 10 내지 20㎚인 나노 구리 입자에 상기 세라믹 입자가 분산된 것을 특징으로 하는 방열소재용 구리-세라믹 복합체의 제조방법.
According to claim 1, wherein the nano-copper-ceramic precursor is a method of manufacturing a copper-ceramic composite for a heat dissipation material, characterized in that the ceramic particles are dispersed in nano-copper particles having a particle diameter of 10 to 20 nm.
제 1 항에 있어서, 상기 나노 구리-세라믹 소결체는 구리와 세라믹이 9:1 내지 7:3의 몰비로 포함된 것을 특징으로 하는 방열소재용 구리-세라믹 복합체의 제조방법.
The method of claim 1, wherein the nano-copper-ceramic sintered body contains copper and ceramic in a molar ratio of 9:1 to 7:3.
KR1020200004734A 2020-01-14 2020-01-14 Manufacturing Method of Nano Copper-Ceramic Composite Fabricated by Hot-Pressing KR102316043B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200004734A KR102316043B1 (en) 2020-01-14 2020-01-14 Manufacturing Method of Nano Copper-Ceramic Composite Fabricated by Hot-Pressing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200004734A KR102316043B1 (en) 2020-01-14 2020-01-14 Manufacturing Method of Nano Copper-Ceramic Composite Fabricated by Hot-Pressing

Publications (2)

Publication Number Publication Date
KR20210091503A KR20210091503A (en) 2021-07-22
KR102316043B1 true KR102316043B1 (en) 2021-10-21

Family

ID=77158244

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200004734A KR102316043B1 (en) 2020-01-14 2020-01-14 Manufacturing Method of Nano Copper-Ceramic Composite Fabricated by Hot-Pressing

Country Status (1)

Country Link
KR (1) KR102316043B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101522734B1 (en) 2013-12-06 2015-05-26 주식회사 아이엠티에스 Method of manufacturing copper nanoparticles using polymer solution

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0995745A (en) * 1995-10-03 1997-04-08 Hitachi Metals Ltd Low thermal expansion-high thermal conductivity copper composite material and its production
JPH09209058A (en) * 1996-01-30 1997-08-12 Kyocera Corp Composite material with high thermal conductivity and its production
KR101355541B1 (en) * 2011-07-29 2014-01-27 한국과학기술원 Graphene/ceramic nanocomposite powders and producing method of the same
JP6965768B2 (en) * 2017-02-28 2021-11-10 三菱マテリアル株式会社 Copper / Ceramics Joint, Insulated Circuit Board, Copper / Ceramics Joint Manufacturing Method, Insulated Circuit Board Manufacturing Method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101522734B1 (en) 2013-12-06 2015-05-26 주식회사 아이엠티에스 Method of manufacturing copper nanoparticles using polymer solution

Also Published As

Publication number Publication date
KR20210091503A (en) 2021-07-22

Similar Documents

Publication Publication Date Title
US10508035B2 (en) Aluminum nitride powders
JPWO2014196496A1 (en) Resin-impregnated boron nitride sintered body and use thereof
KR20140113364A (en) Dense composite material, method for producing the same, and component for semiconductor production equipment
JP5444387B2 (en) Semiconductor device heat sink
JP2015193752A (en) Boron nitride particle, method for producing boron nitride particle, coating liquid for heat radiation sheet comprising the boron nitride particle, heat radiation sheet comprising the boron nitride particle, and power device apparatus
JP2015195292A (en) Heat dissipation sheet, manufacturing method of heat dissipation sheet, slurry for heat dissipation sheet and power device
KR102316043B1 (en) Manufacturing Method of Nano Copper-Ceramic Composite Fabricated by Hot-Pressing
US4843038A (en) Black sintered body of aluminum nitride and process for producing the same
JP2642184B2 (en) Method for producing aluminum nitride-hexagonal boron nitride sintered body
KR102660216B1 (en) Dense composite material, method for producing the same, joined body, and member for semiconductor manufacturing device
KR102603574B1 (en) Pressureless sintered SiC ceramics with 1~30 Ωcm electrical resistivity, its composition, and method for producing the same
JP2752227B2 (en) AlN-BN composite sintered body and method for producing the same
Oh et al. Thermal characteristics of cu matrix-sic filler composite using nano-sized cu powder
JP3106160B2 (en) Aluminum nitride sintered body and method for producing the same
JP2742600B2 (en) Aluminum nitride sintered body and method for producing the same
CN101210292A (en) Method for preparing copper-base composite material containing beta-eucryptite
JP5073135B2 (en) Aluminum nitride sintered body, production method and use thereof
JPH11310464A (en) Heat dissipating component made of silicon nitride and its production
JP2778783B2 (en) Method for producing BN-AlN-based sintered body having anisotropy
Oh et al. Thermal Properties of Copper Matrix-Ceramic Filler Composite Prepared by Polymer Solution Method
JP4564257B2 (en) High thermal conductivity aluminum nitride sintered body
Lin et al. Additive manufacturing of high-performance aluminium nitride ceramics using high solid loading and low viscosity slurry
JP2001019555A (en) Silicon nitride sintered compact and substrate using the same
Cai et al. Novel Cu/Si composites: A sol-gel-derived Al2O3 film as barrier to control interfacial reaction
KR20230099878A (en) Synthesis method of sillicon nitride powder and sintered body

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant