KR102255348B1 - Preparing methode for naphthol - Google Patents

Preparing methode for naphthol Download PDF

Info

Publication number
KR102255348B1
KR102255348B1 KR1020190078038A KR20190078038A KR102255348B1 KR 102255348 B1 KR102255348 B1 KR 102255348B1 KR 1020190078038 A KR1020190078038 A KR 1020190078038A KR 20190078038 A KR20190078038 A KR 20190078038A KR 102255348 B1 KR102255348 B1 KR 102255348B1
Authority
KR
South Korea
Prior art keywords
naphthol
naphthalene
catalyst
oxidation reaction
oxidizing agent
Prior art date
Application number
KR1020190078038A
Other languages
Korean (ko)
Other versions
KR20210001648A (en
Inventor
김준우
이용걸
고동준
Original Assignee
주식회사 포스코
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코, 재단법인 포항산업과학연구원 filed Critical 주식회사 포스코
Priority to KR1020190078038A priority Critical patent/KR102255348B1/en
Publication of KR20210001648A publication Critical patent/KR20210001648A/en
Application granted granted Critical
Publication of KR102255348B1 publication Critical patent/KR102255348B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/60Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring by oxidation reactions introducing directly hydroxy groups on a =CH-group belonging to a six-membered aromatic ring with the aid of other oxidants than molecular oxygen or their mixtures with molecular oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C37/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom of a six-membered aromatic ring
    • C07C37/68Purification; separation; Use of additives, e.g. for stabilisation
    • C07C37/88Use of additives, e.g. for stabilisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C39/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
    • C07C39/12Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings
    • C07C39/14Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring polycyclic with no unsaturation outside the aromatic rings with at least one hydroxy group on a condensed ring system containing two rings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명은 촉매 존재 하에서, 나프탈렌과 산화제를 산화 반응시켜 나프톨을 제조하는 방법을 제공한다. 본 발명에 따르면, 나프탈렌의 직접 산화 반응을 통해 단일 공정으로 나프톨을 제조할 수 있으며, 산화제와 나프탈렌의 몰비, 촉매 투입량, 반응 시간과 같은 공정 변수를 조절함으로써 나프탈렌 수율과 선택도를 향상시킬 수 있다. The present invention provides a method for producing naphthol by oxidizing naphthalene and an oxidizing agent in the presence of a catalyst. According to the present invention, naphthol can be produced in a single process through direct oxidation of naphthalene, and naphthalene yield and selectivity can be improved by controlling process variables such as the molar ratio of oxidizing agent and naphthalene, catalyst input amount, and reaction time. .

Description

나프톨 제조방법{PREPARING METHODE FOR NAPHTHOL}Naphthol manufacturing method {PREPARING METHODE FOR NAPHTHOL}

본 발명은 나프톨 제조방법에 관한 것으로, 보다 상세하게는 금속 산화물 촉매 존재 하에서 나프탈렌과 산화제의 직접 산화 반응을 통해 나프톨을 제조하는 방법에 관한 것이다. The present invention relates to a method for producing naphthol, and more particularly, to a method for producing naphthol through a direct oxidation reaction of naphthalene and an oxidizing agent in the presence of a metal oxide catalyst.

나프톨은 나프탈렌의 1번 혹은 2번 치환기에 수산화기(-OH)가 치환된 형태를 갖는 유도체로, 여러 종류의 원료의 중간체로 사용되어 사용범위가 넓은 장점이 있다. 예로서, 나프톨은 염료, 의약품, 살충제, 방향제 또는 산화방지제등에 사용된다.Naphthol is a derivative in which a hydroxyl group (-OH) is substituted in the 1st or 2nd substituent of naphthalene, and has the advantage of a wide range of use as it is used as an intermediate for various types of raw materials. For example, naphthol is used in dyes, pharmaceuticals, pesticides, fragrances or antioxidants.

종래 나프톨을 제조하는 공정은 널리 알려져 있으나 나프탈렌의 낮은 반응성으로 인해 도 1과 같이 여러 단계를 거쳐 제조되었다.Conventionally, a process for preparing naphthol is widely known, but due to the low reactivity of naphthalene, it was manufactured through several steps as shown in FIG. 1.

도 2를 참조하면, 종래 나프톨 제조 공정은, a) 나프탈렌을 황산화 반응시켜 황산 나프탈렌을 제조하는 단계, b) 상기 황산 나프탈렌을 제1 중화반응시켜 황산 나프탈렌 나트륨염을 제조하는 단계, c) 물 및 유기용매를 함유하는 반응용매에 상기 황산 나프탈렌 나트륨염을 넣고 가수분해시켜 베타 나프톨 나트륨염을 제조하는 단계, d) 상기 물 및 유기용매에 의해 용해된 베타 나프톨 나트륨염 및 부산물들을 분리하는 단계 및 e) 상기 분리된 베타 나프톨 나트륨염을 제2 중화반응시켜 제조하는 단계를 포함한다. Referring to FIG. 2, the conventional naphthol manufacturing process includes a) sulfation reaction of naphthalene to prepare naphthalene sulfate, b) first neutralization of naphthalene sulfate to prepare sodium sulfate naphthalene, c) water And adding the sodium sulfate naphthalene to a reaction solvent containing an organic solvent and hydrolyzing to prepare a sodium sodium salt of beta naphthol, d) separating the sodium salt of beta naphthol and by-products dissolved by the water and the organic solvent, and e) preparing the separated beta naphthol sodium salt by a second neutralization reaction.

이에 전체 반응단계를 최소화 하면서 나프탈렌으로부터 나프톨을 제조하는 공정의 개발이 필요하다. Accordingly, it is necessary to develop a process for producing naphthol from naphthalene while minimizing the entire reaction step.

한국 특허 공개 제10-2010-0102429호Korean Patent Publication No. 10-2010-0102429

본 발명은 상기와 같은 문제를 해결하기 위한 것으로, 촉매 존재 하에서 나프탈렌의 직접 산화 반응을 통해 간소화된 단일 공정으로 나프톨을 제조하고자 한다. The present invention is to solve the above problems, and to prepare naphthol in a single simplified process through a direct oxidation reaction of naphthalene in the presence of a catalyst.

또한 본 발명은 나프탈렌 산화 반응 공정의 변수를 조절함으로써 나프톨 수율과 선택도를 향상시키고자 한다. In addition, the present invention is to improve the naphthol yield and selectivity by controlling the parameters of the naphthalene oxidation reaction process.

본 발명의 일 실시예에 따르면 촉매 존재 하에서, 나프탈렌과 산화제를 산화 반응시켜 나프톨을 제조하는 방법에 있어서, 상기 촉매는 Cu, Fe, Mn, V, Ti, Co, Ni, Mo, Al 및 Ce로 이루어진 군으로부터 선택된 1종 이상의 금속을 함유하는 금속 산화물인 나프톨 제조방법이 제공된다.According to an embodiment of the present invention, in the method of producing naphthol by oxidizing naphthalene and an oxidizing agent in the presence of a catalyst, the catalyst is Cu, Fe, Mn, V, Ti, Co, Ni, Mo, Al, and Ce. There is provided a method for producing naphthol, which is a metal oxide containing at least one metal selected from the group consisting of.

본 발명에 따르면, 금속 산화물 촉매 존재 하에서 나프탈렌의 직접 산화 반응을 통해 단일 공정으로 나프톨을 제조할 수 있다. 또한, 나프탈렌 산화 반응 공정에서 산화제와 나프탈렌의 몰비, 촉매 투입량, 반응 시간과 같은 공정 변수를 조절함으로써 나프탈렌의 수율과 선택도를 증가시킬 수 있다. According to the present invention, naphthol can be prepared in a single process through a direct oxidation reaction of naphthalene in the presence of a metal oxide catalyst. In addition, the yield and selectivity of naphthalene can be increased by controlling process variables such as the molar ratio of the oxidizing agent and naphthalene, the amount of catalyst input, and the reaction time in the naphthalene oxidation reaction process.

도 1 및 도 2는 종래의 나프톨 제조 공정을 나타낸 개략도이다.
도 3은 본 발명의 일 실시예에 따르는 나프톨 제조 공정을 나타낸 개략도이다.
도 4는 본 발명의 일 실시예에 따르는 나프톨 제조 반응 메커니즘을 나타낸 개략도이다.
도 5는 본 발명의 일 실시예에 따르는 구리-철 복합 산화물 촉매(CuFe2O4)의 XRD 분석 결과를 나타낸 그래프이다.
1 and 2 are schematic diagrams showing a conventional naphthol manufacturing process.
3 is a schematic diagram showing a naphthol manufacturing process according to an embodiment of the present invention.
4 is a schematic diagram showing a reaction mechanism for preparing naphthol according to an embodiment of the present invention.
5 is a graph showing an XRD analysis result of a copper-iron composite oxide catalyst (CuFe 2 O 4) according to an embodiment of the present invention.

이하, 본 발명의 바람직한 실시 형태를 설명한다. 그러나 본 발명의 실시 형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시 형태로 한정되는 것은 아니다.Hereinafter, preferred embodiments of the present invention will be described. However, embodiments of the present invention may be modified into various other forms, and the scope of the present invention is not limited to the embodiments described below.

본 발명의 일 측면에 따르면, 촉매 존재 하에서, 나프탈렌과 산화제를 산화 반응시켜 나프톨을 제조하는 방법이 제공된다. According to an aspect of the present invention, there is provided a method for producing naphthol by oxidizing naphthalene and an oxidizing agent in the presence of a catalyst.

도 3을 참조하면, 나프탈렌은 산화제와 직접 산화 반응하여 나프톨을 형성하며, 이는 단일 공정에 의한 것으로 종래의 나프톨 형성 공정에 비해 효율적이며 매우 경제적인 방법이다. 이러한 나프탈렌 직접 산화 반응은 자유 라디칼에 의한 반응으로 반응성이 매우 높기 때문에, 나프토퀴논 화합물과 같은 다른 부생성물이 생성된다. 부생성물은 최종 생성물인 나프톨의 수율을 저하시키므로, 나프톨 수율에 영향을 미치는 공정 변수를 조절함으로써 나프톨 선택도를 유지하고 나프톨 수율을 높일 수 있다. Referring to FIG. 3, naphthalene is directly oxidized with an oxidizing agent to form naphthol, which is a single process, which is an efficient and very economical method compared to the conventional naphthol formation process. The direct oxidation of naphthalene is a reaction by free radicals and is highly reactive, so other by-products such as naphthoquinone compounds are produced. Since by-products lower the yield of naphthol, which is the final product, the naphthol selectivity can be maintained and the naphthol yield can be increased by controlling a process variable that affects the naphthol yield.

본 발명의 일 실시예에서 산화제는 과산화수소, 차아염소산나트륨, 과산화벤조일, 다이아세틸 퍼옥사이드와 같은 수용성 산화제, tert-뷰틸하이드로퍼옥사이드(TBHP), 아세톤퍼옥사이드, 아스카리돌와 같은 유용성 산화제를 사용할 수 있으나 이에 제한되지 않는다. 바람직하게는 과산화수소를 사용할 수 있다.In one embodiment of the present invention, the oxidizing agent may be a water-soluble oxidizing agent such as hydrogen peroxide, sodium hypochlorite, benzoyl peroxide, and diacetyl peroxide, a soluble oxidizing agent such as tert-butyl hydroperoxide (TBHP), acetone peroxide, or ascaridol, but It is not limited thereto. Hydrogen peroxide may be preferably used.

이때 산화제와 나프탈렌의 몰비는 0.1 내지 10이며, 산화제와 나프탈렌의 몰비 1에 근접할수록 나프톨의 선택도가 증가하는 경향을 보인다. 상기 몰비가 0.1 미만이면 나프탈렌이 활성화되지 않아 전환율이 낮아지고, 10을 초과하면 나프탈렌이 많이 전환되지만 나프톨이 선택적으로 합성되지 않아 수율이 감소한다. At this time, the molar ratio of the oxidizing agent and naphthalene is 0.1 to 10, and the selectivity of naphthol tends to increase as the molar ratio of the oxidizing agent and naphthalene approaches 1. When the molar ratio is less than 0.1, naphthalene is not activated and the conversion rate is lowered. When the molar ratio is more than 10, naphthalene is converted a lot, but naphthalene is not selectively synthesized, so that the yield decreases.

상기 산화 반응은 용액상으로 진행되며, 이때 용매로는 증류수; 메탄올, 에탄올 등의 알코올계 용매; 헥산, 트라이데칸 등의 지방족 탄화수소계 용매; 아세토니트릴 등의 비양자성 용매를 사용할 수 있으나, 이에 제한되지 않는다. The oxidation reaction proceeds in a solution phase, wherein the solvent is distilled water; Alcohol solvents such as methanol and ethanol; Aliphatic hydrocarbon solvents such as hexane and tridecane; An aprotic solvent such as acetonitrile may be used, but is not limited thereto.

한편, 본 발명의 일 실시예에서 나프탈렌 산화 반응의 촉매는 Cu, Fe, Mn, V, Ti, Co, Ni, Mo, Al 및 Ce로 이루어진 군으로부터 선택된 1종 이상의 금속을 함유하는 금속 산화물이고, 바람직하게는 구리 및 철을 함유하는 복합 금속 산화물일 수 있다. On the other hand, in an embodiment of the present invention, the catalyst of the naphthalene oxidation reaction is a metal oxide containing at least one metal selected from the group consisting of Cu, Fe, Mn, V, Ti, Co, Ni, Mo, Al, and Ce, Preferably, it may be a composite metal oxide containing copper and iron.

철 산화물을 함유하는 촉매는 산화제 존재 하에 펜톤 시약(Fenton reagent, Fe2+/Fe3+)으로 작용하여, 높은 반응성을 가지는 자유 라디칼(free-radical) 산소 종(ㆍOH/HO2ㆍ)을 생성한다. 이러한 촉매의 활성은 액상 산화 반응을 촉진시킬 수 있으며, 자유 라디칼 산소종 생성 반응은 하기 반응식 (1)~(3)과 같다. The catalyst containing iron oxide acts as a Fenton reagent (Fe 2+ /Fe 3+ ) in the presence of an oxidizing agent, and free-radical oxygen species (OH/HO 2 ㆍ) with high reactivity are formed. Generate. The activity of such a catalyst can accelerate the liquid phase oxidation reaction, and the reaction for generating free radical oxygen species is as shown in Reaction Formulas (1) to (3) below.

반응식 (1): Fe2+ + H2O2 → Fe3+ + HOㆍ + OH- Reaction Scheme (1): Fe 2+ + H 2 O 2 → Fe 3+ + HO + and OH -

반응식 (2): Fe3+ + H2O2 → Fe2+ + HOOㆍ + H+ Scheme (2): Fe 3+ + H 2 O 2 → Fe 2+ + HOOㆍ + H +

반응식 (3): Fe2+ + HOㆍ → Fe3+ + OH- Reaction Scheme (3): Fe 2+ + HO and → Fe 3+ + OH -

한편, 구리 산화물을 함유하는 촉매 또한 자유 라디칼 산화 반응을 촉진하는 산화 환원 주기(Cu2+/Cu+)를 나타낸다. 따라서, 철과 구리의 금속 조합은 액상 산화 반응에서 전형적인 벤젠고리의 탄소와 수소의 결합(C-H 결합)의 옥시작용화(oxyfunctionalization)를 위한 촉매 활성을 더욱 증가시킬 수 있다. On the other hand, the catalyst containing copper oxide also exhibits a redox cycle (Cu 2+ /Cu +) promoting a free radical oxidation reaction. Therefore, the metal combination of iron and copper can further increase the catalytic activity for oxyfunctionalization of the carbon-hydrogen bond (CH bond) of a typical benzene ring in a liquid phase oxidation reaction.

본 발명의 일 실시예에서, 촉매가 구리 및 철을 함유하는 복합 금속 산화물인 경우, 상기 촉매는 촉매의 금속 전체 몰수를 기준으로, 구리 40 내지 80몰% 및 철 20 내지 60몰%를 함유할 수 있다. 구리와 철의 함량이 상기 범위를 벗어나는 경우에는 구리와 철의 혼합구조가 합성되지 않아 촉매 활성이 낮아지므로 바람직하지 않다.In an embodiment of the present invention, when the catalyst is a composite metal oxide containing copper and iron, the catalyst may contain 40 to 80 mol% of copper and 20 to 60 mol% of iron, based on the total number of moles of metal in the catalyst. I can. If the content of copper and iron is out of the above range, the mixed structure of copper and iron is not synthesized, and the catalytic activity is lowered, which is not preferable.

도 4는 촉매가 구리 및 철을 함유하는 복합 금속 산화물로서, CuFe2O4인 경우, 나프탈렌 산화 반응의 메커니즘을 나타낸 것이다. 도 4를 참조하면, 구리 이온과 철 이온에 의해 과산화수소가 수산화 이온(OH)과 수산화 라디칼(ㆍOH)로 분해되거나, 수소 이온(H+)과 하이드로퍼옥실 라디칼(ㆍOOH)로 분해될 수 있다. 4 shows a mechanism of a naphthalene oxidation reaction when the catalyst is a composite metal oxide containing copper and iron, and is CuFe 2 O 4. Referring to FIG. 4, hydrogen peroxide can be decomposed into hydroxide ions (OH) and hydroxyl radicals (OH) or hydrogen ions (H + ) and hydroperoxyl radicals (OOH) by copper ions and iron ions. have.

나프탈렌 산화 반응시 투입되는 촉매량은 나프탈렌 10mmol을 기준으로 0.01g 내지 1g이고, 바람직하게는 0.05g 내지 0.1g 일 수 있다. 이때 촉매 투입량이 0.01g 미만이면 촉매량이 적어 나프탈렌을 전환할 수 있는 활성점이 부족하여 나프탈렌 전환율이 감소하고, 1g을 초과하면 반응물 대비 많은 양의 촉매를 사용하므로 경제성 측면에서 바람직하지 않다.The amount of catalyst added during the naphthalene oxidation reaction may be 0.01 g to 1 g, preferably 0.05 g to 0.1 g based on 10 mmol of naphthalene. At this time, if the amount of catalyst is less than 0.01 g, the amount of catalyst is small and the active point for converting naphthalene is insufficient, so that the conversion rate of naphthalene decreases, and if it exceeds 1 g, a large amount of catalyst is used compared to the reactant, which is not preferable in terms of economy.

한편, 본 발명의 일 실시예에서 나프탈렌 산화 반응은 10 내지 300분 동안 수행될 수 있다. 반응 시간이 지나치게 짧은 경우 나프탈렌 산화 반응이 진행되지 못하여 나프톨 수율이 낮아지고, 반응 시간이 지나치게 긴 경우 잔존 산화제가 촉매를 통해 반응하게 되면 목표 생성물의 선택도가 감소하는 문제가 있다. Meanwhile, in an embodiment of the present invention, the naphthalene oxidation reaction may be performed for 10 to 300 minutes. If the reaction time is too short, the naphthalene oxidation reaction does not proceed and the naphthol yield is lowered. If the reaction time is too long, there is a problem that the selectivity of the target product decreases when the residual oxidizing agent is reacted through the catalyst.

실시예Example

이하, 본 발명의 실시예에 대해 상세히 설명한다. 하기 실시예는 본 발명의 이해를 위한 것일 뿐, 본 발명을 한정하는 것은 아니다.Hereinafter, embodiments of the present invention will be described in detail. The following examples are only for understanding the present invention, and do not limit the present invention.

1. 구리-철 복합 산화물 촉매 제조1. Preparation of copper-iron complex oxide catalyst

나노 입자 크기의 구리-철 산화물 촉매를 합성하기 위하여 구리 전구체로서 Cu(NO3)2·6H2O을 철 전구체로서 Fe(III)Cl3·6H2O와 Fe(II)SO4를 사용하였다. 각 전구체 100mmol, 50mmol, 50mmol을 에틸렌 글리콜 7ml에 용해시킨 후, 구조형성물질(structure directing templating agent)로 폴리 비닐 피롤리딘(poly vinyl pyrrolidine, PVP)을 20mg을 투입하였다. 이후 30분간 교반하고, 암모니아수를 첨가하여 pH를 12로 맞추고 24시간 동안 구리-철 복합 산화물 촉매를 합성하였다. 이후 에탄올로 세척하고 여과한 후, 100℃에서 12시간 건조하였다. 이후 건조된 촉매를 잘게 분쇄하고, 400℃에서 4시간 동안 공기 중에서 소성시켰다. 합성된 최종 촉매는 CuFe2O4이며 이를 확인하기 위해 XRD 분석 결과를 도 5에 나타내었다. To synthesize a nanoparticle-sized copper-iron oxide catalyst, Cu(NO 3 ) 2 ·6H 2 O was used as a copper precursor and Fe(III)Cl 3 ·6H 2 O and Fe(II)SO 4 were used as iron precursors. . After dissolving 100mmol, 50mmol, and 50mmol of each precursor in 7ml of ethylene glycol, 20mg of polyvinyl pyrrolidine (PVP) was added as a structure directing templating agent. After stirring for 30 minutes, ammonia water was added to adjust the pH to 12, and a copper-iron complex oxide catalyst was synthesized for 24 hours. After washing with ethanol and filtering, it was dried at 100° C. for 12 hours. After that, the dried catalyst was finely pulverized and calcined in air at 400° C. for 4 hours. The synthesized final catalyst is CuFe 2 O 4 and the XRD analysis results are shown in FIG. 5 to confirm this.

2. 나프톨 제조2. Naphthol production

(1) 실시예 1(1) Example 1

100ml 둥근 플라스크에 99% 나프탈렌 1.2946g(10mmol)과 용매로서 아세토니트릴(Acetonitrile) 20ml를 투입하였다. 1.에서 제조된 구리-철 복합 산화물 촉매 0.05g을 넣고 50℃로 승온시킨 후, 35% 과산화수소 0.972g(10mmol)을 소량씩 적가하며 첨가 후 80℃로 승온시키고 1시간 동안 교반하며 반응시킨다. 반응이 완료되면 용액을 냉각시키고, 촉매를 원심분리하여 회수 후 생성물을 분석하였다.In a 100 ml round flask, 1.2946 g (10 mmol) of 99% naphthalene and 20 ml of acetonitrile as a solvent were added. After adding 0.05g of the copper-iron composite oxide catalyst prepared in 1. and raising the temperature to 50°C, 0.972g (10mmol) of 35% hydrogen peroxide was added dropwise, and after the addition, the temperature was raised to 80°C and stirred for 1 hour to react. When the reaction was completed, the solution was cooled, and the catalyst was centrifuged to recover the product, and the product was analyzed.

(2) 실시예 2(2) Example 2

100ml 둥근 플라스크에 99% 나프탈렌 1.2946g(10mmol)과 용매로서 아세토니트릴(Acetonitrile) 20ml를 투입하였다. 1.에서 제조된 구리-철 복합 산화물 촉매 0.05g을 넣고 50℃로 승온시킨 후, 35% 과산화수소 2.916g(30mmol)을 소량씩 적가하며 첨가 후 80℃로 승온시키고 3시간 동안 교반하며 반응시킨다. 반응이 완료되면 용액을 냉각시키고, 촉매를 원심분리하여 회수 후 생성물을 분석하였다.In a 100 ml round flask, 1.2946 g (10 mmol) of 99% naphthalene and 20 ml of acetonitrile as a solvent were added. After adding 0.05 g of the copper-iron composite oxide catalyst prepared in 1. and raising the temperature to 50° C., 2.916 g (30 mmol) of 35% hydrogen peroxide was added dropwise, the temperature was raised to 80° C. after addition, and reacted with stirring for 3 hours. When the reaction was completed, the solution was cooled, and the catalyst was centrifuged to recover the product, and the product was analyzed.

(3) 실시예 3(3) Example 3

100ml 둥근 플라스크에 99% 나프탈렌 1.2946g(10mmol)과 용매로서 아세토니트릴(Acetonitrile) 20ml를 투입하였다. 1.에서 제조된 구리-철 복합 산화물 촉매 0.05g을 넣고 50℃로 승온시킨 후, 35% 과산화수소 4.860g(50mmol)을 소량씩 적가하며 첨가 후 80℃로 승온시키고 3시간 동안 교반하며 반응시킨다. 반응이 완료되면 용액을 냉각시키고, 촉매를 원심분리하여 회수 후 생성물을 분석하였다.In a 100 ml round flask, 1.2946 g (10 mmol) of 99% naphthalene and 20 ml of acetonitrile as a solvent were added. After adding 0.05 g of the copper-iron composite oxide catalyst prepared in 1. and raising the temperature to 50° C., 4.860 g (50 mmol) of 35% hydrogen peroxide was added dropwise, and after the addition, the temperature was raised to 80° C. and stirred for 3 hours to react. When the reaction was completed, the solution was cooled, and the catalyst was centrifuged to recover the product, and the product was analyzed.

(4) 실시예 4~8 (4) Examples 4 to 8

100ml 둥근 플라스크에 99% 나프탈렌 1.2946g(10mmol)과 용매로서 아세토니트릴(Acetonitrile) 20ml를 투입하였다. 1.에서 제조된 구리-철 복합 산화물 촉매 0.1g을 넣고 50℃로 승온시킨 후, 35% 과산화수소 2.916g(30mmol)을 소량씩 적가하며 첨가 후 80℃로 승온시키고 교반하며 반응시킨다. 실시예 5~9에서 각각의 반응 시간을 표 2에 나타내었다. 반응이 완료되면 용액을 냉각시키고, 촉매를 원심분리하여 회수 후 생성물을 분석하였다.In a 100 ml round flask, 1.2946 g (10 mmol) of 99% naphthalene and 20 ml of acetonitrile as a solvent were added. 0.1g of the copper-iron composite oxide catalyst prepared in 1. was added and the temperature was raised to 50℃, and then 2.916g (30mmol) of 35% hydrogen peroxide was added dropwise, and after the addition, the temperature was raised to 80℃ and stirred while reacting. In Examples 5 to 9, each reaction time is shown in Table 2. When the reaction was completed, the solution was cooled, and the catalyst was centrifuged to recover the product, and the product was analyzed.

3. 실험예3. Experimental example

(1) 실시예 1~3에서 제조된 생성물을 분석하여, 그 결과를 하기 표 1에 나타내었다.(1) The products prepared in Examples 1 to 3 were analyzed, and the results are shown in Table 1 below.

촉매
투입량
(g)
catalyst
input
(g)
과산화수소
투입량
(mmol)
Hydrogen peroxide
input
(mmol)
과산화수소
/나프탈렌
몰비
Hydrogen peroxide
/naphthalene
Molar ratio
반응
시간
(hr)
reaction
time
(hr)
나프탈렌
전환율a
(%)
naphthalene
Conversion rate a
(%)
나프톨
수율b
(%)
Naphthol
Yield b
(%)
나프톨
선택도c
(%)
Naphthol
Selectivity c
(%)
실시예 1Example 1 0.050.05 1010 1One 1One 3.23.2 1.61.6 50.050.0 실시예 2Example 2 0.050.05 3030 33 33 16.116.1 6.66.6 41.041.0 실시예 3Example 3 0.050.05 5050 55 33 59.359.3 7.77.7 13.013.0

a: 100*(나프탈렌 전환량/나프탈렌 주입량)a: 100* (naphthalene conversion amount/naphthalene injection amount)

b: 100*(나프톨 생성량/나프탈렌 주입량)b: 100* (naphthol production amount/naphthalene injection amount)

c: 100*(나프톨 생성량/나프탈렌 전환량)c: 100* (naphthol production amount/naphthalene conversion amount)

(2) 실시예 4~8에서 제조된 생성물을 분석하여, 그 결과를 하기 표 2에 나타내었다.(2) The products prepared in Examples 4 to 8 were analyzed, and the results are shown in Table 2 below.

촉매
투입량
(g)
catalyst
input
(g)
과산화수소
투입량
(mmol)
Hydrogen peroxide
input
(mmol)
과산화수소
/나프탈렌
몰비
Hydrogen peroxide
/naphthalene
Molar ratio
반응
시간
(hr)
reaction
time
(hr)
나프탈렌
전환율a
(%)
naphthalene
Conversion rate a
(%)
나프톨
수율b
(%)
Naphthol
Yield b
(%)
나프톨
선택도c
(%)
Naphthol
Selectivity c
(%)
실시예 4 Example 4 0.10.1 3030 33 1One 24.124.1 9.59.5 47.047.0 실시예 5 Example 5 0.10.1 3030 33 22 24.024.0 12.712.7 53.853.8 실시예 6Example 6 0.10.1 3030 33 33 24.024.0 12.612.6 55.955.9 실시예 7 Example 7 0.10.1 3030 33 44 24.024.0 12.512.5 56.556.5 실시예 8 Example 8 0.10.1 3030 33 55 24.024.0 13.713.7 58.958.9

표 1 및 표 2의 나프톨 수율 및 선택도로부터 나프톨 제조 공정의 성능을 알 수 있으며, 나프톨 수율 및 선택도가 높을 수록 성능이 우수함을 나타낸다. The performance of the naphthol production process can be seen from the naphthol yield and selectivity in Tables 1 and 2, and the higher the naphthol yield and selectivity, the better the performance.

표 1 및 표 2로부터 알 수 있는 바와 같이, 산화제와 나프탈렌의 몰비, 촉매 투입량, 반응 시간에 따라 나프탈렌 전환율, 나프톨 수율 및 나프톨 선택도에 차이가 있으며, 산화제와 나프탈렌의 몰비가 1에 근접할수록 나프톨의 선택도가 증가함을 확인할 수 있다. As can be seen from Tables 1 and 2, there are differences in the naphthalene conversion rate, naphthol yield, and naphthol selectivity according to the molar ratio of the oxidizing agent and naphthalene, the amount of catalyst input, and the reaction time. It can be seen that the selectivity of is increased.

다량의 산화제를 사용하는 경우 나프탈렌을 활성화시켜 나프탈렌의 전환율이 높아지나, 나프톨의 선택도는 감소하였고(실시예 3), 산화 반응 시간이 증가할수록 나프톨 수율과 선택도가 증가하였다(실시예 4~8).When a large amount of oxidizing agent was used, naphthalene was activated to increase the conversion rate of naphthalene, but the selectivity of naphthol decreased (Example 3), and the naphthol yield and selectivity increased as the oxidation reaction time increased (Example 4 to 8).

이상, 본 발명을 바람직한 실시예를 들어 상세하게 설명하였으나, 본 발명은 상기 실시예에 한정되지 않고, 본 발명의 기술적 사상 및 범위 내에서 당 분야에서 통상의 지식을 가진 자에 의하여 여러가지 변형 및 변경이 가능하다.Above, the present invention has been described in detail with reference to preferred embodiments, but the present invention is not limited to the above embodiments, and various modifications and changes by those of ordinary skill in the art within the spirit and scope of the present invention This is possible.

Claims (10)

촉매 존재 하에서, 나프탈렌과 산화제를 산화 반응시켜 나프톨을 제조하는 방법에 있어서,
상기 촉매는 CuFe2O4인 나프톨 제조방법.
In the presence of a catalyst, in the method of producing naphthol by oxidizing naphthalene and an oxidizing agent,
The catalyst is CuFe 2 O 4 Naphthol production method.
제1항에 있어서,
산화제는 과산화수소, 차아염소산나트륨, 과산화벤조일, 다이아세틸 퍼옥사이드, tert-뷰틸하이드로퍼옥사이드(TBHP), 아세톤퍼옥사이드 및 아스카리돌로 이루어진 군으로부터 선택된 1종 이상의 화합물인 나프톨 제조방법.
The method of claim 1,
The oxidizing agent is at least one compound selected from the group consisting of hydrogen peroxide, sodium hypochlorite, benzoyl peroxide, diacetyl peroxide, tert-butyl hydroperoxide (TBHP), acetone peroxide, and ascaridol.
제1항에 있어서,
산화 반응시 투입되는 산화제와 나프탈렌의 몰비는 0.1 내지 10인 나프톨 제조방법.
The method of claim 1,
Naphthol production method in which the molar ratio of the oxidizing agent and naphthalene added during the oxidation reaction is 0.1 to 10.
삭제delete 삭제delete 삭제delete 제1항에 있어서,
산화 반응시 투입되는 촉매량은 나프탈렌 10mmol을 기준으로 0.01 내지 1g인 나프톨 제조방법.
The method of claim 1,
Naphthol production method in which the amount of catalyst added during the oxidation reaction is 0.01 to 1 g based on 10 mmol of naphthalene.
제1항에 있어서,
산화 반응 전 나프탈렌을 용매에 용해시키는 단계를 더 포함하고,
상기 용매는 증류수, 알코올계 용매, 지방족 탄화수소계 용매 또는 아세토나이트릴인 나프톨 제조방법.
The method of claim 1,
Further comprising the step of dissolving naphthalene in a solvent before the oxidation reaction,
The solvent is distilled water, alcohol-based solvent, aliphatic hydrocarbon-based solvent, or acetonitrile naphthol production method.
제1항에 있어서,
산화 반응은 10 내지 300분 동안 수행되는 것인 나프톨 제조방법.
The method of claim 1,
The oxidation reaction is a method for producing naphthol is carried out for 10 to 300 minutes.
제1항에 있어서,
산화 반응은 50℃ 내지 100℃에서 수행되는 것인 나프톨 제조방법.

The method of claim 1,
The oxidation reaction is a naphthol production method that is carried out at 50 ℃ to 100 ℃.

KR1020190078038A 2019-06-28 2019-06-28 Preparing methode for naphthol KR102255348B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190078038A KR102255348B1 (en) 2019-06-28 2019-06-28 Preparing methode for naphthol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190078038A KR102255348B1 (en) 2019-06-28 2019-06-28 Preparing methode for naphthol

Publications (2)

Publication Number Publication Date
KR20210001648A KR20210001648A (en) 2021-01-06
KR102255348B1 true KR102255348B1 (en) 2021-05-25

Family

ID=74128740

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190078038A KR102255348B1 (en) 2019-06-28 2019-06-28 Preparing methode for naphthol

Country Status (1)

Country Link
KR (1) KR102255348B1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3874061T2 (en) * 1987-09-12 1993-04-08 Mitsui Petrochemical Ind OXIDATION PROCEDURE OF SECOND ALKYL-SUBSTITUTED NAPHTHALINES.
EP0867424B1 (en) * 1997-03-27 2000-12-13 Council of Scientific and Industrial Research A process for the preparation of alpha and beta naphthol by hydroxylation of naphthalene using an organotransition metal complex
KR101118249B1 (en) 2009-03-11 2012-03-09 한경티이씨 주식회사 Method for preparing of beta naphthol

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Makgwane et al., "Hydroxylation of benzene to phenol over magnetic recyclable nanostructured CuFe mixed-oxide catalyst", JOURNAL OF MOLECULAR CATALYSIS A: CHEMICAL, Vol.398, pp.149-157, 2015*

Also Published As

Publication number Publication date
KR20210001648A (en) 2021-01-06

Similar Documents

Publication Publication Date Title
Zondervan et al. Selective catalytic oxidation of benzyl alcohols to benzaldehydes with a dinuclear manganese (iv) complex
Hirasawa et al. Selective oxidation of glycerol to dihydroxyacetone over a Pd–Ag catalyst
Nodzewska et al. Remarkable increase in the rate of the catalytic epoxidation of electron deficient styrenes through the addition of Sc (OTf) 3 to the MnTMTACN catalyst
CN104926657A (en) Method for synthesizing glycolic acid ester by gas-phase hydrogenation of oxalate
Zhou et al. Highly Efficient Oxidative Cleavage of Carbon‐Carbon Double Bond over meso‐Tetraphenyl Cobalt Porphyrin Catalyst in the Presence of Molecular Oxygen
KR102255348B1 (en) Preparing methode for naphthol
EP0869843A1 (en) Epoxides produced by the oxidation of olefines with air or oxygen
CN107879898B (en) Method for synthesizing o-diol compound by using bifunctional catalyst
Sun et al. Optimization of reaction conditions for cyclohexane to cyclohexanone with t-butylhydroperoxide over CuCl 2 loaded with activated carbon
KR102162802B1 (en) Cycloalkane oxidation catalysts and method to produce alcohols and ketones
US7393985B2 (en) Supported ruthenium nanoparticle catalyst for cis -dihydroxylation and oxidative cleavage of alkenes
Liu et al. Direct epoxidation of propylene by molecular oxygen over a catalyst system containing palladium and a peroxo-heteropoly compound in methanol
CN110624603B (en) Preparation method of transition metal doped quaternary ammonium decatungstate
KR20090016919A (en) Method for preparing improved catalyst for the production of acrylic acid
KR102082926B1 (en) Nucleophilic oxidation and catalytic electrophilic reaction of copper alkyl peroxo complexes using temperature control
CN108993581B (en) Supported metal polyoxometallate hybrid catalyst and preparation method and application thereof
KR102055927B1 (en) Process for preparing acrolein
CN115770583B (en) Catalyst for producing isobutanol by using synthesis gas and methanol
KR101874740B1 (en) Method for producing oxygen containing carbon compounds
CN113292417B (en) Process for preparing carboxylic acids
CN111393271B (en) Synergistic catalytic oxidation method for catalyzing reaction of hydrocarbon compound and oxygen
KR20200021064A (en) Method for preparing metal complex catalyst and metal complex catalyst prepared thereof
Tian et al. A Simple Polyoxometallate for Selective Oxidation of Benzyl Alcohol to Benzaldehyde with Hydrogen Peroxide
CN102329222A (en) Method for oxidizing cyclohexane to prepare hexane diacid through one-step method and catalyst used by same
US8258348B2 (en) Process for production of carbonyl compound

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant