KR102295101B1 - Manufacturing method of secondary battery comprising electrode with 3 dimensional structure using electrode stacking technique - Google Patents

Manufacturing method of secondary battery comprising electrode with 3 dimensional structure using electrode stacking technique Download PDF

Info

Publication number
KR102295101B1
KR102295101B1 KR1020190093832A KR20190093832A KR102295101B1 KR 102295101 B1 KR102295101 B1 KR 102295101B1 KR 1020190093832 A KR1020190093832 A KR 1020190093832A KR 20190093832 A KR20190093832 A KR 20190093832A KR 102295101 B1 KR102295101 B1 KR 102295101B1
Authority
KR
South Korea
Prior art keywords
electrode
active material
secondary battery
manufacturing
current collector
Prior art date
Application number
KR1020190093832A
Other languages
Korean (ko)
Other versions
KR20210015257A (en
Inventor
홍영규
김병량
Original Assignee
한국전자기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전자기술연구원 filed Critical 한국전자기술연구원
Priority to KR1020190093832A priority Critical patent/KR102295101B1/en
Publication of KR20210015257A publication Critical patent/KR20210015257A/en
Application granted granted Critical
Publication of KR102295101B1 publication Critical patent/KR102295101B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0414Methods of deposition of the material by screen printing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0419Methods of deposition of the material involving spraying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0085Immobilising or gelification of electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 전극 적층기술을 이용한 3차원 구조의 전극을 구비하는 이차전지의 제조방법에 관한 것으로, 더욱 상세하게는 3차원 구조의 전극을 구비하는 이차전지를 제조하는 방법에 있어서, 하우징 내부에 양극 집전체와 음극 집전체가 서로 번갈아가며 일렬로 배치되도록 패터닝된 집전체를 배치하는 단계; 상기 양극 집전체 상부에 3D 프린터의 노즐을 이용하여 양극 활물질 슬러리를 1회 이상 적층 인쇄하는 단계; 상기 음극 집전체 상부에 3D 프린터의 노즐을 이용하여 음극 활물질 슬러리를 1회 이상 적층 인쇄하는 단계; 및 상기 하우징 내부에 전해질을 주입하는 단계를 포함하는 전극 적층기술을 이용한 이차전지의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a secondary battery having an electrode having a three-dimensional structure using electrode stacking technology, and more particularly, to a method for manufacturing a secondary battery having an electrode having a three-dimensional structure, in a housing inside a positive electrode disposing a patterned current collector such that a current collector and a negative electrode current collector are alternately arranged in a line with each other; laminating the cathode active material slurry one or more times using a nozzle of a 3D printer on the upper part of the cathode current collector; laminating and printing the negative electrode active material slurry one or more times on the negative electrode current collector using a nozzle of a 3D printer; And it relates to a method of manufacturing a secondary battery using an electrode stacking technology comprising the step of injecting an electrolyte into the housing.

Description

전극 적층기술을 이용한 3차원 구조의 전극을 구비하는 이차전지의 제조방법{Manufacturing method of secondary battery comprising electrode with 3 dimensional structure using electrode stacking technique}Manufacturing method of secondary battery comprising electrode with 3 dimensional structure using electrode stacking technique

본 발명은 전극 적층기술을 이용한 3차원 구조의 전극을 구비하는 이차전지의 제조방법에 관한 것으로, 더욱 상세하게는 3D 프린팅 기술을 활용하여 리튬 이차전지의 양극 및 음극을 적층 인쇄함으로써 종래의 2차원적인 구조의 전극을 구비하는 전지 형태를 벗어나 3차원 구조의 전극을 구비하는 전지를 제조하는 방법에 관한 것이다.The present invention relates to a method for manufacturing a secondary battery having an electrode having a three-dimensional structure using electrode stacking technology, and more particularly, to a conventional two-dimensional (2D) battery by laminating a positive electrode and a negative electrode of a lithium secondary battery using 3D printing technology. It relates to a method of manufacturing a battery having an electrode having a three-dimensional structure, out of the form of a battery having an electrode having a conventional structure.

현재의 다수의 리튬 이차전지 셀의 구조는 박막 형태로 제작된 양극 및 음극 사이에 분리막을 적층하여 제작하기 때문에 정형화된 2차원 구조의 형태로 이루어져 있다. 따라서 단위 면적당 에너지 밀도를 높이기 어렵고, 자유로운 3차원 형상의 전지를 구현하기 어렵다. The current structure of a large number of lithium secondary battery cells is made in the form of a standardized two-dimensional structure because a separator is stacked between the positive electrode and the negative electrode manufactured in the form of a thin film. Therefore, it is difficult to increase the energy density per unit area, and it is difficult to implement a battery having a free three-dimensional shape.

등록특허 제1527731호(스탬프를 이용한 이차전지 제조방법 및 이 방법에 의해 제조된 이차전지)는 3차원 전지 제작 방법 중 하나로 탄성 중합체 스탬프를 이용하여 양극 또는 음극 활물질을 도장 찍듯이 적층하여 3차원 형상의 전극을 제조하는 방법을 개시하고 있으나, 고종횡비 전극 제조에 제한이 있으며, 스탬프 형상에 따라 전극 형상이 제한되는 단점이 있다.Registered Patent No. 1527731 (a method for manufacturing a secondary battery using a stamp and a secondary battery manufactured by this method) is one of the three-dimensional battery manufacturing methods, which use an elastomer stamp to laminate a positive or negative electrode active material as if painting a three-dimensional shape. Although a method for manufacturing an electrode of

다른 방법으로는 등록특허 제1551916호(이차 전지용 전극 제조를 위한 3D 프린터 시스템)가 SLS(Selectie Laser Sintering) 방식의 3D 프린터를 이용하여 3차원 전지를 제조하는 방법을 개시하고 있다. 이 방법을 이용하면 전극 형상을 자유롭게 제작할 수 있는 반면, 재료의 소모가 많고 제조 시간이 상대적으로 길뿐만 아니라 레이저 소결 시 전극 재료의 변성 가능성이 높다는 문제점을 가지고 있다.As another method, Patent Registration No. 1551916 (3D printer system for manufacturing electrodes for secondary batteries) discloses a method of manufacturing a 3D battery using a 3D printer of a Selectie Laser Sintering (SLS) method. Using this method, the shape of the electrode can be freely manufactured, but there is a problem in that the material consumption is high, the manufacturing time is relatively long, and the possibility of denaturation of the electrode material is high during laser sintering.

대한민국 등록특허 제1527731호 (2015.06.04)Republic of Korea Patent No. 1527731 (2015.06.04)

따라서 본 발명의 목적은 3D 프린팅 기술을 활용하여 3차원 구조의 전극을 구비하는 이차전지를 제조하는 방법을 제공하는데 있다. Accordingly, an object of the present invention is to provide a method of manufacturing a secondary battery having an electrode having a three-dimensional structure by using 3D printing technology.

또한, 본 발명의 다른 목적은 흐름성이 낮은 전극 슬러리를 제조하고, 이 슬러리를 노즐 디스펜서 등 인쇄 공정을 이용하여 전극물질을 적층 인쇄함으로써 단위 면적당 에너지 밀도가 높으며, 형상의 자유도가 높은 3차원 형상의 이차전지를 제조하는 방법을 제공하는데 있다.In addition, another object of the present invention is to prepare an electrode slurry with low flowability, and laminate and print the electrode material on the slurry using a printing process such as a nozzle dispenser, so that the energy density per unit area is high and a three-dimensional shape with a high degree of freedom of shape An object of the present invention is to provide a method for manufacturing a secondary battery.

상술한 목적을 달성하기 위한 본 발명의 일 실시예에 따른 전극 적층기술을 이용한 이차전지의 제조방법은, 3차원 구조의 전극을 구비하는 이차전지를 제조하는 방법에 있어서, 하우징 내부에 양극 집전체와 음극 집전체가 서로 번갈아가며 일렬로 배치되도록 패터닝된 집전체를 배치하는 단계; 상기 양극 집전체 상부에 3D 프린터의 노즐을 이용하여 양극 활물질 슬러리를 1회 이상 적층 인쇄하는 단계; 상기 음극 집전체 상부에 3D 프린터의 노즐을 이용하여 음극 활물질 슬러리를 1회 이상 적층 인쇄하는 단계; 및 상기 하우징 내부에 전해질을 주입하는 단계를 포함할 수 있다.A method of manufacturing a secondary battery using an electrode stacking technology according to an embodiment of the present invention for achieving the above object is a method of manufacturing a secondary battery having an electrode having a three-dimensional structure, a positive electrode current collector inside a housing and disposing the patterned current collector so that the negative current collector is alternately arranged in a line with each other; laminating the cathode active material slurry one or more times using a nozzle of a 3D printer on the upper part of the cathode current collector; laminating and printing the negative electrode active material slurry one or more times on the negative electrode current collector using a nozzle of a 3D printer; and injecting an electrolyte into the housing.

또한, 본 발명에 따른 전극 적층기술을 이용한 이차전지의 제조방법에 있어서, 상기 양극 활물질은 리튬 전이금속 산화물을 포함하고, 상기 전이금속은 코발트(Co), 니켈(Ni), 망간(Mn) 및 철(Fe)로 이루어진 군 중에서 적어도 하나를 포함할 수 있다.In addition, in the method for manufacturing a secondary battery using the electrode stacking technique according to the present invention, the positive active material includes a lithium transition metal oxide, and the transition metal is cobalt (Co), nickel (Ni), manganese (Mn) and It may include at least one from the group consisting of iron (Fe).

또한, 본 발명에 따른 전극 적층기술을 이용한 이차전지의 제조방법에 있어서, 상기 음극 활물질은 흑연, 실리콘, 비정질 탄소, 하드카본, 소프트카본 및 리튬 산화물로 이루어진 군 중에서 선택될 수 있다.In addition, in the method for manufacturing a secondary battery using the electrode lamination technique according to the present invention, the negative active material may be selected from the group consisting of graphite, silicon, amorphous carbon, hard carbon, soft carbon, and lithium oxide.

또한, 본 발명에 따른 전극 적층기술을 이용한 이차전지의 제조방법에 있어서, 상기 적층 인쇄는 스크린 프린팅, 노즐젯 또는 잉크젯 인쇄 방법을 사용하는 것일 수 있다.In addition, in the method for manufacturing a secondary battery using the electrode lamination technique according to the present invention, the lamination printing may be performed using a screen printing method, a nozzle jet printing method, or an ink jet printing method.

또한, 본 발명에 따른 전극 적층기술을 이용한 이차전지의 제조방법에 있어서, 상기 전해질은 카보네이트 계열 유기 용매 내에 LiPF6, LiBF4, 또는 LiClO4이 혼합된 것을 특징으로 한다.In addition, in the method for manufacturing a secondary battery using the electrode stacking technology according to the present invention, the electrolyte is characterized in that LiPF 6 , LiBF 4 , or LiClO 4 is mixed in a carbonate-based organic solvent.

또한, 상기 전해질은 고분자 및 가교제를 혼합하고 개시제를 첨가하여 겔화된 겔 전해질인 것을 특징으로 한다.In addition, the electrolyte is characterized in that the gel electrolyte by mixing a polymer and a crosslinking agent and adding an initiator.

또한, 본 발명에 따른 전극 적층기술을 이용한 이차전지의 제조방법에 있어서, 상기 고분자는 PVDF(폴리(비닐리덴 플루오라이드)), PVDF-HFP(폴리(비닐리덴 플루오라이드)-헥사플루오로프로필렌) 및 헥실 아크릴레이트(Hexyl acrylate)로 이루어진 군 중에서 선택될 수 있다.In addition, in the method for manufacturing a secondary battery using the electrode lamination technology according to the present invention, the polymer is PVDF (poly(vinylidene fluoride)), PVDF-HFP (poly(vinylidene fluoride)-hexafluoropropylene) and hexyl acrylate.

또한, 본 발명에 따른 전극 적층기술을 이용한 이차전지의 제조방법에 있어서, 상기 가교제는 PEDA(poly(ethylene glycol) diacrylate) 또는 DPXA( dipentaerythritol hexa acrylate)이고, 상기 개시제는 4-하이드록시-4-메틸-2-펜타논(4-hydroxy-4-methyl-2-pentanone)이다.In addition, in the method for manufacturing a secondary battery using the electrode lamination technique according to the present invention, the crosslinking agent is poly(ethylene glycol) diacrylate (PEDA) or dipentaerythritol hexa acrylate (DPXA), and the initiator is 4-hydroxy-4- Methyl-2-pentanone (4-hydroxy-4-methyl-2-pentanone).

본 발명에 따르면, 흐름성이 낮은 전극 슬러리를 반복 인쇄하여 적층하기 때문에 원하는 만큼 전극을 쌓을 수 있어 전극 높이에 대한 제약이 적으며, 고 종횡비로 적층된 전극으로 인해 이차전지의 에너지 밀도를 높일 수 있다. According to the present invention, since electrode slurries with low flowability are repeatedly printed and laminated, electrodes can be stacked as many times as desired, so there is little restriction on the height of the electrode, and the energy density of the secondary battery can be increased due to the electrode stacked with a high aspect ratio. have.

또한, 노즐 디스펜서를 이용하여 전극 슬러리를 집전체 위에 바로 인쇄하는 방법을 사용하기 때문에 자유로운 형태로 전극 패턴을 구성할 수 있고, 전지 형상의 자유도가 높은 3차원 전지 제조가 가능하다. In addition, since the method of printing the electrode slurry directly on the current collector using a nozzle dispenser is used, the electrode pattern can be formed in a free form, and a three-dimensional battery having a high degree of freedom in the shape of the battery can be manufactured.

도 1은 본 발명의 일 실시예에 따른 전극 적층기술을 이용한 3차원 구조의 전극을 구비하는 이차전지의 각 제조 단계를 도시한 공정 흐름도이다.
도 2는 본 발명의 일 실시예에 따른 전극 적층기술을 이용한 3차원 구조의 전극을 구비하는 이차전지를 도식적으로 나타낸 그림이다.
도 3은 본 발명의 일 실시예에 따른 전극 적층기술을 이용한 3차원 구조의 전극을 구비하는 이차전지의 이미지 사진이다.
1 is a process flow diagram illustrating each manufacturing step of a secondary battery having an electrode having a three-dimensional structure using an electrode stacking technique according to an embodiment of the present invention.
2 is a diagram schematically showing a secondary battery having an electrode having a three-dimensional structure using electrode stacking technology according to an embodiment of the present invention.
3 is an image photograph of a secondary battery having an electrode having a three-dimensional structure using an electrode stacking technique according to an embodiment of the present invention.

본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시 예를 가질 수 있는 바, 특정 실시 예들을 상세한 설명에서 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.Since the present invention can apply various transformations and can have various embodiments, specific embodiments will be described in detail in the detailed description. However, this is not intended to limit the present invention to specific embodiments, and it should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the present invention. In describing the present invention, if it is determined that a detailed description of a related known technology may obscure the gist of the present invention, the detailed description thereof will be omitted.

본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terms used in the present application are only used to describe specific embodiments, and are not intended to limit the present invention. The singular expression includes the plural expression unless the context clearly dictates otherwise. In the present application, terms such as “comprise” or “have” are intended to designate that a feature, number, step, operation, component, part, or combination thereof described in the specification exists, but one or more other features It should be understood that this does not preclude the existence or addition of numbers, steps, operations, components, parts, or combinations thereof.

제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다.Terms such as first, second, etc. may be used to describe various elements, but the elements should not be limited by the terms. The above terms are used only for the purpose of distinguishing one component from another.

이하, 도면들을 참조하여 본 발명의 실시예에 대해 상세히 설명하기로 한다. 본 발명은 본 발명의 정신 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다.Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. It is apparent to those skilled in the art that the present invention may be embodied in other specific forms without departing from the spirit and essential characteristics of the present invention.

도 1은 본 발명의 일 실시예에 따른 전극 적층기술을 이용한 3차원 구조의 전극을 구비하는 이차전지의 각 제조 단계를 도시한 공정 흐름도이다. 도 2는 본 발명의 3차원 구조의 전극을 구비하는 이차전지를 도식적으로 나타낸 그림이고, 도 3은 이미지 사진이다.1 is a process flow diagram illustrating each manufacturing step of a secondary battery having an electrode having a three-dimensional structure using an electrode stacking technique according to an embodiment of the present invention. 2 is a diagram schematically showing a secondary battery having an electrode having a three-dimensional structure of the present invention, and FIG. 3 is an image photograph.

도 1 내지 도 3을 참조하면, 본 발명에 따른 전극 적층기술을 이용한 이차전지의 제조방법은, 3차원 구조의 전극을 구비하는 이차전지를 제조하는 방법에 있어서, 하우징(100) 내부에 양극 집전체(110)와 음극 집전체(111)가 서로 번갈아가며 일렬로 배치되도록 패터닝된 집전체를 배치하는 단계(S10); 상기 양극 집전체(110) 상부에 3D 프린터의 노즐을 이용하여 양극 활물질 슬러리를 1회 이상 적층 인쇄하는 단계(S20); 상기 음극 집전체(111) 상부에 3D 프린터의 노즐을 이용하여 음극 활물질 슬러리를 1회 이상 적층 인쇄하는 단계(S30); 및 상기 하우징(100) 내부에 전해질(130)을 주입하는 단계(S40)를 포함할 수 있다.1 to 3 , in the method for manufacturing a secondary battery using electrode stacking technology according to the present invention, in the method for manufacturing a secondary battery having an electrode having a three-dimensional structure, the positive electrode house is inside the housing 100 disposing the patterned current collector so that the whole 110 and the negative current collector 111 are alternately arranged in a line with each other (S10); laminating and printing the positive electrode active material slurry one or more times on the positive electrode current collector 110 using a nozzle of a 3D printer (S20); laminating and printing the negative electrode active material slurry one or more times on the negative electrode current collector 111 using a nozzle of a 3D printer (S30); and injecting the electrolyte 130 into the housing 100 ( S40 ).

본 발명의 실시예에서는 흐름성이 낮은 양극(LiCoO2) 및 음극(Graphite) 슬러리를 제조하고, 이 슬러리를 노즐 디스펜서를 이용하여 적층 인쇄한 후 하우징(100) 안에 겔 형태의 전해질(130)과 함께 밀봉하는 방법으로 3차원 전지를 제작하였다.In an embodiment of the present invention, a positive electrode (LiCoO 2 ) and a negative electrode (Graphite) slurry having low flowability are prepared, and the slurry is laminated and printed using a nozzle dispenser, and then the electrolyte 130 in gel form in the housing 100 and A three-dimensional battery was fabricated by sealing together.

먼저, S10단계는 하우징(100) 내부에 양극 집전체(110)와 음극 집전체(111)가 서로 번갈아가며 일렬로 배치되도록 패터닝된 집전체를 배치하는 것이다. First, step S10 is to arrange a patterned current collector such that the positive electrode current collector 110 and the negative electrode current collector 111 are alternately arranged in a line in the housing 100 .

상기 집전체는 집전기능을 수행하는 것으로, 양극 집전체(110)는 알루미늄, 음극 집전체(111)는 구리와 같은 금속의 박막으로 형성될 수 있다. 상기 양극 집전체(110)는 전기적으로 도통하도록 연결되고 상기 음극 집전체(111)도 전기적으로 도통하도록 연결된다. The current collector performs a current collecting function, and the positive electrode current collector 110 may be formed of aluminum, and the negative current collector 111 may be formed of a thin film of a metal such as copper. The positive electrode current collector 110 is electrically connected, and the negative electrode current collector 111 is also electrically connected.

상기 집전체는 양극 집전체(110)와 음극 집전체(111)가 서로 번갈아가며 일렬로 배치되도록 패터닝된다. 즉, 리튬 이온의 원활한 삽입 및 탈리 반응을 위해 인터디지테이트(Interdigitate) 형태의 양극과 음극이 대면하는 전극 패턴을 제작하였다. 그러나, 반드시 이에 제한되는 것은 아니고 전극의 패턴은 원하는 형태로 변경할 수 있다.The current collector is patterned such that the positive current collector 110 and the negative current collector 111 are alternately arranged in a line with each other. That is, for the smooth insertion and desorption of lithium ions, an interdigitate-type electrode pattern was prepared in which the positive and negative electrodes face each other. However, the present invention is not necessarily limited thereto, and the pattern of the electrode may be changed to a desired shape.

상기 하우징(100)의 재질은 플라스틱을 사용할 수 있으나, 이에 제한되는 것은 아니며 다양한 형태로 변경될 수 있다. 도 1의 (가)를 참조하면, 상기 하우징(100) 내부에 트렌치가 형성될 수 있고, 상기 트렌치 안에 집전체가 장착될 수 있다.The material of the housing 100 may be plastic, but is not limited thereto and may be changed into various shapes. Referring to FIG. 1A , a trench may be formed in the housing 100 , and a current collector may be mounted in the trench.

S20단계는 상기 양극 집전체(110) 상부에 3D 프린터의 노즐을 이용하여 양극 활물질 슬러리를 1회 이상 적층 인쇄하는 것이다(도 1의 나).In step S20, the positive electrode active material slurry is laminated and printed one or more times on the positive electrode current collector 110 by using a nozzle of a 3D printer (FIG. 1B).

일반적으로 3D 프린터의 노즐을 이용하여 적층 인쇄하는 방식은 필라멘트(filament, FM) 형태의 열가소성 물질을 녹여 노즐(NZ)을 통해 분사시켜 적층한 후, 공기 중에서 경화시켜 프린팅하는 방식(FDM, Fused Deposition Modeling)을 말하는 것으로, 재료를 프린팅 노즐을 통해 토출시켜 물체를 형성하는 방식을 사용할 수 있다.In general, the method of laminating printing using a nozzle of a 3D printer is a method of melting a thermoplastic material in the form of a filament (FM), spraying it through a nozzle (NZ), stacking it, and curing it in air to print (FDM, Fused Deposition) Modeling), and a method of forming an object by discharging a material through a printing nozzle can be used.

본 발명의 경우, 흐름성이 낮은 양극(LiCoO2) 슬러리를 제조하고, 이 슬러리를 노즐 디스펜서를 이용하여 적층 인쇄한다. 즉, 고온의 열을 노즐(NZ) 내부에 있는 양극 슬러리에 가하고 노즐(NZ)이 양극 집전체(110) 상에서 움직이면서 양극 슬러리를 양극 집전체(110) 상에 적층한다. 이 때 노즐(NZ)의 움직임 및 양극 슬러리의 분사 여부는 컴퓨터에 의해 제어된다. 한편, 노즐(NZ)로부터 분사되어 적층된 양극 슬러리는 공기 중에 노출되어 천천히 경화된다. 이와 같은 작업을 수회 반복하여 적층 인쇄된다. 이러한 적층 인쇄는 스크린 프린팅, 노즐젯 또는 잉크젯 인쇄 방법을 사용하는 것이 바람직하다.In the present invention, a cathode (LiCoO 2 ) slurry having low flowability is prepared, and the slurry is laminated and printed using a nozzle dispenser. That is, high temperature heat is applied to the positive electrode slurry inside the nozzle NZ and the nozzle NZ moves on the positive electrode current collector 110 to stack the positive electrode slurry on the positive electrode current collector 110 . At this time, the movement of the nozzle NZ and whether the anode slurry is sprayed is controlled by a computer. On the other hand, the anode slurry sprayed from the nozzle NZ and stacked is exposed to the air and slowly hardened. Laminate printing is performed by repeating this operation several times. It is preferable to use a screen printing, nozzle jet or ink jet printing method for such lamination printing.

상기 양극 활물질은 리튬 전이금속 산화물을 포함한다. 여기서, 상기 전이금속은 코발트(Co), 니켈(Ni), 망간(Mn) 및 철(Fe)로 이루어진 군 중에서 적어도 하나를 포함하는 것이다. 양극 활물질 슬러리는 상기 양극 활물질, 바인더 및 도전재를 포함할 수 있다. 바인더는 양극 활물질을 양극 집전체(110) 상부에 고정시키기 위한 물질로서 첨가되고, 도전재는 전자나 전하의 흐름이 잘 일어나도록 첨가되는 물질로서 예컨대 카본을 사용할 수 있다.The positive active material includes a lithium transition metal oxide. Here, the transition metal includes at least one from the group consisting of cobalt (Co), nickel (Ni), manganese (Mn), and iron (Fe). The cathode active material slurry may include the cathode active material, a binder, and a conductive material. The binder is added as a material for fixing the positive electrode active material on the positive electrode current collector 110 , and the conductive material is added to facilitate the flow of electrons or charges. For example, carbon may be used.

S30단계는 상기 음극 집전체(111) 상부에 3D 프린터의 노즐을 이용하여 음극 활물질 슬러리를 1회 이상 적층 인쇄하는 것이다(도 1의 다).In step S30, the negative electrode active material slurry is laminated and printed one or more times on the negative electrode current collector 111 using a nozzle of a 3D printer (FIG. 1C).

흐름성이 낮은 음극(흑연) 슬러리를 제조하고, 이 슬러리를 노즐 디스펜서를 이용하여 적층 인쇄한다.A negative electrode (graphite) slurry with low flowability is prepared, and the slurry is laminated and printed using a nozzle dispenser.

상기 음극 활물질은 흑연, 실리콘, 비정질 탄소, 하드카본, 소프트카본 및 리튬 산화물로 이루어진 군 중에서 선택될 수 있다. 음극 활물질 슬러리는 음극재, 바인더, 및 도전재를 포함할 수 있다. 바인더는 음극재를 기판(10)에 고정시키기 위한 물질로서 첨가되고, 도전재는 전자나 전하의 흐름이 잘 일어나도록 첨가되는 물질로서 예컨대 카본을 사용할 수 있다.The negative active material may be selected from the group consisting of graphite, silicon, amorphous carbon, hard carbon, soft carbon, and lithium oxide. The negative active material slurry may include a negative electrode material, a binder, and a conductive material. The binder is added as a material for fixing the negative electrode material to the substrate 10 , and the conductive material is added to facilitate the flow of electrons or charges, for example, carbon may be used.

상기 적층 인쇄 횟수는 본 발명의 실시예에서 하우징(100)의 높이를 고려하여 양극(120) 및 음극(121)을 각각 5회 적층 인쇄하였으나, 이에 제한되는 것은 아니다.The number of lamination printing was performed by laminating the positive electrode 120 and the negative electrode 121 five times each in consideration of the height of the housing 100 in the embodiment of the present invention, but is not limited thereto.

S40단계는 상기 하우징(100) 내부에 전해질(130)을 주입하는 것이다(도 1의 라).Step S40 is to inject the electrolyte 130 into the housing 100 (FIG. 1D).

본 발명의 전해질(130)은 카보네이트 계열 유기 용매 내에 LiPF6, LiBF4, 또는 LiClO4이 혼합된 것이다. The electrolyte 130 of the present invention is a mixture of LiPF 6 , LiBF 4 , or LiClO 4 in a carbonate-based organic solvent.

이때, 상기 전해질(130)은 액상전해질도 가능하나, 액상전해질에 비하여 흐름성이 낮아 안정성이 높은 겔 형태의 전해질이 보다 바람직하다.In this case, the electrolyte 130 may be a liquid electrolyte, but a gel-type electrolyte having low flowability and high stability compared to a liquid electrolyte is more preferable.

본 발명의 겔 전해질(130)은 고분자 및 가교제를 추가로 혼합하고 개시제를 첨가하여 겔화된 것이다. 여기서, 상기 고분자는 PVDF(폴리(비닐리덴 플루오라이드)), PVDF-HFP(폴리(비닐리덴 플루오라이드)-헥사플루오로프로필렌) 및 헥실 아크릴레이트(Hexyl acrylate)로 이루어진 군 중에서 선택될 수 있다. 가교제는 PEDA(poly(ethylene glycol) diacrylate) 또는 DPXA(dipentaerythritol hexa acrylate)이고, 개시제는 4-하이드록시-4-메틸-2-펜타논(4-hydroxy-4-methyl-2-pentanone)인 것이 바람직하다.The gel electrolyte 130 of the present invention is gelled by further mixing a polymer and a crosslinking agent and adding an initiator. Here, the polymer may be selected from the group consisting of PVDF (poly(vinylidene fluoride)), PVDF-HFP (poly(vinylidene fluoride)-hexafluoropropylene), and hexyl acrylate. The crosslinking agent is poly(ethylene glycol) diacrylate (PEDA) or dipentaerythritol hexa acrylate (DPXA), and the initiator is 4-hydroxy-4-methyl-2-pentanone. desirable.

상기 S40단계 이후에, 상기 하우징(100)의 상부에 하우징 커버를 접합하고 밀봉하여 이차전지를 제조하는 단계(S50)를 더 포함될 수 있다(도 1의 마). After the step S40, a step (S50) of manufacturing a secondary battery by bonding and sealing the housing cover to the upper portion of the housing 100 may be further included (E of FIG. 1 ).

본 발명에 따르면, 흐름성이 낮은 전극 슬러리를 반복 인쇄하여 적층하기 때문에 원하는 만큼 전극을 쌓을 수 있어 전극 높이에 대한 제약이 적으며, 고 종횡비로 적층된 전극으로 인해 이차전지의 에너지 밀도를 높일 수 있다. According to the present invention, since electrode slurries with low flowability are repeatedly printed and laminated, electrodes can be stacked as many times as desired, so there is little restriction on the height of the electrode, and the energy density of the secondary battery can be increased due to the electrode stacked with a high aspect ratio. have.

또한, 노즐 디스펜서를 이용하여 전극 슬러리를 집전체 위에 바로 인쇄하는 방법을 사용하기 때문에 자유로운 형태로 전극 패턴을 구성할 수 있고, 전지 형상의 자유도가 높은 3차원 전지 제조가 가능하다. In addition, since the method of printing the electrode slurry directly on the current collector using a nozzle dispenser is used, the electrode pattern can be formed in a free form, and a three-dimensional battery having a high degree of freedom in the shape of the battery can be manufactured.

한편, 이상의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.On the other hand, the above detailed description should not be construed as restrictive in all aspects, but should be considered as exemplary. The scope of the present invention should be determined by a reasonable interpretation of the appended claims, and all modifications within the equivalent scope of the present invention are included in the scope of the present invention.

100 : 3차원 전지 하우징
101 : 3차원 전지 하우징 커버
110 : 양극 집전체
111 : 음극 집전체
120 : 양극 적층 전극
121 : 음극 적층 전극
130 : 전해질
100: three-dimensional battery housing
101: three-dimensional battery housing cover
110: positive electrode current collector
111: negative electrode current collector
120: positive electrode stacked electrode
121: negative electrode stacked electrode
130: electrolyte

Claims (8)

3차원 구조의 전극을 구비하는 이차전지를 제조하는 방법에 있어서,
하우징 내부에 양극 집전체와 음극 집전체가 서로 번갈아가며 일렬로 배치되도록 패터닝된 집전체를 배치하는 단계;
상기 양극 집전체 상부에 3D 프린터의 노즐을 이용하여 양극 활물질 슬러리를 1회 이상 적층 인쇄하는 단계;
상기 음극 집전체 상부에 3D 프린터의 노즐을 이용하여 음극 활물질 슬러리를 1회 이상 적층 인쇄하는 단계; 및
상기 하우징 내부에 전해질을 주입하는 단계;를 포함하고,
상기 양극 활물질 슬러리는 양극 활물질, 상기 양극 활물질을 상기 양극 집전체 상부에 고정시키는 바인더 및 도전재를 포함하며, 상기 음극 활물질 슬러리는 음극 활물질, 상기 음극 활물질을 음극 집전체 상부에 고정시키는 바인더 및 도전재를 포함하고,
상기 양극 활물질 슬러리 및 음극 활물질 슬러리는 흐름성이 낮은 것을 특징으로 하고,
상기 전해질은 고분자 및 가교제를 혼합하고 개시제를 첨가하여 겔화된 겔 전해질인 것을 특징으로 하는 전극 적층기술을 이용한 이차전지의 제조방법.
A method for manufacturing a secondary battery having an electrode having a three-dimensional structure, the method comprising:
disposing a patterned current collector such that a positive electrode current collector and a negative electrode current collector are alternately arranged in a line in the housing;
laminating the cathode active material slurry one or more times using a nozzle of a 3D printer on the upper part of the cathode current collector;
laminating and printing the negative electrode active material slurry one or more times on the negative electrode current collector using a nozzle of a 3D printer; and
Including; injecting an electrolyte into the housing;
The positive electrode active material slurry includes a positive electrode active material, a binder and a conductive material for fixing the positive electrode active material on the positive electrode current collector, and the negative electrode active material slurry includes a negative electrode active material, a binder and a conductive material for fixing the negative electrode active material on the negative electrode current collector containing ashes,
The positive active material slurry and the negative active material slurry are characterized in that the flowability is low,
The electrolyte is a method of manufacturing a secondary battery using an electrode lamination technology, characterized in that the gel electrolyte is gelled by mixing a polymer and a crosslinking agent and adding an initiator.
제1항에 있어서,
상기 양극 활물질은 리튬 전이금속 산화물을 포함하고,
상기 전이금속은 코발트(Co), 니켈(Ni), 망간(Mn) 및 철(Fe)로 이루어진 군 중에서 적어도 하나를 포함하는 것인, 전극 적층기술을 이용한 이차전지의 제조방법.
According to claim 1,
The positive active material includes a lithium transition metal oxide,
The transition metal comprises at least one of the group consisting of cobalt (Co), nickel (Ni), manganese (Mn) and iron (Fe), a method of manufacturing a secondary battery using an electrode stacking technology.
제1항에 있어서,
상기 음극 활물질은 흑연, 실리콘, 비정질 탄소, 하드카본, 소프트카본 및 리튬 산화물로 이루어진 군 중에서 선택되는 것인, 전극 적층기술을 이용한 이차전지의 제조방법.
According to claim 1,
The anode active material is selected from the group consisting of graphite, silicon, amorphous carbon, hard carbon, soft carbon and lithium oxide, a method of manufacturing a secondary battery using an electrode lamination technology.
제1항에 있어서,
상기 적층 인쇄는 스크린 프린팅, 노즐젯 또는 잉크젯 인쇄 방법을 사용하는 것인, 전극 적층기술을 이용한 이차전지의 제조방법.
According to claim 1,
The lamination printing is a method of manufacturing a secondary battery using an electrode lamination technology, which uses a screen printing, nozzle jet or ink jet printing method.
제1항에 있어서,
상기 전해질은 카보네이트 계열 유기 용매 내에 LiPF6, LiBF4, 또는 LiClO4이 혼합된 것인, 전극 적층기술을 이용한 이차전지의 제조방법.
According to claim 1,
The electrolyte is a carbonate-based organic solvent in LiPF 6 , LiBF 4 , or LiClO 4 A method of manufacturing a secondary battery using an electrode stacking technique is a mixture.
삭제delete 제1항에 있어서,
상기 고분자는 PVDF(폴리(비닐리덴 플루오라이드)), PVDF-HFP(폴리(비닐리덴 플루오라이드)-헥사플루오로프로필렌) 및 헥실 아크릴레이트(Hexyl acrylate)로 이루어진 군 중에서 선택되는 것인, 전극 적층기술을 이용한 이차전지의 제조방법.
According to claim 1,
The polymer is selected from the group consisting of PVDF (poly (vinylidene fluoride)), PVDF-HFP (poly (vinylidene fluoride)-hexafluoropropylene) and hexyl acrylate (Hexyl acrylate), electrode stacking A method for manufacturing a secondary battery using technology.
제1항에 있어서,
상기 가교제는 PEDA(poly(ethylene glycol) diacrylate) 또는 DPXA( dipentaerythritol hexa acrylate)이고,
상기 개시제는 4-하이드록시-4-메틸-2-펜타논(4-hydroxy-4-methyl-2-pentanone)인, 전극 적층기술을 이용한 이차전지의 제조방법.
According to claim 1,
The crosslinking agent is PEDA (poly (ethylene glycol) diacrylate) or DPXA (dipentaerythritol hexa acrylate),
The initiator is 4-hydroxy-4-methyl-2-pentanone (4-hydroxy-4-methyl-2-pentanone), a method of manufacturing a secondary battery using an electrode lamination technology.
KR1020190093832A 2019-08-01 2019-08-01 Manufacturing method of secondary battery comprising electrode with 3 dimensional structure using electrode stacking technique KR102295101B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190093832A KR102295101B1 (en) 2019-08-01 2019-08-01 Manufacturing method of secondary battery comprising electrode with 3 dimensional structure using electrode stacking technique

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190093832A KR102295101B1 (en) 2019-08-01 2019-08-01 Manufacturing method of secondary battery comprising electrode with 3 dimensional structure using electrode stacking technique

Publications (2)

Publication Number Publication Date
KR20210015257A KR20210015257A (en) 2021-02-10
KR102295101B1 true KR102295101B1 (en) 2021-08-31

Family

ID=74560998

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190093832A KR102295101B1 (en) 2019-08-01 2019-08-01 Manufacturing method of secondary battery comprising electrode with 3 dimensional structure using electrode stacking technique

Country Status (1)

Country Link
KR (1) KR102295101B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116053611B (en) * 2023-03-31 2023-06-16 青岛理工大学 3D printing stretchable water-based zinc ion battery and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003197209A (en) * 2002-10-17 2003-07-11 Sharp Corp Battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101527731B1 (en) 2013-12-20 2015-06-11 한국기계연구원 Method for producing secondary battery using a stamp and the secondary battery produced by the method
KR102488917B1 (en) * 2017-11-24 2023-01-17 한국재료연구원 Method of manufacturing fast chargeable electrode with 3D printed metal organic framework

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003197209A (en) * 2002-10-17 2003-07-11 Sharp Corp Battery

Also Published As

Publication number Publication date
KR20210015257A (en) 2021-02-10

Similar Documents

Publication Publication Date Title
JP5098150B2 (en) Bipolar battery and manufacturing method thereof
CN105074968B (en) Lithium electrode and the lithium secondary battery comprising the lithium electrode
KR101301826B1 (en) Battery, vehicle, electronic device and battery manufacturing method
KR101560509B1 (en) Current collector for bipolar lithium ion secondary battery
JP5292676B2 (en) Bipolar battery electrode
KR101484433B1 (en) Bipolar battery current collector and bipolar battery
CN108511787B (en) Lithium ion secondary battery and method for manufacturing same
JP6547768B2 (en) Method of manufacturing all solid lithium ion battery
KR101323882B1 (en) Battery manufacturing method, battery manufactured by such method, vehicle and electronic device
JP6598245B2 (en) Secondary battery manufacturing method and manufacturing apparatus thereof
JP2007042385A (en) Electrode for battery
KR20120032396A (en) Lithium-ion secondary battery, vehicle, electronic device and manufacturing method of lithium-ion secondary battery
US6371997B1 (en) Method for manufacturing lithium polymer secondary battery and lithium polymer secondary battery made by the method
JP5261883B2 (en) Bipolar secondary battery
KR102295101B1 (en) Manufacturing method of secondary battery comprising electrode with 3 dimensional structure using electrode stacking technique
JP4525323B2 (en) Electrode, battery, and manufacturing method thereof
JP2004014528A (en) Battery apparatus
JP2010218986A (en) Manufacturing method of electrode for secondary battery, electrode for secondary battery, and secondary battery
CN111937211A (en) Method for manufacturing battery
JP2012018785A (en) Battery electrode manufacturing method, battery manufacturing method, battery, vehicle and electronic equipment
JP5181422B2 (en) Bipolar secondary battery
JP6598933B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP2012074202A (en) Battery, vehicle, electronic apparatus, and method for manufacturing battery
JP5421151B2 (en) All solid-state lithium ion secondary battery
CN113631279B (en) Slot die coating apparatus with vent holes

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant