KR102246108B1 - Block for sideealk roadway including photocatalytic composite made of titanium dioxide and manufacturing method - Google Patents

Block for sideealk roadway including photocatalytic composite made of titanium dioxide and manufacturing method Download PDF

Info

Publication number
KR102246108B1
KR102246108B1 KR1020200169305A KR20200169305A KR102246108B1 KR 102246108 B1 KR102246108 B1 KR 102246108B1 KR 1020200169305 A KR1020200169305 A KR 1020200169305A KR 20200169305 A KR20200169305 A KR 20200169305A KR 102246108 B1 KR102246108 B1 KR 102246108B1
Authority
KR
South Korea
Prior art keywords
weight
parts
titanium dioxide
photocatalytic
sidewalk
Prior art date
Application number
KR1020200169305A
Other languages
Korean (ko)
Inventor
정은철
변준성
Original Assignee
(주) 제이스글로텍
아이앤지산업(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주) 제이스글로텍, 아이앤지산업(주) filed Critical (주) 제이스글로텍
Priority to KR1020200169305A priority Critical patent/KR102246108B1/en
Application granted granted Critical
Publication of KR102246108B1 publication Critical patent/KR102246108B1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C5/00Pavings made of prefabricated single units
    • E01C5/06Pavings made of prefabricated single units made of units with cement or like binders
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • A01N59/20Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/002Catalysts characterised by their physical properties
    • B01J35/004Photocatalysts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/022Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/30Oxides other than silica
    • C04B14/305Titanium oxide, e.g. titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/34Metals, e.g. ferro-silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • C04B20/1055Coating or impregnating with inorganic materials
    • C04B20/1066Oxides, Hydroxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/08Acids or salts thereof
    • C04B22/16Acids or salts thereof containing phosphorus in the anion, e.g. phosphates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Abstract

The present invention relates to a sidewalk/road block including a photocatalytic complex containing titanium dioxide and, more specifically, to a sidewalk/road block including a photocatalytic complex made of titanium dioxide, capable of removing pollutants in the atmosphere by manufacturing a sidewalk/road block through the mixture of a titanium dioxide photocatalytic material, which can perform photocatalytic action even with visible light, with cement and aggregates, and then, installing the manufactured block on a road or a sidewalk, and manufacturing method thereof. According to the present invention, an inorganic matter oxide is included in titanium dioxide, and mixed with white cement powder to bring about photocatalytic efficiency even with visible light, and the titanium dioxide is used as a material for a sidewalk/road block to remove pollutants in the atmosphere, which can lead to an atmosphere purification effect. Moreover, the sidewalk/road block using a photocatalyst can perform deodorizing action and antifouling action to prevent pollution caused by a volatile organic compound causing fine dust, can have antibacterial performance due to the inclusion of copper, thereby removing viruses and bacteria in the atmosphere, and can reduce costs for materials due to the use of a rutile type titanium dioxide catalyst.

Description

이산화티탄으로 이루어진 광촉매 복합체가 포함된 보차도용 블록 및 그 제조방법{Block for sideealk roadway including photocatalytic composite made of titanium dioxide and manufacturing method}Block for sideealk roadway including photocatalytic composite made of titanium dioxide and manufacturing method}

본 발명은 이산화티탄을 포함하는 광촉매 복합체가 포함된 보차도용 블록에 관한 것으로 더욱 상세하게는 가시광선에서도 광촉매 작용이 이루어지는 이산화티탄 광촉매 소재를 시멘트 및 골재와 혼합하여 보차도용 블록으로 제조하고, 도로 또는 보도에 설치시켜 대기 중의 오염물질을 제거하는 이산화티탄으로 이루어진 광촉매 복합체가 포함된 보차도용 블록 및 그 제조방법에 관한 것이다.The present invention relates to a block for pedestrian roads containing a photocatalytic composite containing titanium dioxide, and more specifically, a titanium dioxide photocatalyst material having a photocatalytic action even in visible light is mixed with cement and aggregate to prepare a block for pedestrian roads, and It relates to a pedestrian road block including a photocatalytic composite made of titanium dioxide that is installed on a sidewalk to remove pollutants from the atmosphere, and a method for manufacturing the same.

보차도용 블록은 자동차와 사람이 안전하고 쾌적하게 주행 또는 보행을 할 수 있도록 보도와 차도에 적용되는 블록으로 종래 지면에 시멘트, 아스팔트, 우레탄 등을 직접 타설하여 보차도를 형성시키는 방법들과는 다르게 콘크리트를 주재료로하여 합성수지 또는 광물 등을 첨가하여 여러형태로 제조된 블록을 지면에 설치시킨다. 보차도용 블록은 시공이 용이하고, 유지 및 보수가 간편하여 토목, 조경자재로 널리 사용되고 있으며, 최근에는 기능, 디자인 등의 측면에서 다양한 장점을 가진 블록의 사용이 늘어나고 있다. 이와 같은 보차도용 블록의 수요가 날로 증가하는 실정이고, 소형고압블록 및 점토블록 위주의 보차도블록 시장에 인조화강석블록이 등장하면서 투수성을 통한 우수의 표면 유출 방지를 위해 노력하고 있으나 먼지, 오염물 등 외부적이 요인에 의해 투수 기능이 급격히 저하되는 등 지속적이지 못한 문제점을 가지고 있다.Blocks for sidewalks are blocks applied to sidewalks and roadways so that cars and people can safely and comfortably drive or walk. Unlike conventional methods of forming sidewalks by placing cement, asphalt, urethane, etc. directly on the ground, concrete is the main material. As a result, a block manufactured in various shapes is installed on the ground by adding synthetic resin or minerals. Blocks for sidewalks are widely used as civil engineering and landscaping materials because they are easy to construct and easy to maintain and repair. Recently, the use of blocks having various advantages in terms of functions and designs is increasing. The demand for such blocks for sidewalks is increasing day by day, and artificial granite blocks appear in the sidewalk block market, mainly for small high-pressure blocks and clay blocks, and efforts are being made to prevent excellent surface leakage through water permeability, but dust, contaminants, etc. It has a problem that is not continuous, such as a sharp decline in the pitching function due to external factors.

한편, 미세먼지 등에 의한 대기 중 오염은 점점 심각해지고 있으며, 특히 도로의 자동차에서 배출되는 질소산화물(NOx)이 미세먼지를 유발하고 있다. 따러서, 최근에는 대기 중 질소산화물을 제거하기 위해 건축물 또는 공공시설물의 외면에 광촉매를 적용하는 방법이 늘어나고 있으나 질소산화물을 제거하기 위한 면적 범위가 건축물 또는 시설물 등의 외면에 한정된다는 점과 일반적인 광촉매의 경우 가시광선에서는 광촉매 활성이 일어나지 않는다는 단점이 있다.On the other hand, pollution in the air due to fine dust is becoming more and more serious, and in particular, nitrogen oxides (NOx) emitted from automobiles on the road cause fine dust. Therefore, in recent years, methods of applying photocatalysts to the exterior of buildings or public facilities to remove nitrogen oxides from the atmosphere are increasing, but the area range for removing nitrogen oxides is limited to the exterior of buildings or facilities, and general photocatalysts In the case of, there is a disadvantage that photocatalytic activity does not occur in visible light.

위에서 말한 광촉매는 빛을 에너지원으로 하여 촉매 반응을 진행시키는 물질을 말하는 것으로 광촉매의 종류로는 이산화티탄(TiO2), 산화아연(ZnO), 황화 카드뮴(CdS), 삼산화 텅스텐(WO3) 등이 있으며, 이중 이산화티탄은 파장 400nm이하의 자외선을 흡수하여 고에너지의 전자(e-)와 정공(h+)으로 분리되는데 이 전자와 정공은 표면 흡착산소 및 물과 반응하여 각각 수퍼옥사이드 음이온(O2 -)과 수산화라디칼(OH)이라는 활성종을 형성하며, 활성종의 강한 산화력으로 인하여 오염물질을 분해하고 살균효과를 나타내며, 유해가스를 제거 및 흡수하는 작용을 한다.The photocatalyst mentioned above refers to a substance that proceeds a catalytic reaction using light as an energy source, and the types of photocatalyst include titanium dioxide (TiO 2 ), zinc oxide (ZnO), cadmium sulfide (CdS), tungsten trioxide (WO 3 ), etc. this, and the double titanium dioxide wavelength 400nm electron (e -) in a high-energy absorbing ultraviolet or less and a hole (h +) separation there is electrons and holes are surface adsorbed oxygen, and each of superoxide anion reacts with water to ( O 2 -) and forms the activated species of hydroxyl radical (OH), due to the strong oxidizing power of the active species to decompose pollutants and shows a bactericidal effect, acts to absorb and remove harmful gases.

이산화티탄을 더 자세히 알아보면 이산화티탄은 이산화 타이타늄 또는 이산화 티타늄으로 불리며, 전이금속인 티타늄 원자 하나와 산소 원자 2개가 결합된 분자로서 분자량은 79.866g/mol이며, 무미, 무취의 흰색 가루이고, 성질은 산소와 쉽게 반응하여 산화력이 크고, 음폐력이 커서 모든 용매에 녹지 않으며, 굴절류이 매우 큰 이방성을 나타내고, 산란성이 크며, 매우 안정한 물질이고, 생물학적으로 반응을 하지 않아 환경 및 인체 무해하며, brookite(판티탄석, 이하 브루카이트형), anatase(예추석, 이하 아나테형) 및 rutile(금홍석, 루틸형)의 동질다상 형태로 존재하고, 항균 작용과 악취제거와 살균작용이 있다.To learn more about titanium dioxide, titanium dioxide is called titanium dioxide or titanium dioxide. It is a molecule in which one titanium atom and two oxygen atoms, a transition metal, are combined. Its molecular weight is 79.866 g/mol, and it is a tasteless, odorless white powder. It reacts easily with oxygen, has a large oxidizing power, has a large sound blocking power, is not soluble in all solvents, has a very large anisotropy of refractions, has a large scattering property, is a very stable material, does not react biologically, so it is harmless to the environment and human body. It exists in polymorphic homogeneous forms of (Pantitanium stone, hereinafter Bruchite type), anatase (Yechuseok, hereinafter Anate type), and rutile (rutile stone, rutile type), and has antibacterial action, odor removal, and sterilization.

한편, 브루카이트형은 매우 불안정하여 상업적으로 거의 활용되지 않고 있고, 광촉매 효율은 루틸형 보다는 아나테형에서 더 높다. 루틸형과 브루카이트형은 아나테형보다 적은 각각 2.18eV 및 3.0eV의 밴드 갭 에너지를 가지고 있으며, 그 이유로는 루틸형과 브루카이트형에서 전자의 이동도가 감소하여 광조사에 의해 형성된 전자-홀의 재결합 속도가 증가하기 때문이다. 아나테형의 TiO2는 밴드 갭 에너지가 3.2eV로 비교적 크지 않고, 수용액에서도 안정성이 우수하다. 루틸형은 티탄광석에서 추출되어 주로 백색색소로 이용되고, 빛 이용 효율이 적다. 따라서, 루틸형의 이산화티탄의 사용량은 적고 가격측면에서도 루틸형이 저렴하나 주로 상업적으로 이용되고 있는 이산화티탄은 아타네형을 사용하고 있는 실정이다.On the other hand, the bruchite type is very unstable and is rarely used commercially, and the photocatalytic efficiency is higher in the anate type than in the rutile type. The rutile type and the Bruchite type have bandgap energies of 2.18 eV and 3.0 eV, respectively, which are less than the anate type, and the reason is that the mobility of electrons in the rutile type and the Bruchite type decreases and the electron-hole formed by light irradiation is reduced. This is because the rate of recombination increases. Anate-type TiO 2 has a relatively small band gap energy of 3.2 eV, and has excellent stability even in aqueous solutions. The rutile type is extracted from titanium ore and is mainly used as a white pigment, and the light utilization efficiency is low. Therefore, the amount of rutile-type titanium dioxide is small and the rutile-type is inexpensive in terms of price, but titanium dioxide, which is mainly commercially used, uses the atane-type.

최근에는 보차도용 블록에 광촉매제를 코팅하여 대기 중에 포함되어 있는 오염물질을 제거하는 선행기술들이 나오고 있으며, 그와 관련된 선행기술들로는 한국등록특허 제10-1960886호(2019.03.21.)는 골재, 시멘트, 물 및 혼화재를 혼합하여 기층부조성물을 제조하는 제1단계; 기층부조성물을 몰드에 투입한 후, 가압 성형하여 기층부를 제조하는 제2단계; 잔골재, 시멘트, 물 및 플라이애쉬를 혼합하여 표층부조성물을 제조하되, 상기 플라이애쉬는 TiO2, ZrO2, V2O3, WO3, CuO 및 SrTiO3으로 이루어진 그룹에서 선택된 하나 또는 둘 이상의 성분을 가지도록 코팅된 광촉매 재료로 표층부조성물을 제조하는 제3단계; 및 기층부와 표층부를 가압하여 성형하는 표층부를 제조하는 제4단계로 이루어지는 미세먼지 저감 및 대기정화 기능의 고강도 보차도 블록 제조방법을 제공하고, 한국등록특허 제10-1371378호(2014.03.12.)는 제강슬래그볼, 포틀랜드시멘트, 제1바인더수지로서의 우레탄 아크릴레이트 수지 및 제2바인더수지로서의 폴리메틸 메타크릴레이트 수지를 포함하는 바인더수지, 경화제, 모래, 충전제로 이루어지는 수지모르타르로 이루어지는 보차도 경계블록과 상기 보차도 경계블록의 표면에 TiO2졸, ZnO 졸 dp Ag, Zn, Cu 중에서 선택된 1종 이상의 금속인이 복합 처리한 광촉매가 일정 두께로 도포되는 동해 및 염화칼슘에 강한 인조화강석 보차도 경계블록 제조방법을 제공한다.In recent years, prior technologies for removing pollutants contained in the atmosphere by coating a photocatalyst on a pedestrian road block are emerging, and related prior technologies include Korean Patent Registration No. 10-1960886 (2019.03.21) is an aggregate, A first step of preparing a base layer auxiliary composition by mixing cement, water, and admixture; A second step of manufacturing a base layer by pressure molding after the base layer subcomposition is put into a mold; A surface subcomposition is prepared by mixing fine aggregate, cement, water and fly ash, wherein the fly ash contains one or more components selected from the group consisting of TiO 2 , ZrO 2 , V 2 O 3 , WO 3 , CuO and SrTiO 3 A third step of preparing a surface subcomposition with a photocatalytic material coated to have it; And it provides a method for manufacturing a high-strength sidewalk block having a function of reducing fine dust and purifying the atmosphere comprising a fourth step of manufacturing a surface layer portion formed by pressing the base layer portion and the surface layer portion, and Korean Patent No. 10-1371378 (2014.03.12.) The steelmaking slag ball, Portland cement, a binder resin including a urethane acrylate resin as a first binder resin and a polymethyl methacrylate resin as a second binder resin, a curing agent, sand, and a sidewalk boundary block made of resin mortar made of a filler. the bochado TiO 2 sol on the surface of the boundary block, the process for producing a ZnO sol dp Ag, Zn, strong artificial granite bochado boundary block in the East Coast and the salt is one photocatalyst han least one metal in the complex process selected from the group consisting of Cu is deposited to a predetermined thickness, to provide.

위의 선행기술들을 살펴보면 첫 번째 선행기술의 경우 광촉매의 대부분이 전자-정공쌍의 빠른 재결합이나 넓은 밴드 갭 때문에 가시광선에서 적용이 제한되는 한계점이 있으므로 단순히 광촉매제를 보차도 블록에 적용되는 것은 광촉매 활성도가 적게 발생된다는 종래의 문제점을 그대로 가지고 있다. 두 번째 선행기술은 광촉매제에 금속이온을 담지하여 밴드 갭을 가시광선에서도 광촉매 활성이 일어날 수 있으나 광촉매제를 보차도로 블록 표면에 일정 두께로 도포하는 것은 보차도용 블록 생산에 드는 비용이 높아진다는 문제점을 가지고 있다.Looking at the above prior art, in the case of the first prior art, most of the photocatalysts are limited in application in visible light due to rapid recombination of electron-hole pairs or wide band gap. Therefore, simply applying a photocatalyst to the complementary block is the photocatalytic activity. It has the conventional problem that less is generated. The second prior art is that photocatalytic activity can occur even in visible light by supporting metal ions in the photocatalyst, but applying the photocatalyst to the sidewalk block surface with a certain thickness increases the cost of producing the sidewalk block. Have.

한국등록특허 제10-1960886호(2019.03.21.)Korean Patent Registration No. 10-1960886 (2019.03.21.) 한국등록특허 제10-1371378호(2014.03.12.)Korean Patent Registration No. 10-1371378 (2014.03.12.)

본 발명이 이루고자 하는 기술적 과제는 보도 및 차도에 설치되는 블록 제조시 가시광선에서도 광촉매 활성이 일어나는 광촉매 복합체를 포함시켜 대기중의 오염물질을 제거하고, 구리를 더 포함시켜 항균성능을 가지되 상기 광촉매제로 가격이 저렴한 루틸형 이산화티탄 광촉매제를 이용하는 이산화티탄으로 이루어진 광촉매 복합체가 포함된 보차도용 블록 및 그 제조방법을 제공하는 것이다.The technical problem to be achieved by the present invention is to remove pollutants from the atmosphere by including a photocatalyst complex that exhibits photocatalytic activity even in visible light when manufacturing blocks installed on sidewalks and roadways, and further includes copper to have antibacterial performance, but the photocatalyst It is to provide a block for roadways including a photocatalyst composite made of titanium dioxide using a rutile type titanium dioxide photocatalyst, which is inexpensive at zero price, and a method for manufacturing the same.

상기와 같은 문제점을 해결하고, 목적을 달성하기 위하여 본 발명의 이산화티탄으로 이루어진 광촉매 복합체가 포함된 보차도용 블록은 산화무기물이 코팅된 이산화티탄으로 이루어진 광촉매 복합체, 구리, 시멘트 분말, 골재, 혼화재, 활성탄 및 물을 포함하여 이루어진다.In order to solve the above problems and achieve the object, the block for roadway including a photocatalyst composite made of titanium dioxide of the present invention is a photocatalyst composite made of titanium dioxide coated with an inorganic oxide, copper, cement powder, aggregate, admixture, It contains activated carbon and water.

상기 보차도용 블록은 시멘트 분말 100 중량부를 기준으로 광촉매 복합체 13~20 중량부, 구리 0.1~1.2 중량부, 골재 400~480 중량부, 혼화재10~20 중량부, 활성탄 1~5 중량부 및 물 20~30 중량부로 이루어진다.The block for roadway is 13 to 20 parts by weight of a photocatalyst composite, 0.1 to 1.2 parts by weight of copper, 400 to 480 parts by weight of aggregate, 10 to 20 parts by weight of admixture, 1 to 5 parts by weight of activated carbon, and 20 parts by weight of water based on 100 parts by weight of cement powder. It consists of ~30 parts by weight.

상기 골재는 굵은 골재를 이용하되 잔 골재가 추가될 수 있고, 상기 혼화재는 AE제를 사용한다.The aggregate is a coarse aggregate, but fine aggregate may be added, and the admixture is an AE agent.

상기 이산화티탄은 루틸형으로 입자크기는 20~300nm이고, pH는 6.5~8.5이며, 체적밀도가 1~4 g/㎤ 이며, 산화무기물은 지르코니아(ZrO2) 및 알루미나(Al2O3)가 코팅된다.The titanium dioxide is a rutile type, has a particle size of 20 to 300 nm, a pH of 6.5 to 8.5, a volume density of 1 to 4 g/cm 3, and an oxidized inorganic material is zirconia (ZrO 2 ) and alumina (Al 2 O 3 ). Is coated.

상기 이산화티탄은 추가 화합물이 함유될 수 있으며, 추가 화합물은 인산염, 피로인산염, 트리폴리인산염, 테트라폴리인산염, 메타 인산염 및 울트라 인산염 중 선택된 하나를 이용한다.The titanium dioxide may contain an additional compound, and the additional compound is one selected from phosphate, pyrophosphate, tripolyphosphate, tetrapolyphosphate, metaphosphate, and ultraphosphate.

상기 광촉매 복합체 조성물은 인산은을 더 포함할 수 있으며, 인산은의 입자크기는 100~200nm이며, 시멘트 분말 100 중량부를 기준으로 1~15 중량부로 포함한다.The photocatalyst composite composition may further include silver phosphate, and the particle size of silver phosphate is 100 to 200 nm, and is included in an amount of 1 to 15 parts by weight based on 100 parts by weight of cement powder.

상기 구리는 분말상태로 입자크기는 200~300 메쉬이고, 시멘트 분말은 백색으로 입자크기는 200~300 메쉬인 것을 사용한다.The copper is powdery and has a particle size of 200 to 300 mesh, and cement powder is white and a particle size of 200 to 300 mesh.

상기 보차도용 블록은 분쇄된 광물이 더 추가 될 수 있으며, 상기 광물은 맥반석, 제올라이트, 일라이트, 벤토나이트, 세리사이트, 각섬석, 납석, 활석, 장석, 백토, 흑연, 황토 및 화산암 중 선택된 하나 이상을 포함할 수 있는 이산화티탄으로 이루어진 광촉매 복합체가 포함된 보차도용 블록을 제공한다.The pulverized mineral may be further added to the block for the sidewalk, and the mineral includes at least one selected from elvanite, zeolite, illite, bentonite, sericite, amphibole, pyrophyllite, talc, feldspar, clay, graphite, ocher and volcanic rock. It provides a block for roadways including a photocatalytic composite made of titanium dioxide that may be included.

이산화티탄으로 이루어진 광촉매 복합체가 포함된 보차도용 블록 제조방법은 a) 산화무기물을 이산화티탄에 코팅하여 광촉매 복합체를 준비하는 준비단계(S10); b) 시멘트 분말 100 중량부를 기준으로 상기 준비단계에서 준비된 광촉매 복합체 13~20 중량부, 구리 분말 0.1~1.2 중량부, 골재 400~480 중량부, 혼화재 10~20 중량부, 활성탄 1~5 중량부 및 물 20~30 중량부을 혼합하는 교반단계(S20); c) 상기 교반된 혼합물을 성형틀에 투입하고 압출 성형하는 성형단계(S30); 및 d) 상기 성형단계 후 성형된 성형물을 양생시키는 양생단계(S40);로 이루어진다.A method of manufacturing a block for roadway including a photocatalytic composite made of titanium dioxide includes: a) a preparation step of preparing a photocatalytic composite by coating an oxidized inorganic substance on titanium dioxide (S10); b) 13 to 20 parts by weight of the photocatalyst composite prepared in the above preparation step based on 100 parts by weight of cement powder, 0.1 to 1.2 parts by weight of copper powder, 400 to 480 parts by weight of aggregate, 10 to 20 parts by weight of admixture, 1 to 5 parts by weight of activated carbon And a stirring step of mixing 20 to 30 parts by weight of water (S20); c) a molding step (S30) of injecting the stirred mixture into a molding mold and extruding; And d) a curing step (S40) of curing the molded product after the molding step.

상기 준비단계(S10)에서 이산화티탄에 산화무기물의 코팅은 지르코니아(ZrO2) 및 알루미나(Al2O3)의 산화무기물을 이산화티탄 외면에 코팅시키는 것으로 100 ℃ 내지 300 ℃ 온도에서 제1 열처리하고, 300 ℃ 내지 900 ℃ 온도에서 제2 열처리로 실시된다.In the preparation step (S10), the coating of an oxidized inorganic material on titanium dioxide is by coating an oxidized inorganic material of zirconia (ZrO 2 ) and alumina (Al 2 O 3 ) on the outer surface of titanium dioxide, and the first heat treatment at a temperature of 100° C. to 300° C. , 300 ℃ to 900 ℃ temperature is carried out by the second heat treatment.

상기 교반단계(S20)는 시멘트 분말 100 중량부를 기준으로 이산화티탄 13~20 중량부, 구리 0.1~1.2 중량부, 골재 400~480 중량부, 혼화재 10~20 중량부, 활성탄 1~5 중량부 및 물 20~30 중량부로 이루어진다.The stirring step (S20) is based on 100 parts by weight of cement powder, 13 to 20 parts by weight of titanium dioxide, 0.1 to 1.2 parts by weight of copper, 400 to 480 parts by weight of aggregate, 10 to 20 parts by weight of admixture, 1 to 5 parts by weight of activated carbon, and It consists of 20 to 30 parts by weight of water.

상기 준비단계(S10)는 광촉매 복합체에서 이산화티탄에는 추가 화합물로 인산염, 피로인산염, 트리폴리인산염, 테트라폴리인산염, 메타 인산염 및 울트라 인산염 중 선택된 하나를 포함하거나 광촉매 복합체에 인산은을 더 포함할 수 있다.The preparation step (S10) may include one selected from phosphate, pyrophosphate, tripolyphosphate, tetrapolyphosphate, metaphosphate, and ultraphosphate as an additional compound to titanium dioxide in the photocatalyst complex, or may further include silver phosphate in the photocatalyst complex. .

상기 양생단계(S40)는 성형물을 양생실에서 양생시키고, 양생실 최고 온도를 65℃이하로 실시되는 이산화티탄으로 이루어진 광촉매 복합체가 포함된 보차도용 블록 제조방법을 제공한다.The curing step (S40) provides a method for producing a block for roadway including a photocatalytic composite made of titanium dioxide, in which the molded product is cured in a curing chamber and the maximum temperature in the curing chamber is 65°C or lower.

이상에서 설명한 바와 같이 본 발명에 의한 이산화티탄으로 이루어진 광촉매 복합체가 포함된 보차도용 블록 및 그 제조방법은 다음과 같은 효과가 있다.As described above, the block for roadway including a photocatalytic composite made of titanium dioxide according to the present invention and a method of manufacturing the same have the following effects.

(1) 본 발명은 이산화티탄에 산화무기물이 포함되고, 백색 시멘트 분말에 혼합되어 가시광선에서도 광촉매 효율을 가지며, 보차도용 블록의 소재로 사용되어 대기중의 오염물질을 제거하여 대기정화 효과를 가진다.(1) In the present invention, titanium dioxide contains oxidizing inorganic substances, is mixed with white cement powder, has photocatalytic efficiency even in visible light, and is used as a material for roadblocks to remove pollutants in the atmosphere and has an air purification effect. .

(2) 본 발명은 광촉매에 의해서 탈취 작용 및 미세먼지를 유발하는 휘발성 유기화합물에 의한 오염을 방지하는 방오 작용이 실시되며, 구리를 포함하여 항균성능을 가짐으로써 대기 중 바이러스 및 박테리아를 제거한다.(2) The present invention has an antifouling effect to prevent contamination by volatile organic compounds that cause deodorization and fine dust by a photocatalyst, and removes viruses and bacteria from the atmosphere by having antibacterial properties including copper.

(3) 본 발명은 루틸형의 이산화티탄 촉매제를 사용하여 재료에는 드는 비용을 절감할 수 있다.(3) In the present invention, the cost of materials can be reduced by using a rutile type titanium dioxide catalyst.

도 1은 본 발명의 바람직한 일 실시예에 따른 지르코니아 및 알루미나가 코팅된 이산화티탄, 백색 시멘트, 구리로 이루어진 광촉매 복합체의 일산화질소 제거 및 질산이온으로 제거되는 효율을 나타내는 도표이다.
도 2는 본 발명의 바람직한 일 실시예에 따른 이산화티탄으로 이루어진 광촉매 복합체가 포함되 보차도용 블록 제조방법의 공정도이다.
1 is a chart showing the efficiency of removing nitrogen monoxide and removing nitrate ions from a photocatalytic composite composed of titanium dioxide, white cement, and copper coated with zirconia and alumina according to a preferred embodiment of the present invention.
FIG. 2 is a flowchart of a method for manufacturing a block for roadways including a photocatalyst composite made of titanium dioxide according to a preferred embodiment of the present invention.

본 발명의 명칭은 "이산화티탄으로 이루어진 광촉매 복합체가 포함된 보차도용 블록"으로 통상의 기술자가 쉽게 알 수 있도록 구체적인 내용을 기재하고, 충분히 유추 가능한 별도의 기재는 생략하며, 필요 경우 실시예 및 도면을 기재한다. 또한, 본 명세서 및 특허청구범위에서 정의된 용어들은 한정 해석하지 아니하며, 운용자의 의도 또는 관례 등에 따라 달라질 수 있고, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 한다.The name of the present invention is "blocks for pedestrian roads including photocatalytic composites made of titanium dioxide", and detailed contents are described so that those skilled in the art can easily understand, and separate descriptions that can be sufficiently inferred are omitted, and examples and drawings if necessary Write down. In addition, terms defined in the present specification and claims are not limitedly interpreted, and may vary according to an operator's intention or custom, and should be interpreted as meanings and concepts consistent with the technical idea of the present invention.

본 발명의 일면에 있어서,In one aspect of the present invention,

산화무기물이 코팅된 이산화티탄으로 이루어진 광촉매 복합체, 구리, 시멘트 분말, 골재, 혼화재, 활성탄 및 물을 포함하여 이루어진다.It comprises a photocatalytic composite composed of titanium dioxide coated with inorganic oxide, copper, cement powder, aggregate, admixture, activated carbon, and water.

본 발명은 산화무기물이 코팅된 이산화티탄으로 이루어진 광촉매 복합체가 혼합된 보차도용 블록으로 보차도용 블록은 차량이 다니는 도로 또는 보행자가 다니는 보도에 시공되는 것으로 본 발명의 보차도용 블록에 포함된 상기 이산화티탄의 광촉매 복합체에 의해서 대기중의 오염물질을 제거하여 쾌적한 대기환경을 만들며, 안료를 더 추가하여 심미성을 높일 수 있다.The present invention is a crosswalk block mixed with a photocatalytic composite composed of titanium dioxide coated with an oxidized inorganic substance, and the block for pedestrian crossing is constructed on a road where a vehicle goes or a sidewalk where a pedestrian goes, and the titanium dioxide included in the block for a pedestrian crossing of the present invention By removing pollutants in the air by using the photocatalytic complex of, it creates a pleasant atmosphere, and the aesthetics can be enhanced by adding more pigments.

또한, 본 발명은 보차도용 블록의 상부층을 형성할 수 있다. 다시 말하면 본 발명의 상기 조성물로 이루어진 블록을 표층으로 하고, 기층을 광촉매 복합체를 포함한 구리 또는 활성탄이 포함되지 않은 종래 일반적인 보차도용 블록을 이루어 복수개의 층으로 이루어진 보차도용 블록으로 생산이 가능하다.In addition, the present invention can form the upper layer of the block for pedestrians. In other words, the block made of the composition of the present invention is used as the surface layer, and the base layer is made of a conventional general roadway block that does not contain copper or activated carbon including a photocatalytic composite, so that it can be produced as a block for roadway roads consisting of a plurality of layers.

상기 보차도용 블록은 시멘트 분말 100 중량부를 기준으로 광촉매 복합체 13~20 중량부, 구리 0.1~1.2 중량부, 골재 400~480 중량부, 혼화재 10~20 중량부, 활성탄 1~5 중량부 및 물 20~30 중량부로 이루어진다.The sidewalk block is based on 100 parts by weight of cement powder, 13 to 20 parts by weight of a photocatalyst composite, 0.1 to 1.2 parts by weight of copper, 400 to 480 parts by weight of aggregate, 10 to 20 parts by weight of admixture, 1 to 5 parts by weight of activated carbon, and 20 parts by weight of water. It consists of ~30 parts by weight.

본 발명의 광촉매는 여러 종류의 광촉매 종류에서 활성 정도는 TiO2(anatase) > TiO2(rutile) > ZnO > ZrO2 > SnO2 > V2O3 의 순서로 이루어져 있으므로 활성도를 판단할 때 이산화티탄이 가장 적합하다고 판단되며, 이산화티탄은 환경에 무해하고 높은 산화력을 갖고 있어 거의 모든 유기물을 산화시키는 특징이 있다. 이는 염소(Cl2)나 오존(O3)보다 높은 산화능력으로 평가되고, 이산화티탄의 산화력은 유기물의 이산화탄소와 물로 분해하는 능력이다. 이러한 능력은 빛을 받아도 자신이 변하지 않아 반영구적으로 사용할 수 있고, 반응 후 2차 환경오염물을 발생시키지 않는다. 이러한 여러 이유로 이산화티탄이 가장 적합하다고 판단되며. 아나테형의 이산화티탄보다 비교적 저렴한 루틸형 이산화티탄을 사용한다.The photocatalyst of the present invention is composed of the order of TiO 2 (anatase)> TiO 2 (rutile)>ZnO> ZrO 2 > SnO 2 > V 2 O 3 in various types of photocatalysts, so when determining the activity, titanium dioxide Titanium dioxide is considered to be the most suitable, and titanium dioxide is harmless to the environment and has a high oxidizing power, so it oxidizes almost all organic matter. This is evaluated as a higher oxidizing ability than chlorine (Cl 2 ) or ozone (O 3 ), and the oxidizing power of titanium dioxide is the ability to decompose organic matter into carbon dioxide and water. This ability does not change itself even when exposed to light, so it can be used semi-permanently, and does not generate secondary environmental pollutants after the reaction. For these reasons, titanium dioxide is considered the most suitable. It uses rutile type titanium dioxide, which is relatively cheaper than anate type titanium dioxide.

이산화티탄은 빛이 닿으면 산소나 물과 반응하여 활성산소를 생성시키고, 광촉매를 도포한 표면은 활성산소의 반응에 의해 표면에 붙은 유기물(VOCs)이나 NOx, SOx, Cl2, NH3 등의 분자를 분해한다. 또한, 이산화티탄 표면에서 빛에너지를 받아 전자가 계속해서 이동하므로 정공이 한 곳에서만 형성되지 않으므로 정공에 의해 생성되는 수산화기와 전자에 의해 생성되는 활성산소 음이온이 표면 여러 곳에 생성되기 때문에 박테리아와의 접촉 가능성이 매우 높아 항균, 살균 및 방취 능력을 가진다.When titanium dioxide is exposed to light, it reacts with oxygen or water to generate active oxygen, and the surface to which the photocatalyst is applied is organic substances (VOCs) or NOx, SOx, Cl 2 and NH 3 attached to the surface by the reaction of the active oxygen. Breaks down molecules In addition, since electrons continue to move by receiving light energy from the surface of titanium dioxide, holes are not formed only in one place, so hydroxyl groups generated by holes and active oxygen anions generated by electrons are generated in several places on the surface, so contact with bacteria It is highly likely to have antibacterial, sterilizing and deodorizing capabilities.

상기 구리는 분말상태로 입자크기는 200~300 메쉬이고, 시멘트 분말은 백색으로 입자크기는 200~300 메쉬인 것을 사용한다.The copper is powdery and has a particle size of 200 to 300 mesh, and cement powder is white and a particle size of 200 to 300 mesh.

상기 구리는 대기중의 바이러스 및 박테리아 등을 사멸시키는 것으로 박테리아의 경우 박테리아가 구리표면에 있는 구리 이온을 필수 영양소로 인식해서 세포 내부로 흡수시키고, 흡수된 구리이온이 세포막에 구멍을 내어 영양분과 수분을 배출시키며, 구리이온은 세포막에 난 구멍을 통해 활성 산소를 끌어당겨 박테리아의 호흡과 대사 작용을 방해하여 DNA를 손상시켜 사멸시킨다.The copper kills viruses and bacteria in the atmosphere.In the case of bacteria, the bacteria recognize the copper ions on the copper surface as essential nutrients and absorb them into the cell, and the absorbed copper ions puncture the cell membrane to make nutrients and moisture. And copper ions attract free radicals through pores in the cell membrane, interfering with the respiration and metabolism of bacteria, damaging DNA and killing them.

상기 활성탄은 g당 1,000㎡ 이상의 매우 큰 비표면적을 가지며, 기공의 크기와 분포가 일정하고 흡착 능력이 뛰어나 대기중의 미세오염 물질을 흡착이 원활하게 이루어지게 한다.The activated carbon has a very large specific surface area of 1,000 m2 or more per gram, and has a uniform pore size and distribution, and excellent adsorption ability, so that micro-pollutants in the air can be adsorbed smoothly.

상기 물의 혼합 범위는 시멘트 분말을 포함한 보차도용 블록 조성물들을 혼합시 적정한 점도를 가지는 범위로 20 중량부 미만이면 점도가 높아 성형이 어려우며, 30 중량부가 초과되면 점도가 약하여 양생 과정이 어려워진다. The mixing range of water is a range having an appropriate viscosity when mixing block compositions including cement powder.If it is less than 20 parts by weight, the viscosity is high and molding is difficult, and if it exceeds 30 parts by weight, the viscosity is weak and the curing process becomes difficult.

상기 골재는 굵은 골재를 이용하되 잔 골재가 추가될 수 있고, 상기 혼화제는 AE제를 사용한다.For the aggregate, a coarse aggregate may be used, but fine aggregate may be added, and an AE agent is used as the admixture.

상기 골재의 굵은 골재는 두게가 14mm ~ 25mm 이고, 잔 골재는 3mm ~ 14mm이며, 상기 혼화제 AE제는 미세한 구상의 독립기포가 균일하게 분포되게 하는 혼화재료의 한 종류로 공기연행제라고도 불린다. AE재는 워커빌리티(workability) 향상, 동결융해저항향상 및 블리딩 감소의 장점을 가지고 있다.The thick aggregate of the aggregate is 14mm to 25mm in thickness, the fine aggregate is 3mm to 14mm, and the admixture AE is a kind of admixture that allows fine spherical closed cells to be uniformly distributed, and is also called an air entraining agent. AE material has the advantages of improving workability, improving freezing and thawing resistance, and reducing bleeding.

상기 이산화티탄은 루틸형으로 입자크기는 20~300nm이고, pH는 6.5~8.5이며, 체적밀도가 1~4 g/㎤ 이며, 산화무기물은 지르코니아(ZrO2) 및 알루미나(Al2O3)가 코팅된다.The titanium dioxide is a rutile type, has a particle size of 20 to 300 nm, a pH of 6.5 to 8.5, a volume density of 1 to 4 g/cm 3, and an oxidized inorganic material is zirconia (ZrO 2 ) and alumina (Al 2 O 3 ). Is coated.

상기 본 발명의 이산화티탄은 일반적으로 사용되는 루틸형의 이산화티탄으로 비표면적은 5 ㎡/g 이상이고, 평균 기공 크기는 50nm이하인 것이 바람직하다.The titanium dioxide of the present invention is a commonly used rutile type titanium dioxide, and it is preferable that the specific surface area is 5 m 2 /g or more, and the average pore size is 50 nm or less.

상기 산화무기물은 가시광 영역에서 광촉매 활성을 증가시켜 밴드 갭을 조절하여 광분해 효율을 향상시킬 수 있는 것으로 이산화티탄 대비 0.001 내지 5중량% 이하로 한다. 상기 범위 이상일 경우에는 가시광 영역의 흡수가 증가할 수 있으나, 광촉매 활성의 저하가 발생될 수 있을 수 있고, 범위 미만일 경우에는 가시광 영역의 흡수가 미미하여 가시광에서 광촉매 반응 효율이 저감된다.The inorganic oxide can increase photocatalytic activity in the visible light region to adjust the band gap to improve photolysis efficiency, and is set to 0.001 to 5% by weight or less compared to titanium dioxide. If it is more than the above range, absorption in the visible light region may increase, but the photocatalytic activity may be deteriorated. If it is less than the above range, absorption in the visible light region is insignificant and the photocatalytic reaction efficiency in visible light is reduced.

상기 산화무기물의 코팅을 형성은 습식 코팅법, 스퍼터링법 또는 증착법을 이용하여 코팅을 형성할 수 있다. 바람직하게는 ALD(atomic layer deposition), CVD(temperature-regulated chemical vapor deposition) 등의 증착법을 이용하고, 더 바람직하게는 TR-CVD(온도 조절식 화학 증착법, temperature-regulated chemical vapor deposition)를 이용하여 산화무기물 코팅을 형성할 수 있다. TR-CVD의 적용 시 산화무기물 양의 조절을 통하여 이산화티탄 상에 증착되는 산화무기물의 양을 용이하게 조절할 수 있고, 광촉매의 제조공정을 단순화시키고 효율적으로 광촉매를 제공할 수 있다.The coating of the inorganic oxide may be formed by using a wet coating method, a sputtering method, or a vapor deposition method. Preferably, a deposition method such as ALD (atomic layer deposition) or CVD (temperature-regulated chemical vapor deposition) is used, and more preferably, a TR-CVD (temperature-regulated chemical vapor deposition method, temperature-regulated chemical vapor deposition) is used. It is possible to form an inorganic oxide coating. When TR-CVD is applied, the amount of inorganic oxide deposited on titanium dioxide can be easily controlled through the control of the amount of inorganic oxide, and the manufacturing process of the photocatalyst can be simplified and the photocatalyst can be efficiently provided.

상기 산화무기물 코팅 형성은 100 ℃ 내지 300 ℃ 온도에서 제1 열처리하는 단계 및 300 ℃ 내지 900 ℃ 온도에서 제2 열처리하고, 각각 1분 내지 20 시간 동안 실시되며, 공기, 20 % 이상; 40 % 이상의 산소를 포함하는 공기 또는 비활성 기체 분위기에서 실시될 수 있다. 상기 제1 열처리는 산화무기물이 산소의 반응에 의해서 산화물로 전환하는 산화물 증착을 위한 어닐링 공정일 수 있다. 상기 제2 열처리하는 단계는, 제1 열처리 단계 이후의 후열 처리단계이며, 탄화물 등과 같은 불순을 제거하여 광촉매의 활성 및 성능을 향상시키는 어닐링 공정일 수 있다.The inorganic oxide coating is formed by performing a first heat treatment at a temperature of 100° C. to 300° C. and a second heat treatment at a temperature of 300° C. to 900° C., each performed for 1 minute to 20 hours, and air, 20% or more; It may be carried out in an air or inert gas atmosphere containing 40% or more oxygen. The first heat treatment may be an annealing process for oxide deposition in which inorganic oxides are converted into oxides by reaction of oxygen. The second heat treatment step may be a post heat treatment step after the first heat treatment step, and may be an annealing process for improving the activity and performance of the photocatalyst by removing impurities such as carbides.

상기 이산화티탄은 추가 화합물이 함유될 수 있으며, 추가 화합물은 인산염, 피로인산염, 트리폴리인산염, 테트라폴리인산염, 메타 인산염 및 울트라 인산염 중 선택된 하나를 이용한다.The titanium dioxide may contain an additional compound, and the additional compound is one selected from phosphate, pyrophosphate, tripolyphosphate, tetrapolyphosphate, metaphosphate, and ultraphosphate.

상기 추가 화합물인 인산염 계열의 추가는 인산염 계열이 불활성 물질이나 광촉매 표면 처리시 광촉매의 활성이 향상되어 실시하는 것으로 상기 선택된 하나를 증류수의 100중량부 기준 5중량부를 용해하고, 이산화티탄을 상기 증류수 100중량부 기준 10중량부를 투입하여 28℃에서 1시간동안 교반하는 과정으로 이산화티탄에 추가 화합물을 함유시킨다.The addition of the phosphate-based additional compound is carried out by improving the activity of the photocatalyst when the phosphate-based is an inert substance or the photocatalyst surface treatment, and the selected one is dissolved in 5 parts by weight based on 100 parts by weight of distilled water, and titanium dioxide is added to the distilled water. An additional compound is contained in titanium dioxide by adding 10 parts by weight based on parts by weight and stirring at 28° C. for 1 hour.

상기 광촉매 복합체 조성물은 인산은을 더 포함할 수 있으며, 인산은의 입자크기는 100~200nm이며, 시멘트 분말 100 중량부를 기준으로 1~15 중량부로 포함한다.The photocatalyst composite composition may further include silver phosphate, and the particle size of silver phosphate is 100 to 200 nm, and is included in an amount of 1 to 15 parts by weight based on 100 parts by weight of cement powder.

인산은(Ag3PO4)은 가시광선 영역에서도 높은 산화력을 발휘하고, 일반적인 실내에서 사용되는 광원에서도 촉매 활성 반응을 보이는 장점이 있다.Silver phosphate (Ag 3 PO 4 ) has the advantage of exhibiting a high oxidizing power even in the visible light region and exhibiting a catalytic activity reaction even in a light source used in a general room.

상기 인산은은 질산은(AgNO3)이나 염화은(AgCl)과 같은 은 이온을 함유하는 염을 인산(H3PO4), 또는 포스페이트(PO4 3-), 모노하이드젠포스페이트(HPO4 2 -), 또는 디하이드로젠포스페이트(H2PO4 -)과 같은 인산 이온을 함유하는 염과 이온교환 반응시켜 제조한다.The phosphate is a silver nitrate (AgNO 3) or silver chloride (AgCl) is a salt containing an ion-phosphoric acid (H 3 PO 4), such as, or phosphate (PO 4 3-), mono-hydroxy Zen phosphate (HPO 4 2 -) , or dihydrogen phosphate (H 2 PO 4 -) prepared by salt exchange reaction with ion containing phosphate ions, such as.

상기 인산은의 입자크기는 100nm이하일 경우에는 은 이온의 빠른 환원에 따른 급격한 효율이 감소되고, 200nm 이상일 경우에는 비표면적이 작아져 오염물질과의 접촉 및 흡착이 어려워져 효율이 감소된다.When the particle size of the silver phosphate is 100 nm or less, the rapid efficiency decreases due to the rapid reduction of silver ions, and when the particle size of the silver phosphate is 200 nm or more, the specific surface area is small, making contact and adsorption with contaminants difficult, resulting in reduced efficiency.

상기 보차도용 블록은 분쇄된 광물이 더 추가 될 수 있으며, 상기 광물은 맥반석, 제올라이트, 일라이트, 벤토나이트, 세리사이트, 각섬석, 납석, 활석, 장석, 백토, 흑연, 황토 및 화산암 중 선택된 하나 이상을 포함할 수 있다.The crushed mineral may be further added to the block for the sidewalk, and the mineral includes at least one selected from elvanite, zeolite, illite, bentonite, sericite, amphibole, pyrophyllite, talc, feldspar, clay, graphite, ocher and volcanic rock. Can include.

상기 분쇄된 광물은 인체에 이로운 원적외선 및 음이온이 발생되며, 상기 분쇄된 광물이 표층에 더 추가시 보차도용 블록의 조성물의 혼합물의 100 중량부 기준 10~20 중량부로 혼합된다.The pulverized mineral generates far-infrared rays and negative ions that are beneficial to the human body, and when the pulverized mineral is further added to the surface layer, the pulverized mineral is mixed in 10 to 20 parts by weight based on 100 parts by weight of the mixture of the composition of the roadway block.

본 발명의 일면에 있어서,In one aspect of the present invention,

a) 산화무기물을 이산화티탄에 코팅하여 광촉매 복합체를 준비하는 준비단계(S10);a) a preparation step (S10) of preparing a photocatalytic composite by coating an oxidized inorganic substance on titanium dioxide;

b) 시멘트 분말 100 중량부를 기준으로 상기 준비단계에서 준비된 광촉매 복합체 13~20 중량부, 구리 분말 0.1~1.2 중량부, 골재 400~480 중량부, 혼화재10~20 중량부, 활성탄 1~5 중량부 및 물 20~30 중량부을 혼합하는 교반단계(S20);b) 13 to 20 parts by weight of the photocatalyst composite prepared in the above preparation step based on 100 parts by weight of cement powder, 0.1 to 1.2 parts by weight of copper powder, 400 to 480 parts by weight of aggregate, 10 to 20 parts by weight of admixture, 1 to 5 parts by weight of activated carbon And a stirring step of mixing 20 to 30 parts by weight of water (S20);

c) 상기 교반된 혼합물을 성형틀에 투입하고 압출 성형하는 성형단계(S30);c) a molding step (S30) of injecting the stirred mixture into a molding mold and extruding;

d) 상기 성형단계 후 성형된 성형물을 양생시키는 양생단계(S40);로 이루어진다.d) a curing step (S40) of curing the molded product after the molding step.

상기 교반단계(S20)는 3~25mm 크기의 굵은 골재 및 잔골재를 계량하고, 시멘트 분말, 광촉매 복합체, 구리 분말, 혼화재, 활성탄 및 물을 혼합하는 과정이며, 상기 성형단계(S30)는 성형틀에 교반단계에서 혼합된 혼합물을 투입하고, 진동 가압시켜 성형하는 과정이다.The stirring step (S20) is a process of weighing coarse aggregates and fine aggregates of 3 to 25 mm size, and mixing cement powder, photocatalyst composite, copper powder, admixture, activated carbon and water, and the molding step (S30) is performed on a molding mold. In the stirring step, the mixed mixture is added, and the mixture is subjected to vibration and pressure to form.

상기 준비단계(S10)에서 이산화티탄에 산화무기물의 코팅은 지르코니아(ZrO2) 및 알루미나(Al2O3)의 산화무기물을 이산화티탄 외면에 코팅시키는 것으로 100 ℃ 내지 300 ℃ 온도에서 제1 열처리하고, 300 ℃ 내지 900 ℃ 온도에서 제2 열처리로 실시된다.In the preparation step (S10), the coating of an oxidized inorganic material on the titanium dioxide is by coating an oxidized inorganic material of zirconia (ZrO 2 ) and alumina (Al 2 O 3 ) on the outer surface of titanium dioxide. , 300 ℃ to 900 ℃ temperature is carried out by the second heat treatment.

상기 교반단계(S20)는 시멘트 분말 100 중량부를 기준으로 이산화티탄 13~20 중량부, 구리 0.1~1.2 중량부, 골재 400~480 중량부, 혼화재 10~20 중량부, 활성탄 1~5 중량부 및 물 20~30 중량부로 이루어진다.The stirring step (S20) is based on 100 parts by weight of cement powder, 13 to 20 parts by weight of titanium dioxide, 0.1 to 1.2 parts by weight of copper, 400 to 480 parts by weight of aggregate, 10 to 20 parts by weight of admixture, 1 to 5 parts by weight of activated carbon, and It consists of 20 to 30 parts by weight of water.

상기 준비단계(S10)는 광촉매 복합체에서 이산화티탄에는 추가 화합물로 인산염, 피로인산염, 트리폴리인산염, 테트라폴리인산염, 메타 인산염 및 울트라 인산염 중 선택된 하나를 포함하거나 광촉매 복합체에 인산은을 더 포함할 수 있다.The preparation step (S10) may include one selected from phosphate, pyrophosphate, tripolyphosphate, tetrapolyphosphate, metaphosphate, and ultraphosphate as an additional compound to titanium dioxide in the photocatalyst complex, or may further include silver phosphate in the photocatalyst complex. .

상기 양생단계(S40)는 성형물을 양생실에서 양생시키고, 양생실 최고 온도를 65℃이하로 실시된다.In the curing step (S40), the molded article is cured in a curing chamber, and the maximum temperature in the curing chamber is lowered to 65°C.

상기 양생단계(S40)는 55℃에서 10시간 동안 실시하는 것이 바람직하며, 양생 후 블록 제품의 이상이 없는지 눈으로 검사하고, 24시간동안 물속에 침수시킨 뒤 휨 강도 테스트를 실시한다.The curing step (S40) is preferably carried out at 55°C for 10 hours, and after curing, the block product is visually inspected for abnormalities, and after being immersed in water for 24 hours, a flexural strength test is performed.

실시예1 : 지르코니아 및 알루미나 코팅 이산화티탄을 포함하는 광촉매 복합체 제조Example 1: Preparation of photocatalytic composite containing zirconia and alumina coated titanium dioxide

스테인레스강으로 이루어진 반응기와 반응기 외면에 가열수단이 구비된 반응기를 이용하여 온도조절식 화학 증착법(TR-CVD)으로 루틸형 이산화티탄에 지르코니아와 알루미나를 코팅하였다.Zirconia and alumina were coated on rutile-type titanium dioxide by a temperature-controlled chemical vapor deposition (TR-CVD) method using a stainless steel reactor and a reactor equipped with a heating means on the outer surface of the reactor.

구체적으로는 상기 반응기에 지르코니아와 알루미나를 석영재질의 용기에 담아 투입하고, 반응기 하부면 중앙에 이산화티탄을 스테인레스 메쉬망으로 이루어진 용기에 넣어 투입한 뒤 반응기의 온도를 60℃에서 2시간동안 증착공정을 실시하고, 200℃에서 12시간동안 증착공정을 실시하여 제조하였다.Specifically, zirconia and alumina are put into the reactor in a container made of quartz, and titanium dioxide at the center of the lower surface of the reactor is put into a container made of stainless mesh, and then the temperature of the reactor is increased at 60°C for 2 hours. Then, it was prepared by performing a deposition process at 200° C. for 12 hours.

실시예2 : 이산화티탄 및 백색 시멘트 혼합Example 2: Mixing of titanium dioxide and white cement

상기 실시예 1에서 제조된 이산화티탄 150g을 백색 시멘트 1kg에 혼합하고 물을 배합하여 경화시킨 시료를 제조하였다.150 g of titanium dioxide prepared in Example 1 was mixed with 1 kg of white cement, and water was added to prepare a cured sample.

실시예3 : 이산화티탄, 백색 시멘트 및 구리 혼합Example 3: Mixing of titanium dioxide, white cement and copper

이산화티탄 20 중량부, 백색 시멘트 100 중량부 및 물 80 중량부와 구리 각 0(실시예 1), 0.1, 0.2, 1.2 중량부를 포함하여 혼합 후 경화된 시료를 제조하였다.A cured sample was prepared after mixing 20 parts by weight of titanium dioxide, 100 parts by weight of white cement, 80 parts by weight of water, and each of 0 (Example 1), 0.1, 0.2, and 1.2 parts by weight of copper.

시험예1 : 지르코니아 및 알루미나 코팅 이산화티탄의 질소산화물 제거Test Example 1: Removal of nitrogen oxides of zirconia and alumina coated titanium dioxide

상기 실시예 1에서 지르코니아 및 알루미나가 코팅된 이산화티탄과 이산화티탄으로만 이루어진 시료에 가시광을 조사하여 질소산화물로의 제거를 알아보았으며, 도 1과 같은 결과를 나타내었다. 도 1을 살펴보면 실시예 1에서 제조된 시료는 가시광을 켠 후 반응기를 통과하는 공기중의 1ppm 농도의 일산화질소(NO) 기체가 이산화질소(NO2) 기체로 전환되거나 질산이온(NO3 -)로 완전히 산화되고 표면에 흡착되어 제거되는 활성을 측정하였다.In Example 1, a sample composed of only titanium dioxide and titanium dioxide coated with zirconia and alumina was irradiated with visible light to examine the removal of nitrogen oxides, and the results as shown in FIG. 1 were shown. FIG. Looking at the first embodiment the sample prepared in 1, or a nitrogen monoxide (NO) gas of 1ppm concentration in the air passing through the after turning on the visible light, the reactor converted to nitrogen dioxide (NO 2) gas nitrate - a (NO 3) The activity to be completely oxidized and adsorbed to and removed from the surface was measured.

한편, 이산화티탄만 있는 경우에는 약 2%의 일산화질소 기체가 이산화질소로 전화되었으며, 질산이온으로 완전히 제거되는 활성은 없었다.On the other hand, in the case of only titanium dioxide, about 2% of nitrogen monoxide gas was converted into nitrogen dioxide, and there was no activity to be completely removed by nitrate ions.

시험예2 : 이산화티탄 및 백색 시멘트의 질소산화물 제거Test Example 2: Removal of nitrogen oxides from titanium dioxide and white cement

상기 실시예 2에서 제조된 시료에 가시광을 조사하여 질소산화물로의 제거를 알아보았으며, 도 1과 같은 결과를 나타내었다. 도 1을 살펴보면 광반응 초기 약 40%의 일산화질소 기체가 제거되며, 제거된 일산화질소 중 질산이온으로 완전히 제거되는 선택성이 80%가 넘었다.The sample prepared in Example 2 was irradiated with visible light to determine the removal of nitrogen oxides, and the same results as in FIG. 1 were shown. Referring to FIG. 1, about 40% of nitrogen monoxide gas is removed at the initial stage of the photoreaction, and the selectivity to be completely removed by nitrate ions among the removed nitrogen monoxide exceeds 80%.

시험예3 : 이산화티탄, 백색 시멘트 및 구리 혼합물의 질소산화물 제거Test Example 3: Removal of nitrogen oxides from a mixture of titanium dioxide, white cement and copper

상기 실시예 3에서 제조된 시료들에 가시광을 조사하여 질소산화물로의 제거를 알아보았으며, 도 1과 같은 결과를 나타내었다. 상기 도 1을 살펴보면 구리 분말이 첨가될 경우 특히 0.2 및 1.2 중량부가 첨가되었을 때 질소산화물로 제거는 95.5% 이상 이루어지는 것을 나타내었다. 따라서 구리 분말을 첨가할 경우 일산화질소의 제거량은 감소하였지만 이산화질소 대비 질소이온으로의 제거 선택성이 증가됨을 알 수 있다.The samples prepared in Example 3 were irradiated with visible light to determine the removal of nitrogen oxides, and the results as shown in FIG. 1 were shown. Referring to FIG. 1, when copper powder is added, especially when 0.2 and 1.2 parts by weight are added, the removal of nitrogen oxide is 95.5% or more. Therefore, when the copper powder was added, the amount of nitrogen monoxide removed was decreased, but it can be seen that the removal selectivity to nitrogen ions was increased compared to nitrogen dioxide.

추가의 일면에 있어서,In a further aspect,

상기 지르코니아 및 알루미나가 코팅된 이산화티탄이외에 카본 질화물(g-C3N4(Graphitic carbon nitride))이 코팅된 이산화티탄이 더 혼합될 수 있다.In addition to titanium dioxide coated with zirconia and alumina, titanium dioxide coated with carbon nitride (gC 3 N 4 (Graphitic carbon nitride)) may be further mixed.

상기 카본 질화물은 가격이 저렴하고, 독성이 적으며, 금속이 포함되지 않은 것으로 밴드 갭 에너지가 2.7eV로, 자외선과 가시광선 영역 모두에서 활성이 가능하다.The carbon nitride is inexpensive, has low toxicity, does not contain metal, has a band gap energy of 2.7 eV, and can be activated in both ultraviolet and visible light regions.

상기 이산화티탄에 카본 질화물의 코팅은 먼저 멜라민(Melamine)과 우레아(Urea)를 각각 정량하고, 붕산(Boric acid)과 염화세슘(Cesium chloride)을 증류수에 첨가하여 반응기에 넣어 1시간동안 혼합하고, 온도를 70℃정도로 유지하며 다시 1시간 동안 혼합하며, 혼합된 용액을 코니칼튜브에 나누어 담아 원심분리를 하고, 액체를 제거한 후 건조기에서 18시간 이상 충분히 건조시켜 준다. 건조된 파우더를 미세입자로 분쇄한 후 뚜껑을 덮고 500℃에서 3시간, 550℃에서 3시간을 소성시킨 뒤 500℃에서 2시간 더 소성시켜 카본 질화물의 가시광선 하에서 활성화 될수 있도록 합성을 진행한다. 상기 활성화된 카본 질화물을 온도조절식 화학 증착법(TR-CVD)으로 루틸형 이산화티탄 외면에 코팅하는 과정으로 카본 질화물이 코팅된 이산화티탄을 제조한다.In the coating of carbon nitride on the titanium dioxide, first, melamine and urea were quantified, respectively, boric acid and cesium chloride were added to distilled water, put in a reactor, and mixed for 1 hour, Maintain the temperature at about 70℃ and mix for 1 hour again. Centrifuge the mixed solution by dividing it into a conical tube, remove the liquid, and dry it sufficiently in a dryer for 18 hours or more. After pulverizing the dried powder into fine particles, cover the lid and fire at 500℃ for 3 hours and at 550℃ for 3 hours, and then fire at 500℃ for 2 more hours, so that the carbon nitride can be activated under visible light. The activated carbon nitride is coated on the outer surface of rutile type titanium dioxide by a temperature controlled chemical vapor deposition method (TR-CVD) to prepare titanium dioxide coated with carbon nitride.

이상과 같이 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었지만, 본 발명은 이것에 의해 한정되지 않으며, 본 발명이 속하는 기술은 발명의 기술 사상과 아래에 기재될 특허청구범위의 균등 범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.As described above, although the present invention has been described by limited embodiments and drawings, the present invention is not limited thereto, and the technology to which the present invention pertains is within the scope of equality of the technical spirit of the invention and the claims to be described below. Of course, various modifications and variations are possible.

Claims (13)

시멘트 분말 100 중량부를 기준으로 산화무기물이 코팅된 이산화티탄으로 이루어진 광촉매 복합체 13~20 중량부, 구리 0.1~1.2 중량부, 두께가 14~25㎜인 굵은 골재와 두께가 3~14㎜인 잔 골재로 이루어진 골재 400~480중량부, 혼화재인 AE제 10~20 중량부, 활성탄 1~5 중량부, 물 20~30 중량부, 입자 크기가 100~200nm인 인산은 1~15 중량부 및 잔부인 분쇄된 광물을 포함하여 이루어지고,
상기 이산화티탄은 루틸형으로 입자크기는 20~300nm이고, pH는 6.5~8.5이며, 체적밀도가 1~4 g/㎤ 이며, 산화무기물은 지르코니아(ZrO2) 및 알루미나(Al2O3)가 코팅된 것이고,
상기 이산화티탄은 인산염, 피로인산염, 트리폴리인산염, 테트라폴리인산염, 메타 인산염 및 울트라 인산염 중에서 선택된 어느 하나의 추가 화합물이 함유되며,
상기 구리는 분말상태로 입자크기는 200~300 메쉬이고, 시멘트 분말은 백색으로서 입자크기는 200~300 메쉬이며,
상기 광물은 맥반석, 일라이트, 벤토나이트, 세리사이트, 각섬석, 납석, 활석, 장석, 백토, 흑연, 황토 및 화산암 중 선택된 하나 이상을 포함하는 것을 특징으로 하는 이산화티탄으로 이루어진 광촉매 복합체가 포함된 보차도용 블록.
Based on 100 parts by weight of cement powder, 13 to 20 parts by weight of a photocatalyst composite composed of titanium dioxide coated with inorganic oxides, 0.1 to 1.2 parts by weight of copper, a coarse aggregate with a thickness of 14 to 25 mm, and a fine aggregate with a thickness of 3 to 14 mm 400 to 480 parts by weight of aggregate, 10 to 20 parts by weight of AE agent, 1 to 5 parts by weight of activated carbon, 20 to 30 parts by weight of water, 1 to 15 parts by weight of phosphoric acid having a particle size of 100 to 200 nm, and the balance Consisting of crushed minerals,
The titanium dioxide is a rutile type, has a particle size of 20 to 300 nm, a pH of 6.5 to 8.5, a volume density of 1 to 4 g/cm 3, and an oxidized inorganic material is zirconia (ZrO 2 ) and alumina (Al 2 O 3 ). Coated,
The titanium dioxide contains any one additional compound selected from phosphate, pyrophosphate, tripolyphosphate, tetrapolyphosphate, metaphosphate and ultraphosphate,
The copper is in a powder state and the particle size is 200 to 300 mesh, the cement powder is white and the particle size is 200 to 300 mesh,
The mineral includes one or more selected from elvanite, illite, bentonite, sericite, amphibole, pyrophyllite, talc, feldspar, clay, graphite, loess, and volcanic rock. block.
삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 청구항 1의 이산화티탄으로 이루어진 광촉매 복합체가 포함된 보차도용 블록 제조방법에 있어서,
a) 산화무기물을 인산염, 피로인산염, 트리폴리인산염, 테트라폴리인산염, 메타 인산염 및 울트라 인산염 중에서 선택된 어느 하나의 추가 화합물을 포함하는 이산화티탄에 코팅하여 인산은이 포함된 광촉매 복합체를 준비하는 준비단계;
b) 시멘트 분말 100 중량부를 기준으로 상기 준비단계에서 준비된 광촉매 복합체 13~20 중량부, 구리 분말 0.1~1.2 중량부, 골재 400~480 중량부, 혼화재 10~20 중량부, 활성탄 1~5 중량부 및 물 20~30 중량부을 혼합하는 교반단계;
c) 상기 교반된 혼합물을 성형틀에 투입하고 압출 성형하는 성형단계; 및
d) 상기 성형단계 후 성형된 성형물을 양생시키는 양생단계;로 이루어지고,
상기 준비단계에서 이산화티탄에 산화무기물의 코팅은 지르코니아(ZrO2) 및 알루미나(Al2O3)의 산화무기물을 이산화티탄 외면에 코팅시키는 것으로 100 ℃ 내지 300 ℃ 온도에서 제1 열처리하고, 300 ℃ 내지 900 ℃ 온도에서 제2 열처리로 실시되며,
상기 교반단계는 시멘트 분말 100 중량부를 기준으로 이산화티탄 13~20 중량부, 구리 0.1~1.2 중량부, 골재 400~480 중량부, 혼화재 10~20 중량부, 활성탄 1~5 중량부 및 물 20~30 중량부로 이루어지고,
상기 양생단계는 성형물을 양생실에서 양생시키고, 양생실 최고 온도를 65℃이하로 실시되는 것을 특징으로 하는 이산화티탄으로 이루어진 광촉매 복합체가 포함된 보차도용 블록 제조방법.
In the method of manufacturing a block for roadways including a photocatalytic composite made of titanium dioxide of claim 1,
a) a preparation step of preparing a photocatalytic composite containing silver phosphate by coating an oxidized inorganic substance on titanium dioxide containing any one additional compound selected from phosphate, pyrophosphate, tripolyphosphate, tetrapolyphosphate, metaphosphate, and ultraphosphate;
b) 13 to 20 parts by weight of the photocatalyst composite prepared in the above preparation step based on 100 parts by weight of cement powder, 0.1 to 1.2 parts by weight of copper powder, 400 to 480 parts by weight of aggregate, 10 to 20 parts by weight of admixture, 1 to 5 parts by weight of activated carbon And a stirring step of mixing 20 to 30 parts by weight of water.
c) a molding step of injecting the stirred mixture into a molding mold and extruding; And
d) a curing step of curing the molded article after the forming step; and
In the preparation step, the coating of an oxidized inorganic material on titanium dioxide is a coating of an oxidized inorganic material of zirconia (ZrO 2 ) and alumina (Al 2 O 3 ) on the outer surface of titanium dioxide, followed by a first heat treatment at a temperature of 100° C. to 300° C., and 300° C. It is carried out by the second heat treatment at a temperature of 900 ℃
The stirring step is based on 100 parts by weight of cement powder, 13 to 20 parts by weight of titanium dioxide, 0.1 to 1.2 parts by weight of copper, 400 to 480 parts by weight of aggregate, 10 to 20 parts by weight of admixture, 1 to 5 parts by weight of activated carbon, and 20 to water. It consists of 30 parts by weight,
In the curing step, the molded article is cured in a curing chamber, and the maximum temperature of the curing chamber is performed at 65° C. or less.
삭제delete 삭제delete 삭제delete 삭제delete
KR1020200169305A 2020-12-07 2020-12-07 Block for sideealk roadway including photocatalytic composite made of titanium dioxide and manufacturing method KR102246108B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200169305A KR102246108B1 (en) 2020-12-07 2020-12-07 Block for sideealk roadway including photocatalytic composite made of titanium dioxide and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200169305A KR102246108B1 (en) 2020-12-07 2020-12-07 Block for sideealk roadway including photocatalytic composite made of titanium dioxide and manufacturing method

Publications (1)

Publication Number Publication Date
KR102246108B1 true KR102246108B1 (en) 2021-05-06

Family

ID=75915797

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200169305A KR102246108B1 (en) 2020-12-07 2020-12-07 Block for sideealk roadway including photocatalytic composite made of titanium dioxide and manufacturing method

Country Status (1)

Country Link
KR (1) KR102246108B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113712046A (en) * 2021-05-26 2021-11-30 北京崇高纳米科技有限公司 Organic-inorganic compound for long-acting protection of microorganisms and preparation method thereof
CN115646475A (en) * 2022-10-08 2023-01-31 东南大学 Secondary load type photocatalytic cement-based material and preparation method thereof
CN115646475B (en) * 2022-10-08 2024-04-30 东南大学 Secondary supported photocatalytic cement-based material and preparation method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1046512A (en) * 1996-08-06 1998-02-17 Mitsubishi Materials Corp Nox purifying block for pavement
JPH11171630A (en) * 1997-12-15 1999-06-29 Mitsubishi Materials Corp Cement product for air purification
JP2001269573A (en) * 2000-03-24 2001-10-02 Titan Kogyo Kk Photocatalyst particles, method for manufacturing the same and use of photocatalyst particles
KR20040039431A (en) * 2001-09-27 2004-05-10 도꾸리쯔교세이호진 상교기쥬쯔 소고겡뀨죠 Cleaning agent, antibacterial material, environment clarifying material, functional adsorbent
KR20040066180A (en) * 2001-12-21 2004-07-23 쇼와 덴코 가부시키가이샤 High Active Photocatalyst Particle, Method For Production Thereof And Use Thereof
KR101371378B1 (en) 2013-02-18 2014-03-12 (주)청원산업 Boundary sidewalk and driveway block, and its manufacturing method
KR20150101151A (en) * 2014-02-26 2015-09-03 엘지전자 주식회사 Coating composition comprising photocatalyst for visible rays and articles comprising same
KR101960886B1 (en) 2018-11-07 2019-03-21 주식회사 데코페이브 Manufacturing method of road block for reduction of fine dust and purifying of air pollution
KR102177170B1 (en) * 2020-03-25 2020-11-11 한림로덱스(주) Heat resistant paving block for pedestrians and vehicles having improved durability and resistance against atmospheric pollution

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1046512A (en) * 1996-08-06 1998-02-17 Mitsubishi Materials Corp Nox purifying block for pavement
JPH11171630A (en) * 1997-12-15 1999-06-29 Mitsubishi Materials Corp Cement product for air purification
JP2001269573A (en) * 2000-03-24 2001-10-02 Titan Kogyo Kk Photocatalyst particles, method for manufacturing the same and use of photocatalyst particles
KR20040039431A (en) * 2001-09-27 2004-05-10 도꾸리쯔교세이호진 상교기쥬쯔 소고겡뀨죠 Cleaning agent, antibacterial material, environment clarifying material, functional adsorbent
KR20040066180A (en) * 2001-12-21 2004-07-23 쇼와 덴코 가부시키가이샤 High Active Photocatalyst Particle, Method For Production Thereof And Use Thereof
KR101371378B1 (en) 2013-02-18 2014-03-12 (주)청원산업 Boundary sidewalk and driveway block, and its manufacturing method
KR20150101151A (en) * 2014-02-26 2015-09-03 엘지전자 주식회사 Coating composition comprising photocatalyst for visible rays and articles comprising same
KR101960886B1 (en) 2018-11-07 2019-03-21 주식회사 데코페이브 Manufacturing method of road block for reduction of fine dust and purifying of air pollution
KR102177170B1 (en) * 2020-03-25 2020-11-11 한림로덱스(주) Heat resistant paving block for pedestrians and vehicles having improved durability and resistance against atmospheric pollution

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113712046A (en) * 2021-05-26 2021-11-30 北京崇高纳米科技有限公司 Organic-inorganic compound for long-acting protection of microorganisms and preparation method thereof
CN113712046B (en) * 2021-05-26 2023-10-24 北京崇高纳米科技有限公司 Organic-inorganic compound capable of protecting microorganisms for long time and preparation method thereof
CN115646475A (en) * 2022-10-08 2023-01-31 东南大学 Secondary load type photocatalytic cement-based material and preparation method thereof
CN115646475B (en) * 2022-10-08 2024-04-30 东南大学 Secondary supported photocatalytic cement-based material and preparation method thereof

Similar Documents

Publication Publication Date Title
Pacheco-Torgal et al. Nanotechnology: Advantages and drawbacks in the field of construction and building materials
KR101022413B1 (en) The functionalconcrete block purficating the air and water
Ohama et al. Application of titanium dioxide photocatalysis to construction materials: state-of-the-art report of the RILEM Technical Committee 194-TDP
US9724672B2 (en) Process for the preparation of an additive comprising supported and dispersed TiO2 particles
US20090047503A1 (en) Wall and Floor Tiles and Slabs Consisting of Agglomerated Stone with Photocatalytic Properties
Wang et al. The hierarchical porous structure of substrate enhanced photocatalytic activity of TiO2/cementitious materials
Chen et al. Effect of composite photo-catalysts prepared with recycled clay brick sands and nano-TiO2 on methyl orange and NOx removal
Wang et al. BiOBr@ SiO2 flower-like nanospheres chemically-bonded on cement-based materials for photocatalysis
Singh et al. Remediation of noxious pollutants using nano-titania-based photocatalytic construction materials: a review
KR102246108B1 (en) Block for sideealk roadway including photocatalytic composite made of titanium dioxide and manufacturing method
KR102278891B1 (en) Terrazzo tile with photocatalytic complex consisting of titanium dioxide
KR102266706B1 (en) Photocatalytic composite composition containing titanium dioxide
Han et al. Photocatalytic concrete
KR101074770B1 (en) The functional concrete block for side walk using recycling material
Saini et al. Formulation and evaluation of surface-fluorinated microsized-TiO2 based self-cleaning cement: Characterization, self-cleaning, depollution and antimicrobial study
KR20130083519A (en) Water premable concrete composition having photolysis and adsorption for removing nonpoint pollution and preparation of concrete using the same
KR101637454B1 (en) Composition for impregnant of concrete and concrete rod construction method using the same thing
KR20050010820A (en) Method for producing composite ceramic material
KR20050093048A (en) The deconstipating suppository composition which improves the interior air quality with volatile organic harmony scandal removal of the residence which applies the natural mineral and the house of common and the manufacturing method.
Ansari et al. Efficiency Assessment of TiO2-Based Photocatalytic Concrete for Clean and Sustainable Construction: A State-of-the-Art Review
KR101047284B1 (en) The functional colorascon pavement that was coated with a composition of photocatalyst on colorascon pavement
JPH11263660A (en) Cement composition for shotcrete
KR20100042946A (en) The exterior and interior materials and manufacture method thereof of clay using the titanium dioxide photocatalyst coated apatite on the surface
Castro-Hoyos et al. MA; Maury-Ramírez, A. Challenges and Opportunities of Using Titanium Dioxide Photocatalysis on Cement-Based Materials. Coatings 2022, 12, 968
KR20020058946A (en) Environmental affinitive building materials immobilized titanium oxide having nitrogen oxides decomposition capability

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant