KR102290910B1 - 기판 처리 장치 및 기판 처리 방법 - Google Patents

기판 처리 장치 및 기판 처리 방법 Download PDF

Info

Publication number
KR102290910B1
KR102290910B1 KR1020210012937A KR20210012937A KR102290910B1 KR 102290910 B1 KR102290910 B1 KR 102290910B1 KR 1020210012937 A KR1020210012937 A KR 1020210012937A KR 20210012937 A KR20210012937 A KR 20210012937A KR 102290910 B1 KR102290910 B1 KR 102290910B1
Authority
KR
South Korea
Prior art keywords
substrate
electrode
variable capacitor
ring
impedance
Prior art date
Application number
KR1020210012937A
Other languages
English (en)
Other versions
KR20210014720A (ko
Inventor
구자명
안종환
박군호
조태훈
아라켈얀
Original Assignee
세메스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020190076943A external-priority patent/KR102214333B1/ko
Application filed by 세메스 주식회사 filed Critical 세메스 주식회사
Priority to KR1020210012937A priority Critical patent/KR102290910B1/ko
Publication of KR20210014720A publication Critical patent/KR20210014720A/ko
Application granted granted Critical
Publication of KR102290910B1 publication Critical patent/KR102290910B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • H01J37/32183Matching circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • H01J37/3255Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32623Mechanical discharge control means
    • H01J37/32642Focus rings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67069Apparatus for fluid treatment for etching for drying etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68721Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by edge clamping, e.g. clamping ring
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H7/00Multiple-port networks comprising only passive electrical elements as network components
    • H03H7/38Impedance-matching networks
    • H03H7/40Automatic matching of load impedance to source impedance

Abstract

내부에 처리 공간을 가지는 챔버; 상기 처리 공간 내에서 기판을 지지하는 기판 지지 유닛; 및 상기 처리 공간 내로 가스를 공급하는 가스 공급 유닛; 을 포함하되, 상기 기판 지지 유닛은, 기판을 지지하는 기판 지지부; 상기 기판 지지부를 둘러싸는 포커스링; 상기 포커스링의 하부에 위치되며, 내부에 전극이 제공되는 절연체; 및 상기 전극과 연결되어 상기 전극의 임피던스를 조절하는 임피던스 제어부;를 포함하고, 상기 임피던스 제어부는: 상기 전극에 병렬로 연결된 공진 제어 회로 및 임피던스 제어 회로를 포함하고, 그리고 상기 임피던스 제어부는 상기 기판의 가장자리 영역에서 플라즈마를 제어할 수 있다.

Description

기판 처리 장치 및 기판 처리 방법{APPARATUS AND METHOD FOR TREATING SUBSTRATE}
본 발명은 기판 처리 장치 및 기판 처리 방법에 관한 것으로, 보다 상세하게는, 기판을 플라즈마 처리하는 기판 처리 장치 및 기판 처리 방법에 관한 것이다.
반도체 제조 공정은 플라즈마를 이용하여 기판을 처리하는 공정을 포함할 수 있다. 예를 들어, 반도체 제조 공정 중 에칭 공정은 플라즈마를 이용하여 기판상의 박막을 제거할 수 있다.
플라즈마를 이용한 에칭 공정과 같은 플라즈마를 이용하는 기판 처리 공정에서 정전척의 가장자리에 장착되는 포커스링은 공정 중 기판의 위치에 대한 가이드 링 역할을 하며, 정전척 가장자리 영역에서 플라즈마 형성과 쉬스(Sheath) 높이에 영향을 준다. 특히, 포커스링의 형상에 따라 기판 가장자리 영역에서 에칭 균일도(Etch uniformity) 변화에 큰 영향을 줄 수 있다.
포커스링의 재질은 일반적으로 Si, SiC, Quartz와 같은 물질로 구성되며, 플라즈마 공정 시간이 증가함에 따라 공정 중 생성되는 이온 충돌에 의해 마모 또는 식각되어 포커스링의 두께가 감소한다. 포커스링의 식각에 의해 포커스링의 높이가 낮아짐에 따라 쉬스의 전체적인 높이는 포커스링의 식각된 형태를 따라 같이 낮아진다. 이에 따라, 기판의 가장자리 영역에서 입사되는 이온의 각도가 점점 기판의 중심 방향으로 휘어질 수 있으며, 이러한 현상은 공정 변화를 야기시키고 기판 패턴 프로파일의 휘어짐이 발생할 수 있다.
본 발명의 목적은 기판의 가장자리 영역에서 플라즈마 이온의 입사각을 제어할 수 있는 기판 처리 장치 및 기판 처리 방법을 제공함에 있다.
본 발명이 해결하고자 하는 과제가 상술한 과제로 한정되는 것은 아니며, 언급되지 아니한 과제들은 본 명세서 및 첨부된 도면으로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
내부에 처리 공간을 가지는 챔버; 상기 처리 공간 내에서 기판을 지지하는 기판 지지 유닛; 및 상기 처리 공간 내로 가스를 공급하는 가스 공급 유닛; 을 포함하되, 상기 기판 지지 유닛은, 기판을 지지하는 기판 지지부; 상기 기판 지지부를 둘러싸는 포커스링; 상기 포커스링의 하부에 위치되며, 내부에 전극이 제공되는 절연체; 및 상기 전극과 연결되어 상기 전극의 임피던스를 조절하는 임피던스 제어부;를 포함하고, 상기 임피던스 제어부는: 상기 전극에 병렬로 연결된 공진 제어 회로 및 임피던스 제어 회로를 포함하고, 그리고 상기 임피던스 제어부는 상기 기판의 가장자리 영역에서 플라즈마를 제어할 수 있다.
일 예시에 따르면, 상기 공진 제어 회로는, 직렬 연결된 인덕터 및 제1 가변 커패시터를 포함하고, 상기 임피던스 제어 회로는, 제2 가변 커패시터를 포함할 수 있다.
일 예시에 따르면, 상기 공진 제어 회로와 상기 임피던스 제어 회로는 상기 전극과 접지 사이에 서로 병렬 연결될 수 있다.
일 예시에 따르면, 상기 임피던스 제어부는, 상기 제1 가변 커패시터 및 상기 제2 가변 커패시터의 커패시턴스를 조절하는 제어 부재;를 더 포함하고, 상기 제어 부재는, 상기 전극이 최대 임피던스 값을 가지도록 상기 제1 가변 커패시터의 커패시턴스를 조절할 수 있다.
일 예시에 따르면, 상기 제어 부재는, 상기 제2 가변 커패시터의 커패시턴스를 조절하여 상기 포커스링 상단의 전압을 제어할 수 있다.
일 예시에 따르면, 상기 임피던스 제어부는, 상기 포커스링 상단의 전압을 측정하는 전압 측정 부재;를 더 포함할 수 있다.
일 예시에 따르면, 상기 제어 부재는, 기저장된 상기 포커스링 상단의 전압 대비 상기 기판의 가장자리 영역에서 플라즈마 이온의 입사각 정보를 이용하여, 상기 기판의 가장자리 영역에서 플라즈마 이온의 입사각이 기설정된 범위 내로 조절되도록 상기 제2 가변 커패시터의 커패시턴스를 제어할 수 있다.
일 예시에 따르면, 상기 제2 가변 커패시터의 커패시턴스는, 상기 제2 가변 커패시터의 최대 커패시턴스의 10% 내지 100% 범위 내에서 조절될 수 있다.
일 예시에 따르면, 상기 기판의 가장자리 영역에서 플라즈마 이온의 입사각은, 슬로프 크리티컬 디멘젼(Slope Critical Dimension,SCD)이 0보다 크도록 조절될 수 있다.
본 발명의 다른 일 실시예에 따르면, 내부에 처리 공간을 가지는 챔버; 상기 처리 공간 내에서 기판을 지지하는 기판 지지 유닛; 상기 처리 공간 내로 가스를 공급하는 가스 공급 유닛; 및 상기 기판 지지 유닛으로 RF 신호를 인가하는 RF 전원을 포함하되, 상기 기판 지지 유닛은, 기판을 지지하는 기판 지지부; 상기 기판 지지부를 둘러싸는 포커스링; 상기 포커스링의 하부에 위치되며, 내부에 전극이 제공되는 절연체; 및 상기 전극과 연결되어 상기 전극의 임피던스를 조절하는 임피던스 제어부;를 포함하고, 상기 임피던스 제어부는: 상기 전극에 병렬로 연결된 공진 제어 회로 및 임피던스 제어 회로를 포함하고, 그리고 상기 임피던스 제어부는 상기 기판의 가장자리 영역에서 플라즈마를 제어할 수 있다.
본 발명의 또 다른 일 실시예에 따르면, 내부에 처리 공간을 가지는 챔버; 상기 처리 공간 내에서 기판을 지지하는 기판 지지 유닛; 상기 처리 공간 내로 가스를 공급하는 가스 공급 유닛; 및 상기 기판 지지 유닛으로 RF 신호를 인가하는 RF 전원을 포함하되, 상기 기판 지지 유닛은, 기판을 지지하는 기판 지지부; 상기 기판 지지부를 둘러싸는 제 1 링; 상기 제 1 링의 하부에 위치되며, 내부에 전극이 제공되는 제 2 링; 상기 제 1 링과 상기 제 2 링 사이에 제공되는 제 3 링; 상기 제 1 링 및 상기 제 3 링을 둘러싸는 제 4 링; 및 상기 제 2 링의 상기 전극과 연결되어 상기 전극의 임피던스를 조절하고 그리고 상기 기판의 가장자리 영역에서 플라즈마를 제어하는 임피던스 제어부;를 포함할 수 있다.
이상과 같은 본 발명의 다양한 실시 예에 따르면 기판 가장자리 영역에서 플라즈마 이온의 입사각을 용이하게 제어할 수 있다.
또한, 본 발명은 포커스링의 마모를 줄여서 포커스링의 교체 주기를 연장할 수 있다.
본 발명의 효과가 상술한 효과로 한정되는 것은 아니며, 언급되지 아니한 효과들은 본 명세서 및 첨부된 도면으로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확히 이해될 수 있을 것이다.
도 1은 본 발명의 일 실시 예에 따른 기판 처리 장치를 나타내는 도면이다.
도 2는 본 발명의 일 실시 예에 따른 기판 지지 유닛의 단면도이다.
도 3은 본 발명의 일 실시 예에 따른 임피던스 제어부의 구체적인 구성을 나타내는 회로도이다.
도 4 내지 도 6은 본 발명의 일 실시 예에 따른 임피던스 제어부의 제어 방법을 설명하기 위한 도면이다.
도 7 내지 도 10은 본 발명의 일 실시 예에 따른 가변 커패시터의 커패시턴스 변화에 따른 플라즈마 이온의 입사 각도 변화를 설명하기 위한 도면이다.
도 11은 본 발명의 일 실시 예에 따른 기판 처리 방법을 나타내는 흐름도이다.
본 발명의 다른 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술 되는 실시 예를 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시 예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시 예는 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
만일 정의되지 않더라도, 여기서 사용되는 모든 용어들(기술 혹은 과학 용어들을 포함)은 이 발명이 속한 종래 기술에서 보편적 기술에 의해 일반적으로 수용되는 것과 동일한 의미를 가진다. 일반적인 사전들에 의해 정의된 용어들은 관련된 기술 그리고/혹은 본 출원의 본문에 의미하는 것과 동일한 의미를 갖는 것으로 해석될 수 있고, 그리고 여기서 명확하게 정의된 표현이 아니더라도 개념화되거나 혹은 과도하게 형식적으로 해석되지 않을 것이다.
본 명세서에서 사용된 용어는 실시 예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 '포함한다' 및/또는 이 동사의 다양한 활용형들 예를 들어, '포함', '포함하는', '포함하고', '포함하며' 등은 언급된 조성, 성분, 구성요소, 단계, 동작 및/또는 소자는 하나 이상의 다른 조성, 성분, 구성요소, 단계, 동작 및/또는 소자의 존재 또는 추가를 배제하지 않는다. 본 명세서에서 '및/또는' 이라는 용어는 나열된 구성들 각각 또는 이들의 다양한 조합을 가리킨다.
도 1은 본 발명의 일 실시 예에 따른 기판 처리 장치를 나타내는 도면이다.
도 1을 참조하면, 기판 처리 장치(10)는 플라즈마를 이용하여 기판(W)을 처리한다. 예를 들어, 기판 처리 장치(10)는 기판(W)에 대하여 식각 공정을 수행할 수 있다. 기판 처리 장치(10)는 챔버(620), 기판 지지 어셈블리(200), 샤워 헤드(300), 가스 공급 유닛(400), 배플 유닛(500) 그리고 플라즈마 발생 유닛(600)을 포함할 수 있다.
챔버(620)는 내부에 기판 처리 공정이 수행되는 처리 공간을 제공할 수 있다. 챔버(620)는 내부에 처리 공간을 가지고, 밀폐된 형상으로 제공될 수 있다. 챔버(620)는 금속 재질로 제공될 수 있다. 챔버(620)는 알루미늄 재질로 제공될 수 있다. 챔버(620)는 접지될 수 있다. 챔버(620)의 바닥면에는 배기홀(102)이 형성될 수 있다. 배기홀(102)은 배기 라인(151)과 연결될 수 있다. 공정 과정에서 발생한 반응 부산물 및 챔버의 내부 공간에 머무르는 가스는 배기 라인(151)을 통해 외부로 배출될 수 있다. 배기 과정에 의해 챔버(620)의 내부는 소정 압력으로 감압될 수 있다.
일 예에 의하면, 챔버(620) 내부에는 라이너(130)가 제공될 수 있다. 라이너(130)는 상면 및 하면이 개방된 원통 형상을 가질 수 있다. 라이너(130)는 챔버(620)의 내측면과 접촉하도록 제공될 수 있다. 라이너(130)는 챔버(620)의 내측벽을 보호하여 챔버(620)의 내측벽이 아크 방전으로 손상되는 것을 방지할 수 있다. 또한, 기판 처리 공정 중에 발생한 불순물이 챔버(620)의 내측벽에 증착되는 것을 방지할 수 있다. 선택적으로, 라이너(130)는 제공되지 않을 수도 있다.
챔버(620)의 내부에는 기판 지지 어셈블리(200)가 위치할 수 있다. 기판 지지 어셈블리(200)는 기판(W)을 지지할 수 있다. 기판 지지 어셈블리(200)는 정전기력을 이용하여 기판(W)을 흡착하는 정전 척(210)을 포함할 수 있다. 이와 달리, 기판 지지 어셈블리(200)는 기계적 클램핑과 같은 다양한 방식으로 기판(W)을 지지할 수도 있다. 이하에서는 정전 척(210)을 포함하는 기판 지지 어셈블리(200)에 대하여 설명한다.
기판 지지 어셈블리(200)는 정전 척(210), 하부 커버(250) 그리고 플레이트(270)를 포함할 수 있다. 기판 지지 어셈블리(200)는 챔버(620) 내부에서 챔버(620)의 바닥면에서 상부로 이격되어 위치할 수 있다.
정전 척(210)은 유전판(220), 몸체(230) 그리고 링부재(240)를 포함할 수 있다. 정전 척(210)은 기판(W)을 지지할 수 있다. 유전판(220)은 정전 척(210)의 상단에 위치할 수 있다. 유전판(220)은 원판 형상의 유전체(dielectric substance)로 제공될 수 있다. 유전판(220)의 상면에는 기판(W)이 놓일 수 있다. 유전판(220)의 상면은 기판(W)보다 작은 반경을 가질 수 있다. 때문에, 기판(W)의 가장자리 영역은 유전판(220)의 외측에 위치할 수 있다.
유전판(220)은 내부에 제1 전극(223), 가열 유닛(225) 그리고 제1 공급 유로(221)를 포함할 수 있다. 제1 공급 유로(221)는 유전판(210)의 상면으로부터 저면으로 제공될 수 있다. 제1 공급 유로(221)는 서로 이격되어 복수 개 형성되며, 기판(W)의 저면으로 열전달 매체가 공급되는 통로로 제공될 수 있다.
제1 전극(223)은 제1 전원(223a)과 전기적으로 연결될 수 있다. 제1 전원(223a)은 직류 전원을 포함할 수 있다. 제1 전극(223)과 제1 전원(223a) 사이에는 스위치(223b)가 설치될 수 있다. 제1 전극(223)은 스위치(223b)의 온/오프(ON/OFF)에 의해 제1 전원(223a)과 전기적으로 연결될 수 있다. 스위치(223b)가 온(ON)되면, 제1 전극(223)에는 직류 전류가 인가될 수 있다. 제1 전극(223)에 인가된 전류에 의해 제1 전극(223)과 기판(W) 사이에는 정전기력이 작용하며, 정전기력에 의해 기판(W)은 유전판(220)에 흡착될 수 있다.
가열 유닛(225)는 제1 전극(223)의 하부에 위치할 수 있다. 가열 유닛(225)는 제2 전원(225a)과 전기적으로 연결될 수 있다. 가열 유닛(225)는 제2 전원(225a)에서 인가된 전류에 저항함으로써 열을 발생시킬 수 있다. 발생한 열은 유전판(220)을 통해 기판(W)으로 전달될 수 있다. 가열 유닛(225)에서 발생한 열에 의해 기판(W)은 소정 온도로 유지될 수 있다. 가열 유닛(225)는 나선 형상의 코일을 포함할 수 있다.
유전판(220)의 하부에는 몸체(230)가 위치할 수 있다. 유전판(220)의 저면과 몸체(230)의 상면은 접착제(236)에 의해 접착될 수 있다. 몸체(230)는 알루미늄 재질로 제공될 수 있다. 몸체(230)의 상면은 중심 영역이 가장자리 영역보다 높게 위치되도록 위치할 수 있다. 몸체(230)의 상면 중심 영역은 유전판(220)의 저면에 상응하는 면적을 가지며, 유전판(220)의 저면과 접착될 수 있다. 몸체(230)는 내부에 제1 순환 유로(231), 제2 순환 유로(232) 그리고 제2 공급 유로(233)가 형성될 수 있다.
제1 순환 유로(231)는 열전달 매체가 순환하는 통로로 제공될 수 있다. 제1 순환 유로(231)는 몸체(230) 내부에 나선 형상으로 형성될 수 있다. 또는, 제1 순환 유로(231)는 서로 상이한 반경을 갖는 링 형상의 유로들이 동일한 중심을 갖도록 배치될 수 있다. 각각의 제1 순환 유로(231)들은 서로 연통될 수 있다. 제1 순환 유로(231)들은 동일한 높이에 형성될 수 있다.
제2 순환 유로(232)는 냉각 유체가 순환하는 통로로 제공될 수 있다. 제2 순환 유로(232)는 몸체(230) 내부에 나선 형상으로 형성될 수 있다. 또는, 제2 순환 유로(232)는 서로 상이한 반경을 갖는 링 형상의 유로들이 동일한 중심을 갖도록 배치될 수 있다. 각각의 제2 순환 유로(232)들은 서로 연통될 수 있다. 제2 순환 유로(232)는 제1 순환 유로(231)보다 큰 단면적을 가질 수 있다. 제2 순환 유로(232)들은 동일한 높이에 형성될 수 있다. 제2 순환 유로(232)는 제1 순환 유로(231)의 하부에 위치될 수 있다.
제2 공급 유로(233)는 제1 순환 유로(231)부터 상부로 연장되며, 몸체(230)의 상면으로 제공될 수 있다. 제2 공급 유로(243)는 제1 공급 유로(221)에 대응하는 개수로 제공되며, 제1 순환 유로(231)와 제1 공급 유로(221)를 연결할 수 있다.
제1 순환 유로(231)는 열전달 매체 공급라인(231b)을 통해 열전달 매체 저장부(231a)와 연결될 수 있다. 열전달 매체 저장부(231a)에는 열전달 매체가 저장될 수 있다. 열전달 매체는 불활성 가스를 포함할 수 있다. 일 실시 예에 의하면, 열전달 매체는 헬륨(He) 가스를 포함할 수 있다. 헬륨 가스는 공급 라인(231b)을 통해 제1 순환 유로(231)에 공급되며, 제2 공급 유로(233)와 제1 공급 유로(221)를 순차적으로 거쳐 기판(W) 저면으로 공급될 수 있다. 헬륨 가스는 플라즈마에서 기판(W)으로 전달된 열이 정전 척(210)으로 전달되는 매개체 역할을 할 수 있다.
제2 순환 유로(232)는 냉각 유체 공급 라인(232c)을 통해 냉각 유체 저장부(232a)와 연결될 수 있다. 냉각 유체 저장부(232a)에는 냉각 유체가 저장될 수 있다. 냉각 유체 저장부(232a) 내에는 냉각기(232b)가 제공될 수 있다. 냉각기(232b)는 냉각 유체를 소정 온도로 냉각시킬 수 있다. 이와 달리, 냉각기(232b)는 냉각 유체 공급 라인(232c) 상에 설치될 수 있다. 냉각 유체 공급 라인(232c)을 통해 제2 순환 유로(232)에 공급된 냉각 유체는 제2 순환 유로(232)를 따라 순환하며 몸체(230)를 냉각할 수 있다. 몸체(230)는 냉각되면서 유전판(220)과 기판(W)을 함께 냉각시켜 기판(W)을 소정 온도로 유지시킬 수 있다.
몸체(230)는 금속판을 포함할 수 있다. 일 예에 의하면, 몸체(230) 전체가 금속판으로 제공될 수 있다.
링부재(240)는 정전 척(210)의 가장자리 영역에 배치될 수 있다. 링부재(240)는 링 형상을 가지며, 유전판(220)의 둘레를 따라 배치될 수 있다. 링부재(240)의 상면은 외측부(240a)가 내측부(240b)보다 높도록 위치할 수 있다. 링부재(240)의 상면 내측부(240b)는 유전판(220)의 상면과 동일 높이에 위치될 수 있다. 링부재(240)의 상면 내측부(240b)는 유전판(220)의 외측에 위치된 기판(W)의 가장자리 영역을 지지할 수 있다. 링부재(240)의 외측부(240a)는 기판(W)의 가장자리 영역을 둘러싸도록 제공될 수 있다. 링부재(240)는 기판(W)의 전체 영역에서 플라즈마의 밀도가 균일하게 분포하도록 전자기장을 제어할 수 있다. 이에 의해, 기판(W)의 전체 영역에 걸쳐 플라즈마가 균일하게 형성되어 기판(W)의 각 영역이 균일하게 식각될 수 있다.
하부 커버(250)는 기판 지지 어셈블리(200)의 하단부에 위치할 수 있다. 하부 커버(250)는 챔버(620)의 바닥면에서 상부로 이격하여 위치할 수 있다. 하부 커버(250)는 상면이 개방된 공간(255)이 내부에 형성될 수 있다. 하부 커버(250)의 외부 반경은 몸체(230)의 외부 반경과 동일한 길이로 제공될 수 있다. 하부 커버(250)의 내부 공간(255)에는 반송되는 기판(W)을 외부의 반송 부재로부터 정전 척(210)으로 이동시키는 리프트 핀 모듈(미도시) 등이 위치할 수 있다. 리프트 핀 모듈(미도시)은 하부 커버(250)로부터 일정 간격 이격하여 위치할 수 있다. 하부 커버(250)의 저면은 금속 재질로 제공될 수 있다. 하부 커버(250)의 내부 공간(255)은 공기가 제공될 수 있다. 공기는 절연체보다 유전율이 낮으므로 기판 지지 어셈블리(200) 내부의 전자기장을 감소시키는 역할을 할 수 있다.
하부 커버(250)는 연결 부재(253)를 가질 수 있다. 연결 부재(253)는 하부 커버(250)의 외측면과 챔버(620)의 내측벽을 연결할 수 있다. 연결 부재(253)는 하부 커버(250)의 외측면에 일정한 간격으로 복수 개 제공될 수 있다. 연결 부재(253)는 기판 지지 어셈블리(200)를 챔버(620) 내부에서 지지할 수 있다. 또한, 연결 부재(253)는 챔버(620)의 내측벽과 연결됨으로써 하부 커버(250)가 전기적으로 접지되도록 할 수 있다. 제1 전원(223a)과 연결되는 제1 전원라인(223c), 제2 전원(225a)과 연결되는 제2 전원라인(225c), 열전달 매체 저장부(231a)와 연결된 열전달 매체 공급라인(231b) 그리고 냉각 유체 저장부(232a)와 연결된 냉각 유체 공급 라인(232c) 등은 연결 부재(253)의 내부 공간(255)을 통해 하부 커버(250) 내부로 연장될 수 있다.
정전 척(210)과 하부 커버(250)의 사이에는 플레이트(270)가 위치할 수 있다. 플레이트(270)는 하부 커버(250)의 상면을 덮을 수 있다. 플레이트(270)는 몸체(230)에 상응하는 단면적으로 제공될 수 있다. 플레이트(270)는 절연체를 포함할 수 있다. 일 예에 의하면, 플레이트(270)는 하나 또는 복수 개가 제공될 수 있다. 플레이트(270)는 몸체(230)와 하부 커버(250)의 전기적 거리를 증가시키는 역할을 할 수 있다.
샤워 헤드(300)는 챔버(620) 내부에서 기판 지지 어셈블리(200)의 상부에 위치할 수 있다. 샤워 헤드(300)는 기판 지지 어셈블리(200)와 대향하게 위치할 수 있다.
샤워 헤드(300)는 가스 분산판(310)과 지지부(330)를 포함할 수 있다. 가스 분산판(310)은 챔버(620)의 상면에서 하부로 일정거리 이격되어 위치할 수 있다. 가스 분산판(310)과 챔버(620)의 상면은 그 사이에 일정한 공간이 형성될 수 있다. 가스 분산판(310)은 두께가 일정한 판 형상으로 제공될 수 있다. 가스 분산판(310)의 저면은 플라즈마에 의한 아크 발생을 방지하기 위하여 그 표면이 양극화 처리될 수 있다. 가스 분산판(310)의 단면은 기판 지지 어셈블리(200)와 동일한 형상과 단면적을 가지도록 제공될 수 있다. 가스 분산판(310)은 복수 개의 분사홀(311)을 포함할 수 있다. 분사홀(311)은 가스 분산판(310)의 상면과 하면을 수직 방향으로 관통할 수 있다. 가스 분산판(310)은 금속 재질을 포함할 수 있다.
지지부(330)는 가스 분산판(310)의 측부를 지지할 수 있다. 지지부(330)는 상단이 챔버(620)의 상면과 연결되고, 하단이 가스 분산판(310)의 측부와 연결될 수 있다. 지지부(330)는 비금속 재질을 포함할 수 있다.
가스 공급 유닛(400)은 챔버(620) 내부에 공정 가스를 공급할 수 있다. 가스 공급 유닛(400)은 가스 공급 노즐(410), 가스 공급 라인(420), 그리고 가스 저장부(430)를 포함할 수 있다. 가스 공급 노즐(410)은 챔버(620)의 상면 중앙부에 설치될 수 있다. 가스 공급 노즐(410)의 저면에는 분사구가 형성될 수 있다. 분사구는 챔버(620) 내부로 공정 가스를 공급할 수 있다. 가스 공급 라인(420)은 가스 공급 노즐(410)과 가스 저장부(430)를 연결할 수 있다. 가스 공급 라인(420)은 가스 저장부(430)에 저장된 공정 가스를 가스 공급 노즐(410)에 공급할 수 있다. 가스 공급 라인(420)에는 밸브(421)가 설치될 수 있다. 밸브(421)는 가스 공급 라인(420)을 개폐하며, 가스 공급 라인(420)을 통해 공급되는 공정 가스의 유량을 조절할 수 있다.
배플 유닛(500)은 챔버(620)의 내측벽과 기판 지지 어셈블리(200)의 사이에 위치될 수 있다. 배플(510)은 환형의 링 형상으로 제공될 수 있다. 배플(510)에는 복수의 관통홀(511)들이 형성될 수 있다. 챔버(620) 내에 제공된 공정 가스는 배플(510)의 관통홀(511)들을 통과하여 배기홀(102)로 배기될 수 있다. 배플(510)의 형상 및 관통홀(511)들의 형상에 따라 공정 가스의 흐름이 제어될 수 있다.
플라즈마 발생 유닛(600)은 챔버(620) 내 공정 가스를 플라즈마 상태로 여기시킬 수 있다. 본 발명의 일 실시 예에 따르면, 플라즈마 발생 유닛(600)은 유도 결합형 플라즈마(ICP: inductively coupled plasma) 타입으로 구성될 수 있다. 이 경우, 도 1에 도시된 바와 같이, 플라즈마 발생 유닛(600)은 고주파 전력을 공급하는 고주파 전원(610), 고주파 전원에 전기적으로 연결되어 고주파 전력을 인가받는 제1 코일(621) 및 제2 코일(622)을 포함할 수 있다.
본 명세서에 있어서 설명되는 플라즈마 발생 유닛(600)은 유도 결합형 플라즈마(ICP: inductively coupled plasma) 타입으로 설명되었으나, 이에 제한되지 않으며 용량 결합형 플라즈마(CCP: Capacitively coupled plasma) 타입으로 구성될 수도 있다.
CCP 타입의 플라즈마 소스가 사용되는 경우, 챔버(620)에 상부 전극 및 하부 전극, 즉 몸체가 포함될 수 있다. 상부 전극 및 하부 전극은 처리 공간을 사이에 두고 서로 평행하게 상하로 배치될 수 있다. 하부 전극뿐만 아니라 상부 전극도 RF 전원에 의해 RF 신호를 인가받아 플라즈마를 생성하기 위한 에너지를 공급받을 수 있으며, 각 전극에 인가되는 RF 신호의 수는 도시된 바와 같이 하나로 제한되지는 않는다. 양 전극 간의 공간에는 전기장이 형성되고, 이 공간에 공급되는 공정 가스는 플라즈마 상태로 여기될 수 있다. 이 플라즈마를 이용하여 기판 처리 공정이 수행된다.
다시 도 1을 참조하면, 제1 코일(621) 및 제2 코일(622)은 기판(W)에 대향하는 위치에 배치될 수 있다. 예를 들어, 제1 코일(621) 및 제2 코일(622)은 챔버(620)의 상부에 설치될 수 있다. 제1 코일(621)의 직경은 제2 코일(622)의 직경보다 작아 챔버(620) 상부의 안쪽에 위치하고, 제2 코일(622)은 챔버(620) 상부의 바깥쪽에 위치할 수 있다. 제1 코일(621) 및 제2 코일(622)은 고주파 전원(610)으로부터 고주파 전력을 인가받아 챔버에 시변 자기장을 유도할 수 있으며, 그에 따라 챔버(620)에 공급된 공정 가스는 플라즈마로 여기될 수 있다.
이하, 상술한 기판 처리 장치를 이용하여 기판을 처리하는 과정을 설명하도록 한다.
*기판 지지 어셈블리(200)에 기판(W)이 놓이면, 제1 전원(223a)으로부터 제1 전극(223)에 직류 전류가 인가될 수 있다. 제1 전극(223)에 인가된 직류 전류에 의해 제1 전극(223)과 기판(W) 사이에는 정전기력이 작용하며, 정전기력에 의해 기판(W)은 정전 척(210)에 흡착될 수 있다.
기판(W)이 정전 척(210)에 흡착되면, 가스 공급 노즐(410)을 통하여 챔버(620) 내부에 공정 가스가 공급될 수 있다. 공정 가스는 샤워 헤드(300)의 분사홀(311)을 통하여 챔버(620)의 내부 영역으로 균일하게 분사될 수 있다. 고주파 전원에서 생성된 고주파 전력은 플라즈마 소스에 인가될 수 있으며, 그로 인해 챔버(620) 내에 전자기력이 발생할 수 있다. 전자기력은 기판 지지 어셈블리(200)와 샤워 헤드(300) 사이의 공정 가스를 플라즈마로 여기시킬 수 있다. 플라즈마는 기판(W)으로 제공되어 기판(W)을 처리할 수 있다. 플라즈마는 식각 공정을 수행할 수 있다.
도 2는 본 발명의 일 실시 예에 따른 기판 지지 유닛의 단면도이다.
도 2에 도시된 바와 같이, 본 발명의 일 실시 예에 따른 기판 지지 유닛은 정전척(210)과 그의 둘레를 감싸는 링부재로 구성될 수 있다. 도 2에 도시된 바와 같이, 기판 지지 유닛은 정전척(210), 제1 링(241), 제2 링(242), 삽입체(243), 및 임피던스 제어부(244)를 포함할 수 있다.
상술한 바와 같이, 정전척(210) 위에는 기판(W)이 놓일 수 있다. 이하에서, 정전척(210)은 기판 지지부(210)로 칭한다.
제1 링(241)은 기판 지지부(210)에 놓인 기판의 둘레를 감싸도록 제공될 수 있다. 일 실시 예에 따라, 제1 링(241)은 포커스링일수 있다. 포커스링은 플라즈마 공정시 생성된 이온이 기판 위로 집중되도록 할 수 있다.
제2 링(242)는 기판 지지부(210)의 둘레를 감쌀 수 있다. 일 실시 예에 따라, 제2 링(242)는 절연체일 수 있다. 제2 링(242)는 기판 지지부(210)와 챔버의 외벽을 분리하고, 제1 링(241)을 기판 지지부(210)의 하부에 있는 모듈들과 전기적으로 절연시킬 수 있다.
일 실시 예에 따라, 상기 제1 링(241) 및 상기 제2 링(242) 사이에는 금속 재질을 제3 링(245)이 제공될 수 있다. 일 예로, 상기 제3 링(245)은 알루미늄 재질로 제공될 수 있다.
도 2에 도시된 바와 같이, 일 실시 예에 따라, 상기 제1 링(241) 및 상기 제3 링(245)의 둘레를 감싸는 제4 링(246)이 더 제공될 수 있다. 상기 제4 링(246)은 절연체로 제공될 수 있다.
본 발명의 일 실시 예에 따르면, 제2 링(242)에는 내부에 홈이 형성될 수 있으며, 제2 링(242)에 형성되는 홈에는 전극(243)이 제공될 수 있다. 전극(243)은 임피던스 제어부(700)에 연결될 수 있다. 전극(243)은 금속 재질의 링 형상으로 제공될 수 있다. 또한, 전극(243)은 유전체 재질로 제공될 수도 있다. 이와 같이 금속 재질 또는 유전체 재질의 전극(243)이 제2 링(242) 내부에 제공되어, 제2 링(242) 주변으로 전계 커플링 효과를 유도할 수 있다. 또한, 전극(243)이 제2 링(242)에 제공되어 기판의 가장자리 영역에서 용이하게 플라즈마 이온의 입사각을 조절할 수 있다.
임피던스 제어부(700)를 통해 기판 지지부(210)과 제1 링(241) 사이의 RF 전력 커플링 정도를 조절할 수 있다. 이에 따라, 본 발명의 일 실시 예에 따른 기판 지지 유닛은 기판 가장자리 영역의 전기장 및 플라즈마 밀도를 용이하게 제어할 수 있다.
또한, 기판 지지부(210) 가장자리의 전기장을 제어함으로써, 제1 링(241)의 상부에 형성되는 플라즈마 쉬스를 통해 입사하는 플라즈마 이온의 입사각을 제어할 수 있다.
도 2를 참조하면, 일 실시 예에 따라 제2 링(242)은 제1 링(241)의 아래에 배치될 수 있다. 기판 지지부(210)의 중앙 영역의 상단은 기판 지지부(210)의 가장자리 영역의 상단보다 높게 제공될 수 있다. 제1 링(241)의 상단은 기판 지지부(210)의 중앙 영역의 상단보다 높게 제공될 수 있다. 제1 링(241)의 하단은 상기 중앙 영역의 하단보다 낮게 제공될 수 있다. 제1 링(241)의 일부는 기판 지지부(210)의 가장자리 영역의 상부에 위치될 수 있다. 제2 링(242)의 상단은 기판 지지부(210)의 가장자리 영역의 상단과 동일하거나 더 낮은 높이로 위치될 수 있다.
도 3은 본 발명의 일 실시 예에 따른 임피던스 제어부의 구체적인 구성을 나타내는 회로도이다.
도 3을 참조하면, 임피던스 제어부(700)는 제1 가변 커패시터(711) 및 인덕터(713)를 포함하는 공진 제어 회로(710)와 제2 가변 커패시터(721)를 포함하는 임피던스 제어 회로(720)를 포함할 수 있다. 공진 제어 회로(710)는 전극(243)에 인가되는 전류 또는 전압의 최대값을 조절할 수 있다. 구체적으로, 공진 제어 회로(710)는 제1 가변 커패시터(711)의 커패시턴스를 조절하여 기판 지지 유닛과 임피던스 제어부(700)를 공진 회로로 구성할 수 있으며, 이에 따라, 공진 제어 회로(710)에 최대 전류 또는 최대 전압이 인가될 수 있다. 임피던스 제어 회로(720)는 기판 가장자리 영여게서 플라즈마 이온의 입사각을 제어할 수 있다. 구체적으로, 임피던스 제어 회로(720)는 제2 가변 커패시터(721)의 커패시턴스를 조절하여 제1 링(241) 상단의 전압을 제어할 수 있으며, 제1 링 (241) 상단의 전압이 조절됨에 따라 기판 가장자리 영역에서 플라즈마 이온의 입사각이 조절될 수 있다. 즉, 기판 가장자리 영역에서 플라즈마 이온의 입사각은 제1 링(241) 상단의 전위와 기판 상단의 전위 차이에 의해 결정될 수 있는데, 기판 상단의 전위는 기판 지지 유닛에 인가되는 RF 전원에 의해 결정되므로, 임피던스 제어 회로(720)는 제1 링(241) 상단의 전위를 조절하여 기판 가장자리 영역에서 플라즈마 이온의 입사각을 조절할 수 있다. 공진 제어 회로(710)와 임피던스 제어 회로(720)는 서로 병렬 연결될 수 있다.
또한, 도 3을 참조하면, 임피던스 제어부(700)는 공진 제어 회로(710)의 제1 가변 커패시터(711) 및 임피던스 제어 회로(720)의 제2 가변 커패시터(721)의 커패시턴스를 조절하는 제어 부재(730)를 더 포함할 수 있다. 제어 부재(730)는 제1 가변 커패시터(711)의 커패시턴스를 조절하여 전극(243)이 최대 임피던스 값을 가지도록 할 수 있다. 이에 따라, 제1 링(241) 및 전극(243)에 최대 전류가 인가될 수 있다. 또한, 제어 부재(730)는 제2 가변 커패시터(721)의 커패시턴스를 조절하여 제1 링(241) 상단의 전압을 제어할 수 있다. 제어 부재(730)에 의해 제1 링(241) 상단의 전압이 조절되면, 기판 가장자리 영역에서 플라즈마 이온의 입사각이 조절될 수 있다. 도 4를 참조하면, 제어 부재(730)에 의해 제2 가변 커패시터(721)의 커패시턴스가 작아지도록 조절되는 경우, 제1 링(241) 상단의 전압이 증가하여 기판 가장자리 영역에서 플라즈마 이온의 입사각이 제1 링(241) 방향으로 조절될 수 있다. 또한, 도 5를 참조하면, 제어 부재(730)에 의해 제2 가변 커패시터(721)의 커패시턴스가 커지도록 조절되는 경우, 제1 링(241) 상단의 전압이 감소하여 기판 가장자리 영역에서 플라즈마 이온의 입사각이 기판의 중심 방향으로 조절될 수 있다. 이와 같이, 제어 부재(730)는 제2 가변 커패시터(721)의 커패시턴스를 조절하여 제1 링(241) 상단의 전압을 조절함으로써, 기판 가장자리 영역에서 플라즈마 이온의 입사각을 조절할 수 있다.
도 6을 참조하면, 임피던스 제어부(700)는 제1 링(241) 상단의 전압을 측정하는 전압 측정 부재(740)를 더 포함할 수 있다. 제어 부재(730)는 전압 측정 부재(740)에서 측정된 제1 링(241) 상단의 전압에 기초하여 제2 가변 커패시터(721)의 커패시턴스를 조절할 수 있다. 일 예로, 제어 부재(730)는 기저장된 포커스링 상단의 전압 대비 기판 가장자리 영역에서 플라즈마 이온의 입사각을 이용하여, 기판 가장자리 영역에서 플라즈마 이온의 입사각이 기설정된 범위 내로 조절되도록 제2 가변 커패시터(721)의 커패시턴스를 제어할 수 있다. 즉, 제어 부재(730)는 제2 가변 커패시터(721)의 커패시턴스를 조절하여, 전압 측정 부재(740)에서 측정되는 제1 링(241) 상단의 전압을 기설정된 범위 내로 조절함으로써, 기판 가장자리 영역에서 플라즈마 이온의 입사각을 기설정된 범위 내로 조절할 수 있다. 여기서, 기설정된 범위는 SCD(Slope Critical Dimension)가 0보다 큰 범위일 수 있다. SCD는 기판의 각 패턴 사이의 함몰된 부분의 중심으로부터 수평방향으로 식각 이온이 입사하는 지점까지의 거리를 나타내는 것으로, 기판 가장자리 영역을 향하는 방향이 양의 값을 가지며, 기판의 중심을 향하는 방향이 음의 값을 가진다. 또한, 제2 가변 커패시터(721)의 커패시턴스는 제2 가변 커패시터(721)의 최대 커패시턴스의 10% 내지 100% 범위 내에서 조절될 수 있다.
도 7을 참조하면, 기판 지지 유닛에 인가되는 RF 전원의 특정 주파수(Target Frequency)에서 제1 가변 커패시터(C2)의 커패시턴스를 조절하여 전극의 최대 임피던스 값을 조절할 수 있으며, 제2 가변 커패시터(C3)의 커패시턴스를 조절하여 전극의 임피던스를 조절할 수 있다. 여기서, 제1 가변 커패시터(C2)의 커패시턴스 및 제2 가변 커패시터(C3)의 커패시턴스는 최대 커패시턴스의 10% 내지 100% 범위 내에서 조절될 수 있다. 도 8을 참조하면, 제1 가변 커패시터(C2)의 커패시턴스를 조절하여 특정 주파수에서 임피던스 최대값이 증가하는 것을 확인할 수 있으며, 제2 가변 커패시터(C3)의 커패시턴스가 최대 커패시턴스의 10% 에서 100%로 증가하면 전극의 임피던스가 감소하는 것을 확인할 수 있다. 또한, 도 9를 참조하면, 제2 가변 커패시터(C3)의 커패시턴스가 최대 커패시턴스의 10% 에서 100%로 증가할수록 포커스링 상단의 전압이 감소하는 것을 확인할 수 있다. 또한, 도 10과 같이, 포커스링 상단의 전압이 증가할수록 기판 가장자리 영역에서 SCD가 커지며, 포커스링 상단의 전압을 제어하여 기판 가장자리 영역에서 SCD가 0보다 큰 값을 가지도록 제어할 수 있다. 다만, 이에 한정되는 것은 아니며, 기판 가장자리 영역에서 SCD가 0에 가까운 값으로 조절될 수도 있다.
도 11은 본 발명의 일 실시 예에 따른 기판 처리 방법을 나타내는 흐름도이다.
도 11을 참조하면, 우선, 전극이 최대 임피던스 값을 가지도록 제1 가변 커패시터의 커패시턴스를 조절한다(S1110). 이어서, 기판 가장자리 영역에서 플라즈마 이온의 입사각이 기설정된 범위 내로 조절되도록 제2 가변 커패시터의 커패시턴스를 조절한다(S1120). 일 예로, 포커스링 상단의 전압을 측정하고, 기저장된 포커스링 상단의 전압 대비 기판 가장자리 영역에서 플라즈마 이온의 입사각 정보를 이용하여 기판 가장자리 영역에서 플라즈마 이온의 입사각이 기설정된 범위 내로 조절되도록 제2 가변 커패시터의 커패시턴스를 조절할 수 있다. 여기서, 제2 가변 커패시터의 커패시턴스는 제2 가변 커패시터의 최대 커패시턴스의 10% 내지 100%의 범위 내에서 조절될 수 있다. 또한, 기판 가장자리 영역에서 플라즈마 이온의 입사각은 SCD가 0보다 크도록 조절될 수 있다. 또한, 기판 가장자리 영역에서 플라즈마 이온의 입사각은 SCD가 0에 근접하도록 조절될 수도 있다.
이상의 실시 예들은 본 발명의 이해를 돕기 위하여 제시된 것으로, 본 발명의 범위를 제한하지 않으며, 이로부터 다양한 변형 가능한 실시 예들도 본 발명의 범위에 속할 수 있음을 이해하여야 한다. 예를 들어, 본 발명의 실시 예에 도시된 각 구성 요소는 분산되어 실시될 수도 있으며, 반대로 여러 개로 분산된 구성 요소들은 결합 되어 실시될 수 있다. 따라서, 본 발명의 기술적 보호범위는 특허청구범위의 기술적 사상에 의해 정해져야 할 것이며, 본 발명의 기술적 보호범위는 특허청구범위의 문언적 기재 그 자체로 한정되는 것이 아니라 실질적으로는 기술적 가치가 균등한 범주의 발명에 대하여까지 미치는 것임을 이해하여야 한다.
10: 기판 처리 장치 210: 기판 지지부
241: 제1 링 242: 제2 링
243: 전극 700: 임피던스 제어부
710: 공진 제어 회로 720: 임피던스 제어 회로
730: 제어 부재 740: 전압 측정 부재

Claims (20)

  1. 내부에 처리 공간을 가지는 챔버;
    상기 처리 공간 내에서 기판을 지지하는 기판 지지 유닛; 및
    상기 처리 공간 내로 가스를 공급하는 가스 공급 유닛; 을 포함하되,
    상기 기판 지지 유닛은,
    기판을 지지하는 기판 지지부;
    상기 기판 지지부를 둘러싸는 포커스링;
    상기 포커스링의 하부에 위치되며, 내부에 전극이 제공되는 절연체;

    상기 전극과 연결되어 상기 전극의 임피던스를 조절하는 임피던스 제어부;를 포함하고,
    상기 임피던스 제어부는:
    상기 전극에 병렬로 연결된 공진 제어 회로 및 임피던스 제어 회로를 포함하고, 그리고
    상기 임피던스 제어부는 상기 기판의 가장자리 영역에서 플라즈마를 제어하는 기판 처리 장치.
  2. 제1항에 있어서,
    상기 공진 제어 회로는,
    직렬 연결된 인덕터 및 제1 가변 커패시터를 포함하고,
    상기 임피던스 제어 회로는,
    제2 가변 커패시터를 포함하는 기판 처리 장치.
  3. 제2항에 있어서,
    상기 공진 제어 회로와 상기 임피던스 제어 회로는 상기 전극과 접지 사이에 서로 병렬 연결되는 기판 처리 장치.
  4. 제3항에 있어서,
    상기 임피던스 제어부는,
    상기 제1 가변 커패시터 및 상기 제2 가변 커패시터의 커패시턴스를 조절하는 제어 부재;를 더 포함하고,
    상기 제어 부재는,
    상기 전극이 최대 임피던스 값을 가지도록 상기 제1 가변 커패시터의 커패시턴스를 조절하는 기판 처리 장치.
  5. 제4항에 있어서,
    상기 제어 부재는,
    상기 제2 가변 커패시터의 커패시턴스를 조절하여 상기 포커스링 상단의 전압을 제어하는 기판 처리 장치.
  6. 제5항에 있어서,
    상기 임피던스 제어부는,
    상기 포커스링 상단의 전압을 측정하는 전압 측정 부재;를 더 포함하는 기판 처리 장치.
  7. 제6항에 있어서,
    상기 제어 부재는,
    기저장된 상기 포커스링 상단의 전압 대비 상기 기판의 가장자리 영역에서 플라즈마 이온의 입사각 정보를 이용하여, 상기 기판의 가장자리 영역에서 플라즈마 이온의 입사각이 기설정된 범위 내로 조절되도록 상기 제2 가변 커패시터의 커패시턴스를 제어하는 기판 처리 장치.
  8. 제7항에 있어서,
    상기 제2 가변 커패시터의 커패시턴스는, 상기 제2 가변 커패시터의 최대 커패시턴스의 10% 내지 100% 범위 내에서 조절되는 기판 처리 장치.
  9. 제7항에 있어서,
    상기 기판의 가장자리 영역에서 플라즈마 이온의 입사각은, 슬로프 크리티컬 디멘젼(Slope Critical Dimension,SCD)이 0보다 크도록 조절되는 기판 처리 장치.
  10. 내부에 처리 공간을 가지는 챔버;
    상기 처리 공간 내에서 기판을 지지하는 기판 지지 유닛;
    상기 처리 공간 내로 가스를 공급하는 가스 공급 유닛; 및
    상기 기판 지지 유닛으로 RF 신호를 인가하는 RF 전원을 포함하되,
    상기 기판 지지 유닛은,
    기판을 지지하는 기판 지지부;
    상기 기판 지지부를 둘러싸는 포커스링;
    상기 포커스링의 하부에 위치되며, 내부에 전극이 제공되는 절연체; 및
    상기 전극과 연결되어 상기 전극의 임피던스를 조절하는 임피던스 제어부;를 포함하고,
    상기 임피던스 제어부는:
    상기 전극에 병렬로 연결된 공진 제어 회로 및 임피던스 제어 회로를 포함하고, 그리고
    상기 임피던스 제어부는 상기 기판의 가장자리 영역에서 플라즈마를 제어하는,
    기판 처리 장치.
  11. 제10항에 있어서,
    상기 공진 제어 회로는,
    직렬 연결된 인덕터 및 제1 가변 커패시터를 포함하고,
    상기 임피던스 제어 회로는,
    제2 가변 커패시터를 포함하는 기판 처리 장치.
  12. 제11항에 있어서,
    상기 공진 제어 회로와 상기 임피던스 제어 회로는 상기 전극과 접지 사이에 서로 병렬 연결되는 기판 처리 장치.
  13. 제12항에 있어서,
    상기 임피던스 제어부는,
    상기 제1 가변 커패시터 및 상기 제2 가변 커패시터의 커패시턴스를 조절하는 제어 부재;를 더 포함하고,
    상기 제어 부재는,
    상기 전극이 최대 임피던스 값을 가지도록 상기 제1 가변 커패시터의 커패시턴스를 조절하는 기판 처리 장치.
  14. 제13항에 있어서,
    상기 제어 부재는,
    상기 제2 가변 커패시터의 커패시턴스를 조절하여 상기 포커스링 상단의 전압을 제어하는 기판 처리 장치.
  15. 제14항에 있어서,
    상기 임피던스 제어부는,
    상기 포커스링 상단의 전압을 측정하는 전압 측정 부재;를 더 포함하는 기판 처리 장치.
  16. 제15항에 있어서,
    상기 제어 부재는,
    기저장된 상기 포커스링 상단의 전압 대비 상기 기판의 가장자리 영역에서 플라즈마 이온의 입사각 정보를 이용하여, 상기 기판의 가장자리 영역에서 플라즈마 이온의 입사각이 기설정된 범위 내로 조절되도록 상기 제2 가변 커패시터의 커패시턴스를 제어하는 기판 처리 장치.
  17. 제16항에 있어서,
    상기 제2 가변 커패시터의 커패시턴스는, 상기 제2 가변 커패시터의 최대 커패시턴스의 10% 내지 100% 범위 내에서 조절되는 기판 처리 장치.
  18. 제16항에 있어서,
    상기 기판의 가장자리 영역에서 플라즈마 이온의 입사각은, 슬로프 크리티컬 디멘젼(Slope Critical Dimension,SCD)이 0보다 크도록 조절되는 기판 처리 장치.
  19. 내부에 처리 공간을 가지는 챔버;
    상기 처리 공간 내에서 기판을 지지하는 기판 지지 유닛;
    상기 처리 공간 내로 가스를 공급하는 가스 공급 유닛; 및
    상기 기판 지지 유닛으로 RF 신호를 인가하는 RF 전원을 포함하되,
    상기 기판 지지 유닛은,
    기판을 지지하는 기판 지지부;
    상기 기판 지지부를 둘러싸는 제 1 링;
    상기 제 1 링의 하부에 위치되며, 내부에 전극이 제공되는 제 2 링;
    상기 제 1 링과 상기 제 2 링 사이에 제공되는 제 3 링;
    상기 제 1 링 및 상기 제 3 링을 둘러싸는 제 4 링; 및
    상기 제 2 링의 상기 전극과 연결되어 상기 전극의 임피던스를 조절하고 그리고 상기 기판의 가장자리 영역에서 플라즈마를 제어하는 임피던스 제어부;를 포함하고,
    상기 임피던스 제어부는 상기 전극에 병렬로 연결된 공진 제어 회로 및 임피던스 제어 회로를 포함하는
    기판 처리 장치.
  20. 제19항에 있어서,
    상기 공진 제어 회로는,
    직렬 연결된 인덕터 및 제1 가변 커패시터를 포함하고,
    상기 임피던스 제어 회로는,
    제2 가변 커패시터를 포함하는 기판 처리 장치.
KR1020210012937A 2019-06-27 2021-01-29 기판 처리 장치 및 기판 처리 방법 KR102290910B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020210012937A KR102290910B1 (ko) 2019-06-27 2021-01-29 기판 처리 장치 및 기판 처리 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190076943A KR102214333B1 (ko) 2019-06-27 2019-06-27 기판 처리 장치 및 기판 처리 방법
KR1020210012937A KR102290910B1 (ko) 2019-06-27 2021-01-29 기판 처리 장치 및 기판 처리 방법

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020190076943A Division KR102214333B1 (ko) 2019-06-27 2019-06-27 기판 처리 장치 및 기판 처리 방법

Publications (2)

Publication Number Publication Date
KR20210014720A KR20210014720A (ko) 2021-02-09
KR102290910B1 true KR102290910B1 (ko) 2021-08-19

Family

ID=74559177

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020210012937A KR102290910B1 (ko) 2019-06-27 2021-01-29 기판 처리 장치 및 기판 처리 방법

Country Status (1)

Country Link
KR (1) KR102290910B1 (ko)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5657262B2 (ja) * 2009-03-27 2015-01-21 東京エレクトロン株式会社 プラズマ処理装置
US10283330B2 (en) * 2016-07-25 2019-05-07 Lam Research Corporation Systems and methods for achieving a pre-determined factor associated with an edge region within a plasma chamber by synchronizing main and edge RF generators
KR101909479B1 (ko) * 2016-10-06 2018-10-19 세메스 주식회사 기판 지지 유닛, 그를 포함하는 기판 처리 장치, 그리고 그 제어 방법
KR101980203B1 (ko) * 2017-10-30 2019-05-21 세메스 주식회사 지지 유닛 및 그를 포함하는 기판 처리 장치

Also Published As

Publication number Publication date
KR20210014720A (ko) 2021-02-09

Similar Documents

Publication Publication Date Title
CN107919263B (zh) 基板支撑单元、包括其的基板处理装置及其控制方法
CN109727839B (zh) 支承单元和包括该支承单元的基板处理装置
KR101842127B1 (ko) 기판 처리 장치 및 기판 처리 방법
KR101817210B1 (ko) 플라즈마 발생 장치, 그를 포함하는 기판 처리 장치, 및 그 제어 방법
KR101927697B1 (ko) 기판 처리 장치
KR20200072933A (ko) 기판처리장치
KR102214333B1 (ko) 기판 처리 장치 및 기판 처리 방법
KR102344528B1 (ko) 기판 처리 장치 및 기판 처리 방법
KR102290910B1 (ko) 기판 처리 장치 및 기판 처리 방법
CN108807122B (zh) 供电装置及包括该供电装置的基板处理装置
KR102290909B1 (ko) 기판 처리 장치 및 챔버 클리닝 방법
KR101754563B1 (ko) 이온 빔 생성 장치, 그를 이용한 기판 처리 장치, 및 이온 빔 제어 방법
KR102335472B1 (ko) 기판 처리 장치 및 기판 처리 방법
KR102281888B1 (ko) 기판 처리 장치 및 기판 처리 방법
KR101885564B1 (ko) 플라즈마 소스, 그를 포함하는 기판 처리 장치, 및 그 제어 방법
KR101966793B1 (ko) 기판 지지 유닛 및 그를 포함하는 기판 처리 장치
KR102344524B1 (ko) 플라즈마 발생 장치, 그를 포함하는 기판 처리 장치, 및 그 제어 방법
KR20230006250A (ko) 기판 처리 장치 및 기판 처리 방법
KR101754565B1 (ko) 전력 공급 장치 및 방법, 그리고 그를 이용하는 기판 처리 장치
KR101842122B1 (ko) 전기장 발생 장치, 및 그를 포함하는 기판 처리 장치
KR101791873B1 (ko) 플라즈마 발생 장치 및 그를 포함하는 기판 처리 장치
KR20230092364A (ko) 기판 처리 장치 및 방법
KR20230025272A (ko) 기판 처리 장치 및 기판 처리 방법
KR101464205B1 (ko) 기판 지지 어셈블리 및 기판 처리 장치
KR20220070850A (ko) 기판 처리 장치 및 기판 처리 방법

Legal Events

Date Code Title Description
A107 Divisional application of patent
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant