KR102243599B1 - 연료 및 윤활제에 대한 폴리카르복실산-기재 첨가제 - Google Patents

연료 및 윤활제에 대한 폴리카르복실산-기재 첨가제 Download PDF

Info

Publication number
KR102243599B1
KR102243599B1 KR1020167023757A KR20167023757A KR102243599B1 KR 102243599 B1 KR102243599 B1 KR 102243599B1 KR 1020167023757 A KR1020167023757 A KR 1020167023757A KR 20167023757 A KR20167023757 A KR 20167023757A KR 102243599 B1 KR102243599 B1 KR 102243599B1
Authority
KR
South Korea
Prior art keywords
copolymer
olefin
carboxylic acid
polymerizable
acid
Prior art date
Application number
KR1020167023757A
Other languages
English (en)
Other versions
KR20160114686A (ko
Inventor
막심 페레톨친
하랄트 뵌케
볼프강 그라바르제
루드비히 푈켈
루드비히 ?O켈
마르쿠스 한쉬
귄터 외터
아론 플로레스-피게로아
클라우스 뮐바흐
카스트로 이페테 가르시아
Original Assignee
바스프 에스이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 바스프 에스이 filed Critical 바스프 에스이
Priority to KR1020217011442A priority Critical patent/KR102380302B1/ko
Publication of KR20160114686A publication Critical patent/KR20160114686A/ko
Application granted granted Critical
Publication of KR102243599B1 publication Critical patent/KR102243599B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/12Hydrolysis
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/44Preparation of metal salts or ammonium salts
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/143Organic compounds mixtures of organic macromolecular compounds with organic non-macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/195Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/196Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and a carboxyl group or salts, anhydrides or esters thereof homo- or copolymers of compounds having one or more unsaturated aliphatic radicals each having one carbon bond to carbon double bond, and at least one being terminated by a carboxyl radical or of salts, anhydrides or esters thereof
    • C10L1/1966Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and a carboxyl group or salts, anhydrides or esters thereof homo- or copolymers of compounds having one or more unsaturated aliphatic radicals each having one carbon bond to carbon double bond, and at least one being terminated by a carboxyl radical or of salts, anhydrides or esters thereof poly-carboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/221Organic compounds containing nitrogen compounds of uncertain formula; reaction products where mixtures of compounds are obtained
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • C10L1/236Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derivatives thereof
    • C10L1/2366Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derivatives thereof homo- or copolymers derived from unsaturated compounds containing amine groups
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/04Use of additives to fuels or fires for particular purposes for minimising corrosion or incrustation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/06Use of additives to fuels or fires for particular purposes for facilitating soot removal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/18Use of additives to fuels or fires for particular purposes use of detergents or dispersants for purposes not provided for in groups C10L10/02 - C10L10/16
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/04Anhydrides, e.g. cyclic anhydrides
    • C08F222/06Maleic anhydride
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/222Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
    • C10L1/224Amides; Imides carboxylic acid amides, imides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/02Inorganic or organic compounds containing atoms other than C, H or O, e.g. organic compounds containing heteroatoms or metal organic complexes
    • C10L2200/0204Metals or alloys
    • C10L2200/0209Group I metals: Li, Na, K, Rb, Cs, Fr, Cu, Ag, Au
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/02Inorganic or organic compounds containing atoms other than C, H or O, e.g. organic compounds containing heteroatoms or metal organic complexes
    • C10L2200/0204Metals or alloys
    • C10L2200/0213Group II metals: Be, Mg, Ca, Sr, Ba, Ra, Zn, Cd, Hg
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/02Inorganic or organic compounds containing atoms other than C, H or O, e.g. organic compounds containing heteroatoms or metal organic complexes
    • C10L2200/0259Nitrogen containing compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0407Specifically defined hydrocarbon fractions as obtained from, e.g. a distillation column
    • C10L2200/0438Middle or heavy distillates, heating oil, gasoil, marine fuels, residua
    • C10L2200/0446Diesel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2230/00Function and purpose of a components of a fuel or the composition as a whole
    • C10L2230/22Function and purpose of a components of a fuel or the composition as a whole for improving fuel economy or fuel efficiency
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2250/00Structural features of fuel components or fuel compositions, either in solid, liquid or gaseous state
    • C10L2250/04Additive or component is a polymer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Emergency Medicine (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Lubricants (AREA)

Abstract

본 발명은 적어도 하나의 유리 카르복실산 측면 기를 포함하는 공중합체인 올레핀/카르복실산 공중합체, 또는 적어도 하나의 유리 카르복실산 측면 기를 포함하는 공중합체인 올레핀/카르복실산 공중합체의 존재 하에 에폭시드로 4 차화된 질소 화합물의, 연료 첨가제 또는 윤활제 첨가제로서의 용도에 관한 것이다. 본 발명은 추가로 상기 종류의 첨가제의 제조 방법, 및 이러한 첨가제가 첨가된 연료 및 윤활제, 예컨대, 더욱 특히, 연료 시스템 및 특히 직접 분사 디젤 엔진의 분사 시스템, 특히 커먼 레일 분사 시스템 내의 침전물의 감소 또는 방지를 위한, 직접 분사 디젤 엔진, 특히 커먼 레일 분사 시스템을 가진 디젤 엔진의 연료 소모의 감소를 위한, 및 직접 분사 디젤 엔진, 특히 커먼 레일 분사 시스템을 가진 디젤 엔진의 동력 손실의 최소화를 위한 청정제 첨가제로서의 용도; 및 특히 DISI 엔진의 작동을 위한, 가솔린 연료에 대한 첨가제로서의 용도에 관한 것이다.

Description

연료 및 윤활제에 대한 폴리카르복실산-기재 첨가제 {POLYCARBOXYLIC-ACID-BASED ADDITIVES FOR FUELS AND LUBRICANTS}
본 발명은 적어도 하나의 유리 카르복실산 측면 기를 포함하는 공중합체인 올레핀-카르복실산 공중합체, 또는 적어도 하나의 유리 카르복실산 측면 기를 포함하는 공중합체인 올레핀-카르복실산 공중합체의 존재 하에 에폭시드로 4 차화된 질소 화합물의, 연료 첨가제 또는 윤활제 첨가제로서의 용도; 상기 종류의 첨가제의 제조 방법, 및 이것이 첨가된 연료 및 윤활제; 예컨대, 더욱 특히, 연료 시스템 및 특히 직접 분사 디젤 엔진의 분사 시스템, 특히 커먼 레일 분사 시스템 내의 침전물의 감소 또는 방지를 위한, 직접 분사 디젤 엔진, 특히 커먼 레일 분사 시스템을 가진 디젤 엔진의 연료 소모의 감소를 위한, 및 직접 분사 디젤 엔진, 특히 커먼 레일 분사 시스템을 가진 디젤 엔진의 동력 손실의 최소화를 위한 청정제 첨가제로서의 용도; 및 특히 DISI 엔진의 작동을 위한, 가솔린 연료에 대한 첨가제로서의 용도에 관한 것이다.
직접 분사 디젤 엔진에서, 연료는 통상의 (챔버) 디젤 엔진의 경우에서와 같이, 전실 (prechamber) 또는 와류실 내로 도입되는 대신에, 엔진의 연소실 내로 직접 도달하는 멀티홀 (multihole) 분사 노즐에 의해 분사되고 초미세하게 분배 (분무) 된다. 직접 분사 디젤 엔진의 장점은 디젤 엔진에 대한 이들의 고성능 및 그럼에도 불구하고 낮은 연료 소모에 있다. 게다가, 상기 엔진은 심지어 낮은 속도에서도 매우 높은 토크를 달성한다.
현재, 본질적으로 3 가지 방법이 디젤 엔진의 연소실 내로 직접 연료의 분사를 위해 사용되고 있다: 통상의 분배형 분사 펌프, 펌프-노즐 시스템 (단위-분사기 시스템 또는 단위-펌프 시스템), 및 커먼 레일 시스템.
커먼 레일 시스템에서, 디젤 연료는 2000 bar 이하의 압력으로 고압 라인, 커먼 레일 내로 펌프에 의해 수송된다. 커먼 레일로부터 진행하여, 분지선은 연소실 내로 직접적으로 연료를 분사시키는 상이한 분사기로 연결된다. 전체 압력이 항상 커먼 레일에 적용되어, 이것이 다중 분사 또는 특정 분사 형태를 가능하게 한다. 반대로 다른 분사 시스템에서, 분사 내에서 오직 적은 변동만이 가능하다. 커먼 레일 내의 분사는 본질적으로 3 개 그룹으로 나뉜다: (1.) 전-분사, 이에 의해, 혹독한 연소 노이즈 ("네일링 (nailing)") 이 감소되고 엔진이 조용히 실행되도록 하는 식의, 본질적으로 좀더 부드러운 연소가 달성됨; (2.) 특히 양호한 토크 프로파일을 담당하는 주 분사; 및 (3.) 특히 낮은 NOx 값을 보장하는 후-분사. 상기 후-분사에서, 연료는 일반적으로 소모되지 않지만, 그 대신 실린더 내의 잔류 열에 의해 증발된다. 형성된 배기 가스/연료 혼합물은 배기 가스 시스템으로 수송되는데, 여기서 연료는, 적합한 촉매의 존재 하에, 질소 산화물 NOx 에 대한 환원제로서 작용한다.
커먼 레일 분사 시스템 내의 가변적인, 실린더-개별 분사는 엔진의 오염물 배출, 예를 들어 질소 산화물 (NOx), 일산화탄소 (CO) 및 특히 미립자 (그을음) 의 배출에 긍정적으로 영향을 줄 수 있다. 이것은 예를 들어, 커먼 레일 분사 시스템을 장착한 엔진이 이론적으로 심지어 부가적인 미립자 필터 없이도 Euro 4 표준을 충족하는 것을 가능하게 한다.
현대 커먼 레일 디젤 엔진에서, 측정 조건 하에서, 예를 들어 바이오디젤-함유 연료 또는 아연 화합물, 구리 화합물, 납 화합물 및 기타 금속 화합물과 같은 금속 불순물이 있는 연료가 사용되는 경우, 침전물이 분사기 오리피스 상에 형성될 수 있는데, 이것이 연료의 분사 성능에 악영향을 주고, 따라서 엔진의 성능에 악영향을 주고, 즉, 특히 동력을 감소시키고, 그러나 일부 경우에는 또한 연소를 악화시킨다. 침전물의 형성은 분사기 구성 내의 추가의 발달에 의해, 특히 노즐의 기하학의 변화 (원형 출구를 가진, 더 좁은, 원추형의 오리피스) 에 의해 추가로 향상된다. 엔진 및 분사기의 최적의 기능을 지속시키기 위해, 노즐 오리피스 내의 이러한 침전물은 적합한 연료 첨가제에 의해 방지되거나 감소되어야만 한다.
현대 디젤 엔진의 분사 시스템에서, 침전물은 상당한 성능 문제를 일으킨다. 스프레이 채널 중의 이러한 침전물은 연료 흐름의 감소 및 따라서 동력 손실을 야기할 수 있다는 것이 통상의 지식이다. 분무기 팁에서의 침전물은 반대로, 연료 스프레이 미스트의 최적의 형성을 손상시켜, 그 결과 악화된 연소 및 연관된 높은 배출 및 증가된 연료 조성물을 야기한다. 상기 통상의 "외부" 침전 현상과는 반대로, "내부" 침전물 (집합적으로 내부 디젤 분사기 침전물 (IDID) 로서 언급됨) 특히 분사기의 일부, 예컨대 노즐 바늘, 통제 피스톤, 밸브 피스톤, 밸브 시트 (valve seat), 통제 유닛 및 상기 구성성분의 가이드 내에서의 침전물은 또한 성능 문제를 더욱 야기한다. 통상의 첨가제는 상기 IDID 에 대해 불충분한 작용을 나타낸다.
US 4,248,719 에는 알케닐숙신이미드와 모노카르복실 에스테르를 반응시킴으로써 제조된 4 차화된 암모늄 염이 기재되어 있고, 슬러지 형성의 방지를 위해 윤활제 오일 중의 분산제로서의 용도를 발견한다. 더욱 특히, 예를 들어, 폴리이소부틸숙신산 무수물 (PIBSA) 과 N,N-디메틸아미노프로필아민 (DMAPA) 과의 반응 및 메틸 살리실레이트로의 4 차화가 기재되어 있다. 그러나, 연료, 더욱 특히 디젤 연료 중의 용도는 상기 문헌에서 제안되지 않는다. < 20% 의 낮은 비스말레화 수준을 가진 PIBSA 의 용도는 상기 문헌에서 기재되지 않는다.
US 4,171,959 에는 가솔린 연료 조성물에 대한 청정제 첨가제로서 적합한, 히드로카르빌-치환된 숙신이미드의 4 차화된 암모늄 염이 기재되어 있다. 4 차화는 바람직하게는 알킬 할라이드를 사용하여 달성된다. 또한 언급되는 것은 유기 C2-C8-히드로카르빌 카르복실레이트 및 술포네이트이다. 따라서, 그곳의 교시에 따라 제공되는 4 차화된 암모늄 염은 반대이온으로서, 할라이드 또는 C2-C8-히드로카르빌 카르복실레이트 또는 C2-C8-히드로카르빌 술포네이트 기를 갖는다. < 20% 의 낮은 비스말레화 수준을 가진 PIBSA 의 용도는 마찬가지로 상기 문헌에서 기재되지 않는다.
EP-A-2 033 945 는 적어도 하나의 C8-C40-알킬 라디칼을 갖는 특정 3 차 모노아민을 특정 카르복실산의 C1-C4-알킬 에스테르로 4 차화함으로써 제조되는 저온 유동 개선제를 기재하고 있다. 이러한 카르복실 에스테르의 예는 디메틸 옥살레이트, 디메틸 말레에이트, 디메틸 프탈레이트 및 디메틸 푸마레이트이다. 중간 유분의 CFPP 값의 개선을 위한 것 외의 용도는 EP-A-2 033 945 에 입증되지 않았다.
WO 2006/135881 에는 히드로카르빌-치환된 아실화제 및 3 차 아미노 기를 가진 산소 또는 질소 원자-함유 화합물의 축합, 및 화학량론적 양의 산 예컨대, 더욱 특히, 아세트산의 존재 하에 히드로카르빌 에폭시드에 의한 후속 4 차화에 의해 제조된 4 차화된 암모늄 염이 기재되어 있다. WO 2006/135881 에서 청구된 추가의 4 차화제는 디알킬 술페이트, 벤질 할라이드 및 히드로카르빌-치환된 카보네이트이고, 디메틸 술페이트, 벤질 클로라이드 및 디메틸 카보네이트가 실험적으로 연구되었다.
WO 2011/146289 에는 연료 시스템에서 청정력을 향상시키기 위한 유리 형태 또는 무수물 형태로의 적어도 2 개의 카르복실기를 가진 치환된 탄화수소로부터 형성된 무-질소 첨가제가 기재되어 있다. 기재된 예시에는 히드로카르빌-치환된 숙신산 무수물 및 이의 가수분해된 형태가 포함된다.
현대 디젤 연료 및 가솔린 연료에서 사용하기 위한 새로운 계열의 카르복실산-기재 첨가제를 제공하는 것이 본 발명의 목적이다.
상기 과제는 놀랍게도 본원에 기재된 유형의 올레핀-카르복실산 공중합체에 의해 달성되었다. 이들은 현대 디젤 엔진의 성능을 손상시키는 다양한 상이한 침전물에 대항하여 작용한다는 특정한 특징을 갖는다. 본 발명의 화합물은 예를 들어, 아연의 도입에 의해 야기되는 동력 손실 및 디젤 연료 내로의 나트륨의 도입에 의해 야기되는 동력 손실 둘 다에 대항하여 작용한다. 이렇게 함으로써, 분사 채널 및 분사기 팁 내의 침전물이 본질적으로 제거되거나 회피된다. 한편, 본 발명의 화합물은 또한 내부 디젤 분사기 침전물 (IDID) 에 대항하여 작용한다.
도 1 은 CEC F-098-08 에 따른 1-시간 엔진 테스트 사이클의 실행을 보여준다.
A1) 특정 구현예
본 발명의 특정 구현예는 다음과 같다:
1. (a) 적어도 하나의 유리 카르복실산 측면 기를 포함하는 공중합체인 올레핀-중합가능 카르복실산 공중합체 (즉, 적어도 하나의 올레핀 및 적어도 하나의 중합가능 카르복실산으로부터 형성된 공중합체), 또는 (b) 적어도 하나의 유리 카르복실산 측면 기를 포함하는 공중합체인 올레핀-중합가능 카르복실산 공중합체의 존재 하에서 에폭시드로 4 차화된 질소 화합물의, 연료 첨가제 또는 윤활제 첨가제, 특히 디젤 첨가제로서의 용도로서; 특히 중합가능 카르복실산이 중합가능 모노- 또는 폴리카르복실산, 특히 모노카르복실산 또는 디카르복실산, 예컨대 C4-C8-디카르복실산, 예를 들어 아크릴산, 메타크릴산 또는 말레산이고; 및/또는 올레핀이 특히 α-올레핀, 예를 들어 C4-C40- 또는 C18-C26-, 또는 C18-C22- 또는 C20-C24-α 올레핀인 용도.
2. 하기에 의해 수득가능한 공중합체, 공중합체-함유 반응 생성물 또는 이의 공중합체-함유 성분 분획의, 연료 첨가제 또는 윤활제 첨가제; 특히 디젤 연료 첨가제로서의 용도:
(1) 하기
a) 적어도 하나의 에틸렌성으로 불포화된, 중합가능 폴리카르복실산 무수물, 특히 C4-C8-디카르복실산 무수물, 예를 들어 말레산 무수물과
b) 적어도 하나의 중합가능 올레핀, 특히 α-올레핀, 예를 들어 C4-C40- 또는 C18-C26-, 또는 C18-C22- 또는 C20-C24-α-올레핀과의 공중합;
(2) 이후, 물, 또는 적어도 하나의 히드록실 화합물, 또는 적어도 하나의 1 차 또는 2 차 아민, 또는 이의 혼합물, 특히 물과의 단계 (1) 로부터의 공중합체의 무수물 라디칼의 부분적인 또는 완전한 반응에 의한 단계 (1) 로부터의 공중합체의 유도체화로; 카르복실기를 함유하는 공중합체 유도체를 형성함; 및 임의로
(3) 에폭시드 및 단계 (2) 로부터의 공중합체 유도체로의 4 차화가능 (특히 3 차) 질소 화합물의 4 차화.
특정 구현예에서, 본 발명은 하기에 의해 수득가능한 공중합체, 공중합체-함유 반응 생성물 또는 이의 공중합체-함유 분획의 용도에 관한 것이다:
(1) 하기
a) 적어도 하나의 에틸렌성으로 불포화된, 중합가능 C4-C8-디카르복실산 무수물, 특히 말레산 무수물과
b) 적어도 하나의 중합가능 C18-C26-α-올레핀, 예컨대 특히 C18-C22-, C20-C24- 또는 특히 C20-α-올레핀과의 공중합;
(2) 단계 (1) 로부터의 공중합체의 무수물 라디칼의 물과의 부분적인 또는 완전한 반응에 의한 단계 (1) 로부터의 공중합체의 후속적인 유도체화로, 카르복실기를 함유하는 공중합체 유도체를 형성함.
3. 하기에 의해 수득가능한 공중합체, 공중합체-함유 반응 생성물 또는 이의 공중합체-함유 성분 분획의, 연료 첨가제 또는 윤활제 첨가제; 특히 디젤 연료 첨가제로서의 용도:
(1) 하기
a) 적어도 하나의 에틸렌성으로 불포화된, 중합가능 모노- 또는 폴리카르복실산, 특히 모노카르복실산 또는 디카르복실산, 예를 들어 C4-C8-디카르복실산, 예를 들어 아크릴산, 메타크릴산 또는 말레산과
b) 적어도 하나의 중합가능 올레핀, 특히 α-올레핀, 예를 들어 C4-C40- 또는 C18-C26-, 또는 C18-C22- 또는 C20-C24-α-올레핀과의 공중합;
(2) 이후, 적어도 하나의 히드록실 화합물, 적어도 하나의 1 차 또는 2 차 아민, 또는 이의 혼합물과의 공중합체의 카르복실 라디칼의 부분적인 반응에 의한 단계 (1) 로부터의 공중합체의 유도체화로, 감소된 함량의 유리 카르복실기를 갖는 공중합체 유도체를 형성함; 및 임의로
(3) 에폭시드 및 단계 (2) 로부터의 공중합체 유도체로의 4 차화가능 질소 화합물의 4 차화.
4. 하기에 의해 수득가능한 공중합체, 공중합체-함유 반응 생성물 또는 이의 공중합체-함유 성분 분획의, 연료 첨가제 또는 윤활제 첨가제; 특히 디젤 연료 첨가제로서의 용도:
(1) 하기
a) 적어도 하나의 에틸렌성으로 불포화된, 중합가능 모노- 또는 폴리카르복실산, 특히 모노카르복실산 또는 디카르복실산, 예를 들어 C4-C8-디카르복실산, 예를 들어 아크릴산 또는 말레산과
b) 적어도 하나의 중합가능 올레핀, 특히 α-올레핀, 예를 들어 C4-C40- 또는 C18-C26-, C18-C22- 또는 C20-C24-α-올레핀과의 공중합; 및 임의로
(2) 에폭시드 및 단계 (1) 로부터의 가수분해 생성물로의 4 차화가능 질소 화합물의 4 차화.
5. 제 1 내지 제 4 구현예 중 어느 하나에 있어서, 직접 분사 디젤 엔진, 특히 커먼 레일 분사 시스템을 가진 디젤 엔진의 연료 소모를 감소시키기 위한 첨가제로서의 용도.
6. 제 1 내지 제 4 구현예 중 어느 하나에 있어서, 직접 분사 디젤 엔진, 특히 커먼 레일 분사 시스템을 가진 디젤 엔진에서의 동력 손실을 최소화시키기 위한 첨가제로서의 용도.
7. 제 6 구현예에 있어서, K, Zn, Ca 및/또는 Na 이온 에 의해 야기되는 동력 손실 (K, Zn, Ca 또는 Na 동력 손실로 불림) 을 최소화시키기 위한 첨가제로서의 용도.
8. 제 1 내지 제 7 구현예 중 어느 하나에 있어서, 가솔린 엔진, 예컨대, 더욱 특히, DISI 및 PFI (포트 연료 분사기) 엔진의 흡기 시스템 중의 침전물의 수준을 감소시키기 위한 가솔린 연료 첨가제로서의 용도.
9. 제 1 내지 제 8 구현예 중 어느 하나에 있어서, 연료 시스템, 특히 분사 시스템, 예컨대 특히 내부 디젤 분사기 침전물 (IDID) 중의 침전물을 감소 및/또는 방지하기 위한, 및/또는 직접 분사 디젤 엔진, 특히 커먼 레일 분사 시스템 중의 밸브 끈적임을 감소 및/또는 방지하기 위한 디젤 연료 첨가제로서의 용도.
따라서 본 발명의 용도의 특정 기반은 본 발명의 화합물이 분사 시스템에서 뿐 아니라, 또한 연료 시스템의 나머지에 대항하여, 여기서 특히 연료 필터 및 펌프 중의 침전물에 대항하여 작용한다는 것이다.
10. 제 9 구현예에 있어서, Na, Ca 및/또는 K 이온에 의해 야기되는 내부 디젤 분사기 침전물 (IDID) (Na, Ca 또는 K 비누 IDID 로 불림) 을 감소 및/또는 방지하기 위한 디젤 연료 첨가제로서의 용도.
11. 제 10 구현예에 있어서, 중합체 침전물에 의해 야기되는 내부 디젤 분사기 침전물 (IDID) 을 감소 및/또는 방지하기 위한 디젤 연료 첨가제로서의 용도.
12. 제 1 내지 제 11 구현예 중 어느 하나에 있어서, 카르복실산이 에틸렌성 불포화 폴리카르복실산 무수물 및 특히 에틸렌성 불포화 C4-C40- 또는 특히 C4-C8-디카르복실산, 예컨대 말레산의 무수물인 용도.
13. 제 11 구현예에 있어서, 에틸렌성 불포화 폴리카르복실산 무수물이 말레산 무수물인 용도.
14. 제 1 내지 제 13 구현예 중 어느 하나에 있어서, 중합가능 올레핀이 C4-C40- 또는 C18-C26-, C18-C22- 또는 C20-C24- 또는 특히 C20-α-올레핀인 용도.
15. 제 1 내지 제 14 구현예 중 어느 하나에 있어서, 중합가능 올레핀이 적어도 하나의 중합가능 이중 결합을 갖고 56 내지 10 000 의 범위의 Mw 를 갖는 C2-C40-, 특히 C2-C12-α-올레핀 단위로부터 형성되는 중합체인 용도.
16. 제 1 내지 제 15 구현예 중 어느 하나에 있어서, 에틸렌성 불포화 카르복실산이 에틸렌성 불포화 C3-C40-카르복실산, 특히 C3-C40- 또는 C3-C20- 또는 C3-C10- 또는 C3-C4-모노카르복실산, 또는 이의 유도체인 용도.
17. 제 15 구현예에 있어서, 에틸렌성 불포화 카르복실산이 아크릴산 또는 메타크릴산인 용도.
18. 제 1 내지 제 17 구현예 중 어느 하나에 있어서, 4 차화가능 질소 화합물, 예를 들어 4 차화가능 알킬아민이, 적어도 하나의 4 차화가능, 3 차 아미노 기를 갖는 용도.
19. 제 1 내지 제 18 구현예 중 어느 하나에 있어서, 에폭시드가 히드로카르빌 에폭시드인 용도.
20. 제 1 내지 제 19 구현예 중 어느 하나에 있어서, 에폭시드가 하기 일반 화학식 4 의 에폭시드를 포함하는 용도:
Figure 112016083899907-pct00001
(식 중,
존재하는 Rd 라디칼은 동일 또는 상이하고, 각각의 H 또는 히드로카르빌 라디칼이고, 히드로카르빌 라디칼은 1 내지 20, 특히 1 내지 16 또는 1 내지 10 또는 1 내지 4 개의 탄소 원자를 갖는 지방족 또는 방향족 라디칼, 예를 들어 프로필렌 옥시드임).
21. 제 1 내지 제 20 구현예 중 어느 하나에 있어서, 공중합체가 400 내지 50 000, 특히 800 내지 10 000 g/mol 의 범위의 분자량 Mw 를 갖는 용도.
22. 제 1 내지 제 21 구현예 중 어느 하나에 있어서, 4 차화가능 질소 화합물이 하기 일반 화학식 3 의 4 차화가능 아민을 포함하는 용도:
RaRbRcN (3)
(식 중,
Ra, Rb 및 Rc 라디칼 중 적어도 하나는 직쇄 또는 분지형, 포화 또는 불포화 C8-C40- 또는 C10-C20-히드로카르빌 라디칼, 특히 직쇄 또는 분지형 C8-C40- 또는 C10-C20-알킬이고, 다른 라디칼은 동일 또는 상이한, 직쇄 또는 분지형, 포화 또는 불포화 C1-C6-히드로카르빌 라디칼, 특히 C1-C6-알킬, 예를 들어 N,N-디메틸-N-C12/14-아민이거나; 또는
Ra, Rb 및 Rc 라디칼 모두는 동일 또는 상이한, 직쇄 또는 분지형, 포화 또는 불포화 C8-C40- 또는 C10-C20-히드로카르빌 라디칼, 특히 직쇄 또는 분지형 C8-C40- 또는 C10-C20-알킬 라디칼임).
23. 제 1 내지 제 22 구현예 중 어느 하나에 있어서, 4 차화가능 질소 화합물이 화학식 3 의 화합물 (식 중, Ra, Rb 및 Rc 라디칼 중 2 개는 동일 또는 상이하고, 각각의 C1-C4-알킬 및 기타 라디칼은 직쇄 또는 분지형 C10-C20-알킬임) 인 용도.
24. 제 1 내지 제 23 구현예 중 어느 하나에 있어서, 연료가 디젤 연료, 바이오디젤 연료, 가솔린 연료, 및 알칸올-함유 가솔린 연료로부터 선택되는 용도.
25. 제 1 내지 제 22 구현예 중 어느 하나에 정의된 바와 같은 공중합체 생성물 (특히 공중합체 또는 공중합체-함유 4 차화 생성물).
26. 하기를 포함하는 제 24 구현예에 따른 공중합체의 제조 방법:
(1) 단량체 성분들의 공중합
(2) 단계 (1) 로부터의 공중합체와 물, 적어도 하나의 히드록실 화합물, 적어도 하나의 1 차 또는 2 차 아민; 또는 이의 혼합물과의 임의로 후속적인 부분적인 또는 완전한 반응; 및/또는 임의로
(3) 4 차화가능 질소 화합물과 에폭시드 및 단계 (2) 로부터의 가수분해 생성물과의; 또는 에폭시드 및 단계 (1) 로부터의 공중합체와의 4 차화.
27. 추가의 디젤 연료 첨가제 또는 가솔린 연료 첨가제 또는 윤활제 첨가제와 조합으로, 제 1 내지 제 22 구현예 중 어느 하나에 정의된 바와 같은 또는 제 25 구현예에 따라 제조되는 바와 같은 적어도 하나의 공중합체, 공중합체-함유 반응 생성물, 또는 이의 공중합체-함유 성분 분획을 포함하는 첨가제 농축물.
28. 제 1 내지 제 22 구현예 중 어느 하나에 정의된 바와 같은 또는 제 25 구현예에 따라 제조되는 바와 같은 공중합체, 공중합체-함유 반응 생성물, 또는 이의 공중합체-함유 성분 분획을 포함하는 연료 조성물, 윤활제 조성물 또는 디젤 조성물, 특히 디젤 연료 조성물.
A2) 일반적인 정의
반대의 언급이 없으면, 하기 일반적인 정의가 적용된다:
"분사 시스템" 은 연료 펌프로부터 분사기 출구를 포함하는 것까지 자동차 내의 연료 시스템의 일부를 의미하는 것으로 이해된다.
"연료 시스템" 은 특정 연료와 접촉하는 자동차의 구성부품, 바람직하게는 탱크로부터 분사기 출구를 포함하는 것까지의 영역을 의미하는 것으로 이해된다.
"내부 디젤 분사기 침전물 (IDID)" 은 특히 Na, Ca 및/또는 K 이온에 의해 야기되는 침전물 (각각 Na, Ca 및 K 비누 IDID 로 불림) 및/또는 중합체성 침전물이다. Na, Ca 및 K 비누 IDID 는 임의의 반대이온을 가진 관련 금속 이온을 포함하는 침전물이다. 중합체성 침전물은, 반대로, 금속 이온이 없고 연료 중에서 낮은 또는 0 의 가용성의 고 분자량 유기 물질로부터 유래된다.
"유리 카르복실산 측면 기" 는 본 발명의 문맥에서 화학식 -COOH 의 적어도 하나의 카르복실기 (이것은 양자화된 형태 또는 염 형태 (예를 들어, 알칼리 금속 염), 또는 유도체의 형태일 수 있음) 를, 예를 들어 무수물 기의 일부로서 또는 에스테르, 예를 들어 저급 알킬 에스테르로서 포함한다.
"중합가능 카르복실산" 은 적어도 하나의, 특히 하나의, 중합가능 기, 특히 C=C 기를 갖고, 특히 에틸렌성 불포화인 중합가능 모노- 또는 폴리카르복실산을 나타낸다. 더욱 특히, 이들은 단포화된 모노- 또는 폴리카르복실산, 특히 단포화된 모노- 또는 디카르복실산이다. 마찬가지로 포함되는 것은 이의 유도체, 특히 에스테르 및 무수물이다. 에스테르는 특히 저급 알킬 에스테르이다.
"4 차화가능" 질소 기 또는 아미노 기는 특히 1 차, 2 차 및, 특히, 3 차 아미노 기를 포함한다.
"히드로카르빌" 은 광범위하게 해석되어?? 하고 1 내지 50 개의 탄소 원자를 갖는, 장쇄 및 단쇄, 직쇄 및 분지형 히드로카르빌 라디칼 모두를 포함하고, 이것은 그의 사슬 내에 임의로 부가적으로 헤테로원자, 예를 들어 O, N, NH, S 를 포함할 수 있다. 특정 그룹의 히드로카르빌 라디칼은 1 내지 1000, 3 내지 500, 4 내지 400 개의 탄소 원자를 갖는 장쇄 및 단쇄, 직쇄 또는 분지형 알킬 라디칼 모두를 포함한다.
"장쇄" 또는 "고 분자량" 히드로카르빌 라디칼은 직쇄 또는 분지형 히드로카르빌 라디칼이고 7 내지 50 또는 8 내지 50 또는 8 내지 40 또는 10 내지 20 개의 탄소 원자를 갖는다 (이들은 그의 사슬 내에, 임의로 부가적으로 헤테로원자, 예를 들어 O, N, NH, S 를 포함함). 또한, 라디칼은 모노- 또는 폴리불포화될 수 있고, 하나 이상의 비연속된 (noncumulated), 예를 들어 1 내지 5, 예컨대 1, 2 또는 3 개의, C-C 이중 결합 또는 C-C 삼중 결합, 특히 1, 2 또는 3 개의 이중 결합을 가질 수 있다. 이들은 천연 또는 합성 기원의 것일 수 있다.
이들은 또한 85 내지 20 000, 예를 들어 113 내지 10 000, 또는 200 내지 10 000 또는 350 내지 5000, 예를 들어 350 내지 3000, 500 내지 2500, 700 내지 2500, 또는 800 내지 1500 의 수-평균 분자량 (Mn) 을 가질 수 있다. 이 경우, 이들은 더욱 특히 C2-6, 특히 C2-4, 단량체 단위, 예컨대 에틸렌, 프로필렌, n- 또는 이소부틸렌 또는 이의 혼합물로부터 본질적으로 형성되며, 상이한 단량체가 랜덤 분포 또는 블록으로서 공중합될 수 있다. 이러한 장쇄 히드로카르빌 라디칼은 또한 폴리알킬렌 라디칼 또는 폴리-C2-6- 또는 폴리-C2-4-알킬렌 라디칼로서 언급된다. 적합한 장쇄 히드로카르빌 라디칼 및 이의 제조는 또한 예를 들어, WO 2006/135881 및 그곳에 언급된 문헌에 기재된다.
특히 유용한 폴리알킬렌 라디칼의 예는 고 함량의 말단 이중 결합을 특징으로 하는 "고-반응성" 폴리이소부텐으로 불리는 것으로부터 유도된 폴리이소부테닐 라디칼이다. 말단 이중 결합은 하기 유형의 알파-올레핀성 이중 결합이다:
Figure 112016083899907-pct00002
(이것은 또한 집합적으로 비닐리덴 이중 결합으로서 언급됨). 적합한 고-반응성 폴리이소부텐은 예를 들어, 70 mol% 초과, 특히 80 mol% 초과 또는 85 mol% 초과의 비닐리덴 이중 결합의 비율을 갖는 폴리이소부텐이다. 특히 균질 중합체 골격을 갖는 폴리이소부텐이 바람직하다. 균질 중합체 골격은 특히 이소부텐 단위로부터 적어도 85 중량% 의 범위까지, 바람직하게는 적어도 90 중량% 의 범위까지, 더욱 바람직하게는 적어도 95 중량% 의 범위까지 형성되는 이들 폴리이소부텐에 의해 보유된다. 이러한 고-반응성 폴리이소부텐은 바람직하게는 상기 언급된 범위 내의 수-평균 분자량을 갖는다. 부가적으로, 고-반응성 폴리이소부텐은 1.05 내지 7 의 범위 내의, 특히 약 1.1 내지 2.5 의 범위 내의, 예를 들어 1.9 미만 또는 1.5 미만의 다분산도를 가질 수 있다. 다분산도는 수-평균 분자량 Mn 에 의해 나누어지는 중량-평균 분자량 Mw 의 몫을 의미하는 것으로 이해된다.
특히 적합한 고-반응성 폴리이소부텐은 예를 들어, BASF SE 사의 Glissopal 브랜드, 특히 Glissopal® 1000 (Mn = 1000), Glissopal® V 33 (Mn = 550), 및 Glissopal® 2300 (Mn = 2300), 및 이의 혼합물이다. 기타 수-평균 분자량은 원칙적으로는 상이한 수-평균 분자량의 폴리이소부텐을 혼합함으로써 또는 특정 분자량 범위의 폴리이소부텐의 추출적 농축에 의해 공지된 방식으로 성립될 수 있다.
특정 그룹의 장쇄 히드로카르빌 라디칼은 8 내지 50, 예를 들어 8 내지 40 또는 8 내지 30 또는 10 내지 20 개의 탄소 원자를 갖는 직쇄 또는 분지형 알킬 라디칼 ("장쇄 알킬 라디칼") 을 포함한다.
추가 그룹의 특정 장쇄 히드로카르빌 라디칼은 특히 C2-6, 특히 C2-4, 단량체 단위, 예컨대 에틸렌, 프로필렌, n- 또는 이소부틸렌 또는 이의 혼합물로부터 본질적으로 형성되는 폴리알킬렌 라디칼을 포함하고 2 내지 100, 또는 3 내지 50 또는 4 내지 25 의 중합도를 갖는다.
"단쇄 히드로카르빌" 또는 "저 분자량 히드로카르빌" 은 특히 직쇄 또는 분지형 알킬 또는 알케닐 (임의로 하나 이상의, 예를 들어 2, 3 또는 4 개의, 헤테로원자 기, 예컨대 -O- 또는 -NH- 에 의해 중단된, 또는 임의로 모노- 또는 폴리치환된, 예를 들어 디-, 트리- 또는 테트라치환된) 이다.
"히드로카르빌렌" 은 1 내지 10 개의 탄소 원자를 갖는 (임의로 하나 이상의, 예를 들어 2, 3 또는 4 개의, 헤테로원자 기, 예컨대 -O- 또는 -NH- 에 의해 중단된, 또는 임의로 모노- 또는 폴리치환된, 예를 들어 디-, 트리- 또는 테트라치환된) 직쇄 또는 단일하게 또는 복합적으로 분지된 가교 기를 나타낸다.
"알킬" 또는 "저급 알킬" 은 특히 1 내지 4, 1 내지 5, 1 내지 6, 또는 1 내지 7 개의 탄소 원자를 갖는 포화된, 직쇄 또는 분지형 탄화수소 라디칼, 예를 들어 메틸, 에틸, n-프로필, 1-메틸에틸, n-부틸, 1-메틸프로필, 2-메틸프로필, 1,1-디메틸에틸, n-펜틸, 1-메틸부틸, 2-메틸부틸, 3-메틸부틸, 2,2-디메틸프로필, 1-에틸프로필, n-헥실, 1,1-디메틸프로필, 1,2-디메틸프로필, 1-메틸펜틸, 2-메틸펜틸, 3-메틸펜틸, 4-메틸펜틸, 1,1-디메틸부틸, 1,2-디메틸부틸, 1,3-디메틸부틸, 2,2-디메틸부틸, 2,3-디메틸부틸, 3,3-디메틸부틸, 1-에틸부틸, 2-에틸부틸, 1,1,2-트리메틸프로필, 1,2,2-트리메틸프로필, 1-에틸-1-메틸프로필 및 1-에틸-2-메틸프로필; 및 또한 n-헵틸, 및 이의 단일하게 또는 복합적으로 분지된 유사체를 나타낸다.
"장쇄 알킬" 은 예를 들어, 8 내지 50, 예를 들어 8 내지 40 또는 8 내지 30 또는 10 내지 20 개의 탄소 원자를 갖는 포화된 직쇄 또는 분지형 히드로카르빌 라디칼, 예컨대 옥틸, 노닐, 데실, 운데실, 도데실, 트리데실, 테트라데실, 펜타데실, 헥사데실, 헵타데실, 옥타데실, 노나데실, 에이코실, 헨에이코실, 도코실, 트리코실, 테트라코실, 펜타코실, 헥사코실, 헵타코실, 옥타코실, 노나코실, 스쿠알릴, 구성 (constitutional) 이성질체, 특히 이의 단일하게 또는 복합적으로 분지된 이소 이성질체 및 고차 상동체를 나타낸다.
"히드록시알킬" 은 특히 상기 알킬 라디칼의 모노- 또는 폴리히드록실화된, 특히 모노히드록실화된, 유사체, 예를 들어 상기 직쇄 또는 분지형 알킬 라디칼, 예를 들어 선형 히드록시알킬 기의 모노히드록실화된 유사체, 예를 들어 일차 (말단) 히드록실 기, 예컨대 히드록시메틸, 2-히드록시에틸, 3-히드록시프로필, 4-히드록시부틸을 갖는 것들, 또는 비말단 히드록실 기, 예컨대 1-히드록시에틸, 1- 또는 2-히드록시프로필, 1- 또는 2-히드록시부틸 또는 1-, 2- 또는 3-히드록시부틸을 갖는 것들을 나타낸다.
"알케닐" 은 2 내지 4, 2 내지 6, 또는 2 내지 7 개의 탄소 원자 및 임의의 위치에 하나의 이중 결합을 갖는 모노- 또는 폴리불포화된, 특히 단포화된, 직쇄 또는 분지형 히드로카르빌 라디칼, 예를 들어, C2-C6-알케닐 예컨대 에테닐, 1-프로페닐, 2-프로페닐, 1-메틸에테닐, 1-부테닐, 2-부테닐, 3-부테닐, 1-메틸-1-프로페닐, 2-메틸-1-프로페닐, 1-메틸-2-프로페닐, 2-메틸-2-프로페닐, 1-펜테닐, 2-펜테닐, 3-펜테닐, 4-펜테닐, 1-메틸-1-부테닐, 2-메틸-1-부테닐, 3-메틸-1-부테닐, 1-메틸-2-부테닐, 2-메틸-2-부테닐, 3-메틸-2-부테닐, 1-메틸-3-부테닐, 2-메틸-3-부테닐, 3-메틸-3-부테닐, 1,1-디메틸-2-프로페닐, 1,2-디메틸-1-프로페닐, 1,2-디메틸-2-프로페닐, 1-에틸-1-프로페닐, 1-에틸-2-프로페닐, 1-헥세닐, 2-헥세닐, 3-헥세닐, 4-헥세닐, 5-헥세닐, 1-메틸-1-펜테닐, 2-메틸-1-펜테닐, 3-메틸-1-펜테닐, 4-메틸-1-펜테닐, 1-메틸-2-펜테닐, 2-메틸-2-펜테닐, 3-메틸-2-펜테닐, 4-메틸-2-펜테닐, 1-메틸-3-펜테닐, 2-메틸-3-펜테닐, 3-메틸-3-펜테닐, 4-메틸-3-펜테닐, 1-메틸-4-펜테닐, 2-메틸-4-펜테닐, 3-메틸-4-펜테닐, 4-메틸-4-펜테닐, 1,1-디메틸-2-부테닐, 1,1-디메틸-3-부테닐, 1,2-디메틸-1-부테닐, 1,2-디메틸-2-부테닐, 1,2-디메틸-3-부테닐, 1,3-디메틸-1-부테닐, 1,3-디메틸-2-부테닐, 1,3-디메틸-3-부테닐, 2,2-디메틸-3-부테닐, 2,3-디메틸-1-부테닐, 2,3-디메틸-2-부테닐, 2,3-디메틸-3-부테닐, 3,3-디메틸-1-부테닐, 3,3-디메틸-2-부테닐, 1-에틸-1-부테닐, 1-에틸-2-부테닐, 1-에틸-3-부테닐, 2-에틸-1-부테닐, 2-에틸-2-부테닐, 2-에틸-3-부테닐, 1,1,2-트리메틸-2-프로페닐, 1-에틸-1-메틸-2-프로페닐, 1-에틸-2-메틸-1-프로페닐 및 1-에틸-2-메틸-2-프로페닐을 나타낸다.
"히드록시알케닐" 은 특히 상기 알케닐 라디칼의 모노- 또는 폴리히드록실화된, 특히 모노히드록실화된, 유사체를 나타낸다.
"아미노알킬" 및 "아미노알케닐" 은 특히 모노- 또는 폴리아미노화된, 특히 모노아미노화된, 각각 상기 알킬 및 알케닐 라디칼의 유사체, 또는 상기 히드록시알킬 (식 중, OH 기가 아미노 기에 의해 대체되었음) 의 유사체를 나타낸다.
"알킬렌" 은 1 내지 10 개의 탄소 원자를 갖는 직쇄 또는 단일하게 또는 복합적으로 분지된 히드로카르빌 가교 기, 예를 들어 -CH2-, -(CH2)2-, -(CH2)3-, -(CH2)4-, -(CH2)2-CH(CH3)-, -CH2-CH(CH3)-CH2- , (CH2)4-, -(CH2)5-, -(CH2)6, -(CH2)7-, -CH(CH3)-CH2-CH2-CH(CH3)- 또는 -CH(CH3)-CH2-CH2-CH2-CH(CH3)- 로부터 선택되는 C1-C7-알킬렌 기 또는 -CH2-, -(CH2)2-, -(CH2)3-, -(CH2)4-, -(CH2)2-CH(CH3)-, -CH2-CH(CH3)-CH2- 로부터 선택되는 C1-C4-알킬렌 기
또는 C2-C6-알킬렌 기, 예를 들어
-CH2-CH(CH3)-, -CH(CH3)-CH2-, -CH(CH3)-CH(CH3)-, -C(CH3)2-CH2-, -CH2-C(CH3)2-, -C(CH3)2-CH(CH3)-, -CH(CH3)-C(CH3)2-, -CH2-CH(Et)-, -CH(CH2CH3)-CH2-, -CH(CH2CH3)-CH(CH2CH3)-, -C(CH2CH3)2-CH2-, -CH2-C(CH2CH3)2-,
-CH2-CH(n-프로필)-, -CH(n-프로필)-CH2-, -CH(n-프로필)-CH(CH3)-, -CH2-CH(n-부틸)-, -CH(n-부틸)-CH2-, -CH(CH3)-CH(CH2CH3)-, -CH(CH3)-CH(n-프로필)-, -CH(CH2CH3)-CH(CH3)-, -CH(CH3)-CH(CH2CH3)-, 또는 예를 들어 -(CH2)2-, -CH2-CH(CH3)-, -CH(CH3)-CH2-, -CH(CH3)-CH(CH3)-, -C(CH3)2-CH2-, -CH2-C(CH3)2-, -CH2-CH(CH2CH3)-, -CH(CH2CH3)-CH2- 로부터 선택되는 C2-C4-알킬렌 기를 나타낸다.
옥시알킬렌 라디칼은 2 내지 10 개의 탄소 원자를 갖는 상기 직쇄 또는 단일하게 또는 복합적으로 분지된 알킬렌 라디칼의 정의에 상응하고, 이때 탄소 사슬은 산소 헤테로원자에 의해 1 회 또는 1 회 초과, 특히 1 회 중단될 수 있다. 비제한적인 예에는: -CH2-O-CH2-, -(CH2)2-O-(CH2)2-, -(CH2)3-O-(CH2)3-, 또는 -CH2-O-(CH2)2-, -(CH2)2-O-(CH2)3-, -CH2-O-(CH2)3 이 포함된다.
아미노알킬렌은 2 내지 10 개의 탄소 원자를 갖는 상기 직쇄 또는 단일하게 또는 복합적으로 분지된 알킬렌 라디칼의 정의에 상응하고, 이때 탄소 사슬은 질소 기 (특히 -NH- 기) 에 의해 1 회 또는 1 회 초과, 특히 1 회 중단될 수 있다. 비제한적인 예에는: -CH2-NH-CH2-, -(CH2)2-NH-(CH2)2-, -(CH2)3-NH-(CH2)3-, 또는 -CH2-NH-(CH2)2-, -(CH2)2-NH-(CH2)3-, -CH2-NH-(CH2)3 이 포함된다.
"알케닐렌" 은 2 내지 10 개의 탄소 원자를 갖는 상기 알킬렌 기의 모노- 또는 폴리불포화된, 특히 단포화된, 유사체, 특히 C2-C7-알케닐렌 또는 C2-C4-알케닐렌, 예컨대 -CH=CH-, -CH=CH-CH2-, -CH2-CH=CH-, -CH=CH-CH2-CH2-, -CH2-CH=CH-CH2-, -CH2-CH2-CH=CH-, -CH(CH3)-CH=CH-, -CH2-C(CH3)=CH- 를 나타낸다.
"시클로알킬" 은 3 내지 20 개의 탄소 원자를 갖는 카르보시클릭 라디칼, 예를 들어 C3-C12-시클로알킬 예컨대 시클로프로필, 시클로부틸, 시클로펜틸, 시클로헥실, 시클로헵틸, 시클로옥틸, 시클로노닐, 시클로데실, 시클로운데실 및 시클로도데실을 나타내고; 바람직한 것은 시클로펜틸, 시클로헥실, 시클로헵틸, 및 또한 시클로프로필메틸, 시클로프로필에틸, 시클로부틸메틸, 시클로부틸에틸, 시클로펜틸메틸, 시클로펜틸에틸, 시클로헥실메틸, 또는 C3-C7-시클로알킬 예컨대 시클로프로필, 시클로부틸, 시클로펜틸, 시클로헥실, 시클로헵틸, 시클로프로필메틸, 시클로프로필에틸, 시클로부틸메틸, 시클로펜틸에틸, 시클로헥실메틸이며, 분자의 나머지에 대한 결합은 임의의 적합한 탄소 원자를 통한 것일 수 있다.
"시클로알케닐" 또는 모노- 또는 폴리불포화된 시클로알킬은 특히 5 내지 8, 바람직하게는 내지 6 개의, 탄소 고리원을 갖는 모노시클릭, 모노- 또는 폴리불포화된 히드로카르빌 기, 예를 들어 단포화된 라디칼 시클로펜텐-1-일, 시클로펜텐-3-일, 시클로헥센-1-일, 시클로헥센-3-일 및 시클로헥센-4-일을 나타낸다.
"아릴" 은 6 내지 20, 예를 들어 6 내지 10 개의 고리 탄소 원자를 갖는 모노- 또는 폴리시클릭, 바람직하게는 모노- 또는 비시클릭, 임의로 치환된 방향족 라디칼, 예를 들어 페닐, 비페닐, 나프틸 예컨대 1- 또는 2-나프틸, 테트라히드로나프틸, 플루오레닐, 인데닐 및 페난트레닐을 나타낸다. 상기 아릴 라디칼은 임의로 1, 2, 3, 4, 5 또는 6 개의 동일 또는 상이한 치환기를 가질 수 있다.
"알킬아릴" 은 임의의 고리 위치 내에서 모노- 또는 폴리알킬-치환된, 특히 모노- 또는 디알킬-치환된 상기 아릴 라디칼의 유사체를 나타내고, 이때 아릴은 마찬가지로 상기 정의된 바와 같다 (예를 들어 C1-C4-알킬페닐, 식 중 C1-C4-알킬 라디칼은 임의의 고리 위치에 있을 수 있음).
본원에 구체화된 라디칼의 경우 "치환기" 는 특히, 다르게 언급되지 않는다면, 케토 기, -COOH, -COO-알킬, -OH, -SH, -CN, 아미노, -NO2, 알킬, 또는 알케닐 기로부터 선택된다.
"Mn" 은 수-평균 분자량을 나타내며, 통상의 방식으로 측정된다; 더욱 특히, 이러한 수치는 상대적인 방법, 예컨대 용리액으로서 THF 및 폴리스티렌 표준을 사용하는 겔 투과 크로마토그래피, 또는 절대적인 방법, 예컨대 용매로서 톨루엔을 사용하는 증기상 삼투압측정법에 의해 측정된 Mn 값과 관련된다.
"Mw" 는 중량-평균 분자량을 나타내며, 통상의 방식으로 측정된다; 더욱 특히, 이러한 수치는 상대적인 방법, 예컨대 용리액으로서 THF 및 폴리스티렌 표준을 사용하는 겔 투과 크로마토그래피, 또는 절대적인 방법, 예컨대 광산란법에 의해 측정된 Mw 값과 관련된다.
"중합도" 는 통상 수평균 중합도 (측정 방법: 용리액으로서 THF 및 폴리스티렌 표준을 사용하는 겔 투과 크로마토그래피; 또는 GC-MS 커플링) 를 말한다.
A3) 올레핀-카르복실산 공중합체
질소 화합물의 4 차화를 위해 본 발명에 따라 사용되는 공중합체는 단독으로 공지된 단량체 단위, 즉 중합가능 올레핀 (m1) 및 중합가능 카르복실산 (m2) 으로부터 단독으로 공지된 방식으로 수득가능하다. 공중합체는 랜덤 공중합체, 교대 공중합체 또는 그밖의 블록 공중합체의 형태를 취할 수 있다.
본 발명의 하나의 구현예에서, 공중합체는 예를 들어, 폴리스티렌 보정으로, THF (테트라히드로푸란) 중에서 비가수분해된 공중합체의 겔 투과 크로마토그래피에 의해 측정된, 800 내지 50 000, 900 내지 10 000, 1000 내지 5000 또는 바람직하게는 1000 내지 3000 g/mol 의 범위 내의 평균 분자량 Mw 를 갖는다.
올레핀 단위 (m1):
예를 들어, 중합가능 올레핀은 C4-C40-α-올레핀, 바람직하게는 C6-C36-α 올레핀, 더욱 바람직하게는 C8-C32-α-올레핀, 더 더욱 바람직하게는 C10-C28-α-올레핀, 특히 C12-C26-α-올레핀 및 특히 C16-C24-, 특히 C18-C22-α-올레핀, 예를 들어 C20-α-올레핀일 수 있다.
또다른 구현예에서, 중합가능 올레핀은 C2-C12-올레핀 단위로부터 형성되는, 바람직하게는 C2-C12-α-올레핀 단위를 포함하는, 더욱 바람직하게는 적어도 하나의 중합가능 이중 결합을 갖고 56 내지 10 000 의 범위 내의 Mw 를 갖는 C2-C12-α-올레핀 단위로 이루어지는 중합체일 수 있다.
이들은 즉 프로펜, 1-부텐, 2-부텐, 이소부텐 및 이의 혼합물의 올리고머 및 중합체, 특히 프로펜 또는 이소부텐의 올리고머 및 중합체 또는 1-부텐 및 2-부텐의 혼합물이다. 올리고머 중에서, 삼량체, 사량체, 오량체 및 육량체, 및 이의 혼합물이 바람직하다.
C2-C40-α-올레핀의 비제한적인 예는 에틸렌, 프로필렌, 단일하게 또는 복합적으로 분지된 또는 비분지된 형태의 α-C4H8, α-C5H10, α-C6H12, α-C7H14, α-C8H16, α-C9H18, α-C10H20, α-C12H24, α-C14H28, α-C16H32, α-C18H36, α-C20H40, α-C22H44, α-C24H48, α-C30H60, α-C40H80, α-디이소부텐, α-트리이소부텐, α-테트라이소부텐, 이량체 프로펜, 삼량체 프로펜 및 사량체 프로펜; 및 250 내지 5000 g/mol 의 범위 내의 평균 분자량 Mw 를 갖는, 적어도 하나의 중합가능 C=C 결합을 갖는 폴리이소부텐이다.
공중합체는 1 개, 2 개 또는 이상의 상이한 단량체 m1, 그러나 바람직하게는 오로지 1 개 또는 2 개의 상이한 단량체 및 더욱 바람직하게는 1 개의 단량체를 포함할 수 있다.
바람직한 구현예에서, 단량체 m1 이 2 개의 올레핀 (올레핀 1 및 올레핀 2) 으로 이루어지는 경우, 올레핀 1 은 C4-C40-α-올레핀, 바람직하게는 C6-C36-α-올레핀, 더욱 바람직하게는 C8-C32-α-올레핀, 더 더욱 바람직하게는 C10-C28-α-올레핀, 특히 C12-C26-α-올레핀 및 특히 C16-C24-α-올레핀, 및 특히 C18-C22-α-올레핀, 예를 들어 C20-α-올레핀으로 이루어지는 군으로부터 선택된다.
동시에, 올레핀 2 는 공중합된 형태로, 1-부텐, 2-부텐 및/또는 이소부텐, 바람직하게는 이소부텐을 포함하는 올리고머 또는 중합체, 바람직하게는 이소부텐의, 250 내지 5000 g/mol, 바람직하게는 350 내지 3000, 더욱 바람직하게는 500 내지 1500 g/mol 의 범위 내의 평균 분자량 Mw 를 갖는 삼량체, 사량체, 오량체, 육량체 또는 중합체이다.
바람직하게는, 공중합된 형태로 이소부텐을 포함하는 올리고머 또는 중합체는 고 함량의 말단 에틸렌성 이중 결합 (α-이중 결합), 예를 들어 적어도 50 mol%, 바람직하게는 적어도 60 mol%, 더욱 바람직하게는 적어도 70 mol% 및 가장 바람직하게는 적어도 80 mol% 를 갖는다.
공중합된 형태로 이소부텐을 포함하는 이러한 올리고머 또는 중합체의 제조를 위한 적합한 이소부텐 공급원은 순수한 이소부텐 또는 이소부텐-함유 C4 탄화수소 스트림, 예를 들어 C4 라피네이트, 특히 "라피네이트 1", 이소부탄 탈수소화반응으로부터의 C4 컷 (cut), 증기분해기로부터의 C4 컷 및 FCC 분해기 (fluid catalyzed cracking) 로부터의 C4 컷인데, 단, 이들은 내부에 1,3-부타디엔이 실질적으로 존재하지 않는다. FCC 정련 단위로부터의 C4 탄화수소 스트림은 또한 "b/b" 스트림으로서 알려져 있다. 추가의 적합한 이소부텐-함유 C4 탄화수소 스트림은, 예를 들어, 프로필렌-이소부탄 동시산화 (cooxidation) 의 생성물 스트림 또는 통상적 정제 및/또는 농축 후 일반적으로 사용되는 복분해 단위로부터의 생성물 스트림이다. 적합한 C4 탄화수소 스트림은 일반적으로 500 ppm 미만, 바람직하게는 200 ppm 미만의, 부타디엔을 포함한다. 1-부텐 및 시스- 및 트랜스-2-부텐의 존재는 실질적으로 무비판적이다. 전형적으로, 상기 C4 탄화수소 스트림 내의 이소부텐 농도는 40 내지 60 중량% 의 범위 내이다. 예를 들어, 라피네이트 1 은 일반적으로 30 내지 50 중량% 의 이소부텐, 10 내지 50 중량% 의 1-부텐, 10 내지 40 중량% 의 시스- 및 트랜스-2-부텐 및 2 내지 35 중량% 의 부텐으로 본질적으로 이루어지며; 본 발명에 따른 중합 공정에서, 라피네이트 1 중의 비분지화된 부텐은 일반적으로 사실상 비활성이며, 오로지 이소부텐만이 중합된다.
바람직한 구현예에서, 중합에 사용되는 단량체 공급원은 1 내지 100 중량%, 특히 1 내지 99 중량%, 특히 1 내지 90 중량%, 더욱 바람직하게는 30 내지 60 중량% 의 이소부텐 함량을 갖는 기술적 C4 탄화수소 스트림, 특히 라피네이트 1 스트림, FCC 정련 단위로부터의 b/b 스트림, 프로필렌-이소부탄 동시산화로부터의 생성물 스트림 또는 복분해 단위로부터의 생성물 스트림이다.
특히 라피네이트 1 스트림이 이소부텐 공급원으로서 사용되는 경우, 단독 개시제로서 또는 추가 개시제로서 물의 사용은, 특히 중합이 -20℃ 내지 +30℃, 특히 0℃ 내지 +20℃ 의 온도에서 실행되는 경우 유용한 것으로 밝혀졌다. -20℃ 내지 +30℃, 특히 0℃ 내지 +20℃ 의 온도에서, 그러나 이소부텐 공급원으로서 라피네이트 1 스트림을 사용하는 경우에는, 개시제의 사용과 분배되는 것이 가능하다.
상기 이소부텐-함유 단량체 혼합물은 임계 수율 또는 선택성 손실을 산출하지 않으면서, 소량의 오염물, 예컨대 물, 카르복실산 또는 무기 산을 포함할 수 있다. 이소부텐-함유 단량체 혼합물로부터 이러한 유해 성분을 제거함으로써, 예를 들어 고체 흡착제 예컨대 활성탄, 분자체 또는 이온 교환제 상의 흡착에 의해 상기 불순물의 농축을 회피하는 것이 적합하다.
또한 이소부텐의 단량체 혼합물 또는 이소부텐-함유 탄화수소 혼합물을 이소부텐과 공중합가능한 올레핀성 불포화된 단량체로 전환하는 것이 가능하다. 이소부텐과 적합한 공단량체와의 단량체 혼합물이 공중합되어야 하는 경우, 단량체 혼합물은 바람직하게는 적어도 5 중량%, 더욱 바람직하게는 적어도 10 중량% 및 특히 적어도 20 중량% 의 이소부텐, 및 바람직하게는 최대 95 중량%, 더욱 바람직하게는 최대 90 중량% 및 특히 최대 80 중량% 의 공단량체를 포함한다.
유용한 공중합가능한 단량체에는: 비닐방향족, 예컨대 스티렌 및 α-메틸스티렌, C1- 내지 C4-알킬스티렌, 예컨대 2-, 3- 및 4-메틸스티렌 및 4-tert-부틸스티렌, 할로스티렌, 예컨대 2-, 3- 또는 4-클로로스티렌, 및 5 내지 10 개의 탄소 원자를 갖는 이소올레핀, 예컨대 2-메틸부텐-1, 2-메틸펜텐-1, 2-메틸헥센-1, 2-에틸펜텐-1, 2-에틸헥센-1 및 2-프로필헵텐-1 이 포함된다. 추가의 유용한 공단량체에는 실릴 기를 갖는 올레핀, 예컨대 1-트리메톡시실릴에텐, 1-(트리메톡시실릴)프로펜, 1-(트리메톡시실릴)-2-메틸프로펜-2, 1-[트리(메톡시에톡시)실릴]에텐, 1-[트리(메톡시에톡시)실릴]프로펜, 및 1-[트리(메톡시에톡시)실릴]-2-메틸프로펜-2 가 포함된다. 부가적으로 - 중합 조건에 따라 - 유용한 공단량체에는 또한 이소프렌, 1-부텐 및 시스- 및 트랜스-2-부텐이 포함된다.
공중합체가 본 발명에 따른 방법에 의해 제조되어지는 경우, 방법은 우선적으로 랜덤 중합체 또는 우선적으로 블록 공중합체를 형성하도록 배열될 수 있다. 블록 공중합체의 제조를 위해, 예를 들어, 상이한 단량체를 중합 반응에 연속적으로 공급하는 것이 가능하고, 이 경우 첫번째 공단량체가 이미 적어도 부분적으로 중합될 때까지 두번째 단량체는 특히 첨가되지 않는다. 이러한 방식으로, 단량체 첨가 순서에 따라, 말단 블록으로서 하나의 공단량체의 블록 또는 또다른 블록을 갖는, 2-블록, 3-블록 및 또한 고차 블록 공중합체를 수득하는 것이 가능하다. 그러나, 블록 공중합체는 또한 일부 경우에서 모든 공단량체가 중합 반응에 동시에 공급되는 경우 형성되나 하나는 다른 것(들) 보다 상당히 더욱 빠르게 중합된다. 이것은 특히 이소부텐 및 비닐방향족 화합물, 특히 스티렌이 본 발명에 따른 방법에서 공중합되는 경우이다. 이것은 바람직하게는 말단 폴리스티렌 블록을 갖는 블록 공중합체를 산출한다. 이에 대한 이유는 비닐방향족 화합물, 구체적으로는 스티렌이, 이소부텐보다 상당히 더욱 느리게 중합된다는 것이다.
올레핀 1:올레핀 2 (중합가능 이중 결합에 기반한) 의 몰비는 일반적으로 0.1:0.9 내지 0.95:0.05, 바람직하게는 0.2:0.8 내지 0.9:0.1, 더욱 바람직하게는 0.3:0.7 내지 0.85:0.15, 더 더욱 바람직하게는 0.4:0.6 내지 0.8:0.2, 특히 0.5:0.5 내지 0.7:0.3 이다.
카르복실산 단위 (m2)
본 발명의 카르복실산 단위는 특히 에틸렌성 불포화 폴리카르복실산, 특히 에틸렌성 불포화 디카르복실산, 예를 들어 임의로 치환된 C4-C8-디카르복실산 또는 에틸렌성으로 불포화된, 임의로 치환된 C4-C8-디카르복실산의 유도체일 수 있다. 유도체는 특히 히드로카르빌 에스테르 (부분적으로 또는 전체적으로 에스테르화됨), 예를 들어 C1-C8 또는 C1-C6 또는 C1-C4 알킬 에스테르 또는 무수물이다.
에틸렌성으로 불포화된, 임의로 치환된 C4-C8-디카르복실산의 비제한적인 예는 말레산, 푸마르산, 이타콘산, 메사콘산, 시트라콘산, 펜트-2-엔디오산, 헥스-2-엔디오산, 헥스-3-엔디오산, 5-메틸헥스-2-엔디오산, 2,3-디메틸펜트-2-엔디오산, 2-메틸부트-2-엔디오산, 2-도데실부트-2-엔디오산 및 2-폴리이소부틸부트-2-엔디오산; 특히 말레산, 또는 에틸렌성 불포화 C4-C8-디카르복실산의 유도체, 예를 들어 디- 또는 바람직하게는 모노-C1-C10-알킬 에스테르 및 특히 무수물이다. 바람직한 것은 이타콘 무수물 및 시트라콘 무수물이고, 매우 특히 바람직한 것은 말레산 무수물이다.
또한 상기 언급된 산, 특히 말레산의, 완전히 에스테르화된 저급 알킬 에스테르, 즉, 특히 C1-4- 또는 C1-3-알킬 에스테르가 특히 언급되어야만 한다.
본 발명의 카르복실산 단위는 또한 중합가능, 에틸렌성으로 불포화된, 임의로 치환된 모노카르복실산일 수 있다. 적합한 치환기는 예를 들어, 저급 알킬 치환기이다. 예에는 아크릴산 및 메타크릴산, 및 이의 유도체가 포함된다. 유도체는 특히 히드로카르빌 에스테르, 예를 들어 C1-C8 또는 C1-C6 또는 C1-C4 알킬 에스테르이다.
공중합 후, 공중합체는, 이것이 카르복실 에스테르 또는 무수물 라디칼을 갖는 경우, 폴리카르복실산으로 완전히 또는 부분적으로 가수분해될 수 있다. 임의로, 가수분해된 공중합체는 암모니아 또는 유기 아민으로 완전히 또는 부분적으로 중화될 수 있다.
공중합체는 1 개, 2 개 또는 이상의 상이한 단량체 m2, 그러나 특히 단지 1 개의 또는 2 개의 상이한 단량체 m2 를 포함할 수 있다.
본 발명의 하나의 구현예에서, (m1) 대 (m2) 의 몰비는 0.8:1 내지 2:1 의 범위이다.
본 발명에 따른 방법에서 사용되는 공중합체의 제조는 단독으로 알려져 있다. 이것은 50 내지 250℃ 의 범위 내의, 바람직하게는 80 내지 200℃ 의 범위 내의 온도에서 공단량체 (m1) 및 (m2) 의 예를 들어, 유리-라디칼 공중합에 의해 실행될 수 있다. 본 발명에 따른 방법에서 사용되는 공중합체는 실온에서 액체인 성분 또는 용액 중에서의, 예를 들어 파라핀 중에서의 공중합에 의해 제조될 수 있다.
적어도 부분적인 중화가 요망되는 경우, 반응은 예를 들어, 물로 바람직하게는 20 내지 150℃ 의 범위 내의 온도에서 실행될 수 있다. 가수분해를 위한 바람직한 온도 범위는 60 내지 100℃ 이다.
완전히 또는 95 mol% 초과의 범위로의 가수분해가 바람직하다.
공중합체의 예는 임의로 하기의 가수분해된 공중합체이다:
1 mol 의 말레산 무수물 및 0.9 mol 의 디이소부텐
1 mol 의 말레산 무수물 및 1 mol 의 디이소부텐
1 mol 의 말레산 무수물 및 0.8 mol 의 α-C10H20
1 mol 의 말레산 무수물 및 1 mol 의 α-C10H20
1 mol 의 말레산 무수물 및 1 mol 의 α-C12H24
1 mol 의 말레산 무수물 및 1 mol 의 α-C16H32
1 mol 의 말레산 무수물 및 1 mol 의 α-C18H36
1 mol 의 이타콘 무수물 및 1 mol 의 α-C18H36
1 mol 의 말레산 무수물 및 1 mol 의 C20-24-올레핀
1 mol 의 말레산 무수물 및 0.1 mol 의 α-C10H20 및 0.9 mol 의 α-C30H60
1 mol 의 말레산 무수물 및 0.3 mol 의 α-C12H24 및 0.7 mol 의 C20-24-올레핀
1 mol 의 말레산 무수물 및 0.7 mol 의 α-C12H24 및 0.3 mol 의 분자량 Mw 대략 500 g/mol 을 가진 폴리이소부텐,
1 mol 의 말레산 무수물 및 0.3 mol 의 α-C12H24 및 0.7 mol 의 C20-24-올레핀
1 mol 의 말레산 무수물 및 0.5 mol 의 α-C16H32 및 0.5 mol 의 C20-24-올레핀
1 mol 의 말레산 무수물 및 0.7 mol 의 α-C18H36 및 0.3 mol 의 C20-24-올레핀
1 mol 의 말레산 무수물 및 0.9 mol 의 C20-24-올레핀 및 0.1 mol 의 분자량 Mw 500 g/mol 을 가진 폴리이소부텐.
mol 로 표현되는 숫자는 각각 몰비를 나타낸다.
추가의 예는 예를 들어 하기 삼원중합체이다:
1:0.1:0.9 내지 1:0.95:0.05 의 몰비, 바람직하게는 1:0.2:0.8 내지 1:0.9:0.1 의 몰비, 더욱 바람직하게는 1:0.3:0.7 내지 1:0.85:0.15 의 몰비 및 가장 바람직하게는 1:0.4:0.6 내지 1:0.8:0.2 의 몰비를 가진 MA:올레핀 1:올레핀 2.
특히 바람직한 구현예는 하기 삼원중합체이다:
1:0.3:0.7 의 몰비를 가진 MA:올레핀 1:올레핀 2.
1:0.5:0.5 의 몰비를 가진 MA:올레핀 1:올레핀 2.
1:0.1:0.9 의 몰비를 가진 MA:올레핀 1:올레핀 2.
본 발명에 따른 방법의 수행을 위해, 실온에서 액체인 적어도 하나의 파라핀 (또한 파라핀 오일로 불림) 이 부가적으로 사용된다. 실온에서 액체인 파라핀에는 미정제 파라핀 오일, 조랍 (slack wax) 라피네이트, 탈오일화된 (deoiled) 미정제 파라핀, 반정련된 또는 완전히 정련된 파라핀 오일, 및 표백된 파라핀 오일 (이들 각각은 실온에서 액체임) 이 포함된다. 본 발명과 연관되어 파라핀은 포화된 탄화수소, 분지형 또는 비분지형, 시클릭 또는 바람직하게는 아시클릭 (acyclic) 을, 개별적으로 또는 바람직하게는 다수의 포화된 탄화수소의 혼합물로서, 의미하는 것으로 이해된다. 본 발명과 연관되어 파라핀은 바람직하게는 6 내지 30 개의 탄소 원자를 갖는 포화된 탄화수소로 구성된다.
추가의 적합한 용매는 방향족 용매, 예컨대 톨루엔, 자일렌 또는 Solvesso 계열로부터의 용매이다.
본 발명의 하나의 구현예에서, 실온에서 액체인 파라핀은 표준 압력에서 측정된, 150 내지 230℃ 의 넓은 비등 범위를 갖는다.
추가의 구현예에서, 비가수분해된 공중합체는 또한 일차 아민 또는 2 차 아민 또는 알코올과 반응하여 아미드 또는 에스테르를 산출할 수 있다. 그렇게 수득된 생성물이 마찬가지로 본 발명의 문맥에서 사용될 수 있다.
A4) 4 차화가능 질소 화합물
A4.1) 하기 화학식 (3) 의 3 차 아민
화학식 (3) 의 3 차 아민은, 예를 들어, EP-A-2 033 945 에 기재된 바와 같이, 단독으로 공지된 화합물이다.
3 차 아민 반응물 3 은 바람직하게는 화학식 NRaRb 의 분절 (식 중, 라디칼 중 하나는 8 내지 40 개의 탄소 원자를 갖는 알킬 기를 갖고, 다른 것은 40 개 이하, 더욱 바람직하게는 8 내지 40 개의 탄소 원자를 갖는 알킬 기를 가짐) 을 갖는다. Rc 라디칼은 특히 단쇄 C1-C6-알킬 라디칼, 예컨대 메틸, 에틸 또는 프로필 기이다. Ra 및 Rb 는 직쇄 또는 분지형일 수 있고/거나 동일 또는 상이할 수 있다. 예를 들어, Ra 및 Rb 는 직쇄 C12-C24-알킬 기일 수 있다. 대안적으로는, 2 개의 라디칼 중 오로지 하나가 장쇄 (예를 들어 8 내지 40 개의 탄소 원자를 가짐) 일 수 있고, 다른 것이 메틸, 에틸 또는 프로필 기일 수 있다.
적합하게는, NRaRb 분절은 2 차 아민, 예컨대 디옥타데실아민, 디코코아민, 수소첨가된 디탈로우아민 및 메틸베헤닐아민으로부터 유래된다. 천연 재료로부터 수득가능한 아민 혼합물이 마찬가지로 적합하다. 하나의 예는 2 차 수소첨가된 탈로우아민으로, 이때 알킬 기는 수소첨가된 탈로우 지방으로부터 유래되고, 약 4 중량% 의 C14, 31 중량% 의 C16 및 59 중량% 의 C18-알킬 기를 함유한다. 화학식 3 의 상응하는 3 차 아민은 예를 들어, Akzo Nobel 에 의해 상표명 Armeen® M2HT 또는 Armeen® M2C 로 판매된다.
그러나, 3 차 아민 부가제 3 은 또한 Ra, Rb 및 Rc 라디칼이 동일 또는 상이한 장쇄 알킬 라디칼, 특히 8 내지 40 개의 탄소 원자를 갖는 직쇄 또는 분지형 알킬 기를 갖는 것일 수 있다.
적합한 아민의 추가의 비제한적인 예는 하기와 같다:
N,N-디메틸-N-(2-에틸헥실)아민, N,N-디메틸-N-(2-프로필헵틸)아민, 도데실-디메틸아민, 헥사데실디메틸아민, 올레일디메틸아민, 코코일디메틸아민, 디코코일메틸아민, 탈로우디메틸아민, 디탈로우메틸아민, 트리도데실아민, 트리헥사데실아민, 트리옥타데실아민, 소야디메틸아민, 트리스(2-에틸헥실)아민, 및 Alamine 336 (트리-n-옥틸아민).
A4.2) 적어도 하나의 4 차화가능, 특히 3 차, 아미노 기를 포함하는 4 차화가능, 폴리에테르-치환된 아민;
이러한 종류의 화합물은 예를 들어, 본원에 참고로서 인용된 본 출원인의 WO2013/064689 에 기재된다.
이러한 종류의 치환된 아민은 특히 하기 일반 화학식 Ic 의 단량체 단위를 갖는 적어도 하나의, 특히 하나의, 폴리에테르 치환기를 갖는다:
-[-CH(R3)-CH(R4)-O-]- (Ic)
(식 중,
R3 및 R4 는 동일 또는 상이하고, 각각 H, 알킬, 알킬아릴 또는 아릴임).
폴리에테르-치환된 아민은 500 내지 5000, 특히 800 내지 3000 또는 900 내지 1500 의 범위 내의 수-평균 분자량을 가질 수 있다.
4 차화가능, 폴리에테르-치환된 아민은 특히 하기 일반 화학식 Ia-1 또는 Ib-2 의 질소 화합물이다:
Figure 112016083899907-pct00003
(식 중,
R1 및 R2 는 동일 또는 상이하고, 각각 알킬, 알케닐, 히드록시알킬, 히드록시알케닐, 아미노알킬 또는 아미노알케닐이거나, 또는 R1 및 R2 는 함께 알킬렌, 옥시알킬렌 또는 아미노알킬렌이고;
R3 및 R4 는 동일 또는 상이하고, 각각 H, 알킬, 알킬아릴 또는 아릴이고;
R6 은 알킬, 알케닐, 임의로 모노- 또는 폴리불포화된 시클로알킬, 아릴이고, 각 경우 임의로 예를 들어 적어도 하나의 히드록실 라디칼 또는 알킬 라디칼에 의해 치환되거나, 또는 적어도 하나의 헤테로원자에 의해 중단되고;
A 는 임의로 하나 이상의 헤테로원자 예컨대 N, O 및 S 에 의해 중단되는 직쇄 또는 분지형 알킬렌 라디칼이고;
n 은 1 내지 50 의 정수 값임).
식 중, 하기와 같은 화학식 Ia-1 및 Ib-2 의 이들 질소 화합물이 특히 언급되어야만 한다:
R1 및 R2 는 동일 또는 상이하고, 각각 C1-C6-알킬, 히드록시-C1-C6-알킬, 히드록시-C1-C6-알케닐, 또는 아미노-C1-C6-알킬이거나, 또는 R1 및 R2 는 함께 C2-C6-알킬렌, C2-C6-옥시알킬렌 또는 C2-C6-아미노알킬렌 라디칼을 형성하고;
R3 및 R4 는 동일 또는 상이하고, 각각 H, C1-C6-알킬 또는 페닐이고;
R6 은 C1-C20-알킬, 예를 들어 C10-C20-, C11-C20- 또는 C12-C20-알킬 또는 아릴 또는 알킬아릴이고, 이때 알킬은 특히 C1-C20- 이고;
A 는 임의로 하나 이상의 헤테로원자 예컨대 N, O 및 S 에 의해 중단되는 직쇄 또는 분지형 C2-C6-알킬렌 라디칼이고;
n 은 1 내지 30 의 정수 값이다.
부가적으로, WO 2013/064689 의 합성예 1 에 기재된 바와 같이, N,N-디메틸에탄올아민 및 프로필렌 옥시드의 반응 생성물을 언급해야만 한다. 상기 반응은 또한, 예를 들어, 문헌 M. Ionescu, Chemistry and Technology of Polyols for Polyurethanes, 2005, ISBN 978-85957-501-7 에 기재된 바와 같이, 촉매로서 아민 (예를 들어 이미다졸) 과 함께 또는 촉매작용 없이 수행될 수 있다.
일반 화학식 Ia-1 의 질소 화합물은,
하기 일반 화학식 II 의 아미노알칸올
Figure 112016083899907-pct00004
(식 중,
R1, R2 및 A 는 각각 상기 정의된 바와 같음) 을
하기 일반 화학식 III 의 에폭시드
Figure 112016083899907-pct00005
(식 중,
R3 및 R4 는 각각 상기 정의된 바와 같음) 로 알콕시화하여
하기 화학식의 알콕시화된 아민을 수득함으로써 제조가능하다:
Figure 112016083899907-pct00006
(식 중, R1 내지 R4, A 및 n 은 각각 상기 정의된 바와 같음).
일반 화학식 Ia-2 의 질소 화합물은
하기 일반 화학식 V 의 알코올
R6-OH (V)
(식 중,
R6 은 상기 정의된 바와 같음) 을 하기 일반 화학식 III 의 에폭시드
Figure 112016083899907-pct00007
(식 중,
R3 및 R4 는 각각 상기 정의된 바와 같음) 로 알콕시화하여
하기 화학식 Ib-1 의 폴리에테르를 수득함:
Figure 112016083899907-pct00008
(식 중,
R3, R4 및 R6, A 는 각각 상기 정의된 바와 같음)
b) 이후 그렇게 수득된 화학식 Ib-1 의 폴리에테르를 하기 일반 화학식의 아민으로 아미노화하여
Figure 112016083899907-pct00009
(식 중, R1 및 R2 는 각각 상기 정의된 바와 같음)
화학식 Ib-2 의 아민을 수득함으로써 제조가능하다.
폴리에테르-치환된, 4 차화가능 질소 화합물의 제조를 위한 출발 화합물은 따라서:
1) 알코올,
예를 들어 하기 일반 화학식 V 의 것:
R6-OH (V)
(식 중, R6 은 알킬, 알케닐, 임의로 모노- 또는 폴리불포화된 시클로알킬, 아릴이고, 각 경우 임의로 예를 들어 적어도 하나의 히드록실 라디칼 또는 알킬 라디칼에 의해 치환되거나, 또는 적어도 하나의 헤테로원자에 의해 중단됨);
2) 아미노 알칸올,
예를 들어 하기 일반 화학식 II 의 것:
Figure 112016083899907-pct00010
(식 중,
R1 및 R2 는 동일 또는 상이하고, 각각 알킬, 알케닐, 히드록시알킬, 히드록시알케닐, 아미노알킬 또는 아미노알케닐이거나, 또는 R1 및 R2 는 함께 알킬렌, 옥시알킬렌 또는 아미노알킬렌이고;
A 는 임의로 하나 이상의 헤테로원자 예컨대 N, O 및 S 에 의해 중단되는 직쇄 또는 분지형 알킬렌 또는 알케닐렌 라디칼임).
언급되어야만 하는 4 차화가능 아미노 알코올의 추가의 적합한 기는 폴리에테르 라디칼에 연결될 수 있는 적어도 하나의 4 차화가능, 1 차, 2 차 또는 3 차 아미노 기 및 적어도 하나의 히드록실 기를 갖는 히드록시알킬-치환된 모노- 또는 폴리아민으로부터 선택되는 화합물의 것이다.
4 차화가능 질소 화합물은 특히 히드록시알킬-치환된 1 차, 2 차 및 특히 3 차 모노아민, 및 히드록시알킬-치환된 1 차, 2 차 및 특히 3 차 디아민으로부터 선택된다.
적합한 "히드록시알킬-치환된 모노- 또는 폴리아민" 의 예는 적어도 하나의 히드록시알킬 치환기, 예를 들어 1, 2, 3, 4, 5 또는 6 개의 히드록시알킬 치환기로 제공되는 것들이다.
"히드록시알킬-치환된 모노아민" 의 예에는: N-히드록시알킬모노아민, N,N-디히드록시알킬모노아민 및 N,N,N-트리히드록시알킬모노아민이 포함되며, 히드록시알킬 기는 동일 또는 상이하고, 또한 상기 정의된 바와 같다. 히드록시알킬은 특히 2-히드록시에틸, 3-히드록시프로필 또는 4-히드록시부틸이다.
예를 들어, 하기 "히드록시알킬-치환된 폴리아민" 및 특히 "히드록시알킬-치환된 디아민" 이 언급될 수 있다: N-히드록시알킬알킬렌디아민, N,N-디히드록시알킬알킬렌디아민, 여기서 히드록시알킬 기는 동일 또는 상이하고, 또한 상기 정의된 바와 같다. 히드록시알킬은 특히 2-히드록시에틸, 3-히드록시프로필 또는 4-히드록시부틸이고; 알킬렌은 특히 에틸렌, 프로필렌 또는 부틸렌이다.
하기 4 차화가능 질소 화합물이 특히 언급되어야만 한다:
Figure 112016083899907-pct00011

폴리에테르-치환된 4 차화가능 화합물 (Ia-1 및 Ib-1) 의 제조를 위해, 절차는 하기와 같을 수 있다:
a1) 화학식 II 의 아미노 알코올로부터의 진행:
일반 화학식 II 의 아미노 알코올은 일반 화학식 Ia-1 의 알콕실화 아민을 수득하기 위해 원칙적으로 공지된 방식으로 알콕실화될 수 있다.
알콕실화의 수행은 당업자에게 원칙적으로 공지된다. 마찬가지로 반응 조건, 특히 촉매의 선별이 알콕실레이트의 분자량 분포에 영향을 줄 수 있다는 것이 당업자에게 공지된다.
알콕실화의 경우, C2- C16-알킬렌 옥시드, 예를 들어 에틸렌 옥시드, 프로필렌 옥시드 또는 부틸렌 옥시드가 사용된다. 각 경우 1,2-알킬렌 옥시드가 바람직하다.
알콕실화는 염기-촉매화 알콕실화일 수 있다. 본 목적을 위해, 아미노 알코올 (II) 은 알칼리 금속 히드록시드, 바람직하게는 칼륨 히드록시드와 함께, 또는 알칼리 금속 알콕시드, 예를 들어 나트륨 메톡시드와 함께 압력 반응기 내에서 혼련될 수 있다. 혼합물에 여전히 존재하는 물은 갑압 (예를 들어 < 100 mbar) 및/또는 온도의 증가 (30 내지 150℃) 에 의해 배출될 수 있다. 이후, 알코올은 상응하는 알콕시드의 형태로 존재한다. 이 후 비활성 기체 (예를 들어 질소) 로의 비활성화 및 최대 10 bar 의 온도 까지에서 60 내지 180℃ 의 온도에서 알킬렌 옥시드(들) 의 단계식 첨가가 뒤따른다. 반응 종료시에, 촉매는 산 (예를 들어, 아세트산 또는 인산) 을 첨가함으로써 중화될 수 있고, 필요한 경우 여과제거될 수 있다. 염기성 촉매는 또한 시판 마그네슘 실리케이트 (이것은 후속적으로 여과제거됨) 의 첨가에 의해 중화될 수 있다. 임의로, 알콕실화는 또한 용매의 존재 하에서 수행될 수 있다. 이것은 예를 들어, 톨루엔, 자일렌, 디메틸포름아미드 또는 에틸렌 카보네이트일 수 있다.
아미노 알코올의 알콕실화는 또한 다른 방법에 의해, 예를 들어 산-촉매화된 알콕실화에 의해 착수될 수 있다. 부가적으로는, DE 43 25 237 A1 에 기재되는 바와 같이, 예를 들어, 이중 히드록시드 점토를 사용하는 것이 가능하거나, 또는 이중 금속 시아나이드 촉매 (DMC 촉매) 를 사용하는 것이 가능하다. 적합한 DMC 촉매는, 예를 들어, DE 102 43 361 A1, 특히 단락 [0029] 내지 [0041] 및 그 곳에 언급된 문헌에 기재된다. 예를 들어, Zn-Co 유형의 촉매를 사용하는 것이 가능하다. 반응을 수행하기 위해, 아미노 알코올을 촉매와 혼련시킬 수 있고, 혼합물을 상기 기재된 바와 같이 탈수시키고 기재된 바와 같이 알킬렌 옥시드와 반응시킬 수 있다. 전형적으로 혼합물에 대해 1000 ppm 이하의 촉매가 사용되며, 촉매는 상기 소량으로 인해 생성물에 남을 수 있다. 촉매의 양은 일반적으로 1000 ppm 미만, 예를 들어 250 ppm 이하일 수 있다.
알콕실화는 대안적으로는 또한 화합물 (IV) 및 (V) 와 시클릭 카보네이트, 예를 들어 에틸렌 카보네이트의 반응에 의해 착수될 수 있다.
a2) 화학식 V 의 알칸올로부터의 진행:
아미노 알코올 (II) 에 대해 상기 단락 a1) 에 기재된 바와 같이, 유사하게는 또한 폴리에테르 (Ib-1) 에 원칙적으로 공지된 방식으로 알칸올 R6OH 를 알콕실화하는 것이 가능하다. 그렇게 수득된 폴리에테르는 이어서 상응하는 폴리에테르 아민 (Ib-2) 으로, 통상의 방법에 의한 암모니아, 1 차 아민 또는 2 차 아민 (VII) 을 사용하는 환원성 아미노화에 의해, 이에 대해 통상적인 수소첨가 또는 아미노화 촉매, 예를 들어 통상의 양으로, 원소 Ni, Co, Cu, Fe, Pd, Pt, Ru, Rh, Re, Al, Si, Ti, Zr, Nb, Mg, Zn, Ag, Au, Os, Ir, Cr, Mo, W 또는 상기 원소와 서로의 조합에 기반한 촉매적으로 활성인 구성성분을 포함하는 것들을 사용하는 연속적 또는 배치식 공정에서 전환될 수 있다. 전환은 용매 없이 또는, 높은 폴리에테르 점도의 경우, 용매의 존재 하에, 바람직하게는 분지형 지방족, 예를 들어 이소도데칸의 존재 하에 수행될 수 있다. 아민 성분 (VII) 은 일반적으로 본원에서 과량으로, 예를 들어 2- 내지 100-배 과량, 바람직하게는 10- 내지 80-배 과량으로 사용된다. 반응은 10 분 내지 10 시간의 기간에 걸쳐 10 내지 600 bar 의 압력에서 수행된다. 냉각 후, 촉매를 여과에 의해 제거하고, 과도한 아민 성분 (VII) 을 증발시키고, 반응의 물을 공비로 (azeotropically) 또는 온화한 질소 스트림 하에서 증류제거한다.
산출되는 폴리에테르 아민 (Ib-2) 이 1 차 또는 2 차 아민 기능성 (R1 및/또는 R2 가 H 임) 을 가져야만 하는 경우, 이것은 이후 3 차 아민 기능 (R1 및 R2 는 H 가 아님) 을 갖는 폴리에테르 아민으로 전환될 수 있다. 알킬화는 알킬화제와의 반응에 의해 원칙적으로 공지된 방식으로 실행될 수 있다. 임의의 알킬화제가, 예를 들어 알킬 할라이드, 알킬아릴 할라이드, 디알킬 술페이트, 알킬렌 옥시드, 임의로 산; 지방족 또는 방향족 카르복실 에스테르, 예컨대 디알킬 카르복실레이트 특히; 알카노에이트; 시클릭 비방향족 또는 방향족 카르복실 에스테르; 디알킬 카보네이트; 및 이의 혼합물과의 조합으로, 원칙적으로 적합하다. 3 차 폴리에테르 아민으로의 전환은 또한 환원제의 존재 하에, 카르보닐 화합물, 예를 들어 포름알데히드와의 반응에 의한 환원성 아미노화를 통해 일어날 수 있다. 적합한 환원제는 적합한 불균질 또는 균질 수소첨가 촉매의 존재 하의 포름산 또는 수소이다. 반응은 용매 없이 또는 용매의 존재 하에 수행될 수 있다. 적합한 용매는 예를 들어, H2O, 알칸올 예컨대 메탄올 또는 에탄올, 또는 2-에틸헥산올, 방향족 용매 예컨대 톨루엔, 자일렌 또는 용매 혼합물 (Solvesso 시리즈), 또는 지방족 용매, 특히 분지형 지방족 용매의 혼합물이다. 반응은 10℃ 내지 300℃ 의 온도에서 1 내지 600 bar 의 압력에서 10 분 내지 10 시간의 기간에 걸쳐 수행된다. 환원제는 본원에서 적어도 화학량론적으로, 바람직하게는 과량으로, 특히 2- 내지 10-배 과량으로 사용된다.
그렇게 형성된 반응 생성물 (폴리에테르 아민 Ib-1 또는 Ib-2) 은 이론적으로는 추가로 정제될 수 있고, 또는 용매가 제거될 수 있다. 통상적으로는, 그러나, 이것이 절대적으로는 필요한 것이 아니어서, 반응 생성물은 추가 정제 없이 다음 합성 단계인, 4 차화로 이동할 수 있다.
A4.3) 적어도 하나의 3 차, 4 차화가능 질소 기를 갖는 폴리알켄-치환된 아민
추가의 적합한 4 차화가능 질소 화합물은 적어도 하나의 3 차 질소 기를 갖는 폴리알켄-치환된 아민이다. 상기 그룹의 화합물은 마찬가지로 공지되어 있고, 예를 들어, WO 2008/060888 또는 US 2008/0113890, 및 그곳에 언급된 추가의 종래 기술에 기재되어 있다 (이것은 본원에 참고에 의해 명백하게 인용됨).
적어도 하나의 3 차 아미노 기를 갖는 이러한 폴리알켄-치환된 아민은 올레핀 중합체 및 아민 예컨대 암모니아, 모노아민, 폴리아민 또는 이의 혼합물로부터 유도가능하다. 이들은 다수의 공정, 예를 들어 예에 의해 언급되는 하기 공정에 의해 제조될 수 있다:
폴리알켄-치환된 아민의 제조 공정은 미국 특허 3,275,554, 3,438,757, 3,454,555, 3,565,804, 3,755,433 및 3,822,289 에 기재된 바와 같은, 할로겐화된 올레핀 중합체와 아민과의 반응을 포함한다.
폴리알켄-치환된 아민의 추가의 제조 방법은 US 5,567,845 및 5,496,383 에 기재된 바와 같은 히드로포르밀화된 올레핀과 폴리아민과의 반응 및 반응 생성물의 수소첨가를 포함한다.
폴리알켄-치환된 아민의 추가의 제조 방법은 촉매와 함께 또는 촉매 없이 통상의 에폭시드화 시약의 도움으로 폴리알켄의 상응하는 에폭시드로의 전환 및 US 5,350,429 에 기재된 바와 같은, 환원성 아미노화의 조건 하에서 암모니아 또는 아민과의 반응에 의한 에폭시드의 폴리알켄-치환된 아민으로의 전환을 포함한다.
폴리알켄-치환된 아민의 추가의 제조 방법은 US 5,492,641 에 기재된 바와 같은, 아민과 니트릴과의 반응에 의해 제조되는 β-아미노 니트릴의 수소첨가를 포함한다.
폴리알켄-치환된 아민의 추가의 제조 방법은 US 4,832,702 에 기재된 바와 같은, 상승된 압력 및 온도에서 CO 및 수소의 존재 하에, 폴리부텐 또는 폴리이소부틸렌의 촉매, 예컨대 로듐 또는 코발트와의 히드로포르밀화를 포함한다.
본 발명의 하나의 구현예에서, 제조에 사용되는 폴리알켄은 올레핀 중합체로부터 유래된다. 올레핀 중합체는 2 내지 약 16 개의 탄소 원자, 2 내지 약 6 개의 탄소 원자 또는 2 내지 약 4 개의 탄소 원자를 갖는 중합가능 올레핀 단량체의 단독중합체 및 공중합체를 포함할 수 있다.
상호중합체 (interpolymer) 는 2 개 이상의 올레핀 단량체가 공지된 통상의 방법에 의해 상호중합 (interpolymerize) 되어, 그들의 구조 내에 2 개 이상의 올레핀 단량체 각각으로부터 유도되는 단위를 갖는 폴리알켄을 산출하는 것이다.
따라서, "상호중합체" 는 공중합체, 삼원중합체 및 4원중합체를 포함한다.
폴리알켄-치환된 아민이 유도되는 "폴리알켄" 은 통상적으로 종종 또한 "폴리올레핀" 으로서 언급된다.
올레핀 중합체가 유도되는 올레핀 단량체는 하나 이상의 에틸렌성 불포화 기 (즉, >C=C<) 를 갖는 중합가능 올레핀 단량체이다; 다른 말로는, 이들은 모노올레핀성 단량체 예컨대 에틸렌, 프로필렌, 1-부텐, 이소부텐 (2-메틸-1-부텐), 1-옥텐, 또는 폴리올레핀성 단량체 (통상 디올레핀성 단량체) 예컨대 1,3-부타디엔 및 이소프렌이다.
올레핀 단량체는 통상, 중합가능 말단 올레핀, 즉, 이들의 구조 내에 >C=CH2 기를 갖는 올레핀이다. 그러나, 또한 화학식 >C-C=C-C< 의 군을 특징으로 하는 중합가능 내부 올레핀 단량체를 사용하는 것이 가능하다.
통상의 방법에 의해 폴리알켄을 제조하는데 사용될 수 있는 말단 및 내부 올레핀 단량체의 구체적인 예는, 에틸렌, 프로필렌, 부텐 (부틸렌), 특히 1-부텐, 2-부텐 및 이소부틸렌, 1-펜텐, 1-헥센, 1-헵텐, 1-옥텐, 1-노넨, 1-데센, 2-펜텐, 프로필렌 사량체, 디이소부틸렌, 이소부틸렌 삼량체, 1,2-부타디엔, 1,3-부타디엔, 1,2-펜타디엔, 1,3-펜타디엔, 1,4-펜타디엔, 이소프렌, 1,5-헥사디엔, 2-메틸-5-프로필-1-헥센, 3-펜텐, 4-옥텐 및 3,3-디메틸-1-펜텐이다.
또다른 구현예에서, 올레핀 중합체는 루이스 (Lewis) 산 촉매 예컨대 알루미늄 트리클로라이드 또는 붕소 트리플루오라이드의 존재 하에, 약 35 내지 약 75 중량% 의 부텐 함량 및 약 30 내지 약 60 중량% 의 이소부텐 함량을 갖는 C4 정련 스트림의 중합에 의해 제조가능하다. 상기 폴리부텐은 전형적으로 우세하게 (약 80% 초과의 모든 반복 단위) (-CH2-C(CH3)2-) 유형의 반복 이소부텐 단위를 포함한다.
추가의 구현예에서, 폴리알켄-치환된 아민의 폴리알켄 치환기는 폴리이소부틸렌으로부터 유도된다.
또다른 구현예에서, 폴리알켄-치환된 아민을 형성하는데 사용될 수 있는 아민은, 다양한 모노아민의 혼합물, 다양한 폴리아민의 혼합물 및 모노아민 및 폴리아민 (디아민) 의 혼합물을 비롯한, 암모니아, 모노아민, 폴리아민 또는 이의 혼합물을 포함한다. 아민은 지방족, 방향족, 헤테로시클릭 및 카르보시클릭 아민을 포함한다. 모노아민 및 폴리아민은 적어도 하나의 HN< 그룹의 구조 내의 존재를 특징으로 한다. 아민은 지방족, 시클로지방족, 방향족 또는 헤테로시클릭일 수 있다.
모노아민은 일반적으로 1 내지 50 개의 탄소 원자를 갖는 히드로카르빌 기로 치환된다. 이들 히드로카르빌 기는 특히 지방족이고 아세틸렌성 불포화 기가 없을 수 있고, 1 내지 약 30 개의 탄소 원자를 가질 수 있다. 1 내지 30 개의 탄소 원자를 갖는 포화된 지방족 히드로카르빌 라디칼이 특히 언급되어야만 한다.
추가의 구현예에서, 모노아민은 화학식 HNR1R2 (식 중, R1 은 30 개 이하의 탄소 원자를 갖는 히드로카르빌 기이고, R2 는 수소 또는 약 30 개 이하의 탄소 원자를 갖는 히드로카르빌 기임) 를 가질 수 있다. 적합한 모노아민의 예는 메틸아민, 에틸아민, 디에틸아민, 2-에틸헥실아민, 디(2-에틸헥실)아민, n-부틸아민, 디-n-부틸아민, 알릴아민, 이소부틸아민, 코코아민, 스테아릴아민, 라우릴아민, 메틸라우릴아민 및 올레일아민이다.
방향족 모노아민은 방향족 고리 구조 내의 탄소 원자가 아민 질소 원자에 직접적으로 결합된 이들 모노아민이다. 방향족 고리는 통상 모노시클릭 방향족 고리 (즉, 벤젠으로부터 유도됨) 일 것이지만, 융합된 방향족 고리, 특히 나프탈렌으로부터 유도된 것들이 포함될 수 있다. 방향족 모노아민의 예는 아닐린, 디(파라-메틸페닐)아민, 나프틸아민, N-(n-부틸)아닐린이다. 지방족-치환된, 시클로지방족-치환된 및 헤테로시클릭-치환된 방향족 모노아민의 예는: 파라-도데실아닐린, 시클로헥실-치환된 나프틸아민 및 티에닐-치환된 아닐린이다.
히드록실아민은 마찬가지로 적합한 모노아민이다. 상기 종류의 화합물은 상기 언급된 모노아민의 히드록시히드로카르빌-치환된 유사체이다.
하나의 구현예에서, 히드록시 모노아민은 화학식 HNR3R4 (식 중, R3 은 약 30 개 이하의 탄소 원자, 및 하나의 구현예에서 약 10 개 이하의 탄소 원자를 갖는 히드록실-치환된 알킬 기이고; R4 는 약 30 개 이하의 탄소 원자를 갖는 히드록실-치환된 알킬 기, 수소 또는 약 10 개 이하의 탄소 원자를 갖는 히드로카르빌 기임) 의 것이다. 히드록실-치환된 모노아민의 예에는 에탄올아민, 디-3-프로판올아민, 4-히드록시부틸아민, 디에탄올아민 및 N-메틸-2-히드록시프로필아민이 포함된다.
또다른 구현예에서, 폴리알켄-치환된 아민의 아민은 폴리아민일 수 있다. 폴리아민은 지방족, 시클로지방족, 헤테로시클릭 또는 방향족일 수 있다. 폴리아민의 예에는 알킬렌폴리아민, 히드록실 기-포함 폴리아민, 아릴 폴리아민 및 헤테로시클릭 폴리아민이 포함된다.
알킬렌폴리아민은 하기 화학식의 것들을 포함한다:
HN(R5)-(알킬렌-N(R5))n-(R5)
(식 중, n 은 1 내지 약 10 의 범위 및, 예를 들어, 2 내지 약 7, 또는 2 내지 약 5 의 범위이고, "알킬렌" 기는 1 내지 약 10 개의 탄소 원자, 예를 들어 2 내지 약 6, 또는 2 내지 약 4 개의 탄소 원자를 갖고;
R5 라디칼은 각각 독립적으로 수소, 지방족 기, 히드록실- 또는 아민-치환된 지방족 기 (각 경우 약 30 개 이하의 탄소 원자의 것) 임). 전형적으로, R5 는 H 또는 저급 알킬 (1 내지 약 5 개의 탄소 원자를 갖는 알킬 기), 특히 H 이다. 상기 종류의 알킬렌폴리아민에는 메틸렌폴리아민, 에틸렌폴리아민, 부틸렌폴리아민, 프로필렌폴리아민, 펜틸렌폴리아민, 헥실렌폴리아민 및 헵틸렌폴리아민이 포함된다. 이러한 아민 및 관련 아미노알킬-치환된 피페라진의 고차 상동체가 마찬가지로 포함된다.
폴리알켄-치환된 아민의 제조를 위한 구체적인 알킬렌폴리아민은 다음과 같다: 에틸렌디아민, 디에틸렌트리아민, 트리에틸렌테트라민, 테트라에틸렌펜타민, 프로필렌디아민, 3-디메틸아미노프로필아민, 트리메틸렌디아민, 헥사메틸렌디아민, 데카메틸렌디아민, 옥타메틸렌디아민, 디(헵타메틸렌)트리아민, 트리프로필렌테트라민, 펜타에틸렌헥사민, 디(트리메틸렌트리아민), N-(2-아미노에틸)피페라진 및 1,4-비스(2-아미노에틸)피페라진.
에틸렌폴리아민, 예컨대 상기 언급된 것들이, 비용 및 효율성 이유로 인해 특히 적합하다. 상기 종류의 폴리아민은 문헌 Encyclopedia of Chemical Technology, 제 2 판, Kirk-Othmer, 제 7 권, 페이지 27-39, Inter-science Publishers, division of John Wiley & Sons, 1965 의 "Diamine und hohere Amine" [Diamines and Higher Amines] 챕터에 상세하게 기재되어 있다. 상기 종류의 화합물은 알킬렌 클로라이드의 암모니아와의 반응에 의해 또는 에틸렌이민의 개환 시약, 예컨대 암모니아와의 반응에 의해 가장 통상적으로 제조된다. 상기 반응은 시클릭 축합 생성물 예컨대 피페라진을 포함하는, 알킬렌폴리아민의 복합 혼합물의 제조를 야기한다.
다른 적합한 유형의 폴리아민 혼합물은 상기-기재된 폴리아민 혼합물을 스트리핑함으로써 잔기로서 형성되고 흔히 "폴리아민 바닥 (bottoms)" 으로서 불리는 생성물이다. 일반적으로, 알킬렌폴리아민 바닥 생성물은 약 200℃ 미만에서 비등하는 물질을 2 미만, 통상 1 중량% 미만 포함하는 것이다. 이러한 에틸렌폴리아민 바닥의 전형적인 예는 Dow Chemical Company (Freeport, Texas) 사의 "E 100" 으로 지정된 제품의 것이다. 이들 알킬렌폴리아민 바닥은 시클릭 축합 생성물 예컨대 피페라진 및 디에틸렌트리아민, 트리에틸렌테트라민 등의 고차 유사체를 포함한다.
히드록실 기-포함 폴리아민에는 질소 원자 상에 하나 이상의 히드록시알킬 치환기를 갖는 히드록시알킬알킬렌폴리아민이 포함된다. 이러한 종류의 폴리아민은 상기-기재된 알킬렌폴리아민과 하나 이상의 알킬렌 옥시드 (예를 들어, 에틸렌 옥시드, 프로필렌 옥시드 및 부틸렌 옥시드) 를 반응시킴으로써 제조될 수 있다. 유사한 알킬렌 옥시드-알칸올아민 반응 생성물은 또한 예를 들어, 1 차, 2 차 또는 3 차 알칸올아민과 에틸렌, 프로필렌 또는 고차 에폭시드의 1:1 내지 1:2 의 몰비로의 반응의 생성물일 수 있다. 이러한 반응의 수행을 위한 반응물 비 및 온도는 당업자에게 공지되어 있다.
또다른 구현예에서, 히드록시알킬-치환된 알킬렌폴리아민은 히드록시알킬 기가 히드록시-저급 알킬 기인, 즉, 8 개보다 적은 탄소 원자를 갖는 화합물일 수 있다. 이러한 히드록시알킬-치환된 폴리아민의 예에는 N-(2-히드록시에틸)에틸렌디아민 (또한 2-(2-아미노에틸아미노)에탄올로서 공지됨), N,N-비스(2-히드록시에틸)에틸렌디아민, 1-(2-히드록시에틸)피페라진, 모노히드록시프로필-치환된 디에틸렌트리아민, 디히드록시프로필-치환된 테트라에틸렌펜타민 및 N-(3-히드록시부틸)테트라메틸렌디아민이 포함된다.
아릴 폴리아민은 상기 언급된 방향족 모노아민의 유사체이다. 아릴 폴리아민의 예에는 N,N'-디-n-부틸-파라-페닐렌디아민 및 비스(파라-아미노페닐)메탄이 포함된다.
헤테로시클릭 모노- 및 폴리아민은 아지리딘, 아제티딘, 아졸리딘, 피리딘, 피롤, 인돌, 피페리딘, 이미다졸, 피페라진, 이소인돌, 퓨린, 모르폴린, 티오모르폴린, N-아미노알킬모르폴린, N-아미노알킬티오모르폴린, N-아미노알킬피페라진, N,N'-디아미노알킬피페라진, 아제핀, 아조신, 아조닌, 아제신 및 상기 화합물 각각 및 상기 헤테로시클릭 아민의 2 개 이상의 혼합물의 테트라-, 디- 및 퍼히드로 유도체를 포함할 수 있다. 전형적인 헤테로시클릭 아민은 헤테로사이클 내에 오로지 질소, 산소 및/또는 황만을 갖는 포화된 5- 및 6-원 헤테로시클릭 아민, 특히 피페리딘, 피페라진, 티오모르폴린, 모르폴린, 피롤리딘 등이다. 피페리딘, 아미노알킬-치환된 피페리딘, 피페라진, 아미노알킬-치환된 피페라진, 모르폴린, 아미노알킬-치환된 모르폴린, 피롤리딘 및 아미노알킬-치환된 피롤리딘이 특히 바람직하다. 통상, 아미노알킬 치환기는 헤테로사이클의 일부인 질소 원자에 결합된다.
이러한 헤테로시클릭 아민의 구체적인 예에는 N-아미노프로필모르폴린, N-아미노에틸피페라진 및 N,N'-디아미노에틸피페라진이 포함된다. 히드록시헤테로시클릭 폴리아민이 또한 적합하다. 예에는 N-(2-히드록시에틸)시클로헥실아민, 3-히드록시시클로펜틸아민, 파라-히드록시아닐린 및 N-히드록시에틸피페라진이 포함된다.
폴리알켄-치환된 아민의 예는 다음과 같다: 폴리(프로필렌)아민, 폴리(부텐)아민, N,N-디메틸폴리이소부틸렌아민; 폴리부텐모르폴린, N,N-폴리(부텐)에틸렌디아민, N-폴리(프로필렌)트리메틸렌디아민, N-폴리(부텐), 디에틸렌트리아민, N',N'-폴리(부텐)테트라에틸렌펜타민 및 N,N-디메틸-N'-폴리(프로필렌)-1,3-프로필렌디아민.
이러한 폴리알켄-치환된 아민의 수-평균 분자량은 약 500 내지 약 5000, 예를 들어 1000 내지 약 1500 또는 약 500 내지 약 3000 이다.
2 차 또는 1 차 아민인 상기 언급된 폴리알켄-치환된 아민 중 임의의 것은, 또한 4 차화제로서 공지된 알킬화제, 예컨대 디알킬 술페이트, 알킬 할라이드, 히드로카르빌-치환된 카보네이트; 산과의 조합으로의 히드로카르빌 에폭시드 및 이의 혼합물과 3 차 아민으로 알킬화될 수 있다. 특정 4 차화제, 예컨대 알킬 할라이드 또는 디알킬 술페이트가 사용되는 경우, 유리 3 차 아민 형태를 산출하기 위해, 염기 또는 염기성 조성물, 예컨대 나트륨 카보네이트 또는 나트륨 히드록시드를 제공하는 것이 필요할 수 있다. 1 차 아민은 3 차 아민을 수득하기 위해, 2 등가의 알킬화제 및 2 등가의 염기를 필요로 한다. 또다른 구현예에서, 1 차 아민의 알킬화는 종종 4 개의 연속 단계, 첫번째 알킬화제로의 처리 및 염기로의 두번째 처리 및 이후 2 개 단계의 반복으로 수행될 수 있다. 또다른 구현예에서, 1 차 아민의 알킬화는 과량의 불균질 염기, 예컨대 나트륨 카보네이트의 존재 하에 예를 들어 2 몰의 알킬 할라이드를 사용하는, 1 단계로 실행될 것이다. 폴리아민은 단독으로 공지된 방식으로 철저하게 또는 부분적으로 알킬화될 수 있다.
또다른 구현예에서, 1 차 아민 및 2 차 아민의 3 차 아민으로의 알킬화는 에폭시드로 실행될 수 있다. 알킬 할라이드의 사용과는 달리, 유리 아민을 수득하기 위한 에폭시드의 사용의 경우에 염기로의 처리가 필요하지 않다. 전형적으로, 에폭시드와의 아민의 알킬화의 경우에, 적어도 1 몰의 에폭시드가 아민 내의 각각의 수소 원자에 대해 사용된다. 에폭시드와의, 3 차 아민을 산출하기 위한 알킬화에는, 부가적인 산 또는 염기가 필요하지 않다.
특히 바람직한 것은 부가적으로 폴리이소부텐 (Mn 1000) 의 히드로포르밀화 및 디메틸아민으로의 후속적 환원성 아미노화에 의해 수득가능한 폴리이소부텐디메틸아민이다; WO 2008/060888 의 실시예 B 를 참고한다.
A4.4) 히드로카르빌-치환된 아실화제, 및 질소 또는 산소 원자를 포함하고 부가적으로 적어도 하나의 4 차화가능 아미노 기를 포함하는 화합물의 반응 생성물
상기 종류의 화합물은 예를 들어, 그 전체가 본원에 참조로 인용되는 본 출원인의 WO2013/000997 에 기재되어 있다.
적합한 히드로카르빌-치환된 폴리카르복실산 화합물, 또는 히드로카르빌-치환된 아실화제에는 하기가 포함된다:
사용되는 폴리카르복실산 화합물은 지방족 디- 또는 폴리염기성 (예를 들어 트리- 또는 테트라염기성), 특히 디-, 트리- 또는 테트라카르복실산 및 이의 유사체, 예컨대 무수물 또는 저급 알킬 에스테르 (부분적으로 또는 완전히 에스테르화됨) 로부터의 것이고, 임의로 하나 이상의 (예를 들어 2 또는 3 개), 특히 장쇄 알킬 라디칼 및/또는 고 분자량 히드로카르빌 라디칼, 특히 폴리알킬렌 라디칼에 의해 치환된다. 예는 C3-C10 폴리카르복실산, 예컨대 디카르복실산 말론산, 숙신산, 글루타르산, 아디프산, 피멜산, 수베르산, 아젤라산 및 세바크산 및 이의 분지형 유사체; 및 트리카르복실산 시트르산; 및 이의 무수물 또는 저급 알킬 에스테르이다. 폴리카르복실산 화합물은 또한 상응하는 단포화된 산 및 적어도 하나의 장쇄 알킬 라디칼 및/또는 고 분자량 히드로카르빌 라디칼의 부가로부터 수득될 수 있다. 적합한 단포화된 산의 예는 푸마르산, 말레산, 이타콘산이다.
연료 내에 4 차화된 생성물의 충분한 용해성을 보장하는 소수성 "장쇄" 또는 "고 분자량" 히드로카르빌 라디칼은 85 내지 20 000, 예를 들어 113 내지 10 000, 또는 200 내지 10 000 또는 350 내지 5000, 예를 들어 350 내지 3000, 500 내지 2500, 700 내지 2500, 또는 800 내지 1500 의 수-평균 분자량 (Mn) 을 갖는다. 전형적인 소수성 히드로카르빌 라디칼에는 예를 들어 3500 내지 5000, 350 내지 3000, 500 내지 2500, 700 내지 2500 및 800 내지 1500 의 수-평균 분자량 Mn 을 가진, 폴리프로페닐, 폴리부테닐 및 폴리이소부테닐 라디칼이 포함된다.
적합한 히드로카르빌-치환된 화합물은, 예를 들어, DE 43 19 672 및 WO 2008/138836 에 기재되어 있다.
적합한 히드로카르빌-치환된 폴리카르복실산 화합물은 또한 이러한 히드로카르빌-치환된 폴리카르복실산 화합물의 중합체성, 특히 이량체성 형태를 포함한다. 이량체성 형태는 예를 들어, 본 발명에 따른 제조 방법에서 4 차화가능 질소 화합물과 독립적으로 반응할 수 있는 2 개의 산 무수물 기를 포함한다.
상기 폴리카르복실산 화합물과 반응성인 4 차화가능 질소 화합물은 하기로부터 선택된다:
a) 적어도 하나의 4 차화된 (예를 들어, 콜린) 또는 4 차화가능 1 차, 2 차 또는 3 차 아미노 기를 갖는, 히드록시알킬-치환된 모노- 또는 폴리아민;
b) 적어도 하나의 1 차 또는 2 차 (무수물-반응성) 아미노 기를 갖고 적어도 하나의 4 차화된 또는 4 차화가능 1 차, 2 차 또는 3 차 아미노 기를 갖는, 직쇄 또는 분지형, 시클릭, 헤테로시클릭, 방향족 또는 비방향족 폴리아민;
c) 피페라진.
4 차화가능 질소 화합물은 특히 하기로부터 선택된다:
d) 히드록시알킬-치환된 1 차, 2 차, 3 차 또는 4 차 모노아민 및 히드록시알킬-치환된 1 차, 2 차, 3 차 또는 4 차 디아민;
e) 2 개의 1 차 아미노 기를 갖는 직쇄 또는 분지형 지방족 디아민; 적어도 하나의 1 차 및 적어도 하나의 2 차 아미노 기를 갖는 디- 또는 폴리아민; 적어도 하나의 1 차 및 적어도 하나의 3 차 아미노 기를 갖는 디- 또는 폴리아민; 적어도 하나의 1 차 및 적어도 하나의 4 차 아미노 기를 갖는 디- 또는 폴리아민; 2 개의 1 차 아미노 기를 갖는 방향족 카르보시클릭 디아민; 2 개의 1 차 아미노 기를 갖는 방향족 헤테로시클릭 폴리아민; 1 개의 1 차 및 1 개의 3 차 아미노 기를 갖는 방향족 또는 비방향족 헤테로사이클.
적합한 "히드록시알킬-치환된 모노- 또는 폴리아민" 의 예는 적어도 하나의 히드록시알킬 치환된, 예를 들어 1, 2, 3, 4, 5 또는 6 개의 히드록시알킬 치환된 것이다.
"히드록시알킬-치환된 모노아민" 의 예에는 N-히드록시알킬모노아민, N,N-디히드록시알킬모노아민 및 N,N,N-트리히드록시알킬모노아민이 포함되고, 이때 히드록시알킬 기는 동일 또는 상이하고 또한 상기 정의된 바와 같다. 히드록시알킬은 특히 2-히드록시에틸, 3-히드록시프로필 또는 4-히드록시부틸이다.
예를 들어, 하기 "히드록시알킬-치환된 폴리아민" 및 특히 "히드록시알킬-치환된 디아민" 이 언급될 수 있다: N-히드록시알킬알킬렌디아민, N,N-디히드록시알킬알킬렌디아민, 이때 히드록시알킬 기는 동일 또는 상이하고 또한 상기 정의된 바와 같다. 히드록시알킬은 특히 2-히드록시에틸, 3-히드록시프로필 또는 4-히드록시부틸이고; 알킬렌은 특히 에틸렌, 프로필렌 또는 부틸렌이다.
적합한 "디아민" 은 알킬렌디아민, 및 이의 N-알킬-치환된 유사체, 예컨대 N-모노알킬화된 알킬렌디아민 및 N,N- 또는 N,N'-디알킬화된 알킬렌디아민이다. 알킬렌은 특히 상기 정의된 바와 같은 직쇄 또는 분지형 C1-7- 또는 C1-4-알킬렌이다. 알킬은 특히 상기 정의된 바와 같은 C1-4-알킬이다. 예는 특히 에틸렌디아민, 1,2-프로필렌디아민, 1,3-프로필렌디아민, 1,4-부틸렌디아민 및 이의 이성질체, 펜탄디아민 및 이의 이성질체, 헥산디아민 및 이의 이성질체, 헵탄디아민 및 이의 이성질체, 및 상기 언급된 디아민 화합물의, 단독으로 또는 복합적으로, 예를 들어 단독으로 또는 이중으로, C1-C4-알킬화된, 예를 들어 메틸화된, 유도체, 예컨대 3-디메틸아미노-1-프로필아민 (DMAPA), N,N-디에틸아미노프로필아민 및 N,N-디메틸아미노에틸아민이다.
적합한 직쇄 "폴리아민" 은 예를 들어, 디알킬렌트리아민, 트리알킬렌테트라민, 테트라알킬렌펜타민, 펜타알킬렌헥사민, 및 이의 N-알킬-치환된 유사체, 예컨대 N-모노알킬화된 및 N,N- 또는 N,N'-디알킬화된 알킬렌폴리아민이다. 알킬렌은 특히 상기 정의된 바와 같은 직쇄 또는 분지형 C1-7- 또는 C1-4-알킬렌이다. 알킬은 특히 상기 정의된 바와 같은 C1-4-알킬이다.
예는 특히 디에틸렌트리아민, 트리에틸렌테트라민, 테트라에틸렌펜타민, 펜타에틸렌헥사민, 디프로필렌트리아민, 트리프로필렌테트라민, 테트라프로필렌펜타민, 펜타프로필렌헥사민, 디부틸렌트리아민, 트리부틸렌테트라민, 테트라부틸렌펜타민, 펜타부틸렌헥사민; 및 이의 N,N-디알킬 유도체, 특히 이의 N,N-디-C1-4-알킬 유도체이다. 예에는 N,N-디메틸디메틸렌트리아민, N,N-디에틸디메틸렌트리아민, N,N-디프로필디메틸렌트리아민, N,N-디메틸디에틸렌-1,2-트리아민, N,N-디에틸디에틸렌-1,2-트리아민, N,N-디프로필디에틸렌-1,2-트리아민, N,N-디메틸디프로필렌-1,3-트리아민 (즉, DMAPAPA), N,N-디에틸디프로필렌-1,3-트리아민, N,N-디프로필디프로필렌-1,3-트리아민, N,N-디메틸디부틸렌-1,4-트리아민, N,N-디에틸디부틸렌-1,4-트리아민, N,N-디프로필디부틸렌-1,4-트리아민, N,N-디메틸디펜틸렌-1,5-트리아민, N,N-디에틸디펜틸렌-1,5-트리아민, N,N-디프로필디펜틸렌-1,5-트리아민, N,N-디메틸디헥실렌-1,6-트리아민, N,N-디에틸디헥실렌-1,6-트리아민 및 N,N-디프로필디헥실렌-1,6-트리아민이 포함된다.
2 개의 1 차 아미노 기를 갖는 "방향족 카르보시클릭 디아민" 은 벤젠, 비페닐, 나프탈렌, 테트라히드로나프탈렌, 플루오렌, 인덴 및 페난트렌의 디아미노-치환된 유도체이다.
2 개의 1 차 아미노 기를 갖는 "방향족 또는 비방향족 헤테로시클릭 폴리아민" 은 하기 헤테로사이클의, 2 개의 아미노 기에 의해 치환된, 유도체이다:
- 고리원으로서 1 또는 2 개의 질소 원자 및/또는 1 개의 산소 또는 황 원자 또는 1 또는 2 개의 산소 및/또는 황 원자를 포함하는 5- 또는 6-원의, 포화된 또는 단포화된 헤테로사이클, 예를 들어 테트라히드로푸란, 피롤리딘, 이속사졸리딘, 이소티아졸리딘, 피라졸리딘, 옥사졸리딘, 티아졸리딘, 이미다졸리딘, 피롤린, 피페리딘, 피페리디닐, 1,3-디옥산, 테트라히드로피란, 헥사히드로피리다진, 헥사히드로피리미딘, 피페라진;
- 탄소 원자 외에, 고리원으로서 1, 2 또는 3 개의 질소 원자 또는 1 또는 2 개의 질소 원자 및 1 개의 황 또는 산소 원자를 포함하는 5-원의 방향족 헤테로사이클, 예를 들어 푸란, 티안, 피롤, 피라졸, 옥사졸, 티아졸, 이미다졸 및 1,3,4-트리아졸; 이속사졸, 이소티아졸, 티아디아졸, 옥사디아졸;
- 탄소 원자 외에, 고리원으로서, 1 또는 2 개의, 또는 1, 2 또는 3 개의, 질소 원자를 포함하는 6-원의 헤테로사이클, 예를 들어 피리디닐, 피리다진, 피리미딘, 피라지닐, 1,2,4-트리아진, 1,3,5-트리아진-2-일.
"1 개의 1 차 및 1 개의 3 차 아미노 기를 갖는 방향족 또는 비방향족 헤테로사이클" 은 예를 들어, 적어도 하나의 고리 질소 원자 상에서 아미노알킬화되고, 특히 아미노-C1-4-알킬 기를 갖는 상기 언급된 N-헤테로사이클이다.
"1 개의 3 차 아미노 기 및 1 개의 히드록시알킬 기를 갖는 방향족 또는 비방향족 헤테로사이클" 은 예를 들어, 적어도 하나의 고리 질소 원자 상에서 히드록시알킬화되고, 특히 히드록시-C1-4-알킬 기를 갖는 상기 언급된 N-헤테로사이클이다.
특히 4 차화가능 질소 화합물의 하기 그룹의 개별적인 분류를 특히 언급해야만 한다:
그룹 1:
Figure 112016083899907-pct00012

그룹 2:
Figure 112016083899907-pct00013

그룹 3:
Figure 112016083899907-pct00014
Figure 112016083899907-pct00015

히드로카르빌-치환된 폴리카르복실산 화합물은, 본질적으로 축합 반응이 존재하지 않도록 열 제어된 조건하에서 4차화가능 질소 화합물과 반응시킬 수 있다. 더욱 특히, 이 경우 반응의 물 형성이 관찰되지 않는다. 더욱 특히, 이러한 반응은 10 내지 80 ℃, 특히 20 내지 60 ℃ 또는 30 내지 50 ℃의 범위의 온도에서 수행된다. 반응 시간은 수 분 내지 수 시간의 범위, 예를 들어 약 1 분 내지 약 10 시간일 수 있다. 반응은 약 0.1 내지 2 atm 의 압력에서 수행될 수 있지만, 특히 약 표준 압력에서 수행될 수 있다. 예를 들어, 불활성 기체 분위기, 예를 들어 질소가 적절하다.
더욱 특히, 반응은 또한 축합을 촉진하는 상승 온도, 예를 들어 90 내지 100 ℃ 또는 100 내지 170 ℃의 범위에서 수행될 수 있다. 반응 시간은 수분 또는 수 시간의 범위, 예를 들어 약 1 분 내지 약 10 시간까지일 수 있다. 반응은 약 0.1 내지 2 atm 의 압력에서 수행될 수 있지만, 특히 약 표준 압력에서 수행될 수 있다.
반응물은 처음에 특히 약 동몰량으로 충전되며; 임의로, 작은 몰 초과량의 폴리카르복실산 화합물, 예를 들어 0.05- 내지 0.5-배, 예를 들어 0.1- 내지 0.3-배 초과량이 바람직하다. 필요할 경우, 반응물은 처음에 적절한 불활성 유기 지방족 또는 방향족 용매 또는 그의 혼합물 중에 충전될 수 있다. 통상적인 예는, 예를 들어 Solvesso 시리즈의 용매, 톨루엔 또는 자일렌이다. 용매는 또한, 예를 들어 반응 혼합물로부터 공비적으로 (azeotropically) 축합수를 제거하기 위해 작용할 수 있다. 그러나, 더욱 특히, 반응은 용매 없이 수행된다.
상기와 같이 형성된 반응 생성물은 이론적으로 추가 정제될 수 있거나, 용매가 제거될 수 있다. 그러나, 통상, 이는 절대적으로 필요하지 않아서, 추가 정제 없이 반응 생성물을 다음 합성 단계인 4 차화로 이동시킬 수 있다.
폴리이소부틸렌 숙신산 무수물 (BASF 사제 Glissopal® SA, 공지된 방식으로 폴리이소부텐 (Mn 1000) 및 말레산 무수물로부터 제조됨), 및 N,N-디메틸-1,3-디아미노프로판 (CAS 109-55-7) 의 축합 생성물이 특별히 언급되어야 한다, WO 2013/000997 의 제조예 1 참조.
A5) 화학식 (4) 의 에폭시드:
본 발명에 따르면, 적어도 하나의 4 차화가능 3 차 질소 원자는 에폭시드, 특히 히드로카르빌 에폭시드로부터 선택되는 적어도 하나의 4 차화제로 4 차화된다.
Figure 112016083899907-pct00016
식 중, 상기에 존재하는 Rd 라디칼은 동일하거나 상이하고 각각 H 또는 히드로카르빌 라디칼이고, 히드로카르빌 라디칼은 적어도 1 개 내지 10 개의 탄소 원자를 갖는다. 더욱 특히, 이들은 지방족 또는 방향족 라디칼, 예를 들어 선형 또는 분지형 C1-10-알킬 라디칼, 또는 방향족 라디칼, 예컨대 페닐 또는 C1-4-알킬페닐이다.
적합한 히드로카르빌 에폭시드의 예에는 지방족 및 방향족 알킬렌 옥시드, 예컨대 더욱 특히, C2-12-알킬렌 옥시드, 예컨대 에틸렌 옥시드, 프로필렌 옥시드, 1,2-부틸렌 옥시드, 2,3-부틸렌 옥시드, 2-메틸-1,2-프로펜 옥시드 (이소부텐 옥시드), 1,2-펜텐 옥시드, 2,3-펜텐 옥시드, 2-메틸-1,2-부텐 옥시드, 3-메틸-1,2-부텐 옥시드, 1,2-헥센 옥시드, 2,3-헥센 옥시드, 3,4-헥센 옥시드, 2-메틸-1,2-펜텐 옥시드, 2-에틸-1,2-부텐 옥시드, 3-메틸-1,2-펜텐 옥시드, 1,2-데센 옥시드, 1,2-도데센 옥시드 또는 4-메틸-1,2-펜텐 옥시드; 및 방향족-치환된 에틸렌 옥시드, 예컨대 임의로 치환되는 스티렌 옥시드, 특히 스티렌 옥시드 또는 4-메틸스티렌 옥시드가 포함된다.
A6) 본 발명의 첨가제의 제조:
a) 4 차화
4 차화는 단독으로 공지된 방식으로 수행된다.
4 차화를 수행하기 위해, 3 차 아민을 상기 화학식 2 의 적어도 하나의 화합물과, 특히 원하는 4 차화를 달성하는데 필요한 화학량론적 양으로 혼련한다. 4 차화가능 3 차 질소 원자의 등가 당, 예를 들어, 0.1 내지 5.0, 0.2 내지 3.0 또는 0.5 내지 2.5 등가의 4 차화제를 사용하는 것이 가능하다. 그러나, 더욱 특히, 3 차 아민 기를 완전히 4 차화하기 위해, 3 차 아민과 관련하여 약 1 내지 2 등가의 4 차화제를 사용한다.
전형적인 작업 온도는 본원에서 50 내지 180℃, 예를 들어 90 내지 160℃ 또는 100 내지 140℃ 의 범위이다. 반응 시간은 수 분 또는 수 시간의 범위, 예를 들어 약 10 분 내지 약 24 시간 이하일 수 있다. 반응은 약 0.1 내지 20 bar, 예를 들어 1 내지 10 또는 1.5 내지 3 bar, 그러나 특히 약 표준 압력에서 수행될 수 있다.
필요하다면, 반응물은 처음에 4 차화를 위해 적합한 비활성 유기 지방족 또는 방향족 용매 또는 이의 혼합물 내에 충전될 수 있다. 적합한 예는 예를 들어, Solvesso 시리즈의 용매, 톨루엔 또는 자일렌, 또는 에틸헥산올이다. 그러나, 4 차화는 또한 용매의 부재 하에 수행될 수 있다.
4 차화를 수행하기 위해, 촉매적 활성 양의 산의 첨가가 적합할 수 있다. 바람직한 것은 지방족 모노카르복실산, 예를 들어 C1-C18-모노카르복실산 예컨대, 더욱 특히, 라우르산, 이소노난산 또는 3,5,5-트리메틸헥산산 또는 네오데칸산 뿐 아니라, 상기 명시된 범위의 탄소 원자 수를 갖는 지방족 디카르복실산 또는 폴리염기성 지방족 카르복실산이다. 4 차화는 또한 루이스 산의 존재 하에 수행될 수 있다. 그러나 4 차화는, 또한 산의 부재 하에서도 수행될 수 있다.
b) 에스테르교환반응
적합한 조건은 통상의 지식이며, 예를 들어, 표준 유기화학 참고서, 예를 들어, Vollhardt, Organic Chemistry, Wiley publishers, Morrison Boyd, Organic Chemistry, VCh, Otera, Esterification, Wiley publishers 에 기재되어 있다.
c) 아미드화
적합한 조건은 통상의 지식이며, 예를 들어, 예를 들어, 표준 유기화학 참고서, 예를 들어 Vollhardt, Organic Chemistry, Wiley publishers, Morrison Boyd, Organic Chemistry, VCh 에 기재되어 있다.
d) 반응 혼합물의 후처리 (workup)
이와 같이 생성된 반응 최종 생성물이 이론적으로 추가 정제될 수 있거나, 용매가 제거될 수 있다. 임의로, 과량의 시약, 예를 들어 과량의 에폭시드, 아민 및/또는 알코올이 제거될 수 있다. 이는 예를 들어 표준 압력에서 또는 감압 하에서 질소를 도입함으로써 달성될 수 있다. 그러나, 생성물의 추가 가공성을 개선하기 위해서, 반응 후에 용매, 예를 들어 Solvesso 시리즈의 용매, 2-에틸헥산올 또는 본질적으로 지방족 용매를 첨가하는 것이 또한 가능하다. 그러나, 통상, 이는 반드시 꼭 필요한 것이 아니므로, 반응 생성물은 추가 정제 없이도 첨가제로서 사용 가능하며, 선택적으로 추가 첨가제 성분 (하기 참조) 과 혼합한 후에 사용 가능하다.
B1) 첨가제 조합
바람직한 구현예에서, 본 발명의 화합물은 WO 2012/004300 에, 바람직하게는 그곳의 페이지 5 라인 18 내지 페이지 33 라인 5 에, 더욱 바람직하게는 제조예 1 (이들 각각은 참고에 의해 본 명세서에 표현적으로 인용됨) 에 기재된 바와 같은, 4 차화된 화합물과 조합될 수 있다.
추가의 바람직한 구현예에서, 본 발명의 화합물은 참조 번호 PCT/EP2014/061834 및 출원일 2014 년 6 월 6 일의 미공개 국제 출원에, 바람직하게는 그곳의 페이지 5 라인 21 내지 페이지 47 라인 34 에, 더욱 바람직하게는 제조예 1 내지 17 에 기재된 바와 같은, 4 차화된 화합물과 조합될 수 있다.
추가의 바람직한 구현예에서, 본 발명의 화합물은 WO 11/95819 A1 에, 바람직하게는 그곳의 페이지 4 라인 5 내지 페이지 13 라인 26 에, 더욱 바람직하게는 제조예 2 에 기재된 바와 같은, 4 차화된 화합물과 조합될 수 있다.
추가의 바람직한 구현예에서, 본 발명의 화합물은 WO 11/110860 A1 에, 바람직하게는 그곳의 페이지 4 라인 7 내지 페이지 16 라인 26 에, 더욱 바람직하게는 제조예 8, 9, 11 및 13 에 기재된 바와 같은, 4 차화된 화합물과 조합될 수 있다.
추가의 바람직한 구현예에서, 본 발명의 화합물은 WO 06/135881 A2, 바람직하게는 그곳의 페이지 5 라인 14 내지 페이지 12 라인 14 에, 더욱 바람직하게는 실시예 1 내지 4 에 기재된 바와 같은, 4 차화된 화합물과 조합될 수 있다.
추가의 바람직한 구현예에서, 본 발명의 화합물은 WO 10/132259 A1 에, 바람직하게는 그곳의 페이지 3 라인 29 내지 페이지 10 라인 21 에, 더욱 바람직하게는 실시예 3 에 기재된 바와 같은, 4 차화된 화합물과 조합될 수 있다.
추가의 바람직한 구현예에서, 본 발명의 화합물은 WO 08/060888 A2 에, 바람직하게는 그곳의 페이지 6 라인 15 내지 페이지 14 라인 29 에, 더욱 바람직하게는 실시예 1 내지 4 에 기재된 바와 같은, 4 차화된 화합물과 조합될 수 있다.
추가의 바람직한 구현예에서, 본 발명의 화합물은 GB 2496514 A 에, 바람직하게는 그곳의 단락 [00012] 내지 [00039] 에, 더욱 바람직하게는 실시예 1 내지 3 에 기재된 바와 같은, 4 차화된 화합물과 조합될 수 있다.
추가의 바람직한 구현예에서, 본 발명의 화합물은 WO 2013 070503 A1 에, 바람직하게는 그곳의 단락 [00011] 내지 [00039] 에, 더욱 바람직하게는 실시예 1 내지 5 에 기재된 바와 같은, 4 차화된 화합물과 조합될 수 있다.
상기 언급된 조합에서 사용가능한 본 발명의 화합물의 적합한 그룹의 비제한적인 예로서, 상기-구체적인 구현예 1 및 2 로부터 제조된 것들이 특히 언급되어야만 한다.
올레핀-중합가능 카르복실산 공중합체 (즉, 적어도 하나의 올레핀 및 적어도 하나의 중합가능 카르복실산의 공중합체) 가 언급되어야만 하고, 이때 공중합체는 적어도 하나의 유리 카르복실산 측면 기를 포함하고; 이때 중합가능 카르복실산은 중합가능 모노- 또는 폴리카르복실산, 특히 모노카르복실산 또는 디카르복실산, 예컨대 C4-C8 디카르복실산, 예를 들어 아크릴산, 메타크릴산 또는 말레산이고, 올레핀은 적어도 하나의 중합가능 C18-C26-α-올레핀, 예컨대 특히 C18-C22-, C20-C24- 또는 특히 C20-α-올레핀이다.
또한 공중합체, 공중합체-함유 반응 생성물 또는 이의 공중합체-함유 분획이 언급되어야만 하고, 이때 공중합체는 하기에 의해 수득가능하다:
(1) 하기
a) 적어도 하나의 에틸렌성으로 불포화된, 중합가능 C4-C8-디카르복실산 무수물, 특히 말레산 무수물과,
b) 적어도 하나의 중합가능 C18-C26-α-올레핀, 예컨대 특히 C18-C22-, C20-C24- 또는 특히 C20-α-올레핀과의 공중합;
(2) 단계 (1) 로부터의 공중합체의 무수물 라디칼과 물과의 부분적인 또는 완전한 반응에 의한 단계 (1) 로부터의 공중합체의 후속적인 유도체화로, 카르복실기를 함유하는 공중합체 유도체를 형성함.
B2) 추가 첨가제 성분
본 발명의 4 차화된 첨가제가 첨가된 연료는 가솔린 연료 또는 특히 중간 유분 연료, 특히 디젤 연료이다.
연료는 효율을 개선시키고/시키거나, 마모를 억제하기 위한 통상적인 첨가제를 추가로 포함할 수 있다.
디젤 연료의 경우, 이들은 주로 통상적인 청정제 첨가제, 담체 오일, 저온 유동 개선제, 윤활성 개선제, 부식 억제제, 탈유화제, 흐림방지제, 소포제, 세탄가 개선제, 연소 개선제, 항산화제 또는 안정화제, 정전기 방지제, 메탈로센, 금속 불활성화제, 염료 및/또는 용매이다.
가솔린 연료의 경우, 이들은 특히 윤활성 개선제 (마찰 개질제), 부식 억제제, 탈유화제, 흐림방지제, 소포제, 연소 개선제, 항산화제 또는 안정화제, 정전기 방지제, 메탈로센, 금속 불활성화제, 염료 및/또는 용매이다.
적합한 보조 첨가제의 전형적인 예는 하기 부분에 열거된다:
B1) 청정제 첨가제
통상적인 청정제 첨가제는 수 평균 분자량 (Mn) 이 85 내지 20000 인 적어도 하나의 소수성 탄화수소 라디칼 및 하기에서 선택된 적어도 하나의 극성 부분을 보유하는 양쪽성 물질인 것이 바람직하다:
(Da) 적어도 하나의 질소 원자가 염기 특성을 갖는 6 개 이하의 질소 원자를 갖는 모노- 또는 폴리아미노 기;
(Db) 니트로 기, 임의로 히드록실 기와 조합된 것;
(Dc) 적어도 하나의 질소 원자가 염기 특성을 갖는 모노- 또는 폴리아미노 기와 조합된 히드록실 기;
(Dd) 카르복실 기 또는 이의 알칼리 금속 또는 알칼리 토금속 염;
(De) 술폰산 기 또는 이의 알칼리 금속 또는 알칼리 토금속 염;
(Df) 히드록실 기에 의해, 적어도 하나의 질소 원자가 염기 특성을 갖는 모노- 또는 폴리아미노기에 의해, 또는 카르바메이트 기에 의해 종결된 폴리옥시-C2 내지 C4-알킬렌 부분;
(Dg) 카르복실 에스테르 기;
(Dh) 숙신산 무수물로부터 유도되고 히드록실 및/또는 아미노 및/또는 아미도 및/또는 이미도 기를 갖는 부분; 및/또는
(Di) 치환된 페놀과 알데히드 및 모노- 또는 폴리아민과의 만니히 반응에 의해 수득되는 부분.
연료 중의 적합한 가용성을 확보하는 상기 청정제 첨가제 중의 소수성 탄화수소 라디칼은 85 내지 20 000, 바람직하게는 113 내지 10 000, 더욱 바람직하게는 300 내지 5000, 더 더욱 바람직하게는 300 내지 3000, 더 더욱 특히 바람직하게는 500 내지 2500 및 특히 700 내지 2500, 특히 800 내지 1500 의 수-평균 분자량 (Mn) 을 갖는다. 특히 극성 기를 갖는 전형적인 소수성 탄화수소 라디칼로서, 특히 수 평균 분자량 (Mn) 이 각 경우에 바람직하게는 300 내지 5000, 더욱 바람직하게는 300 내지 3000, 더 더욱 바람직하게는 500 내지 2500, 더 더욱 특히 바람직하게는 700 내지 2500, 및 특히 800 내지 1500 인 폴리프로페닐, 폴리부테닐 및 폴리이소부테닐 라디칼이 고려된다.
상기 청정제 첨가제의 군의 예로는 다음의 것들이 포함된다:
모노- 또는 폴리아미노 기를 포함하는 첨가제 (Da) 는 Mn = 300 내지 5000, 더욱 바람직하게는 500 내지 2500, 및 특히 700 내지 2500 인, 폴리프로펜, 또는 고-반응성 (즉, 주로 말단 이중 결합을 갖는) 또는 종래의 (즉, 주로 내부 이중 결합을 갖는) 폴리부텐 또는 폴리이소부텐을 기초로 하는 폴리알켄모노아민 또는 폴리알켄폴리아민인 것이 바람직하다. 고-반응성 폴리이소부텐을 기초로 하는 그러한 첨가제는 히드로포르밀화, 및 암모니아, 모노아민 또는 폴리아민, 예컨대 디메틸아미노프로필아민, 에틸렌디아민, 디에틸렌트리아민, 트리에틸렌테트라민 또는 테트라에틸렌펜타민과의 환원성 아미노화에 의해, 20 중량% 이하의 n-부텐 단위를 포함할 수 있는 폴리이소부텐으로부터 제조될 수 있는 것으로, 특히 EP-A 244 616 으로부터 공지되어 있다. 첨가제의 제조에서 출발 물질로서 주로 내부 이중 결합 (통상 β 및 γ 위치에 있는 것) 을 갖는 폴리부텐 또는 폴리이소부텐이 사용될 경우, 가능한 제조 경로는 염소화 및 후속적인 아미노화에 의한 것이거나, 카르보닐 또는 카르복실 화합물을 생성하는 공기 또는 오존에 의한 이중 결합의 산화 및 환원성 (수소첨가) 조건 하에서의 후속적인 아미노화에 의한 것이다. 여기서 아미노화에 사용된 아민은, 예를 들면 암모니아, 모노아민 또는 상기 언급된 폴리아민일 수 있다. 폴리프로펜을 기초로 하는 상응하는 첨가제는 특히 WO-A 94/24231 에 기술되어 있다.
모노아미노 기를 포함하는 추가의 특정 첨가제 (Da) 는, 특히 WO-A 97/03946 에 기술되어 있는 바와 같이, 평균 중합도 P = 5 내지 100 을 갖는 폴리이소부텐과 질소 산화물 또는 질소 산화물과 산소의 혼합물과의 반응 생성물의 수소첨가 생성물이다.
모노아미노 기를 포함하는 추가의 특정 첨가제 (Da) 는, 더욱 특히 DE-A 196 20 262 에 기술되어 있는 바와 같이, 폴리이소부텐 에폭시드로부터 아민과의 반응 및 후속적인 탈수화 및 아미노 알코올의 환원에 의해 수득될 수 있는 화합물이다.
임의로 히드록실 기와 조합된, 니트로 기를 포함하는 첨가제 (Db) 는, 더욱 특히 WO-A 96/03367 및 WO-A 96/03479 에 기술되어 있는 바와 같이, 평균 중합도 P = 5 내지 100 또는 10 내지 100 을 갖는 폴리이소부텐과 질소 산화물 또는 질소 산화물과 산소의 혼합물과의 반응 생성물인 것이 바람직하다. 이러한 반응 생성물은 일반적으로 순수한 니트로폴리이소부텐 (예를 들어, α,β-디니트로폴리이소부텐)과 혼합 히드록시니트로폴리이소부텐 (예를 들어, α-니트로-β-히드록시폴리이소부텐)의 혼합물이다.
모노- 또는 폴리아미노 기와 조합된 히드록실 기를 포함하는 첨가제 (Dc) 는, 더욱 특히 EP-A-476 485 에 기술되어 있는 바와 같이, 바람직하게는 주로 말단 이중 결합 및 Mn = 300 내지 5000 을 갖는 폴리이소부텐으로부터 수득가능한 폴리이소부텐 에폭시드와 암모니아 또는 모노- 또는 폴리아민과의 반응 생성물이다.
카르복실 기 또는 이의 알칼리 금속 또는 알칼리 토금속 염을 포함하는 첨가제 (Dd) 는 총 몰 질량이 500 내지 20000 이며, 그리고 카르복실 기의 일부 또는 전부가 알칼리 금속 또는 알칼리 토금속 염으로 전환되고 카르복실 기의 임의의 잔부가 알코올 또는 아민과 반응하는, C2- 내지 C40-올레핀과 말레산 무수물의 공중합체인 것이 바람직하다. 그러한 첨가제는 더욱 특히 EP-A 307 815 호에 의해 개시되어 있다. 그러한 첨가제는 주로 밸브 시트 마모 (valve seat wear) 를 방지하는 작용을 하며, WO-A 87/01126 호에 기술된 바와 같이, 폴리(이소)부텐아민 또는 폴리에테르아민과 같은 통상적인 연료 청정제와의 조합으로 유리하게 사용될 수 있다.
술폰산 기 또는 이의 알칼리 금속 또는 알칼리 토금속 염을 포함하는 첨가제 (De) 는, 더욱 특히 EP-A 639 632 호에 의해 기술되어 있는 바와 같이, 알킬 술포숙시네이트의 알칼리 금속 또는 알칼리 토금속 염인 것이 바람직하다. 그러한 첨가제는 주로 밸브 시트 마모를 방지하는 작용을 하며, 폴리(이소)부텐아민 또는 폴리에테르아민과 같은 통상적인 연료 청정제와의 조합으로 유리하게 사용될 수 있다.
폴리옥시-C2-C4-알킬렌 부분을 포함하는 첨가제 (Df) 는 C2- 내지 C60-알칸올, C6- 내지 C30-알칸디올, 모노- 또는 디-C2- 내지 C30-알킬아민, C1- 내지 C30-알킬시클로헥산올 또는 C1- 내지 C30-알킬페놀을 히드록실 기 또는 아미노 기 당 1 내지 30 mol 의 에틸렌 옥시드 및/또는 프로필렌 옥시드 및/또는 부틸렌 옥시드와 반응시키고, 폴리에테르아민의 경우, 암모니아, 모노아민 또는 폴리아민과 후속적으로 환원성 아미노화 시킴으로써 수득가능한 폴리에테르 또는 폴리에테르아민인 것이 바람직하다. 그러한 생성물은 더욱 특히 EP-A 310 875, EP-A 356 725, EP-A 700 985 및 US-A 4 877 416 에 기술되어 있다. 폴리에테르의 경우, 그러한 생성물은 또한 담체 오일 특성을 갖는다. 그러한 생성물의 전형적인 예는 트리데칸올 부톡실레이트 또는 이소트리데칸올 부톡실레이트, 이소노닐페놀 부톡실레이트 및 또한 폴리이소부텐올 부톡실레이트 및 프로폭실레이트 및 또한 암모니아와의 상응하는 반응 생성물이다.
카르복실산 에스테르 기를 포함하는 첨가제 (Dg) 는, 더욱 특히 DE-A 38 38 918 에 기술되어 있는 바와 같이, 모노- , 디- 또는 트리-카르복실산과 장쇄 알칸올 또는 폴리올의 에스테르, 특히 100℃ 에서 2 mm2/s 의 최소 점도를 갖는 것들이 바람직하다. 사용된 모노-, 디- 또는 트리-카르복실산은 지방족 또는 방향족 산일 수 있고, 특히 적합한 에스테르 알코올 또는 에스테르 폴리올은 예를 들어 6 내지 24 개의 탄소 원자를 갖는 장쇄 대표예이다. 에스테르의 전형적인 대표예는 이소옥탄올, 이소노난올, 이소데칸올 및 이소트리데칸올의 아디페이트, 프탈레이트, 이소프탈레이트, 테레프탈레이트 및 트리멜리테이트이다. 그러한 생성물은 또한 담체 오일 특성을 만족한다.
숙신산 무수물로부터 유도된 부분을 포함하고 히드록실 및/또는 아미노 및/또는 아미도 및/또는 특히 이미도 기를 갖는 첨가제 (Dh) 는 알킬- 또는 알케닐-치환된 숙신산 무수물의 상응하는 유도체, 및 특히, Mn = 바람직하게는 300 내지 5000, 더욱 바람직하게는 300 내지 3000, 더 더욱 바람직하게는 500 내지 2500, 더 더욱 특히 바람직하게는 700 내지 2500, 및 특히 800 내지 1500 인 종래의 또는 고-반응성 폴리이소부텐을 말레산 무수물과 엔 (ene) 반응에서의 열적 경로에 의해 또는 염소화된 폴리이소부텐을 통해 반응시킴으로써 수득가능 폴리이소부테닐숙신산 무수물의 상응하는 유도체인 것이 바람직하다. 히드록실 및/또는 아미노 및/또는 아미도 및/또는 이미도 기를 갖는 부분으로는, 예를 들면 카르복실산 기, 모노아민의 산 아미드, 아미드 작용기 이외에도 또한 유리 아민 기를 갖는 디- 또는 폴리아민의 산 아미드, 산 및 아미드 작용기를 갖는 숙신산 유도체, 모노아민을 지닌 카르복스이미드, 이미드 작용기 이외에도 유리 아민 기를 갖는 디- 또는 폴리아민을 지닌 카르복스이미드, 또는 디- 또는 폴리아민과 2 개의 숙신산 유도체의 반응에 의해 형성되는 디이미드가 있다. 그러나, 이미도 부분 D(h) 의 존재하에서, 본 발명의 맥락에서 추가 청정제 첨가제는 베타인 구조를 지닌 화합물 중량의 최대 100% 까지만 사용된다. 그러한 연료 첨가제는 일반적인 지식이고, 예를 들면 문헌 (1) 및 (2) 에 기술되어 있다. 이들은 알킬- 또는 알케닐-치환된 숙신산 또는 이의 유도체와 아민과의 반응 생성물인 것이 바람직하고, 더욱 바람직하게는 폴리이소부테닐-치환된 숙산산 또는 이의 유도체와 아민과의 반응 생성물이다. 이 문맥에서 특히 중요한 것은 이미드 구조를 갖는, 지방족 폴리아민 (폴리알킬렌이민), 예컨대 특히 에틸렌디아민, 디에틸렌트리아민, 트리에틸렌테트라민, 테트라에틸렌펜타민, 펜타에틸렌헥사민 및 헥사에틸렌헵타민과의 반응 생성물이다.
치환된 페놀과 알데히드 및 모노- 또는 폴리아민과의 만니히 반응에 의해 얻어진 부분을 포함하는 첨가제 (Di) 는 폴리이소부텐-치환된 페놀과 포름알데히드 및 모노- 또는 폴리아민, 예컨대 에틸렌디아민, 디에틸렌트리아민, 트리에틸렌테트라민, 테트라에틸렌펜타민 또는 디메틸아미노프로필아민과의 반응 생성물인 것이 바람직하다. 폴리이소부테닐-치환된 페놀은 Mn = 300 내지 5000 을 갖는 종래의 또는 고-반응성 폴리이소부텐으로부터 유래될 수 있다. 그러한 "폴리이소부텐 만니히 염기" 는 더욱 특히 EP-A 831 141 에 기술되어 있다.
언급된 청정제 첨가제 중 하나 이상은 상기 청정제 첨가제의 용량이 바람직하게는 25 내지 2500 중량 ppm, 특히 75 내지 1500 중량 ppm, 특히 150 내지 1000 중량 ppm 이 되도록 하는 양으로 연료에 첨가될 수 있다.
B2) 담체 오일
추가적으로 사용된 담체 오일은 광물 또는 합성 성질을 가질 수 있다. 적합한 광물 담체 오일은 원유 처리에서 얻어지는 분획, 예컨대 점도, 예를 들어 SN 500 내지 2000 분류로부터의 점도를 갖는 브라이트스톡 (brightstock) 또는 기유 (base oil) 이지만; 또한 방향족 탄화수소, 파라핀계 탄화수소 및 알콕시알칸올이다. 마찬가지로, 광물유의 정련에서 얻어지고 "수소화 분해 오일 (hydrocrack oil)" (고압하에 촉매 수소화되고 이성질화되며 그리고 또한 탈파라핀화되는 천연 광물유로부터 수득가능한, 약 360 내지 500℃ 의 비등 범위를 갖는 진공 증류물 컷) 으로서 공지되어 있는 분획이 유용하다. 마찬가지로 상기 언급된 광물 담체 오일들의 혼합물이 적합하다.
적합한 합성 담체 오일의 예로는 폴리올레핀 (폴리알파올레핀 또는 폴리인터날올레핀), (폴리)에스테르, (폴리)알콕실레이트, 폴리에테르, 지방족 폴리에테르-아민, 알킬페놀-개시된 폴리에테르, 알킬페놀-개시된 폴리에테르아민 및 장쇄 알칸올의 카르복실산 에스테르가 있다.
적합한 폴리올레핀의 예로는 Mn = 400 내지 1800 을 갖는 올레핀 중합체, 특히 폴리부텐 또는 폴리이소부텐 (수소화되거나 미수소화된 것)을 기초로 한 것이 있다.
적합한 폴리에테르 또는 폴리에테르아민의 예로는 C2- 내지 C60-알칸올, C6- 내지 C30-알칸디올, 모노- 또는 디-C2- 내지 C30-알킬아민, C1- 내지 C30-알킬시클로헥산올 또는 C1- 내지 C30-알킬페놀을 히드록실 기 또는 아미노기 당 1 내지 30 mol의 에틸렌 옥시드 및/또는 프로필렌 옥시드 및/또는 부틸렌 옥시드와 반응시키고, 폴리에테르아민의 경우, 암모니아, 모노아민 또는 폴리아민에 의한 환원성 아민화를 후속적으로 수행함으로써 수득가능한 폴리옥시-C2- 내지 C4-알킬렌 부분을 포함하는 화합물이 바람직하다. 이러한 생성물은 더욱 특히 EP-A 310 875, EP-A 356 725, EP-A 700 985 및 US-A 4,877,416 에 기술되어 있다. 예를 들어, 사용된 폴리에테르아민은 폴리-C2- 내지 C6-알킬렌 옥시드 아민 또는 이의 작용성 유도체일 수 있다. 이의 전형적인 예로는 트리데칸올 부톡실레이트 또는 이소트리데칸올 부톡실레이트, 이소노닐페놀 부톡실레이트 및 또한 폴리이소부텐올 부톡실레이트 및 프로폭실레이트, 그리고 또한 암모니아와의 상응하는 반응 생성물이 있다.
장쇄 알칸올의 카르복실산 에스테르의 예로는, 더욱 특히, DE-A 38 38 918 에 기술된 바와 같이, 더욱 특히 모노-, 디- 또는 트리-카르복실산과 장쇄 알칸올 또는 폴리올의 에스테르가 있다. 사용된 모노-, 디- 또는 트리카르복실산은 지방족 또는 방향족 산일 수 있고, 특히 적합한 에스테르 알코올 또는 에스테르 폴리올로는 예를 들면 6 내지 24 개의 탄소 원자를 갖는 장쇄 대표예가 있다. 그 에스테르의 전형적인 대표예로는 이소옥탄올, 이소노난올, 이소데칸올 및 이소트리데칸올의 아디페이트, 프탈레이트, 이소프탈레이트, 테레프탈레이트 및 트리멜리테이트, 예를 들어 디(n- 또는 이소트리데실) 프탈레이트가 있다.
추가의 적합한 담체 오일 시스템은, 예를 들어 DE-A 38 26 608, DE-A 41 42 241, DE-A 43 09 074, EP-A 452 328 및 EP-A 548 617 에 기술되어 있다.
특히 적합한 합성 담체 오일의 예로는 알코올 분자 당 약 5 내지 35 개, 바람직하게는 약 5 내지 30 개, 더욱 바람직하게는 10 내지 30 개, 및 특히 15 내지 30 개의 C3- 내지 C6-알킬렌 옥시드 단위, 예를 들어 프로필렌 옥시드, n-부틸렌 옥시드 및 이소부틸렌 옥시드 단위, 또는 이들의 혼합물을 갖는 알코올-개시된 폴리에테르가 있다. 적합한 개시자 알코올의 비제한적인 예로는 장쇄 알킬 라디칼이 특히 직쇄 또는 분지형 C6- 내지 C18-알킬 라디칼인 장쇄 알킬에 의해 치환된 장쇄 알칸올 또는 페놀이 있다. 구체적인 예로는 트리데칸올 및 노닐페놀이 포함된다. 특히 바람직한 알코올-개시된 폴리에테르는 1 가 지방족 C6-내지 C18-알코올과 C3- 내지 C6-알킬렌 옥시드의 반응 생성물 (폴리에테르화 생성물) 이다. 1 가 지방족 C6-C18-알코올의 예로는 헥산올, 헵탄올, 옥탄올, 2-에틸헥산올, 노닐 알코올, 데칸올, 3-프로필헵탄올, 운데칸올, 도데칸올, 트리데칸올, 테트라데칸올, 펜타데칸올, 헥사데칸올, 옥타데칸올 및 이들의 구조 및 위치 이성질체가 있다. 알코올은 순수 이성질체의 형태로 또는 공업용 혼합물 형태로 사용될 수 있다. 특히 바람직한 알코올은 트리데칸올이다. C3-내지 C6-알킬렌 옥시드의 예로는 프로필렌 옥시드, 예컨대 1,2-프로필렌 옥시드, 부틸렌 옥시드, 예컨대 1,2-부틸렌 옥시드, 2,3-부틸렌 옥시드, 이소부틸렌 옥시드 또는 테트라히드로푸란, 펜틸렌 옥시드 및 헥실렌 옥시드가 있다. 이들 중에서 특히 바람직한 것은 C3- 내지 C4-알킬렌 옥시드, 즉 프로필렌 옥시드, 예컨대 1,2-프로필렌 옥시드 및 부틸렌 옥시드, 예컨대 1,2-부틸렌 옥시드, 2,3-부틸렌 옥시드 및 이소부틸렌 옥시드이다. 특히 부틸렌 옥시드가 사용된다.
추가의 적합한 합성 담체 오일로는 DE-A 10 102 913 에 기술된 바와 같은 알콕실화 알킬페놀이 있다.
특정 담체 오일로는 합성 담체 오일이 있으며, 특히 바람직한 것은 상기 기술된 알코올-개시된 폴리에테르이다.
담체 오일 또는 상이한 담체 오일들의 혼합물은 연료에 바람직하게는 1 내지 1000 중량 ppm, 보다 바람직하게는 10 내지 500 중량 ppm, 및 특히 20 내지 100 중량 ppm 의 양으로 첨가된다.
B3) 저온 유동 개선제
적합한 저온 유동 개선제는 원칙적으로 저온 조건 하에서 중간 유분 연료 또는 디젤 연료의 유동 성능을 개선시킬 수 있는 모든 유기 화합물이다. 의도한 목적을 위해서, 개선제는 충분한 오일 용해도를 가져야 한다. 더욱 특히, 이러한 목적에 유용한 저온 유동 개선제는 화석 기원의 중간 유분의 경우에, 즉 통상적인 광물 디젤 연료의 경우에 전형적으로 사용되는 저온 유동 개선제 (중간 유분 유동 개선제, MDFI) 이다. 그러나, 또한 통상적인 디젤 연료에서 사용될 경우, 왁스 침전 방지 첨가제 (WASA) 의 특성을 부분적으로 또는 주로 갖는 유기 화합물을 사용하는 것도 가능하다. 개선제는 또한 핵 형성제로서 부분적으로 또는 주로 작용을 할 수도 있다. MDFI 로서 효과적이고/이거나 WASA로서 효과적이고/이거나 핵 형성제로서 효과적인 유기 화합물들의 혼합물을 사용하는 것도 가능하다.
저온 유동 개선제는 전형적으로 하기로부터 선택된다:
(K1) C2- 내지 C40-올레핀과 적어도 하나의 추가 에틸렌성 불포화 단량체의 공중합체;
(K2) 콤브(comb) 중합체;
(K3) 폴리옥시알킬렌;
(K4) 극성 질소 화합물;
(K5) 술포카르복실산 또는 술폰산 또는 이의 유도체; 및
(K6) 폴리(메트)아크릴산 에스테르.
특정 분류 (K1) 내지 (K6) 중 하나로부터의 상이한 대표예들의 혼합물 또는 상이한 분류 (K1) 내지 (K6) 로부터의 대표예들의 혼합물을 사용하는 것이 가능하다.
분류 (K1) 의 공중합체에 적합한 C2- 내지 C40-올레핀 단량체는, 예를 들어 2 내지 20 개, 특히 2 내지 10 개의 탄소 원자, 및 1 내지 3 개, 및 바람직하게는 1 또는 2 개의 탄소-탄소 이중 결합, 특히 1 개의 탄소-탄소 이중 결합을 갖는 것들이다. 후자의 경우, 탄소-탄소 이중 결합은 말단 배열될 수 있거나 (α-올레핀) 또는 내부 배열될 수 있다. 그러나, 바람직한 것은 α-올레핀, 보다 바람직하게는 2 내지 6 개의 탄소 원자를 갖는 α-올레핀, 예를 들면 프로펜, 1-부텐, 1-펜텐, 1-헥센 및 특히 에틸렌이다.
분류 (K1) 의 공중합체에서, 적어도 하나의 추가 에틸렌성 불포화 단량체는 알케닐 카르복실레이트, (메트)아크릴산 에스테르 및 추가 올레핀으로부터 선택되는 것이 바람직하다.
추가 올레핀이 또한 공중합될 경우, 올레핀은 상술한 C2- 내지 C40-올레핀계 단량체보다 분자량이 더 큰 것이 바람직하다. 예를 들어, 사용된 올레핀계 단량체가 에틸렌 또는 프로펜일 경우, 적합한 추가 올레핀은 특히 C10- 내지 C40-α-올레핀이다. 추가 올레핀은, 대부분의 경우, 카르복실산 에스테르 작용기를 지닌 단량체가 또한 사용될 경우, 단지 부가적으로 공중합된다.
적합한 (메트)아크릴산 에스테르로는, 예를 들면 (메트)아크릴산과 C1- 내지 C20-알칸올, 특히 C1- 내지 C10-알칸올과의 에스테르, 특히 메탄올, 에탄올, 프로판올, 이소프로판올, n-부탄올, sec-부탄올, 이소부탄올, tert-부탄올, 펜탄올, 헥산올, 헵탄올, 옥탄올, 2-에틸헥산올, 노난올 및 데칸올, 및 이들의 구조 이성질체와의 에스테르가 있다.
적합한 알케닐 카르복실레이트로는 예를 들어, 2 내지 21 개의 탄소 원자를 갖는 카르복실산의 C2- 내지 C14-알케닐 에스테르, 예를 들어 비닐 및 프로페닐 에스테르가 있으며, 여기서 히드로카르빌 라디칼은 선형 또는 분지형일 수 있다. 이들 중에서도 바람직한 것은 비닐 에스테르이다. 분지형 히드로카르빌 라디칼을 지닌 카르복실산 중에서도 바람직한 것은 분지가 카르복실 기의 α-위치에 있고, 보다 바람직하게는 α-탄소 원자가 3 차인 것들, 즉 소위 네오카르복실산이라고 칭하는 카르복실산이다. 그러나, 카르복실산의 히드로카르빌 라디칼은 선형인 것이 바람직하다.
적합한 알케닐 카르복실레이트의 예로는 비닐 아세테이트, 비닐 프로피오네이트, 비닐 부티레이트, 비닐 2-에틸헥사노에이트, 비닐 네오펜타노에이트, 비닐 헥사노에이트, 비닐 네오노나노에이트, 비닐 네오데카노에이트, 및 상응하는 프로페닐 에스테르가 있으며, 바람직한 것은 비닐 에스테르이다. 특히 바람직한 알케닐 카르복실레이트는 비닐 아세테이트이고; 이로부터 생성되는 (K1) 군의 전형적인 공중합체는 에틸렌-비닐 아세테이트 공중합체 ("EVA") 이고, 이것은 가장 빈번하게 사용되는 것 중 일부이다.
특히 유리하게 사용 가능한 에틸렌-비닐 아세테이트 공중합체 및 이의 제법은 WO 99/29748 에 기술되어 있다.
분류 (K1) 의 적합한 공중합체는 또한 알케닐 작용기 및/또는 카르복실산 기가 상이한 2 이상의 상이한 알케닐 카르복실레이트를 공중합된 형태로 포함하는 것들이다. 마찬가지로, 알케닐 카르복실레이트(들) 뿐만 아니라 적어도 하나의 올레핀 및/또는 적어도 하나의 (메트)아크릴산 에스테르를 공중합된 형태로 포함하는 공중합체가 적합하다.
C2- 내지 C40-α-올레핀, 3 내지 15 개의 탄소 원자를 갖는 에틸렌성 불포화 모노카르복실산의 C1- 내지 C20-알킬 에스테르, 및 2 내지 21 개의 탄소 원자를 갖는 포화 모노카르복실산의 C2- 내지 C14-알케닐 에스테르의 삼원중합체가 또한 분류 (K1) 의 공중합체로서 적합하다. 이러한 유형의 삼원중합체는 WO 2005/054314 에 기술되어 있다. 이러한 유형의 전형적인 삼원중합체는 에틸렌, 2-에틸헥실 아크릴레이트 및 비닐 아세테이트로부터 형성된다.
적어도 하나 또는 추가 에틸렌성 불포화 단량체(들) 는 분류 (K1) 의 공중합체 내에, 전체 공중합체를 기준으로 바람직하게는 1 내지 50 중량%, 특히 10 내지 45 중량%, 및 특히 20 내지 40 중량%의 양으로 공중합된다. 따라서, 분류 (K1) 의 공중합체 내의 단량체 단위의 중량 측면에서 주요 비율은 일반적으로 C2- 내지 C40 기재 올레핀으로부터 유래된다.
분류 (K1) 의 공중합체는 1000 내지 20000, 보다 바람직하게는 1000 내지 10000, 및 특히 1000 내지 8000 의 수 평균 분자량 Mn 을 갖는 것이 바람직하다.
성분 (K2) 의 전형적인 콤브 중합체는, 예를 들어 말레산 무수물 또는 푸마르산을 다른 에틸렌성 불포화 단량체와, 예를 들어 α-올레핀 또는 불포화 에스테르, 예컨대 비닐 아세테이트와 공중합시키고, 이어서, 무수물 또는 산 작용기를 10개 이상의 탄소 원자를 갖는 알코올로 에스테르화시킴으로써 수득할 수 있다. 추가의 적합한 콤브 중합체로는 α-올레핀과 에스테르화된 공단량체의 공중합체, 예를 들면 스티렌과 말레산 무수물의 에스테르화된 공중합체 또는 스티렌과 푸마르산의 에스테르화된 공중합체가 있다. 적합한 콤브 중합체는 또한 폴리푸마레이트 또는 폴리말레에이트일 수 있다. 비닐 에테르의 단독중합체 또는 공중합체가 또한 적합한 콤브 중합체이다. 분류 (K2) 의 성분으로서 적합한 콤브 중합체는, 예를 들어 WO 2004/035715 및 문헌 ["Comb-Like Polymers. Structure and Properties", N. A. Plate and V. P. Shibaev, J. Poly. Sci. Macromolecular Revs. 8, pages 117 to 253 (1974)"] 에 기술된 것들이다. 콤브 중합체들의 혼합물이 또한 적합하다.
분류 (K3) 의 성분으로서 적합한 폴리옥시알킬렌은, 예를 들어 폴리옥시알킬렌 에스테르, 폴리옥시알킬렌 에테르, 혼합된 폴리옥시알킬렌 에스테르/에테르 및 이들의 혼합물이다. 이러한 폴리옥시알킬렌 화합물은 적어도 하나의 선형 알킬기, 바람직하게는 2 이상의 선형 알킬기를 포함하는 것이 바람직하고, 선형 알킬기는 각각 10 내지 30 개의 탄소 원자를 가지며, 폴리옥시알킬렌 기는 5000 이하의 수 평균 분자량을 갖는다. 그러한 폴리옥시알킬렌 화합물은 예를 들어 EP A 061 895 및 또한 US 4 491 455 에 기술되어 있다. 특정 폴리옥시알킬렌 화합물은 100 내지 5000 의 수 평균 분자량을 갖는 폴리에틸렌 글리콜 및 폴리프로필렌 글리콜을 기초로 한다. 추가로 적합한 것은 10 내지 30 개의 탄소 원자를 갖는 지방산, 예컨대 스테아르산 또는 베헨산의 폴리옥시알킬렌 모노- 및 디에스테르이다.
분류 (K4) 의 성분으로서 적합한 극성 질소 화합물은 이온성 또는 비이온성일 수 있으며, 적어도 하나의 치환기, 특히 적어도 2 개의 치환기를, R7 이 C8- 내지 C40-히드로카르빌 라디칼인 일반식 >NR7의 3 차 질소 원자의 형태로 갖는 것이 바람직하다. 질소 치환기는 또한 4차화될 수 있으며, 즉 양이온성 형태로 존재할 수 있다. 그러한 질소 화합물의 예는 적어도 하나의 히드로카르빌 라디칼에 의해 치환된 적어도 하나의 아민을 1 내지 4 개의 카르복실기를 지닌 카르복실산과, 또는 그 카르복실산의 적합한 유도체와 반응시킴으로써 수득가능한 암모늄 염 및/또는 아미드의 것이다. 아민은 적어도 하나의 선형 C8- 내지 C40-알킬 라디칼을 포함하는 것이 바람직하다.
언급된 극성 질소 화합물을 제조하는데 적합한 1 차 아민으로는, 예를 들어 옥틸아민, 노닐아민, 데실아민, 운데실아민, 도데실아민, 테트라데실아민 및 더 고차의 선형 동족체가 있으며; 이러한 목적에 적합한 2 차 아민으로는, 예를 들어 디옥타데실아민 및 메틸베헤닐아민이 있다. 또한 이러한 목적에 적합한 것은, 예를 들어 문헌 [Ullmann's Encyclopedia of Industrial Chemistry, 6th Edition, "Amines, aliphatic" chapter] 에 기술된 바와 같이, 아민 혼합물, 특히 산업적 규모로 수득가능한 아민 혼합물, 예컨대 지방 아민 또는 수소화 톨아민 (tallamine) 이 있다. 반응에 적합한 산으로는, 예를 들어 장쇄 히드로카르빌 라디칼에 의해 치환된, 시클로헥산-1,2-디카르복실산, 시클로헥센-1,2-디카르복실산, 시클로펜탄-1,2-디카르복실산, 나프탈렌디카르복실산, 프탈산, 이소프탈산, 테레프탈산, 및 숙신산이 있다.
더욱 특히, 분류 (K4) 의 성분은 적어도 하나의 3 차 아미노기를 지닌 폴리(C2- 내지 C20-카르복실산) 과 1 차 또는 2 차 아민의 오일-가용성 반응 생성물이다. 적어도 하나의 3 차 아미노기를 가지며 그러한 반응 생성물의 기초를 형성하는 폴리(C2- 내지 C20-카르복실산) 은 적어도 3 개의 카르복실기, 특히 3 내지 12 개, 및 특히 3 내지 5 개의 카르복실기를 포함하는 것이 바람직하다. 폴리카르복실산 내의 카르복실산 단위는 2 내지 10 개의 탄소 원자를 갖는 것이 바람직하고, 특히 아세트산 단위이다. 카르복실산 단위는 폴리카르복실산에, 통상 하나 이상의 탄소 및/또는 질소 원자를 통해 결합되는 것이 적합하다. 이들은 복수 개의 질소 원자의 경우, 탄화 수소 사슬을 통해 결합되는 3 차 질소 원자에 부착되는 것이 바람직하다.
분류 (K4) 의 성분은 적어도 하나의 3 차 아미노기를 가지며 하기 일반식 (IIa) 또는 (IIb) 인 폴리(C2- 내지 C20-카르복실산) 을 기초로 한 오일-가용성 반응 생성물인 것이 바람직하다:
Figure 112016083899907-pct00017
식 중, 변수 A 는 직쇄 또는 분지형 C2- 내지 C6-알킬렌 기 또는 하기 일반식 (III) 의 부분을 나타내고,
Figure 112016083899907-pct00018
변수 B 는 C1- 내지 C19-알킬렌 기를 나타낸다. 일반 화학식 (IIa) 및 (IIb) 의 화합물은 특히 WASA 의 특성을 갖는다.
게다가, 성분 (K4) 의 바람직한 오일-가용성 반응 생성물, 특히 일반 화학식 (IIa) 또는 (IIb) 의 것은 하나 이상의 카르복실산 기가 아미드 기로 전환된 또는 하나도 전환되지 않은 아미드, 아미드-암모늄 염 또는 암모늄 염이다.
변수 A 의 직쇄 또는 분지형 C2- 내지 C6-알킬렌 기는, 예를 들어 1,1-에틸렌, 1,2-프로필렌, 1,3-프로필렌, 1,2-부틸렌, 1,3-부틸렌, 1,4-부틸렌, 2-메틸-1,3-프로필렌, 1,5-펜틸렌, 2-메틸-1,4-부틸렌, 2,2-디메틸-1,3-프로필렌, 1,6-헥실렌 (헥사메틸렌), 및 특히 1,2-에틸렌이다. 변수 A 는 2 내지 4 개, 및 특히 2 또는 3 개의 탄소 원자를 포함하는 것이 바람직하다.
변수 B 의 C1- 내지 C19-알킬렌 기는, 예를 들어 1,2-에틸렌, 1,3-프로필렌, 1,4-부틸렌, 헥사메틸렌, 옥타메틸렌, 데카메틸렌, 도데카메틸렌, 테트라데카메틸렌, 헥사데카메틸렌, 옥타데카메틸렌, 노나데카메틸렌, 및 특히 메틸렌이다. 변수 B 는 1 내지 10 개, 및 특히 1 내지 4 개의 탄소 원자를 포함하는 것이 바람직하다.
성분 (K4) 을 형성하는 폴리카르복실산에 대한 반응 파트너로서 1 차 및 2 차 아민은 전형적으로 모노아민, 특히 지방족 모노아민이다. 이러한 1 차 및 2 차 아민은 임의로 서로 결합될 수 있는 히드로카르빌 라디칼을 보유하는 복수의 아민으로부터 선택될 수 있다.
성분 (K4) 의 오일-가용성 반응 생성물의 그러한 모체 아민은 통상 2 차 아민이며, 2 개의 변수 R8 이 각각 독립적으로 직쇄 또는 분지형 C10- 내지 C30-알킬 라디칼, 특히 C14- 내지 C24-알킬 라디칼인 일반 화학식 HN(R8)2 를 갖는다. 이러한 비교적 장쇄 알킬 라디칼은 직쇄 또는 단지 약간만의 분지형인 것이 바람직하다. 일반적으로, 언급된 2 차 아민은, 그들의 비교적 장쇄 알킬 라디칼에 있어서, 천연 발생 지방산으로부터 및 그의 유도체로부터 유도된다. 2 개의 R8 라디칼은 동일한 것이 바람직하다.
언급된 2 차 아민은 폴리카르복실산에 아미드 구조에 의해 결합될 수 있거나, 또는 암모늄 염의 형태로 결합될 수 있으며; 단지 일부만이 아미드 구조로서 존재하고 다른 부분이 암모늄 염으로서 존재하는 것도 가능하다. 존재할 경우, 단지 소수의 유리 산 기만이 존재하는 것이 바람직하다. 성분 (K4) 의 오일-가용성 반응 생성물은 아미드 구조의 형태로 전부 존재하는 것이 바람직하다.
그러한 성분 (K4) 의 전형적인 예는 니트릴로트리아세트산, 에틸렌디아민테트라아세트산 또는 프로필렌-1,2-디아민테트라아세트산과, 각각의 경우 카르복실 기 당 0.5 내지 1.5 mol, 특히 카르복실 기 당 0.8 내지 1.2 mol 의 디올레일아민, 디팔미트아민, 디코코아민, 디스테아릴아민, 디베헤닐아민 또는 특히 디탈로우아민과의 반응 생성물이다. 특히 바람직한 성분 (K4) 은 1 mol 의 에틸렌디아민테트라아세트산 및 4 mol 의 수소화 디탈로우아민의 반응 생성물이다.
성분 (K4) 의 추가의 전형적인 예로는 2-N',N'-디알킬아미도벤조에이트의 N,N-디알킬암모늄 염, 예를 들어 1 mol 의 프탈산 무수물과 2 mol 의 디탈로우아민의 반응 생성물 (후자는 수소첨가 또는 미수소첨가된 것), 및 1 mol 의 알케닐스피로비스락톤과 2 mol 의 디알킬아민, 예를 들어 디탈로우아민 및/또는 탈로우아민의 반응 생성물 (후자 2 개는 수소첨가 또는 미수소첨가된 것) 이 포함된다.
분류 (K4) 의 성분에 대한 추가의 전형적 구조 유형으로는, WO 93/18115 에 기술된 바와 같이, 3 차 아미노기를 지닌 시클릭 화합물 또는 장쇄 1 차 또는 2 차 아민과 카르복실산-함유 중합체의 축합물이 있다.
분류 (K5) 의 성분의 저온 유동 개선제로서 적합한 술포카르복실산, 술폰산 또는 이들의 유도체로는, EP-A 261 957 에 기술된 바와 같이, 예를 들어 오일-가용성 카르복사미드 및 오르토-술포벤조산의 카르복실산 에스테르가 있으며, 여기서 술폰산 작용기는 알킬-치환된 암모늄 양이온을 지닌 술포네이트로서 존재한다.
분류 (K6) 의 성분의 저온 유동 개선제로서 적합한 폴리(메트)아크릴산 에스테르로는 아크릴산 및 메타크릴산 에스테르의 단독중합체 또는 공중합체가 있다. 바람직한 것은 에스테르화된 알코올에 대하여 상이한 2 개 이상의 상이한 (메트)아크릴산 에스테르의 공중합체이다. 공중합체는 임의로, 다른 상이한 올레핀성 불포화 단량체를 공중합된 형태로 포함한다. 중합체의 중량 평균 분자량은 50000 내지 500000인 것이 바람직하다. 특히 바람직한 중합체는 메타크릴산과 포화 C14- 및 C15-알코올의 메타크릴산 에스테르의 공중합체이고, 산 기는 수소첨가 톨아민에 의해 중화되어 있다. 적합한 폴리(메트)아크릴산 에스테르는 예를 들어 WO 00/44857 에 기술되어 있다.
저온 유동 개선제 또는 상이한 저온 유동 개선제들의 혼합물은 중간 유분 연료 또는 디젤 연료에, 바람직하게는 10 내지 5000 중량 ppm, 더욱 바람직하게는 20 내지 2000 중량 ppm, 더 더욱 바람직하게는 50 내지 1000 중량 ppm, 및 특히 100 내지 700 중량 ppm, 예를 들어 200 내지 500 중량 ppm 의 총량으로 첨가된다.
B4) 윤활성 개선제
적합한 윤활성 개선제 또는 마찰 개질제는 전형적으로 지방산 또는 지방산 에스테르를 기초로 한다. 전형적인 예로는 예를 들어 WO 98/004656 호에 기술된 톨 오일 지방산, 및 글리세릴 모노올레에이트가 있다. US 6 743 266 B2 에 기술된 천연 또는 합성 오일의 반응 생성물, 예를 들어 트리글리세라이드 및 알칸올아민이 또한 그러한 윤활성 개선제로서 적합하다.
B5) 부식 억제제
적합한 부식 억제제로는, 예를 들어 숙신산 에스테르, 특히 폴리올을 갖는 것, 지방산 유도체, 예를 들면 올레산 에스테르, 올리고머화 지방산, 치환된 에탄올아민, 및 상표명 RC 4801 (Rhein Chemie Mannheim, Germany) 또는 HiTEC 536 (Ethyl Corporation) 하에 시판된 제품이 있다.
B6) 탈유화제
적합한 탈유화제로는, 예를 들어 알킬-치환된 페놀- 및 나프탈렌술포네이트의 알칼리 금속 또는 알칼리 토금속 염, 및 지방산의 알칼리 금속 또는 알칼리 토금속 염, 그리고 또한 중성 화합물, 예컨대 알코올 알콕실레이트, 예를 들면 알코올 에톡실레이트, 페놀 알콕실레이트, 예를 들면 tert-부틸페놀 에톡실레이트 또는 tert-펜틸페놀 에톡실레이트, 지방산, 알킬페놀, 예를 들면 EO/PO 블록 공중합체의 형태를 포함하는 에틸렌 옥시드 (EO) 및 프로필렌 옥시드 (PO) 의 축합 생성물, 폴리에틸렌이민 또는 그외 폴리실록산이 있다.
B7) 흐림방지제
적합한 흐림방지제로는, 예를 들어, 알콕실화된 페놀-포름알데히드 축합물, 예를 들어 상표명 NALCO 7D07 (Nalco) 및 TOLAD 2683 (Petrolite) 하에 이용가능한 제품이 있다.
B8) 소포제
적합한 소포제로는, 예를 들어 폴리에테르-변성된 폴리실록산, 예컨대 상표명 TEGOPREN 5851 (Goldschmidt), Q 25907 (Dow Corning) 및 RHODOSIL (Rhone Poulenc) 하에 이용가능한 제품이 있다.
B9) 세탄가 개선제
적합한 세탄가 개선제로는, 예를 들어 지방족 니트레이트, 예컨대 2-에틸헥실 니트레이트 및 시클로헥실 나트레이트 및 퍼옥시드, 예컨대 디-tert-부틸 퍼옥시드가 있다.
B10) 항산화제
적합한 항산화제로는, 예를 들어 치환된 페놀, 예컨대 2,6-디-tert-부틸페놀 및 6-디-tert-부틸-3-메틸페놀, 및 페닐렌디아민, 예컨대 N,N'-디-sec-부틸-p-페닐렌디아민이 있다.
B11) 금속 불활성화제
적합한 금속 불활성화제로는, 예를 들어 살리실산 유도체, 예컨대 N,N'-디살리실리덴-1,2-프로판디아민이 있다.
B12) 용매
적합한 용매로는, 예를 들어 비극성 유기 용매, 예컨대 방향족 및 지방족 탄화수소, 예를 들어 톨루엔, 자일렌, 화이트 스피릿 및 상표명 SHELLSOL (Royal Dutch/Shell Group) 및 EXXSOL (ExxonMobil) 하에 시판된 제품, 그리고 또한 극성 유기 용매, 예를 들어 알코올, 예컨대 2-에틸헥산올, 데칸올 및 이소트리데칸올이 있다. 그러한 용매는 통상 디젤 연료에 상기 언급된 첨가제 및 보조 첨가제와 함께 첨가되고, 이는 보다 우수한 취급을 위해서 용해 또는 희석하기 위한 것이다.
C) 연료
본 발명의 첨가제는 연료 첨가제로서 현저히 적합하고, 원칙적으로 임의의 연료에서 사용될 수 있다. 이는 연료를 이용한 내연 엔진의 작동에 모든 일련의 유리한 영향을 야기한다. 바람직한 것은 중간 유분 연료, 특히 디젤 연료에서 본 발명의 4 차화 첨가제를 사용하는 것이다.
따라서, 본 발명은 또한, 내연 엔진, 예를 들어 디젤 엔진, 특히 직접 분사 디젤 엔진, 특히 커먼 레일 분사 시스템을 갖는 디젤 엔진의 작동에 유리한 효과를 달성하기 위한 첨가제로서 효과적인 본 발명의 4 차화된 첨가제의 함량을 갖는 연료, 특히 중간 유분 연료를 제공한다. 상기 유효 함량 (용량) 은 일반적으로, 각 경우에 연료의 총량을 기준으로 10 내지 5000 중량 ppm, 바람직하게는 20 내지 1500 중량 ppm, 특히 25 내지 1000 중량 ppm, 특히 30 내지 750 중량 ppm 이다.
중간 유분 연료, 예컨대 디젤 연료 또는 가열 오일은 전형적으로 100 내지 400℃ 의 비등 범위를 갖는 광유 라피네이트인 것이 바람직하다. 이들은 통상 360℃ 이하 또는 심지어 그 이상에서 95% 포인트를 갖는 증류물이다. 이들은 또한 예를 들어, 345℃ 이하의 95% 포인트 및 0.005 중량% 이하의 황 함량, 또는 예를 들어, 285℃의 95% 포인트 및 0.001 중량% 이하의 황 함량을 특징으로 하는, "초저황 디젤" 또는 "시티 (city) 디젤" 로 지칭되는 것일 수 있다. 정유에 의해 수득가능한 광물 중간 유분 연료 또는 디젤 연료 외에, 석탄 기체화 또는 기체 액화 ["gas to liquid" (GTL) 연료] 에 의해 또는 바이오매스 (biomass) 액화 ["biomass to liquid" (BTL) 연료] 에 의해 수득가능한 것들이 또한 적합하다. 또한 적합한 것은 상기 언급된 중간 유분 연료 또는 디젤 연료와 바이오디젤 또는 바이오에탄올과 같은 재생가능한 연료의 혼합물이다.
가열 오일 및 디젤 연료의 품질은 예를 들어, DIN 51603 및 EN 590 (참조, 또한 Ullmann's Encyclopedia of Industrial Chemistry, 5th edition, Volume A12, p. 617 ff.) 에 상세히 규정된다.
본질적으로 탄화수소 혼합물인, 화석, 식물 또는 동물 기원의 상기 언급된 중간 유분 연료에서의 이들의 용도 외에도, 본 발명의 4 차화 첨가제는 또한 이러한 중간 유분의 바이오연료 오일 (바이오디젤) 과의 혼합물에 사용될 수 있다. 이러한 혼합물은 또한 본 발명의 맥락에서 용어 "중간 유분 연료" 에 포함된다. 이들은 시판되며, 통상 화석, 식물 또는 동물 기원 및 바이오연료 오일의 중간 유분의 총량을 기준으로, 소량으로, 전형적으로는 1 내지 30 중량%, 특히 3 내지 10 중량% 의 양으로 바이오연료 오일을 포함한다.
바이오연료 오일은 일반적으로 지방산 에스테르를 기초로 하며, 바람직하게는, 본질적으로, 식물 및/또는 동물 오일 및/또는 지방으로부터 유래되는 지방산의 알킬 에스테르를 기초로 한다. 알킬 에스테르는 전형적으로는, 저급 알코올, 예를 들어 에탄올 또는 특히 메탄올 ("FAME") 에 의해, 식물 및/또는 동물 오일 및/또는 지방에서 발생하는 글리세리드, 특히 트리글리세리드를 에스테르교환함으로써 수득가능한, 저급 알킬 에스테르, 특히 C1 내지 C4-알킬 에스테르를 의미하는 것으로 이해된다. 바이오연료 오일 또는 이의 성분로서 사용되는, 식물 및/또는 동물 오일 및/또는 지방 기재의 전형적인 저급 알킬 에스테르는, 예를 들어, 해바라기 메틸 에스테르, 팜유 메틸 에스테르 ("PME"), 대두유 메틸 에스테르 ("SME") 및 특히 유채씨유 메틸 에스테르 ("RME") 이다.
중간 유분 연료 또는 디젤 연료는 더욱 바람직하게는 낮은 황 함량을 갖는, 즉, 0.05 중량% 미만, 바람직하게는 0.02 중량% 미만, 더욱 특히 0.005 중량% 미만, 및 특히 0.001 중량% 미만의 황 함량을 갖는 것들이다.
유용한 가솔린 연료는 모든 시판 가솔린 연료 조성물을 포함한다. 본원에서 언급되어야 하는 하나의 전형적인 대표예는 시판되는 Eurosuper 베이스 연료 EN 228 이다. 또한, WO 00/47698 에 따른 규격의 가솔린 연료 조성물은 또한 본 발명의 가능한 용도 분야이다.
본 발명의 4 차화된 첨가제는 특히, 직접 분사 디젤 엔진에서, 특히 커먼 레일 분사 시스템을 갖는 것들에서 처음부터 개시되는 문제를 극복하기 위한, 연료 조성물, 특히 디젤 연료 중의 연료 첨가제로서 적합하다.
후속하는 실시예에 의해 본 발명을 이제 상세히 예시한다. 더욱 특히, 이하에 명시된 테스트 방법은 본원의 일반적인 개시의 일부이며 특정 실시예로 제한되지 않는다.
실험:
A. 일반적인 테스트 방법
1. DW10 테스트 - 커먼 레일 디젤 엔진 중의 분사기 침전물의 결과로서 동력 손실의 측정
테스트는 CEC 테스트 절차 F-098-08 의 5 호에 기반한다. 이는 CEC 절차에서와 동일한 테스트 설정 및 엔진 유형 (PEUGEOT DW10) 을 사용하여 수행된다.
변형 및 구체적인 특징은 이어지는 사용예에서 설명된다.
2. IDID 테스트 - 내부 분사기 침전물에 대한 첨가제 효과의 측정
분사기 내에 침전물의 형성은 DW10 엔진의 저온 시동 시 실린더 배출구에서 실린더의 배기 가스 온도의 편차에 의해 특징지어진다.
침전물의 형성을 촉진하기 위해, 유기 산의 나트륨 염 1 mg/l, 20 mg/l 의 도데세닐숙신산 및 10 mg/l 의 물을 연료에 첨가하였다.
사용되는 도데세닐숙신산은 도데세닐숙신산 무수물, 이성질체 혼합물 (Aldrich, CAS No. 26544-38-7) 의 가수분해에 의해 수득되었다.
테스트를 더티-업 클린-업 테스트 (dirty-up clean-up test: DU-CU) 로서 수행한다.
DU-CU 는 CEC 테스트 절차 F-098-08 의 5 호에 기반한다.
DU-CU 테스트는 연속으로 실행되는 2 개의 개별적인 테스트로 이루어진다. 첫번째 테스트는 침전물을 형성하는 것을 담당하고 (DU), 두번째는 침전물을 제거하는 것을 담당한다 (CU).
DU 런 후, 8 시간 이상의 휴지 단계 후, 엔진의 저온 시동을 수행한 후, 10 분 동안의 완속 (idling) 을 수행한다.
이후, 분사기를 해체 및 세정하지 않고 CU 연료를 사용하여 CU 를 시작한다. 8 시간에 걸친 CU 런 후, 8 시간 이상의 휴지 단계 후, 엔진의 저온 시동을 수행한 후, 10 분 동안의 완속을 수행한다. 평가는 DU 및 CU 런에서 저온 시동 후 개별적인 실린더에 대한 온도 프로파일의 비교에 의해 수행된다.
IDID 테스트는 분사기에서 내부 침전물의 형성을 나타낸다. 상기 테스트에서 사용된 특성은 개별 실린더의 배기 가스 온도이다. IDID 가 없는 분사기 시스템에서, 실린더의 배기 가스 온도는 균일하게 증가한다. IDID 의 존재 하에, 개별 실린더의 배기 가스 온도는 균일하게 증가하지 않고 서로에 대해 편차가 있다.
온도 센서는 배기 가스 매니폴드 (manifold) 의 실린더 헤드 배출구 너머에 존재한다. 개별 실린더 온도의 유의한 편차 (예를 들어, > 20℃) 는 내부 분사기 침전물 (IDID) 의 존재를 나타낸다.
테스트 (DU 및 CU) 는 각각 런 시간 8 시간으로 수행된다. CEC F-098-08 로부터의 1-시간 테스트 사이클을 각 경우 8 회를 통해 실시한다 (도 1 참조). 모든 4 개의 실린더에 대한 평균으로부터 개별 실린더 온도의 편차가 45℃ 초과인 경우에는 테스트를 조기에 중단한다.
변화 및 특별한 특징: 세정된 분사기를 각 DU 테스트 런 시작 전에 설치한다. 물 + 10% Superdecontamine 중의, 60℃ 에서 초음파 배스에서의 세정 시간은 4 시간이었다.
B. 합성예
합성예 1
(MA/C20-C24, Wibarcan® 중의)
앵커 교반기가 있는 4 L 유리 반응기를 먼저 C20-C24 올레핀 (901.4 g, 평균 몰 질량 296 g/mol) 및 Wibarcan® (1113.0 g, Wibarco 사제) 의 혼합물로 채웠다. 혼합물을 150℃ 로 질소 스트림 중에서 교반하면서 가열시켰다. 여기에 5 시간 내에, Wibarcan® (107.7 g) 및 용융 말레산 무수물 (298.6 g) 중의 디-tert-부틸 퍼옥시드 (12.2 g, Akzo Nobel 사제) 의 용액을 첨가하였다. 반응 혼합물을 150℃ 에서 1 시간 동안 교반한 다음, 95℃ 로 냉각시켰다. 상기 온도에서, 물 (43.4 g) 을 3 시간 내에 첨가한 다음, 11 시간 동안 교반을 연속하였다.
GPC (용리액: THF + 1% 트리플루오로아세트산, 폴리스티렌 표준) 는 Mn = 619 g/mol, Mw = 2780 g/mol, 다분산도 4.5 의 중합체를 나타냈다.
합성예 2
(MA/C20-C24, Solvesso™ 150 중의)
앵커 교반기가 있는 2 L 유리 반응기를 먼저 C20-C24 올레핀 (363.2 g, 평균 몰 질량 296 g/mol) 및 Solvesso™ 150 (270.2 g, DHC Solvent Chemie GmbH 사제) 의 혼합물로 채웠다. 혼합물을 150℃ 로 질소 스트림 중에서 교반하면서 가열시켰다. 여기에 5 시간 내에, Solvesso™ 150 (217.0 g) 및 용융 말레산 무수물 (120.3 g) 중의 디-tert-부틸 퍼옥시드 (24.67 g, Akzo Nobel 사제) 의 용액을 첨가하였다. 반응 혼합물을 150℃ 에서 1 시간 동안 교반한 다음, 95℃ 로 냉각시켰다. 상기 온도에서, 물 (19.9 g) 을 3 시간 내에 첨가한 다음, 추가 11 시간 동안 교반을 연속하였다.
GPC (용리액: THF + 1% 트리플루오로아세트산, 폴리스티렌 표준) 는 Mn = 1330 g/mol, Mw = 2700 g/mol, 다분산도 2.0 의 중합체를 나타냈다.
합성예 3
(MA/C20-C24, Solvesso™ 150 중의)
앵커 교반기가 있는 2 L 유리 반응기를 먼저 C20-C24 올레핀 (363.2 g, 평균 몰 질량 296 g/mol) 및 Solvesso™ 150 (231.5 g, DHC Solvent Chemie GmbH 사제) 의 혼합물로 채웠다. 혼합물을 160℃ 로 질소 스트림 중에서 교반하면서 가열시켰다. 여기에 5 시간 내에, Solvesso™ 150 (260.5 g) 및 용융 말레산 무수물 (120.3 g) 중의 디-tert-부틸 퍼옥시드 (29.6 g, Akzo Nobel 사제) 의 용액을 첨가하였다. 반응 혼합물을 150℃ 에서 1 시간 동안 교반한 다음, 95℃ 로 냉각시켰다. 상기 온도에서, 물 (19.9 g) 을 3 시간 내에 첨가한 다음, 추가 11 시간 동안 교반을 연속하였다.
GPC (용리액: THF + 1% 트리플루오로아세트산, 폴리스티렌 표준) 는 Mn = 1210 g/mol, Mw = 2330 g/mol, 다분산도 1.9 의 중합체를 나타냈다.
합성예 4
(MA/C20-C24, Solvesso™ 150 중의)
앵커 교반기가 있는 2 L 유리 반응기를 먼저 C20-C24 올레핀 (371.8 g, 평균 몰 질량 296 g/mol) 및 Solvesso™ 150 (420.7 g, DHC Solvent Chemie GmbH 사제) 의 혼합물로 채웠다. 혼합물을 150℃ 로 질소 스트림 중에서 교반하면서 가열시켰다. 여기에 3 시간 내에, Solvesso™ 150 (50.2 g) 및 용융 말레산 무수물 (123.2 g) 중의 디-tert-부틸 퍼옥시드 (5.71 g, Akzo Nobel 사제) 의 용액을 첨가하였다. 반응 혼합물을 150℃ 에서 1 시간 동안 교반한 다음, 실온으로 냉각시켰다. 환류 콘덴서가 부착된 250 mL 의 2-목 플라스크를 먼저 그렇게 수득된 160 g 의 공중합체 및 3.63 g 의 물로 채웠다. 혼합물을 95℃ 에서 16 시간 동안 교반하였다.
합성예 5
4 차화
2 L 오토클레이브를 먼저 2-프로필헵탄올 (259 g) 중의 합성예 2 로부터의 반응 산물 (234 g, Solvesso™ 150 중의 용액) 및 코코일디메틸아민 (112.6 g, 총 아민 값 249 mg KOH/g 의, N,N-디메틸-N-C12/14-아민, CAS 68439-70-3 또는 CAS 112-18-5) 의 용액으로 채웠다. 이어서 이것을 N2 로 3 회 퍼지 (purge) 하고, 대략 2 bar 의 N2 의 공급 압력의 성립 및 50℃ 로의 온도의 증가를 연속했다. 프로필렌 옥시드 (58 g) 를 1 시간 내에 계량한다. 이후 50℃ 에서 15 시간 동안 교반하고, 25℃ 로 냉각시키고, N2 로 퍼지하고, 반응기를 비웠다. 생성물을 2 L 재킷 반응기 내로 옮기고, 과량의 프로필렌 옥시드를 N2 스트림 (10 l/h) 을 갑압 (100 mbar) 하에서 50℃ 에서 6 시간 동안 도입함으로써 제거한다. 1H NMR (CDCl3) 은 4 차화 (δ = 3.3 ppm, 단일선, R2N(CH 3)2) 를 확인한다.
D. 사용예
사용예 1: DW10 Zn 엔진 시험 (clean-up)
더티-업 파트에서 좀더 엄격한 조건이 사용된 것을 제외하고, 표준 CEC F-98-08 절차에 따라 사용된 Peugeot DW10 엔진으로 테스트를 수행하였다:
I. 더티-업 (Dirty-up):
표준 CEC F-98-08 조건 하에서보다 더 엄격한 조건에 의해 분사기 침전물이 훨씬 더 빨리 형성되고 따라서 더 빠른 동력 손실 측정이 가능하다: 성능 첨가제를 포함하지 않고, 3 mg/kg Zn 을 함유하는 EN590 B7 Aral 을 이용하여 전 부하 (full load) (4000 rpm) 하에서 4.28 시간 동안 엔진을 실행시켰다. 결과를 하기 표에 정리한다.
II. 클린-업 (Clean-up):
클린-업 테스트를 위해, 성능 첨가제를 포함하지 않고, 본 발명의 첨가제를 포함하는, EN590 B7 Aral 연료 및 Zn 1 ppm 을 이용하여, CEC F-98-08 절차에 따라 8 시간으로 단축하였으며, 하기 표에 요약된 결과가 달성되었다.
Figure 112016083899907-pct00019
본 발명에 기재된 화합물은 CEC F-98-08 에 따라 테스트할 경우, Peugeot DW10 과 같은 직접 분사 엔진에서 침전물의 형성에 대항하여 효과적이며, 초기 단계에서 형성된 침전물을 제거할 수 있다.
사용예 2: DW10 Na 비누 IDID 테스트 (클린-업)
직접 분사 디젤 엔진의 성능에 대해 첨가제의 영향을 시험하기 위해, 사용된 추가의 테스트 방법은 IDID 엔진 시험이었고, 실린더 출구에서 실린더 내의 배기 가스 온도는 DW10 엔진의 저온 시동시 측정되었다. 테스트 방법 CEC F-098-08 에 따라 제조사 Peugeot 로부터의 커먼 레일 시스템을 가진 직접 분사 디젤 엔진이 사용되었다. 사용된 연료는 Aral 로부터의 EN 590 에 따른 시판 B7 디젤 연료였다. 침전물의 형성을 인위적으로 유도하기 위해, 1 중량 ppm 의 나트륨 나프테네이트 및 20 중량 ppm 의 도데세닐숙신산을 각 경우 첨가하였다.
CEC F-98-08 방법과 유사하게, 엔진 동력을 시험 동안 측정한다. 시험은 2 가지 부분으로 이루어졌다:
I. 더티-업 (Dirty-up):
본 발명에 따른 화합물을 첨가하지 않고 테스트를 수행하였다. 테스트를 8 시간으로 단축하였고; Zn 를 첨가하지 않고 CEC F-98-08 법을 수행하였다. 배기 가스 온도에서 상당한 편차가 관찰되었을 경우, 엔진 손상을 방지하기 위해 8-시간 표시에 도달하기 전에 테스트를 중단하였다. 더티-업 런 이후에, 엔진이 냉각되도록 둔 다음 재시동하여 5 분간 완속 모드 (idling mode) 로 작동시켰다. 상기 5 분 동안, 엔진을 예열하였다. 각 실린더의 배기 가스 온도를 기록하였다. 배기 가스 온도의 차이가 더 작을수록, 더 작은 양의 IDID 가 형성되었다.
4 개의 실린더의 배기 가스 온도 ("C1" 내지 "C4") 를 0 분 후 ("
Figure 112016083899907-pct00020
0") 및 5 분후 ("
Figure 112016083899907-pct00021
5") 에 각 실린더 배출구에서 측정하였다. 2 개의 테스트 런에 대한 평균 값 ("Δ"), 및 하향 ("-") 및 상향 ("+") 의 Δ 로부터의 최대 차이를 갖는 배기 가스 온도 측정 결과를 후속하는 개요에 요약한다.
II. 클린-업 (Clean-up):
테스트를 8 시간으로 단축하고; Zn 을 첨가하지 않고 CEC F-98-08 법을 수행하였다. 그러나, 1 중량 ppm 의 나트륨 나프테네이트 및 20 중량 ppm 의 도데세닐숙신산, 및 또한 본 발명의 화합물을 각 경우에 첨가하고, 엔진 동력을 측정하였다.
클린-업 후, 엔진을 냉각시키고 재시동시켯다. 각 실린더의 배기 가스 온도를 기록하였다. 배기 가스 온도 간의 차이가 적을수록, 형성된 IDID 의 양이 더 적었다.
4 개의 실린더의 배기 가스 온도 ("C1" 내지 "C4") 를 0 분 후 ("
Figure 112016083899907-pct00022
0") 및 5 분후 ("
Figure 112016083899907-pct00023
5") 에 각 실린더 배출구에서 측정하였다. 평균 값 ("Δ"), 및 하향 ("-") 및 상향 ("+") 의 Δ 로부터의 최대 차이를 갖는 배기 가스 온도 측정 결과를 후속하는 개요에 요약한다.
하기 결과가 발견되었다:
더티-업 클린-업 순서 1 :
더티-업:
테스트 동안 배기 가스 온도의 현저한 편차가 확인되었으며, 따라서 엔진 손상을 방지하기 위해 3 시간 후에 중단시켰다.
더티-업 후:
Figure 112016083899907-pct00024
0 C1: 34℃ C2: 31℃ C3: 28℃ C4: 27℃
Figure 112016083899907-pct00025
5 C1: 119℃ C2: 117℃ C3: 41℃ C4: 45℃
Δ: 80.5℃ (+38.5℃ / -39.5℃)
평균으로부터의 현저한 편차 및 개별 실린더들 간의 현저한 차이는 IDID 의 존재를 나타낸다.
클린-업:
1 ppm 의 Na + 20 ppm 의 도데세닐숙신산의 존재하에 합성예 4 에 따른 168 ppm 의 첨가제를 이용한 클린-업 후:
Figure 112016083899907-pct00026
0 C1: 28℃ C2: 27℃ C3: 27℃ C4: 26℃
Figure 112016083899907-pct00027
5 C1: 74℃ C2: 77℃ C3: 60℃ C4: 66℃
Δ: 69.3℃ (-9.3℃ / +7.7℃)
배기 가스의 평균 온도로부터의 편차가 낮으며, 이는 IDID 의 제거를 시사한다.
더티-업 클린-업 순서 2 :
더티-업 후 (8h):
Figure 112016083899907-pct00028
0 C1: 40℃ C2: 28℃ C3: 38℃ C4: 30℃
Figure 112016083899907-pct00029
5 C1: 274℃ C2: 293℃ C3: 112℃ C4: 57℃
Δ: 184℃ (+109℃ / -127℃)
평균으로부터의 현저한 높은 편차 및 개별 실린더들 간의 현저한 차이는 상당한 IDID 의 존재를 나타낸다.
클린-업
1 ppm 의 Na + 20 ppm 의 도데세닐숙신산의 존재하에 합성예 4 에 따른 140 ppm 의 첨가제를 이용한 클린-업 후:
Figure 112016083899907-pct00030
0 C1: 44℃ C2: 43℃ C3: 44℃ C4: 45℃
Figure 112016083899907-pct00031
5 C1: 78℃ C2: 78℃ C3: 83℃ C4: 80℃
Δ: 80℃ (-2℃ / +3℃)
배기 가스의 평균 온도로부터의 편차가 매우 낮으며, 이는 상당한 IDID 의 제거를 시사한다.
본 발명에 따른 화합물은 CEC F-98-08 절차와 유사한 테스트에서, Peugeot DW10 과 같은 직접 분사 엔진에서 IDID 형성에 대항하여 매우 효과적이다.
사용예 3: DW10 Na 동력 손실 테스트
금속, 예컨대 Na, K 및 기타에 의해서 야기되는 (그리고 상기 기재된 바와 같은 Zn 에 의해서는 아님) 동력 손실에 대항하는 본 발명의 화합물의 효능을 시험하기 위해, IDID 엔진 시험을 사용하였다. 런 동안, 동력을 CEC F-098-08 에 따라 측정한다.
Figure 112016083899907-pct00032
본 발명에 따른 화합물은 상기 Na 동력 손실 테스트에서 제시된 바와 같이, 직접 분사 엔진에서 Zn 이외의 다른 금속에 의해 야기되는 침전물에 대항하여 효과적이다. 본 화합물은 동력 손실을 효과적으로 방지하며, 또한 침전물을 제거하는데 사용될 수 있다.
사용예 4: 여과성 테스트 (IP 387)
연료 및 분사 시스템 중의 잔류물의 형성은 형성된 잔류물의 부적합한 용해성, 및 이의 성분 및 전구체로부터 기원한다.
연료 내의 응집물 및 작은 불용성 입자의 양을 결정함으로써 필터를 차단하는 연료의 경향을 결정하기 위해 IP 387/97 테스트를 수행하였다. 이 테스트에서, 연료를 20 mL/분의 일정한 유속에서 특정한 유리 필터 매질을 통해 수송한다. 필터를 통한 압력 차이를 모니터링하고, 특정한 압력 차이의 성취가 측정되기 전에 필터를 통해 수송되는 연료의 부피를 측정한다. 테스트는 300 mL 의 연료가 여과되었거나, 압력 차이가 105 kPa 를 초과하는 경우 종료한다. 300 mL 의 연료의 여과 후 임의의 작은 압력 차이가 필터를 차단하는 미미한 경향을 나타낸다.
테스트에서, 성능 첨가제가 없는 EN 590 에 따른 연료를 기본 연료로서 사용하였다. 염 형성을 통해 필터를 차단하는 연료의 경향을 연구하기 위해, 연료를 3 mg/L 의 나트륨 이온 (나트륨 나프테네이트의 첨가를 통해) 및 20 mg/L 의 도데세닐숙신산으로 스파이크 (spike) 하였다.
a) IP 387 테스트에서, 3 mg/L 의 나트륨 및 20 mg/L 의 도데세닐숙신산으로 스파이크된 기본 연료는 240 mL 의 연료의 여과 후 초기 단계에서 105 kPa 의 압력 차이를 제공하였다.
b) 3 mg/L 의 나트륨 및 20 mg/L 의 도데세닐숙신산에 더해, 기본 연료에 합성예 4 에 따라 제조된 생성물 250 mg/kg 의 첨가는, 300 mL 의 연료의 여과 후, 오직 26 kPa 의 압력 차이를 나타냈다.
이것은 본 발명의 예가 연료의 여과성을 향상시키고 그러므로 연료 및 분사기 시스템 내의 잔류물의 침전을 방지할 수 있다는 것을 명확하게 보여준다.
사용예 5: 승온에서 연료 중의 침전물의 형성의 측정을 위한 테스트 (ASTM D3241 에 따른 JFTOT 테스트)
테스트에서, 성능 첨가제가 없는 EN 590 에 따른 연료를 기본 연료로서 사용하였다. 테스트를 예비 필터 없이 ASTM D3241 에 따라 수행하였다. 260℃ 의 가열 튜브 중의 온도를 달성하였고; 연료 흐름 속도는 3 mL/분이었고; 총 지속기간은 150 분이었다.
압력 강하가 250 mm Hg 를 초과하자마자 테스트를 종료했다. 테스트 종료 시 또는 25 mm Hg 의 압력 강하가 획득되기 전의 시간의 배압을 침전물의 형성 속도를 측정하기 위해 사용하였다. 테스트 종료 시 또는 테스트 시 25 mm Hg 의 값의 획득 전의 긴 시간에서 작은 압력 강하는 침전물을 형성하는 미미한 경향을 보인다.
a) 3 mg/L 의 나트륨 및 20 mg/L 의 도데세닐숙신산으로 스파이크된 기본 연료는 80 분 후 테스트에서 250 mm Hg 의 배압을 산출하고; 25 mm Hg 의 배압은 12 분 후에 달성되었다.
b) 3 mg/L 의 나트륨 및 20 mg/L 의 도데세닐숙신산 외에, 기본 연료에 대한 500 mg/kg 의, 합성예 4 에 따라 제조된 생성물의 첨가는 150 분 후 테스트 종료시에 0 의 배압을 나타냈다.
c) 3 mg/L 의 나트륨 및 20 mg/L 의 도데세닐숙신산 외에, 기본 연료에 대한 2-에틸헥산올 중의 50 중량% 용액으로서 도데세닐숙신산 무수물과 테트라에틸렌펜타민 (TEPA) 의 축합 반응에 의해 제조된, 500 mg/kg 의, TEPA 의 도데세닐숙신이미드의 첨가는 오직 28 분 후 테스트에서 250 mm Hg 의 배압을 야기했고; 25 mm Hg 의 배압을 오직 6 분 후에 획득했다. 또한, 갈색 침전물을 테스트 장치에서 검출하였다.
d) c) 에 따른 연료 혼합물에, 500 mg/kg 의, 합성예 4 에 따라 제조된 생성물의 첨가는 150 분 후 테스트 종료 시에 오직 6 mm Hg 의 배압을 야기했다.
이것은 본 발명의 예가 비교적 높은 온도에서 연료 중의 잔류물의 침전을 방지할 수 있다는 것을 명확하게 보여준다.
사용예 6: DW10 중합체성 IDID 테스트 (클린 업)
직접 분사 디젤 엔진의 성능에 대한 첨가제의 영향을 연구하기 위해 추가의 테스트 방법으로서 IDID 엔진 시험을 수행하였는데, 이때 실린더의 배기 가스 온도를 DW10 엔진의 냉각 시동 시 실린더 출구에서 측정하였다. 테스트 방법 CEC F-098-008 에 따라 제조사 Peugeot 로부터의 커먼 레일 시스템을 가진 직접 분사 디젤 엔진을 사용하였다.
사용된 연료는 DF-79-07 BATCH 7 연료 (Haltermann 사제) 였다.
상기 연료에 50 mg/kg 의, 도데세닐숙신산 무수물 이성질체 혼합물 (CAS Number 26544-38-7) 과 테트라에틸렌펜타민 (TEPA) (CAS Number 112-57-2) 과의 축합 반응의 생성물을 첨가하였고, 이것은 하기와 같이 수득하였다:
용매 나프타 (Solvent Naphtha) 나프탈렌 (고갈됨) 중의 도데세닐숙신산 무수물 이성질체 혼합물 (1.0 eq., 가수분해 수에 의해) 의 용액에 100℃ 에서, 테트라에틸렌펜타민 (1.0 eq, M = 189.3 g/mol) 을 적가하였다. 이어서, 혼합물을 170℃ 로 가열시키고 형성된 물을 증류 제거하였다. 이후, 2-에틸헥산올을 첨가하고, 혼합물을 냉각 및 배출시켰다.
용매의 양은 생성물이 용매 나프타 나프탈렌 고갈된/2-에틸헥산올 4:1 (w/w) 용매 혼합물 중의 50% (w/w) 의 농도를 갖는 식으로 선택하였다.
I. 더티-업 (Dirty-up):
본 발명에 따른 화합물을 첨가하지 않고 테스트를 수행하고, 8 시간으로 단축하였고; Zn 를 첨가하지 않고 CEC F-98-08 법을 수행하였다.
더티-업 런 이후에, 엔진이 냉각되도록 둔 다음 재시동하여 5 분간 완속 모드 (idling mode) 로 작동시켰다. 상기 5 분 동안, 엔진을 예열하였다. 각 실린더의 배기 가스 온도를 기록하였다. 배기 가스 온도의 차이가 더 작을수록, 더 작은 양의 IDID 가 형성되었다.
4 개의 실린더 각각의 배기 가스 온도 ("Z1" 내지 "Z4") 를 0 분 후 ("
Figure 112016083899907-pct00033
0") 및 5 분후 ("
Figure 112016083899907-pct00034
5") 에 실린더 배출구에서 측정하였다. 평균 값 ("Δ"), Δ 의 최대 하향 ("-") 및 상향 ("+") 편차를 갖는 배기 가스 온도 측정 결과를 후속하는 개요에 요약한다.
II. 클린-업 (Clean-up):
테스트를 8 시간으로 단축하고; Zn 을 첨가하지 않고 CEC F-98-08 법을 수행하였다.
50 mg/kg 의, 도데세닐숙신산 무수물과 테트라에틸렌펜타민 (TEPA) 과의 축합 반응의 생성물 (사용예 6 에 기재된 것과 같이 제조됨) 을 첨가하여, 침전물의 형성을 인위적으로 유도하였다.
100 mg/kg 의, 합성예 4 에 따라 제조된 생성물을 또한 연료 혼합물에 첨가하였다.
하기 결과를 발견하였다:
더티업 후
Figure 112016083899907-pct00035
0 Z1: 45℃ Z2: 47℃ Z3: 33℃ Z4: 45℃
Figure 112016083899907-pct00036
5 Z1: 82℃ Z2: 104℃ Z3: 47℃ Z4: 113℃
Δ: 86.5℃ (-39.5℃ / +26.5℃)
평균으로부터 상당한 편차 및 개별 실린더 사이의 상당한 차이는 IDID 의 존재를 입증한다.
클린업 후
Figure 112016083899907-pct00037
0 Z1: 41℃ Z2: 41℃ Z3:39℃ Z4: 43℃
Figure 112016083899907-pct00038
5 Z1: 82℃ Z2: 81℃ Z3: 80℃ Z4: 82℃
Δ: 81.3℃ (-1.3℃ / +0.7℃)
배기 가스의 평균 온도로부터의 편차는 작고, 이것이 IDID 의 제거를 암시한다.
클린 업 후의 테스트 결과는 본 발명에 따른 화합물이 중합체성 IDID 의 형성을 방해하고 이를 제거하는데 매우 효과적이라는 것을 보여준다.
본원에 언급된 공개문헌의 설명은 참고로서 명백하게 인용된다.

Claims (19)

  1. 적어도 하나의 유리 카르복실산 측면 기를, 양자화된 형태 또는 염 형태로 포함하는 공중합체인 올레핀-중합가능 카르복실산 공중합체로서, 직접 분사 디젤 엔진 내의 내부 디젤 분사기 침전물 (IDID) 을 감소 및/또는 방지하기 위한 디젤 연료 첨가제로서 사용되며,
    i) 공중합체가
    (1) 하기
    a) 적어도 하나의 에틸렌성으로 불포화된, 중합가능 폴리카르복실산 무수물과
    b) 적어도 하나의 중합가능 올레핀과의 공중합; 및
    (2) 이후, 물, 또는 적어도 하나의 히드록실 화합물, 또는 적어도 하나의 1 차 또는 2 차 아민, 또는 이의 혼합물과의 단계 (1) 로부터의 공중합체의 무수물 라디칼의 부분적인 또는 완전한 반응에 의한 단계 (1) 로부터의 공중합체의 유도체화로; 카르복실기를 함유하는 공중합체 유도체를 형성함
    에 의해 수득가능한; 또는
    ii) 공중합체가
    (1) 하기
    a) 적어도 하나의 에틸렌성으로 불포화된, 중합가능 모노- 또는 폴리카르복실산과
    b) 적어도 하나의 중합가능 올레핀과의 공중합; 및
    (2) 이후, 적어도 하나의 히드록실 화합물, 적어도 하나의 1 차 또는 2 차 아민; 또는 이의 혼합물과의 공중합체의 카르복실 라디칼의 부분적인 반응에 의한 단계 (1) 로부터의 공중합체의 유도체화로, 감소된 유리 카르복실기 함량을 갖는 공중합체 유도체를 형성함
    에 의해 수득가능한; 또는
    iii) 공중합체가
    a) 적어도 하나의 에틸렌성으로 불포화된, 중합가능 모노- 또는 폴리카르복실산과
    b) 적어도 하나의 중합가능 올레핀과의 공중합
    에 의해 수득가능한 올레핀-중합가능 카르복실산 공중합체.
  2. 제 1 항에 있어서, 커먼 레일 분사 시스템을 가진 직접 분사 디젤 엔진에서 사용되는 올레핀-중합가능 카르복실산 공중합체.
  3. 제 1 항에 있어서, 공중합체가 공중합체-함유 반응 생성물, 또는 이의 공중합체-함유 성분 분획인 올레핀-중합가능 카르복실산 공중합체.
  4. 제 1 항에 있어서, K, Zn, Ca 또는 Na 에 의해 야기되는 동력 손실 (K, Zn, Ca 또는 Na 동력 손실로 불림) 을 최소화시키기 위한 첨가제로서 사용되는 올레핀-중합가능 카르복실산 공중합체.
  5. 제 1 항에 있어서, Na, Ca 및/또는 K 에 의해 야기되는 내부 디젤 분사기 침전물 (IDID) (Na, Ca 또는 K 비누 IDID 로 불림) 을 감소 및/또는 방지하기 위한 디젤 연료 첨가제로서 사용되는 올레핀-중합가능 카르복실산 공중합체.
  6. 제 1 항 내지 제 5 항 중 어느 한 항에 있어서, 중합가능 카르복실산이 에틸렌성 불포화 폴리카르복실산 무수물인 올레핀-중합가능 카르복실산 공중합체.
  7. 제 6 항에 있어서, 폴리카르복실산 무수물이 에틸렌성 불포화 C4-C40-디카르복실산의 무수물인 올레핀-중합가능 카르복실산 공중합체.
  8. 제 1 항 내지 제 5 항 중 어느 한 항에 있어서, 중합가능 올레핀이 적어도 하나의 중합가능 이중 결합을 갖고 56 내지 10 000 의 범위의 Mw 를 갖는 C4-C40-α-올레핀; 및/또는 C2-C40-α-올레핀 단위로부터 형성되는 중합체인 올레핀-중합가능 카르복실산 공중합체.
  9. 제 1 항 내지 제 5 항 중 어느 한 항에 있어서, 에틸렌성 불포화 카르복실산이 에틸렌성 불포화 C3-C40-모노카르복실산인 올레핀-중합가능 카르복실산 공중합체.
  10. 제 1 항 내지 제 5 항 중 어느 한 항에 있어서, 중합가능 C4-C40-α-올레핀으로부터 선택되는 올레핀 단위 (m1) 를 갖고; 에틸렌성으로 불포화된 C4-C8-디카르복실산 무수물로부터 선택되는 카르복실산 단위 (m2) 를 갖고; 몰비 (m1):(m2) 가 0.8:1 내지 2:1 의 범위이고; 공중합체가 완전히 또는 95 mol% 초과의 범위로 가수분해된, 올레핀-카르복실산 공중합체가 사용되는 올레핀-중합가능 카르복실산 공중합체.
  11. 제 1 항 내지 제 5 항 중 어느 한 항에 있어서, 공중합체가 디젤 연료의 총량을 기준으로, 10 내지 5000 중량ppm 의 범위 내의 용량으로 디젤 연료에 첨가되는 올레핀-중합가능 카르복실산 공중합체.
  12. 삭제
  13. 삭제
  14. 삭제
  15. 삭제
  16. 삭제
  17. 삭제
  18. 삭제
  19. 삭제
KR1020167023757A 2014-01-29 2014-12-04 연료 및 윤활제에 대한 폴리카르복실산-기재 첨가제 KR102243599B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020217011442A KR102380302B1 (ko) 2014-01-29 2014-12-04 연료 및 윤활제에 대한 폴리카르복실산-기재 첨가제

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP14152991.7 2014-01-29
EP14152991 2014-01-29
PCT/EP2014/076622 WO2015113681A1 (de) 2014-01-29 2014-12-04 Polycarbonsäure-basierte additive für kraft und schmierstoffe

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020217011442A Division KR102380302B1 (ko) 2014-01-29 2014-12-04 연료 및 윤활제에 대한 폴리카르복실산-기재 첨가제

Publications (2)

Publication Number Publication Date
KR20160114686A KR20160114686A (ko) 2016-10-05
KR102243599B1 true KR102243599B1 (ko) 2021-04-22

Family

ID=50000910

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020167023757A KR102243599B1 (ko) 2014-01-29 2014-12-04 연료 및 윤활제에 대한 폴리카르복실산-기재 첨가제
KR1020217011442A KR102380302B1 (ko) 2014-01-29 2014-12-04 연료 및 윤활제에 대한 폴리카르복실산-기재 첨가제

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020217011442A KR102380302B1 (ko) 2014-01-29 2014-12-04 연료 및 윤활제에 대한 폴리카르복실산-기재 첨가제

Country Status (9)

Country Link
US (3) US11168273B2 (ko)
EP (2) EP3099720B1 (ko)
KR (2) KR102243599B1 (ko)
CN (2) CN109486539B (ko)
ES (1) ES2689347T3 (ko)
MY (1) MY180330A (ko)
PL (1) PL3099720T3 (ko)
RU (1) RU2695543C2 (ko)
WO (1) WO2015113681A1 (ko)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106459811B (zh) * 2014-01-29 2020-02-18 巴斯夫欧洲公司 用于燃料和润滑剂的缓蚀剂
EP3099720B1 (de) * 2014-01-29 2018-07-04 Basf Se Verwendung von polycarbonsäure-basierten additiven für kraftstoffe
US11085001B2 (en) 2015-07-16 2021-08-10 Basf Se Copolymers as additives for fuels and lubricants
WO2017144378A1 (de) 2016-02-23 2017-08-31 Basf Se HYDROPHOBE POLYCARBONSÄUREN ALS REIBVERSCHLEIß-VERMINDERNDER ZUSATZ ZU KRAFTSTOFFEN
WO2017202642A1 (de) * 2016-05-24 2017-11-30 Basf Se Copolymerisat und seine verwendung zur verminderung der kristallisation von paraffinkristallen in kraftstoffen
US11078418B2 (en) 2016-07-05 2021-08-03 Basf Se Corrosion inhibitors for fuels and lubricants
US20190249099A1 (en) * 2016-07-07 2019-08-15 Basf Se Copolymers as additives for fuels and lubricants
EP3555244B1 (de) 2016-12-15 2023-05-31 Basf Se Polymere als dieselkraftstoffadditive für direkteinspritzende dieselmotoren
EP3555242B1 (de) 2016-12-19 2020-11-25 Basf Se Additive zur verbesserung der thermischen stabilität von kraftstoffen
WO2018188986A1 (de) 2017-04-13 2018-10-18 Basf Se Polymere als additive für kraft und schmierstoffe
CA3086524A1 (en) 2017-12-28 2019-07-04 Ecolab Usa Inc. Cloud point depressant for middle distillate fuels
US11118126B2 (en) 2018-07-11 2021-09-14 Ecolab Usa Inc. Cold flow additive for middle distillate fuels
EP3990585A1 (en) 2019-06-26 2022-05-04 Basf Se New additive packages for gasoline fuels
ES2964845T3 (es) 2020-07-14 2024-04-09 Basf Se Inhibidores de corrosión para combustibles y lubricantes
WO2022106301A1 (en) 2020-11-20 2022-05-27 Basf Se Mixtures for improving or boosting the separation of water from fuels
WO2022128569A2 (en) 2020-12-16 2022-06-23 Basf Se New mixtures for improving the stability of additive packages
EP4105301A1 (en) 2021-06-15 2022-12-21 Basf Se New gasoline additive packages
GB202118103D0 (en) 2021-12-14 2022-01-26 Innospec Ltd Fuel compositions
WO2024061760A1 (de) 2022-09-23 2024-03-28 Basf Se Verminderung der kristallisation von paraffinen in kraftstoffen

Family Cites Families (104)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL296139A (ko) 1963-08-02
FR1459497A (fr) * 1964-12-10 1966-11-18 Chevron Res Additif pour fuel oil
NL145565B (nl) 1965-01-28 1975-04-15 Shell Int Research Werkwijze ter bereiding van een smeermiddelcompositie.
US3574576A (en) 1965-08-23 1971-04-13 Chevron Res Distillate fuel compositions having a hydrocarbon substituted alkylene polyamine
US3382056A (en) 1966-06-03 1968-05-07 Chevron Res Maleic anhydride copolymers as rust inhibitors
US3755433A (en) 1971-12-16 1973-08-28 Texaco Inc Ashless lubricating oil dispersant
GB1434724A (en) 1972-04-17 1976-05-05 Rech Et Dapplications Scient S Spasmolytic medicines comprising a vidiquil derivative
US4171959A (en) 1977-12-14 1979-10-23 Texaco Inc. Fuel composition containing quaternary ammonium salts of succinimides
JPS5922791B2 (ja) * 1978-12-25 1984-05-29 三菱化学株式会社 防錆剤
US4248719A (en) 1979-08-24 1981-02-03 Texaco Inc. Quaternary ammonium salts and lubricating oil containing said salts as dispersants
US4464182A (en) 1981-03-31 1984-08-07 Exxon Research & Engineering Co. Glycol ester flow improver additive for distillate fuels
JPS601902B2 (ja) * 1981-05-26 1985-01-18 三菱化学株式会社 艶出し剤
JPS58138791A (ja) 1982-02-10 1983-08-17 Nippon Oil & Fats Co Ltd 燃料油用流動性向上剤
US5080686A (en) * 1982-10-20 1992-01-14 Petrolite Corporation Alkyl or alkenyl succinic acids as corrosion inhibitors for oxygenated fuels
DE3411531A1 (de) 1984-03-29 1985-10-10 Basf Ag, 6700 Ludwigshafen Verfahren zur umsetzung von olefinen mit maleinsaeureanhydrid und verwendung der erhaltenen bernsteinsaeureanhydride zur herstellung von korrosionsschutzmitteln und mineraloelhilfsmitteln
DE3413540A1 (de) 1984-04-11 1985-10-24 Nonnenbroich, Friedhelm, 7100 Heilbronn Uebertragungsgeraet fuer medikamentenwirkung
US4690687A (en) 1985-08-16 1987-09-01 The Lubrizol Corporation Fuel products comprising a lead scavenger
US4655948A (en) 1985-08-27 1987-04-07 Mobil Oil Corporation Grease compositions containing borated catechol compounds and hydroxy-containing soap thickeners
US4655946A (en) 1985-11-07 1987-04-07 Exxon Research And Engineering Company Sea water resistant turbo oil
GB8605535D0 (en) 1986-03-06 1986-04-09 Shell Int Research Fuel composition
DE3611230A1 (de) 1986-04-04 1987-10-08 Basf Ag Polybutyl- und polyisobutylamine, verfahren zu deren herstellung und diese enthaltende kraft- und schmierstoffzusammensetzungen
IN184481B (ko) 1986-09-24 2000-08-26 Exxon Chemical Patents Inc
JPH0662779B2 (ja) 1986-11-11 1994-08-17 住友化学工業株式会社 カチオン性ポリマーの水分散液およびその用途
EP0299120A1 (en) * 1987-07-14 1989-01-18 Petrolite Corporation Alkyl or alkenyl succinic acids as corrosion inhibitors for oxygenated fuels
ATE74620T1 (de) 1987-09-15 1992-04-15 Basf Ag Kraftstoffe fuer ottomotoren.
DE3732908A1 (de) 1987-09-30 1989-04-13 Basf Ag Polyetheramine enthaltende kraftstoffe fuer ottomotoren
US4877416A (en) 1987-11-18 1989-10-31 Chevron Research Company Synergistic fuel compositions
US5229022A (en) * 1988-08-01 1993-07-20 Exxon Chemical Patents Inc. Ethylene alpha-olefin polymer substituted mono- and dicarboxylic acid dispersant additives (PT-920)
DE3826608A1 (de) 1988-08-05 1990-02-08 Basf Ag Polyetheramine oder polyetheraminderivate enthaltende kraftstoffe fuer ottomotoren
DE3837013A1 (de) * 1988-10-31 1990-05-03 Basf Ag Verwendung von partiell veresterten copolymerisaten in fluessigwaschmitteln
DE3838918A1 (de) 1988-11-17 1990-05-23 Basf Ag Kraftstoffe fuer verbrennungsmaschinen
US5068047A (en) * 1989-10-12 1991-11-26 Exxon Chemical Patents, Inc. Visosity index improver
US5071919A (en) 1990-05-17 1991-12-10 Ethyl Petroleum Additives, Inc. Substituted acylating agents and their production
DE4030164A1 (de) 1990-09-24 1992-03-26 Basf Ag Kraftstoffe fuer verbrennungsmotoren und schmierstoffe enthaltende hochmolekulare aminoalkohole
DE4142241A1 (de) 1991-12-20 1993-06-24 Basf Ag Kraftstoffe fuer ottomotoren
GB9204709D0 (en) 1992-03-03 1992-04-15 Exxon Chemical Patents Inc Additives for oils
DE4208756A1 (de) 1992-03-19 1993-09-23 Basf Ag Diaminoalkane, verfahren zu deren herstellung sowie kraftstoffe und schmierstoffe, enthaltend die diaminoalkane
DE4214810A1 (de) 1992-05-04 1993-11-11 Basf Ag µ-Aminonitrile und N-Alkyl-1,3-propylendiamine sowie deren Verwendung als Kraft- und Schmierstoffadditive
DE4239076A1 (de) * 1992-11-20 1994-05-26 Basf Ag Mischungen aus Polymerisaten von monoethylenisch ungesättigten Dicarbonsäuren und Polymerisaten ethylenisch ungesättigter Monocarbonsäuren und/oder Polyaminocarbonsäuren und ihre Verwendung
DE4309074A1 (de) 1993-03-20 1994-09-22 Basf Ag Als Kraftstoffadditiv geeignete Mischungen
DE4309271A1 (de) 1993-03-23 1994-09-29 Basf Ag Kraftstoffadditive, Verfahren zu ihrer Herstellung sowie Kraftstoffe für Ottomotoren, enthaltend die Additive
DE4313088A1 (de) 1993-04-22 1994-10-27 Basf Ag Poly-1-n-alkenamine und diese enthaltende Kraft- und Schmierstoffzusammensetzungen
DE4319672A1 (de) 1993-06-14 1994-12-15 Basf Ag Verfahren zur Herstellung von Polyisobutylbernsteinsäureanhydriden
DE4325237A1 (de) 1993-07-28 1995-02-02 Basf Ag Verfahren zur Herstellung von Alkoxylierungsprodukten in Gegenwart von mit Additiven modifizierten Mischhydroxiden
AT400149B (de) 1993-08-17 1995-10-25 Oemv Ag Additiv für unverbleite ottokraftstoffe sowie dieses enthaltender kraftstoff
DE4416415A1 (de) * 1994-05-10 1995-11-16 Hoechst Ag Copolymere auf Basis von ethylenisch ungesättigten Dicarbonsäureanhydriden, langkettigen Olefinen und Fluorolefinen
DE4425834A1 (de) 1994-07-21 1996-01-25 Basf Ag Umsetzungsprodukte aus Polyisobutenen und Stickoxiden oder Gemischen aus Stickoxiden und Sauerstoff und ihre Verwendung als Kraft- und Schmierstoffadditive
DE4425835A1 (de) 1994-07-21 1996-01-25 Basf Ag Verwendung von Umsetzungsprodukten aus Polyolefinen und Stickoxiden oder Gemischen aus Stickoxiden und Sauerstoff als Additive für Kraftstoffe
DE4432038A1 (de) 1994-09-09 1996-03-14 Basf Ag Polyetheramine enthaltende Kraftstoffe für Ottomotoren
JPH08295891A (ja) 1995-04-27 1996-11-12 Mitsui Petrochem Ind Ltd 燃料油組成物
DE19519042A1 (de) 1995-05-24 1996-11-28 Basf Ag Herstellung von Polyalkenylbernsteinsäure-Derivaten und ihre Verwendung als Kraft- und Schmierstoffadditive
DE19525938A1 (de) 1995-07-17 1997-01-23 Basf Ag Verfahren zur Herstellung von organischen Stickstoffverbindungen, spezielle organische Stickstoffverbindungen und Mischungen aus solchen Verbindungen sowie deren Verwendung als Kraft- und Schmierstoffadditive
DE19620262A1 (de) 1996-05-20 1997-11-27 Basf Ag Verfahren zur Herstellung von Polyalkenaminen
FR2751982B1 (fr) 1996-07-31 2000-03-03 Elf Antar France Additif d'onctuosite pour carburant moteurs et composition de carburants
GB9618546D0 (en) 1996-09-05 1996-10-16 Bp Chemicals Additives Dispersants/detergents for hydrocarbons fuels
DE19754039A1 (de) 1997-12-05 1999-06-24 Basf Ag Verfahren zur Herstellung von Ethylencopolymeren in segmentierten Rohrreaktoren und Verwendung der Copolymere als Fließverbesserer
GB9827366D0 (en) 1998-12-11 1999-02-03 Exxon Chemical Patents Inc Macromolecular materials
DE19905211A1 (de) 1999-02-09 2000-08-10 Basf Ag Kraftstoffzusammensetzung
WO2001072930A2 (en) 2000-03-31 2001-10-04 Texaco Development Corporation Fuel additive composition for improving delivery of friction modifier
JP2001316361A (ja) 2000-05-01 2001-11-13 Ethyl Corp スクシンイミド−酸化合物およびそれの誘導体
DE10102913A1 (de) 2001-01-23 2002-07-25 Basf Ag Alkoxylierte Alkyphenole und deren Verwendung in Kraft- und Schmierstoffen
DE10243361A1 (de) 2002-09-18 2004-04-01 Basf Ag Alkoxylatgemische und diese enthaltende Waschmittel
MXPA05002763A (es) 2002-09-13 2005-09-08 Octel Starreon Llc Procedimiento para la produccion de una composicion de combustible.
DE10247795A1 (de) 2002-10-14 2004-04-22 Basf Ag Verwendung von Hydrocarbylvinyletherhomopolymeren zur Verbesserung der Wirkung von Kaltfliessverbesserern
DE10316871A1 (de) * 2003-04-11 2004-10-21 Basf Ag Kraftstoffzusammensetzung
DE10349850C5 (de) * 2003-10-25 2011-12-08 Clariant Produkte (Deutschland) Gmbh Kaltfließverbesserer für Brennstofföle pflanzlichen oder tierischen Ursprungs
DE10349851B4 (de) * 2003-10-25 2008-06-19 Clariant Produkte (Deutschland) Gmbh Kaltfließverbesserer für Brennstofföle pflanzlichen oder tierischen Ursprungs
DE10356595A1 (de) 2003-12-04 2005-06-30 Basf Ag Brennstoffölzusammensetzungen mit verbesserten Kaltfließeigenschaften
DE10357877B4 (de) * 2003-12-11 2008-05-29 Clariant Produkte (Deutschland) Gmbh Brennstofföle aus Mitteldestillaten und Ölen pflanzlichen oder tierischen Ursprungs mit verbesserten Kälteeigenschaften
GB2429210B (en) * 2004-04-06 2008-10-08 Akzo Nobel Nv Pour point depressant additives for oil compositions
EP1891188A1 (en) * 2005-06-13 2008-02-27 DSMIP Assets B.V. Additive composition comprising an amidized or imidized polymer
CA2611306C (en) 2005-06-16 2015-11-24 The Lubrizol Corporation Quaternary ammonium salt detergents for use in fuels
DE102005033518A1 (de) * 2005-07-14 2007-01-18 Basf Ag Verwendung von carboxylathaltigen Polymeren als Additive in keramischen Massen
EP1746147B1 (de) * 2005-07-22 2016-02-24 Basf Se Copolymere auf Basis von Olefinen und Estern von ethylenisch ungesättigten Carbonsäuren zur Erniedrigung des CP-Werts von Brennstoffölen und Schmierstoffen
US20080113890A1 (en) 2006-11-09 2008-05-15 The Lubrizol Corporation Quaternary Ammonium Salt of a Polyalkene-Substituted Amine Compound
WO2008138836A2 (de) 2007-05-11 2008-11-20 Basf Se Verfahren zur herstellung von polyisobutylbernsteinsäureanhydriden
EP2033945A1 (en) 2007-09-06 2009-03-11 Infineum International Limited Quaternary ammonium salts
CA3025740C (en) 2008-10-10 2021-11-09 The Lubrizol Corporation Additives to reduce metal pick-up in fuels
KR101895614B1 (ko) 2009-05-15 2018-09-05 더루우브리졸코오포레이션 4차 암모늄 아미드 및/또는 에스테르 염
GB201001920D0 (en) 2010-02-05 2010-03-24 Innospec Ltd Fuel compostions
GB201003973D0 (en) 2010-03-10 2010-04-21 Innospec Ltd Fuel compositions
CN102858811B (zh) * 2010-04-27 2015-01-28 巴斯夫欧洲公司 季铵化三元共聚物
CN105542884B (zh) * 2010-05-18 2018-01-23 路博润公司 提供去污力的方法和组合物
WO2011161149A1 (de) * 2010-06-25 2011-12-29 Basf Se Quaternisiertes copolymerisat
PL2808350T3 (pl) 2010-07-06 2018-04-30 Basf Se Kwaternizowane związki azotu niezawierające kwasów i ich zastosowanie jako dodatku do paliw silnikowych i smarów
US8846587B2 (en) * 2011-03-24 2014-09-30 Elevance Renewable Sciences, Inc. Functionalized monomers and polymers
EP2540808A1 (de) 2011-06-28 2013-01-02 Basf Se Quaternisierte Stickstoffverbindungen und deren Verwendung als Additive in Kraft- und Schmierstoffen
EP2589647A1 (de) 2011-11-04 2013-05-08 Basf Se Quaternisierte Polyetheramine und deren Verwendung als Additive in Kraft- und Schmierstoffen
CA2789907A1 (en) 2011-11-11 2013-05-11 Afton Chemical Corporation Fuel additive for improved performance of direct fuel injected engines
US9574149B2 (en) 2011-11-11 2017-02-21 Afton Chemical Corporation Fuel additive for improved performance of direct fuel injected engines
KR20150079782A (ko) 2012-10-23 2015-07-08 바스프 에스이 히드로카르빌 에폭시드의 4차화 암모늄 염 및 연료 및 윤활제 내의 첨가제로서의 이의 용도
CN105849238B (zh) 2013-06-07 2017-08-15 巴斯夫欧洲公司 用环氧烷烃和烃基取代的多羧酸季铵化的氮化合物作为燃料和润滑剂中的添加剂的用途
PL3483234T3 (pl) 2013-09-20 2021-12-13 Basf Se Zastosowanie specjalnych pochodnych czwartorzędowanych związków azotowych jako dodatków do paliw silnikowych
EP3099720B1 (de) * 2014-01-29 2018-07-04 Basf Se Verwendung von polycarbonsäure-basierten additiven für kraftstoffe
CN106459811B (zh) 2014-01-29 2020-02-18 巴斯夫欧洲公司 用于燃料和润滑剂的缓蚀剂
US20180182506A1 (en) 2015-06-17 2018-06-28 Basf Se Conductive paste comprising lubricating oils and semiconductor device
EP3322774A1 (de) 2015-07-15 2018-05-23 Basf Se Verwendung von korrosionsinhibitoren für kraft- und schmierstoffe
SG11201800399TA (en) 2015-07-16 2018-02-27 Basf Se Corrosion inhibitors for fuels and lubricants
US11085001B2 (en) 2015-07-16 2021-08-10 Basf Se Copolymers as additives for fuels and lubricants
EP3192857A1 (en) 2016-01-13 2017-07-19 Basf Se Use of poly(meth)acrylate copolymers with branched c17 alkyl chains in lubricant oil compositions
US11078418B2 (en) 2016-07-05 2021-08-03 Basf Se Corrosion inhibitors for fuels and lubricants
WO2018007192A1 (de) 2016-07-05 2018-01-11 Basf Se Korrosionsinhibitoren für kraft- und schmierstoffe
US20190249099A1 (en) 2016-07-07 2019-08-15 Basf Se Copolymers as additives for fuels and lubricants
EP3555244B1 (de) 2016-12-15 2023-05-31 Basf Se Polymere als dieselkraftstoffadditive für direkteinspritzende dieselmotoren

Also Published As

Publication number Publication date
EP3363879A3 (de) 2018-10-03
US20170130153A1 (en) 2017-05-11
ES2689347T3 (es) 2018-11-13
US20210222080A1 (en) 2021-07-22
CN109486539A (zh) 2019-03-19
KR102380302B1 (ko) 2022-03-29
PL3099720T3 (pl) 2018-12-31
CN106133007A (zh) 2016-11-16
RU2695543C2 (ru) 2019-07-24
EP3099720A1 (de) 2016-12-07
RU2016134919A3 (ko) 2018-08-21
US11634654B2 (en) 2023-04-25
RU2016134919A (ru) 2018-03-05
KR20160114686A (ko) 2016-10-05
EP3363879A2 (de) 2018-08-22
KR20210046831A (ko) 2021-04-28
WO2015113681A1 (de) 2015-08-06
CN106133007B (zh) 2018-11-27
US20210214635A1 (en) 2021-07-15
CN109486539B (zh) 2020-12-04
US11168273B2 (en) 2021-11-09
MY180330A (en) 2020-11-28
EP3099720B1 (de) 2018-07-04

Similar Documents

Publication Publication Date Title
US11634654B2 (en) Polycarboxylic acid-based additives for fuels and lubricants
US11912950B2 (en) Use of nitrogen compounds quaternised with alkylene oxide and hydrocarbyl-substituted polycarboxylic acid as additives in fuels and lubricants
US10815444B2 (en) Use of specific derivatives of quaternized nitrogen compounds as additives in fuels and lubricants
KR102033606B1 (ko) 4급화된 폴리에테르아민 및 연료 및 윤활제의 첨가제로서 이의 용도
KR102185459B1 (ko) 연료 및 윤활제에서 첨가제로서 4차화된 알킬아민의 용도
US20150252277A1 (en) Quaternized polyether amines and their use as additive for fuels and lubricants
US20180251692A1 (en) Use of corrosion inhibitors for fuels and lubricants

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant