KR102234530B1 - 신규 톨트라주릴 유도체 및 이를 포함하는 쿠도아충 예방·치료를 위한 약학 조성물 - Google Patents

신규 톨트라주릴 유도체 및 이를 포함하는 쿠도아충 예방·치료를 위한 약학 조성물 Download PDF

Info

Publication number
KR102234530B1
KR102234530B1 KR1020200110958A KR20200110958A KR102234530B1 KR 102234530 B1 KR102234530 B1 KR 102234530B1 KR 1020200110958 A KR1020200110958 A KR 1020200110958A KR 20200110958 A KR20200110958 A KR 20200110958A KR 102234530 B1 KR102234530 B1 KR 102234530B1
Authority
KR
South Korea
Prior art keywords
formula
toltrazuril
nmr
compound
mmol
Prior art date
Application number
KR1020200110958A
Other languages
English (en)
Inventor
정승희
최혜승
김나영
원경미
김명석
한현자
우수지
박윤정
Original Assignee
대한민국
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 대한민국 filed Critical 대한민국
Priority to KR1020200110958A priority Critical patent/KR102234530B1/ko
Application granted granted Critical
Publication of KR102234530B1 publication Critical patent/KR102234530B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C217/00Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton
    • C07C217/78Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton
    • C07C217/80Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of non-condensed six-membered aromatic rings
    • C07C217/82Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of non-condensed six-membered aromatic rings of the same non-condensed six-membered aromatic ring
    • C07C217/84Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of non-condensed six-membered aromatic rings of the same non-condensed six-membered aromatic ring the oxygen atom of at least one of the etherified hydroxy groups being further bound to an acyclic carbon atom
    • C07C217/86Compounds containing amino and etherified hydroxy groups bound to the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of six-membered aromatic rings of the same carbon skeleton having amino groups and etherified hydroxy groups bound to carbon atoms of non-condensed six-membered aromatic rings of the same non-condensed six-membered aromatic ring the oxygen atom of at least one of the etherified hydroxy groups being further bound to an acyclic carbon atom to an acyclic carbon atom of a hydrocarbon radical containing six-membered aromatic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/13Amines
    • A61K31/135Amines having aromatic rings, e.g. ketamine, nortriptyline
    • A61K31/136Amines having aromatic rings, e.g. ketamine, nortriptyline having the amino group directly attached to the aromatic ring, e.g. benzeneamine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/16Amides, e.g. hydroxamic acids
    • A61K31/165Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide
    • A61K31/167Amides, e.g. hydroxamic acids having aromatic rings, e.g. colchicine, atenolol, progabide having the nitrogen of a carboxamide group directly attached to the aromatic ring, e.g. lidocaine, paracetamol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • A61P33/10Anthelmintics
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides
    • C07C233/01Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C233/02Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having nitrogen atoms of carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals
    • C07C233/04Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having nitrogen atoms of carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals with carbon atoms of carboxamide groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C233/07Carboxylic acid amides having carbon atoms of carboxamide groups bound to hydrogen atoms or to acyclic carbon atoms having nitrogen atoms of carboxamide groups bound to hydrogen atoms or to carbon atoms of unsubstituted hydrocarbon radicals with carbon atoms of carboxamide groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton having the nitrogen atom of at least one of the carboxamide groups bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C235/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms
    • C07C235/42Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings and singly-bound oxygen atoms bound to the same carbon skeleton
    • C07C235/44Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings and singly-bound oxygen atoms bound to the same carbon skeleton with carbon atoms of carboxamide groups and singly-bound oxygen atoms bound to carbon atoms of the same non-condensed six-membered aromatic ring
    • C07C235/52Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by oxygen atoms having carbon atoms of carboxamide groups bound to carbon atoms of six-membered aromatic rings and singly-bound oxygen atoms bound to the same carbon skeleton with carbon atoms of carboxamide groups and singly-bound oxygen atoms bound to carbon atoms of the same non-condensed six-membered aromatic ring having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by carboxyl groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Pain & Pain Management (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

본 발명은 신규한 톨트라주릴 유도체 및 상기 유도체를 포함하는 쿠도아충 예방·치료를 위한 약학 조성물에 관한 것이다. 본 발명에 따른 톨트라주릴 유도체는 톨트라주릴의 쿠도아충에 대한 구제효과는 유지하면서, 어류에 대한 독성은 낮추어, 양식현장에서 폐사를 유발하는 점액포자충류 기생충을 구제할 수 있는 수산용의약품(구충제) 개발에도 확대 적용할 수 있을 것이다.

Description

신규 톨트라주릴 유도체 및 이를 포함하는 쿠도아충 예방·치료를 위한 약학 조성물{Novel Toltrazuril Derivatives and Pharmaceutical Composition for Treating or Preventing Kudoa}
본 발명은 신규한 톨트라주릴 유도체 및 상기 유도체를 포함하는 쿠도아충 예방·치료를 위한 약학 조성물에 관한 것이다.
Kudoa septempunctata는 2010년 Matsukane 등(Matsukane, Y. et al., Parasitol Res 107:865, 2010)이 한국에서 일본으로 수입된 양식 넙치의 근육에서 Kudoa septempunctata를 검출하여 최초로 규명하였다. 즉 포자의 모양, SSU rDNA sequence, 7개의 극낭, 체 근육에 대한 분포 등을 통해, 기존에 보고된 점액포자충류(Myxozoa)의 쿠도아충과 다른 신종으로 학계에 처음 보고하였다. 그리고 2003년부터 증가해온 넙치회 섭취 후 나타나는 새로운 식중독(novel food poisoning)의 원인 병원체(causative agent)가 K. septempunctata이며, 이를 젖먹이 마우스(suckling-mouse)와 사향쥐(house musk shrew)에 투여하였을 때, 설사와 구토의 증상을 관찰함으로써 이 기생충의 인체 병원성을 최초로 보고하였으며(Kawai, T. et al., Clin Infect Dis, 54:1046, 2012), 일본 후생노동성은 신종 쿠도아충(Kudoa septempunctata, 이하 ‘쿠도아충’이라 함)이 사람에게 설사·구토 등의 증상을 일으키는 식중독의 원인물질로 규정하였다.
쿠도아충은 넙치 근육부에 僞시스트(pseudocyst)를 형성한 쿠도아충이 다수 기생한 넙치 근육을 비가열 또는 가열이 불충분한 상태로 섭취함에 따라 일과성(1~9시간 이내)의 설사, 구토를 일으키지만, 증상은 가볍고 빨리 회복하여 다음날은 후유증도 없이 예후는 양호하다. 예방하는 방법은 쿠도아충 감염어를 -20ㅀC에서 4시간 이상 보관 또는 중심온도 75ㅀC에서 5분 이상 가열 처리에 의해 쿠도아충은 사멸하고 포자의 독성은 실활된다.
쿠도아충은 점액포자충 아문(Myxozoa Subphylum), 점액포자충강(Myxosporea Class)에 속하는 다각목(Multivalvulida Order), 쿠도아과(Kudoidae Family), 쿠도아속(Kudoa Genus)의 종(Kudoa Species)이다. 점액포자충은 전 세계에서 2,000종 이상이 보고되는데 이 중 쿠도아속은 97종이고, 80종 이상이 해산(marine)이다. 형태학적으로 내부에 코일상의 극사를 가지는 극낭이라는 구조의 포자를 형성하며, 포자는 극낭과 포자원형질을 포함하는 포자각으로 이루어진 다세포체이다. 포자의 크기는 약 10 μm로 극낭이나 포자각의 수, 포자의 형태, 측정치 등에 의해 종이 분류된다(Yokoyama, H. Jpn J Food Microbiol 29:68, 2012; Jorge, C.E. et al., Systematic Parasitology 87:153, 2014). 쿠도아충은 극낭이 5~7개이며, 주로 넙치 체측근의 근세포 안에 기생한다.
지금까지 넙치에 기생하는 것으로 보고된 쿠도아속 점액포자충의 종류는 9종(K. igami, K. lateolabracis, K. ogawai, K. paralichthys, K. sp., K. septempunctata, K. shiomitsui, K. thyrsites, K. yasunagi)이 알려져 있으며(Shin, S.P. et al., Korean J Parasitology, 57:439, 2019), 이들 가운데 유일하게 식중독의 원인 기생충으로 보고되었다. 기존에 보고된 K. lateolabracis, K. shiomitsui, K. thyrsites, K. yasunagi와 다르게, 쿠도아충은 살아 있는 넙치에 감염되어 있어도 감염에 따른 외부증상이 전혀 없으며, 시스트 형성이나 근육 융해 등의 임상증상이 관찰되지 않아, 외관상 미감염어와 구분이 불가능하다. 또 많은 수의 쿠도아충이 감염되어 있어도 넙치가 죽지 않아 예방과 진단에 많은 어려움이 있다.
대부분의 쿠도아속 점액포자충은 어류에 기생하며 체 근육, 뇌, 신장, 아가미 등의 기관에 눈에 보이는 시스트를 형성한다. 이들은 감염어의 생리, 생존 등에 영향을 미치지는 않지만 근 섬유에 기생하는 종들의 경우, 어류가 죽은 후에 기생충의 단백질 분해 효소에 의해 근육이 용해되면서 젤리화됨으로써 상품의 가치가 떨어져 경제적 피해를 유발한다.
점액포자충은 전형적으로 척추동물과 무척추 환형동물을 교대숙주로 하는 2성상(2-host life cycle) 생활사를 가진다고 한다. 척추동물로는 어류가 대표적이며, 무척추 환형동물로는 담수의 경우 빈모류이고, 해수의 경우 다모류를 숙주로 하는 것으로 알려져 있다. 어류 내에서는 점액포자충 단계, 환형동물에서는 방선포자충 단계를 가진다. 약 2000종의 점액포자충 가운데 생활사가 밝혀진 종은 불과 몇 종에 불과하며, 특히 쿠도아속 점액포자충의 생활사는 아직 밝혀져 있지 않고, 현재까지 알려진 해산 점액포자충과 비슷한 생활사를 가질 것으로 추정하고 있다. 또한 쿠도아충의 감염경로 역시 점액포자충과 유사한 것으로 추정될 뿐이다.
그동안 쿠도아충 진단법에 대해 다양한 연구가 시도되어, 정성-정량의 유전자 검사법, LAMP법, Immunochromatography assay법이 개발되었다. 이들 다양한 검사법은 현미경검사에 비해 검출감도가 100배 정도 높고, 포자뿐 아니라 모든 발육 단계(stage)의 검출이 가능하지만, 쿠도아충을 스크리닝하는 검사법에 불과하며, 반드시 현미경 검사를 실시하여 쿠도아충의 포자를 확인해야 최종 양성으로 확정한다. 이는 식중독 개연성의 target이 쿠도아충의 포자라는 의미로, 쿠도아충이 양성이라는 확정 진단에는 현미경으로 포자를 확인하는 것이 핵심인데, 포자의 검출한계는 근육 1g 당 104개 수준이었다.
한일간 쿠도아충의 인체 병원성 논란에도 불구하고, 최근 국내에서 넙치회 섭취 후 구토, 설사, 복통의 급성위장관염 증상 사례가 꾸준히 발생하고 있다. 쿠도아충 질환 관련으로 '15년 최초 환자발생 이후, 지속적으로 집단발생의 보고 건수 및 진단 양성률이 증가하는 실정이다. 즉 '18년 기준, 수인성·식품매개 감염병 집단환자 발생원인 순위('15년 11건→ '18년 68건) 및 쿠도아충 양성률('15년 19%→ '18년 39%)이 상승하는 추세이다.
넙치에 많은 수의 기생충이 있다는 사실 그리고 쿠도아충이 식중독을 유발한다는 개연성만으로도 소비에 악영향을 줄 수 있기 때문에, 국내 양식 넙치의 쿠도아충 감염 실태를 지속적으로 조사하고, 감염경로 등의 연구를 통해 식중독 우려에 대한 불신을 해소하기 위한 넙치 양식장의 쿠도아충 관리대책을 마련하는 것이 필요하다.
넙치에서 쿠도아충을 제어하기 위한 목적으로 대표적인 항콕시듐제인 톨트라주릴(toltrazuril)의 쿠도아충(K. septempunctata)에 대한 in vitro 실활 효과가 국외학술지에 처음 게재되어, 쿠도아충에 대한 구제제로서의 투여 가능성이 제시되었다(Ahn M. et al., Parasite, 24:11, 2017).
본 발명자들은 톨트라주릴의 넙치에 대한 안전성을 연구하였는데, 톨트라주릴은 농도의존적으로 간과 신장에 혈액학적 및 병리조직학적 다양한 변성(독성)이 관찰되어, 안전성이 우려되는 심각한 부작용이 예상되었다. 양식현장에서 사용하는 구충제는 어체중에 근거하여 정확한 농도 계산이 어렵고, 단회투여뿐만 아니라 반복투여를 하고 있는 현실을 감안할 때, 안전한 넙치 쿠도아충 구제제를 개발하는 것이 필요하다.
이에, 본 발명자들은 쿠도아충 구제효과가 우수하면서도 어류에 독성을 일으키지 않는 안전한 쿠도아충 구제제를 개발하고자 예의 노력한 결과, 톨트라주릴의 구조변경을 통한 유도체를 합성하고, 상기 톨트라주릴 유도체가 쿠도아충에 대한 구제 효과는 유지하면서도 어류에 대한 독성은 감소한 것을 확인하고, 본 발명을 완성하게 되었다.
본 발명의 목적은 신규 톨트라주릴 유도체 화합물을 제공한다.
본 발명의 다른 목적은 톨트라주릴 유도를 유효성분으로 함유하는 기생충 감염의 예방 또는 치료용 약학 조성물을 제공한다.
상기 목적을 달성하기 위하여, 본 발명은 다음 화학식 1의 구조를 가지는 신규 톨트라주릴 유도체 화합물을 제공한다:
Figure 112020092292808-pat00001
R1은
Figure 112020092292808-pat00002
, CF3, F 및
Figure 112020092292808-pat00003
로 구성된 군에서 선택되고,
R2는 NO2, NH2,
Figure 112020092292808-pat00004
,
Figure 112020092292808-pat00005
,
Figure 112020092292808-pat00006
Figure 112020092292808-pat00007
으로 구성된 군에서 선택되고,
R3는 H 또는 C1~C3의 알킬기인 것을 특징으로 함.
본 발명은 또한, 다음 화학식 1의 구조를 가지는 톨트라주릴 유도체 중 어느 하나를 유효성분으로 함유하는 기생충 감염의 예방 또는 치료용 약학 조성물을 제공한다:
[화학식 1]
Figure 112020092292808-pat00008
R1은
Figure 112020092292808-pat00009
, CF3, F 및
Figure 112020092292808-pat00010
로 구성된 군에서 선택되고,
R2는 NO2, NH2,
Figure 112020092292808-pat00011
,
Figure 112020092292808-pat00012
,
Figure 112020092292808-pat00013
Figure 112020092292808-pat00014
으로 구성된 군에서 선택되고,
R3는 H 또는 C1~C3의 알킬기인 것을 특징으로 함.
본 발명에 따른 톨트라주릴 유도체는 톨트라주릴의 쿠도아충에 대한 구제효과는 유지하면서, 어류에 대한 독성은 낮추어, 양식현장에서 폐사를 유발하는 점액포자충류 기생충을 구제할 수 있는 수산용의약품(구충제) 개발에도 확대 적용할 수 있을 것이다.
도 1은 톨트라주릴의 구조와 2가지 대사체의 구조를 나타낸 것이다.
도 2는 톨트라주릴의 넙치주화세포 독성 반응을 나타낸 것이고, 점선 화살표는 50% 세포생존율을 나타낸 것이다.
도 3은 톨트라주릴에 노출된 넙치의 시간 경과별 폐사 결과를 나타낸 것이다(수온 23±0.5℃ 유지).
도 4는 톨트라주릴 농도별 및 투여 경로별 넙치에 대한 누적 폐사 결과를 나타낸 것이다.
도 5는 톨트라주릴 농도별 경구 투여에 따른 넙치 혈액의 GOT/GPT, ALP, BUN 분석 결과를 나타낸 것이다.
도 6은 톨트라주릴 농도별 주사 투여에 따른 넙치 혈액의 GOT/GPT, ALP, BUN 분석 결과를 나타낸 것이다.
도 7은 톨트라주릴 구조의 특징(왼쪽: 4-trifluoromethylsulfanyl phenyl, 중간: methyl phenoxy, 오른쪽: triazinetrione)을 나타낸 것이다.
도 8은 톨트라주릴 유도체의 합성 구조 디자인을 나타낸 것이다.
도 9는 Methylaniline의 합성과정(반응식 1)을 나타낸 것이다.
도 10은 톨트라주릴 유도체의 합성과정(반응식 2)을 나타낸 것이다.
도 11은 HO&PI 염색후 쿠도아 생(生)포자 및 사(死)포자의 형광현미경 사진을 나타낸 것으로, 일반 포자(가), 화합물 반응 후 파란 염색 生포자(나), 붉은 염색 死포자(다)를 나타낸 것이다.
도 12는 톨트라주릴 유도체 화합물(7종)에 대한 넙치주화세포 독성 반응 결과를 나타낸 것이다.
현재까지 넙치에서의 쿠도아충 감염을 예방하거나, 쿠도아충의 생존을 억제하거나 실활시킬 수 있는 약물은 개발된 바 없다. 동물용 항콕시듐제 중에서 대표적인 톨트라주릴의 쿠도아충에 대한 in vitro 실활 효능이 국외학술지에 최초로 보고되었다(Ahn M. et al., Parasite, 24:11, 2017). 그러나 이 보고를 제외하고는 톨트라주릴의 쿠도아충에 대한 구충 활성시험 및 넙치에 대한 유효성과 안전성(부작용)에 대해 전혀 발표된 바 없다. 본 발명에서는 톨트라주릴이 가지는 쿠도아충 구제효과를 유지하면서 어류에 대한 독성이 감소된 톨트라주릴 유도체 화합물 7종을 합성하고, 상기 화합물이 쿠도아충에 대한 in vitro 실활 효과를 나타내면서도, 넙치주화세포에 대하여 낮은 독성반응을 나타내는 것을 확인하였다.
따라서, 본 발명은 일 관점에서, 다음 화학식 1의 구조를 가지는 신규 톨트라주릴 유도체 화합물에 관한 것이다:
[화학식 1]
Figure 112020092292808-pat00015
R1은
Figure 112020092292808-pat00016
, CF3, F 및
Figure 112020092292808-pat00017
로 구성된 군에서 선택되고,
R2는 NO2, NH2,
Figure 112020092292808-pat00018
,
Figure 112020092292808-pat00019
,
Figure 112020092292808-pat00020
Figure 112020092292808-pat00021
으로 구성된 군에서 선택되고,
R3는 H 또는 C1~C3의 알킬기인 것을 특징으로 함.
본 발명에 있어서, 상기 톨트라주릴 유도체는 하기 화학식 2~15의 구조를 가지는 화합물인 것을 특징으로 할 수 있다.
[화학식 2]
Figure 112020092292808-pat00022
,
[화학식 3]
Figure 112020092292808-pat00023
,
[화학식 4]
Figure 112020092292808-pat00024
,
[화학식 5]
Figure 112020092292808-pat00025
,
[화학식 6]
Figure 112020092292808-pat00026
,
[화학식 7]
Figure 112020092292808-pat00027
,
[화학식 8]
Figure 112020092292808-pat00028
,
[화학식 9]
Figure 112020092292808-pat00029
,
[화학식 10]
Figure 112020092292808-pat00030
,
[화학식 11]
Figure 112020092292808-pat00031
,
[화학식 12]
Figure 112020092292808-pat00032
,
[화학식 13]
Figure 112020092292808-pat00033
,
[화학식 14]
Figure 112020092292808-pat00034
[화학식 15]
Figure 112020092292808-pat00035
.
톨트라주릴은 항콕시듐제로서 소, 돼지, 닭 등을 포함한 다양한 가축들에게 광범위하게 투여되고 있는 약품이며, 작용기전은 정확하게 밝혀지지 않았다. 투여된 톨트라주릴은 산화형의 toltrazuril sulfoxide와 toltrazuril sulfone으로 신속히 대사된다(도 1). 산화된 sulfone은 더욱 안정하기 때문에 반감기가 상대적으로 길다(새끼돼지: 5~7일, 닭: 3~4일, 소: 2~3일, 염소: 3~8일).
닭에게 톨트라주릴 투여 후 전 조직으로 분포되고 이후 서서히 제거되는 것으로 알려져 있으며, 병아리의 11, 12, 18, 19일령에 톨트라주릴(Baycox) 7 mg/kg을 투여하였을 때, 투여 중단 24일 후에도 닭의 가슴살에서 톨트라주릴 대사체가 검출되었다(Vertommen, M. et al., Veterinary Quarterly, 12:183, 1990). 반면에 톨트라주릴의 조직에서의 잔류 정도 조사에서, 영계(30일령)에게 2일간 톨트라주릴(Baycox) 7 mg/kg을 투여하고 조직 검사를 했을 때, 신장에서 가장 고동도로 검출되었고, 다음으로 간, 폐, 심장, 피부, 지방 순으로 검출되었다. 투여 중단 7일 후에는 조직과 혈장에서 검출되지 않았다(Soliman, A. et al, Inter J Basic & Applied Sci, 4:310, 2015).
톨트라주릴은 미국에서는 허가되지 않은 약품으로 시판되지 않으나, 복합약물의 톨트라주릴을 수의사로부터 처방받은 말이 부작용으로 사망하는 사건이 여전히 발생하고 있다(FDA, https://www.fda.gov/animal-veterinary/cvm-updates/ compounded-unapproved-animal-drugs-rapid-equine-solutions-linked-three- horse-deaths., 2019). 그러나 디클라주릴(diclazuril)과, 톨트라주릴의 주된 대사체이기도 한 포나주릴(ponazuril, toltrazuril sulfone)의 경우, 말의 원생동물에 의한 뇌척수염(EPM, protozoal myeloencephalitis)에 대해서는 투여가 허가되어 있다.
EMEA(Toltrazuril. Summary report(1). EMEA/MRL/314/97-FINAL, 1998)의 보고에 따르면, 톨트라주릴의 효능·효과에 대하여, 콕시듐 원충의 발육 stage의 미세구조에 있어서 변화, 주로 소포체의 종창, 골지체 장치의 종창 및 핵막강의 이상을 일으키고 핵분열을 저해하며, 기생충 호흡효소의 활성저하를 유도한다고 하지만 생화학적 작용 메카니즘은 지금껏 불분명하다. 일단 동물 체내로 흡수되고 나면, 2가지의 대사물질로 검출되어 잔류마커(residue maker)로서 이용되며(도 1), 특히 물에 거의 녹지 않아 근육과 지방에서 검출이 높다고 알려져 있다.
톨트라주릴의 항콕시듐 효과는 널리 알려져 있지만, 쿠도아충에 감염된 넙치에서의 유효성과 안전성에 대한 연구는 아직 보고된 바 없다. 점액포자충(Myxobolus sp.)에 감염된 참돔류에서 톨트라주릴을 사용 시 점액포자충 초기 spore단계에서는 효과적이라고 보고되었다(Schmahl, G. et al., Archiv fㆌr Protistenkunde, 140:83, 1991). 단독으로 사용할 때 점액포자충에 감염된 참돔류 감염률을 80%에서 33%로 감소시킨다고 보고되었고, 그 중 단독보다는 salinomycin과 amprolium 복합제제로 사용 시 구제효과가 높다고 보고하였다(Karagouni, E. et al., Vet Parasitol, 34:215, 2005). 하지만 점액포자충 구제에 단독과 복합사용에도 효과가 있으나, 복부팽만, 염증괴사, 조혈조직 이상과 같은 병리조직학적 문제가 발생하였다(Athanassopoulou, F. et al., Dis Aquat Organ, 62:217, 2004).
이에, 본 발명에서는 기생충에 대한 우수한 구충 효과와 함께, 투여 약제의 어체내 흡수, 분포, 배설정도와 잔류성 및 대상 동물에 대한 안전성(독성)을 확보하기 위하여, 톨트라주릴에 대한 유도체를 합성하였다.
따라서, 본 발명은 다른 관점에서, 다음 화학식 1의 구조를 가지는 톨트라주릴 유도체 중 어느 하나를 유효성분으로 함유하는 기생충 감염의 예방 또는 치료용 약학 조성물에 관한 것이다:
[화학식 1]
Figure 112020092292808-pat00036
R1은
Figure 112020092292808-pat00037
, CF3, F 및
Figure 112020092292808-pat00038
로 구성된 군에서 선택되고,
R2는 NO2, NH2,
Figure 112020092292808-pat00039
,
Figure 112020092292808-pat00040
,
Figure 112020092292808-pat00041
Figure 112020092292808-pat00042
으로 구성된 군에서 선택되고,
R3는 H 또는 C1~C3의 알킬기인 것을 특징으로 함.
본 발명에 있어서, 상기 톨트라주릴 유도체는 하기 화학식 2~15의 구조를 가지는 화합물인 것을 특징으로 할 수 있다.
[화학식 2]
Figure 112020092292808-pat00043
,
[화학식 3]
Figure 112020092292808-pat00044
,
[화학식 4]
Figure 112020092292808-pat00045
,
[화학식 5]
Figure 112020092292808-pat00046
,
[화학식 6]
Figure 112020092292808-pat00047
,
[화학식 7]
Figure 112020092292808-pat00048
,
[화학식 8]
Figure 112020092292808-pat00049
,
[화학식 9]
Figure 112020092292808-pat00050
,
[화학식 10]
Figure 112020092292808-pat00051
,
[화학식 11]
Figure 112020092292808-pat00052
,
[화학식 12]
Figure 112020092292808-pat00053
,
[화학식 13]
Figure 112020092292808-pat00054
,
[화학식 14]
Figure 112020092292808-pat00055
[화학식 15]
Figure 112020092292808-pat00056
.
본 발명에 있어서, 상기 기생충은 점액포자충, 섬모충, 단생흡충, 미포자충, 기생원충, 편충, 회충 및 구충으로 구성된 군에서 선택되는 것을 특징으로 할 수 있으며, 상기 점액포자충은 Kudoa septempunctata, Myxobolus spp., Myxosoma spp., Henneguya spp.일 수 있고, 상기 섬모충은 Ichthyophthirius multifiliis, Trichodina spp., Apiosoma spp.일 수 있으며, 상기 단생흡충은 Dactylogylus vastator, Dactylogylus extensus, Dactylogylus cornu, Pseudodactylogylus anguillae, Pseudodactylogylus bini, Gyrodactylus arcuatus, Diplozoon paradoxum, Diplozoon homoion일 수 있고, 상기 미포자충은 Glugea anomala일 수 있으며, 상기 기생원충은 Cystoisospora suis, Eimeria spp., Eimeria ahsata, Eimeria acervulina, Eimeria bovis, Eimeria crandallis, Eimeria columbarum, Eimeria falciformis, Eimeria flavescens, Eimeria intestinalis, Eimeria labbeana, Eimeria magna, Eimeria maxima, Eimeria mulardi, Eimeria perforans, Eimeria stiedai, Eimeria tenella, Eimeria zuerinii, Hepatozoon canis, Isopora spp., Isopora felis, Isopora rivolta, Isopora suis, Neospora caninum, Sarcocystis neurona, Sarcocystis calchasi, Toxoplasma gondii일 수 있고, 상기 편충은Trichuris vulpis일 수 있으며, 상기 회충은 Toxocara canis일 수 있고, 상기 구충은 Ancylostoma caninum, Uncinaria stenocephala일 수 있으나 이에 한정되는 것은 아니다.
본 발명의 일 양태에서는 넙치 쿠도아충 구제제를 개발하기 위해 신규 톨트라주릴 유도체 화합물 16종을 합성하였고, 쿠도아충에 대한 in vitro 실활 효과 및 넙치주화세포 독성 반응을 조사하였다. 그리고 향후 넙치에 있어서 쿠도아충의 유효성과 안전성 연구를 통해 개발 가능성에 가장 근접한 톨트라주릴 유도체의 화합물 7종(PK05, PK06, PK07, PK08, PK09, PK11, PK12)을 개발하였다.
따라서, 본 발명의 상기 화합물은 N-(3-Methyl-4-(4-(trifluoromethoxy)phenoxy)phenyl)acetamide, N-(3-Methyl-4-(4-(trifluoromethyl)phenoxy)phenyl)acetamide, N-(4-(4-Methoxyphenoxy)-3-methylphenyl)acetamide, N-(4-(4-Fluorophenoxy)-3-methylphenyl)acetamide, N-Methyl-N-(3-methyl-4-(4-(trifluoromethoxy)phenoxy)phenyl)acetamide, N-(4-(4-Methoxyphenoxy)-3-methylphenyl)-N-methylacetamide 및 N-(4-(4-Fluorophenoxy)-3-methylphenyl)-N-methylacetamide로 구성된 군에서 선택되는 유도체인 것을 특징으로 할 수 있다.
본 발명의 유도체는 톨트라주릴의 왼쪽 구조를 변경한 4개의 기본 구조들이 합성의 세트이고, 이들은 각기 PK01~PK04, PK05~PK08, PK09~PK12, PK13~PK16에서 다시 오른쪽으로 다양한 구조변경이 되어있다. 즉, 왼쪽기본 구조를 중심으로 오른쪽(triazine trione)에 살충효과를 획득하고자 다양하게 도입한 결과, PK05, PK06, PK07, PK08 > PK09, PK11, PK12의 순서로 실활 효능성 조사에서 우수한 성적을 거두었다.
본 발명의 약제학적 조성물에 사용된 담체는 약제학적으로 허용되는 담체, 보조제 및 비히클을 포함하며 총괄적으로 “약제학적으로 허용되는 담체”라고 한다. 본 발명의 약제학적 조성물에 사용될 수 있는 약제학적으로 허용되는 담체로는 이들로 한정되는 것은 아니지만 이온 교환, 알루미나, 알루미늄 스테아레이트, 레시틴, 혈청 단백질(예, 사람 혈청 알부민), 완충 물질(예, 여러 인산염, 글리신, 소르브산, 칼륨 소르베이트, 포화 식물성 지방산의 부분적인 글리세라이드 혼합물), 물, 염 또는 전해질(예, 프로타민 설페이트, 인산수소이나트륨, 인산수소칼륨, 염화나트륨 및 아연 염), 교질성 실리카, 마그네슘 트리실리케이트, 폴리비닐 피롤리돈, 셀룰로즈-계 기질, 폴리에틸렌 글리콜, 나트륨 카르복시메틸셀룰로즈, 폴리아릴레이트, 왁스, 폴리에틸렌-폴리옥시프로필렌-차단 중합체, 폴리에틸렌 글리콜 및 양모지 등이 포함된다.
본 발명에 따른 의약 조성물의 투여 경로는 이들로 한정되는 것은 아니지만 구강, 정맥내, 근육내, 동맥내, 골수내, 경막내, 심장내, 경피, 피하, 복강내, 비강내, 장관, 국소, 설하 또는 직장이 포함된다.
경구 및 비경구 투여가 바람직하다. 본원에 사용된 용어 “비경구”는 피하, 피내, 정맥내, 근육내, 관절내, 활액낭내, 흉골내, 경막내, 병소내 및 두개골내 주사 또는 주입 기술을 포함한다.
의약 조성물은 멸균 주사용 수성 또는 유성 현탁액으로서 멸균 주사용 제제의 형태일 수 있다. 이 현탁액은 적합한 분산제 또는 습윤제(예, 트윈 80) 및 현탁화제를 사용하여 본 분야에 공지된 기술에 따라 제형될 수 있다. 멸균 주사용 제제는 또한 무독성의 비경구적으로 허용되는 희석제 또는 용매중의 멸균 주사용액 또는 현탁액(예, 1,3-부탄디올중의 용액)일 수 있다. 허용적으로 사용될 수 있는 비히클 및 용매로는 만니톨, 물, 링겔 용액 및 등장성 염화나트륨 용액이 있다. 또한, 멸균 불휘발성 오일이 통상적으로 용매 또는 현탁화 매질로서 사용된다. 이러한 목적을 위해, 합성 모노 또는 디글리세라이드를 포함하여 자극성이 적은 어떠한 불휘발성 오일도 사용할 수 있다. 올레산 및 이의 글리세라이드 유도체와 같은 지방산이 약제학적으로 허용되는 천연 오일(예, 올리브유 또는 피마자유), 특히 이들의 폴리옥시에틸화된 것과 마찬가지로 주사 제제에 유용하다.
본 발명의 의약 조성물은 이들로 한정되는 것은 아니지만 캡슐, 정제 및 수성 현탁액 및 용액을 포함하여 경구적으로 허용되는 어떠한 용량형으로도 경구 투여될 수 있다. 경구용 정제의 경우, 흔히 사용되는 담체로는 락토즈 및 옥수수 전분이 포함된다. 마그네슘 스테아레이트와 같은 윤활제가 또한 전형적으로 첨가된다. 캡슐형으로 경구 투여하는 경우 유용한 희석제로는 락토즈 및 건조된 옥수수 전분이 포함된다. 수성 현탁액이 경구 투여될 때 활성 성분은 유화제 및 현탁화제와 배합된다. 필요한 경우, 감미제 및/또는 풍미제 및/또는 착색제가 첨가될 수 있다.
본 발명의 약제학적 조성물은 또한 직장 투여를 위한 좌제의 형태로 투여될 수 있다. 이들 조성물은 본 발명의 화합물을 실온에서 고형이지만 직장 온도에서는 액상인 적합한 비자극성 부형제와 혼합하여 제조할 수 있다. 이러한 물질로는 이들로 한정되는 것은 아니지만 코코아 버터, 밀랍 및 폴리에틸렌 글리콜이 포함된다.
용어 “치료학적 유효량”은 어류의 경우, 병원균에 의한 감염증을 치료하는 조성물에 사용되는 치료학적 유효량은 5~500 mg이다. 가축의 경우, 병원균에 의한 감염증을 치료하는 조성물에 사용되는 치료학적 유효량은 2.5~200 mg이다.
본 발명에 따른 의약 조성물을 어류의 피하세포에 투입할 경우 새낭 또는 소화관에 투여할 수 있다. 주사는 근육조직내의 근육세포 또는 다른 세포에 주사할 수 있으며 복강내의 내장세포에 주사할 수 있다.
바람직한 양태로서, 구강내 투여를 위한 의약 조성물은 고체상의 부형제와 함께 활성 성분을 혼합함으로써 제조할 수 있으며 정제 또는 당의정 형태로 제조하기 위해 과립형태로 제조할 수 있다. 적합한 부형제로는 락토스, 수크로스, 만니톨 및 소비톨과 같은 슈가 형태 또는 옥수수, 밀가루, 쌀, 감자 또는 다른 식물로부터 전분, 메틸 셀룰로스, 하이드로시프로필메틸-셀룰로스 또는 나트륨 카복시메틸세룰로스와 같은 세룰로스, 아라빅 검, 타가칸쓰 검을 포함하는 검류와 같은 카보하이드레이트 또는 젤라틴, 콜라겐과 같은 단백질 필러를 사용할 수 있다. 필요한 경우에는, 교차결합된 폴리비닐피롤리돈, 아가 및 알긴산 또는 나트륨 알긴산과 같은 각각의 염 형태의 붕해제 또는 용해제를 첨가할 수 있다.
바람직한 양태로서, 비경구적 투여의 경우 본 발명의 의약 조성물은 수용성 용액으로 제조할 수 있다. 바람직하게는, 한스 용액(Hank's solution), 링거 용액(Ringer's solution) 또는 물리적으로 완충된 염수와 같은 물리적으로 적절한 완충용액을 사용할 수 있다. 수용성 주입(injection) 현탁액은 소디움 카복시메틸 셀루로스, 솔비톨 또는 덱스트란과 같이 현탁액의 점도를 증가시킬 수 있는 기질을 첨가할 수 있다. 덧붙여서, 활성 성분의 현탁액은 적합한 유질의 주입 현탁액(oily injection suspensions)으로 제조될 수 있다. 적합한 친지성 용매 또는 담체는 참기름과 같은 지방산 또는 에틸 올레이트, 트리글리세라이드 또는 리포솜과 같은 합성 지방산 에스테르를 포함한다. 복수양이온성 비지질 아미노 폴리머(polycationic amino polymers)도 운반체로서 사용될 수 있다. 임의로, 현탁액은 화합물의 용해도를 증가시키고 고농도의 용액을 제조하기 위해 적합한 안정화제 또는 약제를 사용할 수 있다.
이하 본 발명을 실시예에 의하여 더욱 상세히 설명한다. 이들 실시예는 단지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 이에 의해 본 발명의 기술적 범위가 이들 실시예에 국한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
실시예 1: 톨트라주릴의 in vitro 세포독성 반응 확인
어류주화세포(넙치 배아유래 세포, HINAE)를 이용하여 약물의 세포독성을 측정하였다. 1ㅧ105/well의 세포를 24h 동안 20℃에서 배양하여 80% density를 확인 후, 톨트라주릴을 농도별(0, 1, 2, 5, 10, 20, 40, 100 ppm)로 처리하였다. 96시간 동안 인큐베이션 후에 세포독성 측정약물(CCK-8, Dojindo)을 처리하여 450 nm에서 흡광도를 측정하였다.
HINAE 세포는 농도의존적으로 생존율이 감소하였으며, 톨트라주릴을 20 ppm 농도로 첨가하였을 때, 정상대조군에 비해 54% 수준의 세포생존율을 나타냈다(도 2). 톨트라주릴의 농도가 증가될수록 세포수가 감소되었으며, 더불어 세포들 사이에 세포모양이 대조군에 비해 응축되어 있는 모습을 확인할 수 있었다.
실시예 2: 톨트라주릴의 넙치에 대한 반수치사농도(LC 50 )
모든 실험어는 수산생물병원체(기생충, 세균, 바이러스) 검사를 완료한 후, 2주간 순치를 통해서 실험을 실시하였다. 넙치(17.2±0.37 cm, 45.1±3.97 g) 70마리를 대상으로 시험군의 50%가 폐사하는 반수치사농도(LC50)를 조사하였다. 시판 톨트라주릴(No. 34000, Sigma사)을 DMSO(dimethyl sulfoxide)에 녹여서 농도별(0, 1, 2, 5, 10, 20, 40, 100 ppm)로 5L 수조(수온 23±0.5℃ 유지)에 96시간 동안 침지하여, 시간별로 폐사량 및 어체 내외부의 임상증상과 병리조직학적 조사를 실시하였다.
톨트라주릴의 급성독성농도를 조사하기 위해 1차 및 2차로 나누어 진행하였는데, 1차 조사에서 대조구, 1, 5, 10, 20, 50 ppm의 6구간으로 조사한 결과, 5 ppm 이상에서는 모두 폐사하였으며, 특히 고농도(20 ppm 이상)에서 폐사개체는 점액과다 분비 및 내부 출혈이 관찰되었다. 어체와 사육수에서 트리코디나와 익티오보도충이 검출되었다. 이어서 2차 조사에서 대조구, 1, 0.1, 0.2, 0.5, 1, 2, 5, 10 ppm의 8구간으로 조사한 결과, 10 ppm에서 80% 폐사가 발생하였다(도 3). 급성독성농도 조사결과 96h-LC50은 9.2 ppm으로 나타났다. 특히 폐사개체는 점액과다 분비 및 내부 출혈이 관찰되었다. 이러한 결과로 미루어 어체가 병원체에 감염될 시는 급성독성이 매우 높게 나타나는 것으로 추정되었다.
생존개체를 대상으로 병리조직학적 검사를 한 결과, 톨트라주릴은 농도의존적으로 유의적 차이를 나타냈다. 대조구와 비교하여 간, 비장, 아가미, 위, 장, 신장에서 변성변화가 나타난 것을 확인하였으며, 간에서는 간울혈 및 간세포의 지방산 변화(Microvesicular type fatty change)가 발생하였으며, 비장에서는 사구체신염(RES, Reticuloendothelial system) 활성, 아가미에서는 상피세포 괴사 및 멜라노대식세포센터(MMC, Melano macrophage center) 생성, 소화관에서는 위선 상피의 공포화, 장상피 괴사 및 염증소견이 다발적으로 발생하였다. 신장에서는 세뇨관의 괴사 및 변성, RES 활성 소견이 유의적으로 발생하였다.
톨트라주릴의 수산생물에 대한 독성은 다양하게 나타났는데, 무지개송어에서는 96h-LC50이 0.44 mg/L로 나타났고, 조류(Selenastrum capricornutum)에서는 EC50(반수영향농도)이 3.16 mg/L로 나타났다. 또한 물벼룩(Daphnia magna)에서는 약한 독성을 나타내었다(1.0<LC/EC50<10 mg/L)(Rojickova 등, 1998). 제브라피쉬 embryo의 EC50은 1.1 mg/L로 보고되었다(Carlsson G. et al., Aquat. Toxicol, 126:30, 2013).
실시예 3: 톨트라주릴의 넙치에 대한 반수치사량(LD 50 ) 확인
세포독성 반응 및 LC50을 기초로 넙치(19.5±0.74 cm, 72.8±7.60 g) 120마리에 톨트라주릴을 단회(1회) 경구 투여 및 주사 투여함으로써 시험군의 50%가 폐사하는 반수치사량(LD50)을 조사하였다. 시판 톨트라주릴(No. 34000, Sigma사)을 DMSO에 녹여서 농도별(0, 5, 10, 20, 50, 100, 200 mg/kg body weight)로 경구 및 주사구로 투여하였다.
경구 투여구 및 주사 투여구 모두 고농도인 100 mg/kg B.W.부터 폐사가 발생하기 시작해서, 경구 투여구의 LD50은 44.75 mg/kg, 주사 투여구의 LD50는 26.28 ppm으로 나타났다(도 4).
Wistar계 암컷 rat에 톨트라주릴을 경구투여한 급성독성시험에서 반수치사량(LD50)은 2,000 mg/kg이상이었고, 암수 rat에 톨트라주릴 설폰을 경구투여한 급성독성시험에서 LD50은 5,000 mg/kg이상이었다(일본식품안전위원회, 2007, 2008, 2016).
실시예 4: 톨트라주릴의 넙치에 대한 혈액생화학적 조사
넙치(21.5±1.4 cm, 96.0±18.6 g) 300마리에 경구 투여 및 주사한 실험구는 톨트라주릴을 0, 5, 10, 15 mg/kg B.W.로 제작하여 투여 후 1, 3, 7, 14, 28일째에 혈액을 채취하여 혈청을 분리한 후, -80℃에서 분석 때까지 보관하였으며, 분석항목은 트란스아미나제인 GOT(AST)/GPT(ALT), 포도당(GLU), 총단백(TP), 총콜레스테롤(TCHO), 알칼리성포스파타제(ALP), 요소질소(BUN)를 측정하였다. 혈액생화학분석은 Fuji-Dri Chem 4500(Fuji 사, 일본) 분석기기를 사용하였다. 결과 값은 SPSS program for Windows ver. 23.0(SPSS Inc. USA)에 의한 One-way ANOVA 및 Duncan’s multiple range test를 실시하여 평균간의 유의성(p<0.05)을 검정하였다.
톨트라주릴 농도별로 경구 투여시 간기능에 문제가 생기면 나타내는 간독성 지표인 GPT, GOT가 경구 투여 1일에 투여 농도별로 유의적으로 증가 경향을 나타냈으며, GPT와 GOT는 경구 투여 1일에 최고 농도를 나타낸 후, 시간이 지날수록 감소하였다. ALP의 경우 투여 7일째부터 14일째까지 유의적인 증가를 유지하다가 28일째 감소하였다. 신장기능의 지표라고 할 수 있는 BUN의 경우, 경구 투여 3일째부터 유의적으로 감소하는 경향을 나타냈고, 투여농도별로 유의적 차이를 나타냈다(표 1 및 도 5). 소화관에 흡수장해가 발생할 때 영양상태 지표로 사용되는 GLU, TP, TCHO는 경구 투여농도별로 유의적인 증가를 보였는데, GLU는 1일째부터 증가하여 28일째까지 유지하여 가장 장기간 높은 값을 나타내었다. TP는 1일째부터 증가하였지만 7일째까지 완만하게 유지하였고, TCHO는 다소 늦게 7일째부터 증가하여 28일째까지 지속되었다.
톨트라주릴 농도별로 주사 투여시 경구 투여와 전반적으로 유사한 경향을 보였다(표 2 및 도 6).
톨트라주릴의 농도별 경구 투여에 따른 넙치 혈액생화학분석
기간 농도
(ppm)
Body
weight(g)
Length
(cm)
GOT
(U/L)
GPT
(U/L)
GLU
(mg/dL)
BUN
(mg/dL)
ALP
(mg/dL)
TCHO
(mg/dL)
TP
(g/dL)
1
일째
0 92.2±7.0 21.4±0.4 14±1.4a 7.2±0.4a 8.8±1.4a 1.6±0.1a 99.0±6.4a 158.6±15.8a 2.7±0.2ab
5 84.5±11.3 21.8±1.0 19.8±2.1b 9.6±0.7b 11.4±1.2ab 2.6±0.3c 99.0±0.9a 151.4±14.8a 3.2±0.3b
10 87.7±4.3 21.0±0.2 22.4±2.5c 12.0±1.9c 13.8±1.7b 3.0±0.3cd 108.6±6.2a 164.6±16.5a 3.9±0.2c
15 100.0±8.0 21.9±0.6 29.6±2.6d 14.2±1.0d 13.8±1.4b 3.3±0.2d 85.4±10.9a 167.6±14.2a 4.3±0.4d
3
일째
0 93.3±3.4 21.3±0.3 13.6±0.7a 7.0±0.3a 9.8±1.7a 1.5±0.0a 102.0±10.3a 167.6±17.1a 2.9±0.3ab
5 94.6±8.8 21.6±0.5 16.4±2.2ab 7.8±0.4a 12.4±1.6ab 2.5±0.2bc 112.4±10.8a 157.0±14.3a 3.1±0.3b
10 90.0±6.6 21.1±0.7 21.2±2.6c 8.2±0.9ab 14.6±1.3b 2.8±0.1c 135.8±17.0b 158.6±15.7a 3.1±0.3b
15 87.5±9.1 20.4±1.0 20.3±2.2c 9.2±1.1b 14.6±1.4b 2.8±0.2c 101.8±18.0a 182.0±18.7ab 3.6±0.2bc
7
일째
0 90.0±5.9 21.5±0.4 13.4±1.0a 6.0±0.3a 9.6±1.4a 1.7±0.1a 107.0±10.6a 162.0±14.3a 2.8±0.3ab
5 103.3±8.8 22.2±0.6 15.6±2.2ab 6.6±0.9a 14.2±1.1b 2.2±0.2b 143.2±13.9b 178.6±18.5ab 2.9±0.3ab
10 104.3±7.8 22.4±0.6 17.2±1.03b 7.2±0.5ab 16.2±1.3b 2.6±0.2c 223.0±19.2d 201.6±22.2b 3.2±0.3b
15 101.6±6.5 22.0±0.7 18.8±2.0b 8.2±0.8b 15.4±2.3b 2.6±0.2c 160.8±11.6bc 213.4±21.4b 3.3±0.4bc
14
일째
0 23.5±0.6 117.9±8.7 12.6±1.4a 5.8±0.4a 9.2±1.4a 1.7±0.2a 109.8±6.6a 167.2±16.4a 2.9±0.2ab
5 21.4±0.5 91.1±4.4 15.6±0.2ab 5.8±0.4a 13.2±1.0ab 2.0±0.0ab 164.2±17.0bc 247.4±23.6c 2.5±0.2a
10 22.6±0.8 107.3±10.0 17.4±1.7b 7.0±0.7ab 16.2±1.6b 2.2±0.2b 200.8±17.3c 235.4±20.8c 3.1±0.3b
15 23.4±0.7 115.4±8.4 18.2±2.0b 7.2±0.7ab 18.4±1.2bc 2.3±0.2bc 222.8±22.6d 237.4±23.9c 3.2±0.4b
28
일째
0 23.5±0.8 115.7±11.3 12.8±0.7a 5.6±0.2a 10.3±0.9a 1.6±0.1a 105.0±10.3a 170.0±10.7a 2.3±0.2a
5 21.8±0.4 97.8±5.3 13.8±0.6a 5.6±0.2a 17.8±1.9bc 1.6±0.1a 157.2±7.0bc 270.6±27.6cd 2.3±0.2a
10 23.6±0.7 119.4±13.2 14.0±1.3a 5.4±0.9a 21.2±2.1c 1.5±0.1a 186.4±11.5c 280.0±25.8cd 2.5±0.3a
15 22.3±0.7 100.2±9.4 15.0±1.9ab 6.0±0.5a 24.2±1.2d 1.7±0.1a 178.0±5.8c 298.0±30.0d 2.7±0.3ab
* GOT; glutamic oxaloacetic transaminase, GPT; glutamic pyruvic transaminase, ALP; alkaline phosphatase, GLU; glucose, BUN; blood urea nitrogen, TCHO; total cholesterol, TP; total protein
기간 농도
(ppm)
Body
weight(g)
Length
(cm)
GOT
(U/L)
GPT
(U/L)
GLU
(mg/dL)
BUN
(mg/dL)
ALP
(mg/dL)
TCHO
(mg/dL)
TP
(g/dL)
1
일째
0 97.2±9.3 21.2±0.8 25.0±1.6a 8.1±0.5a 9.6±0.6a 1.6±0.1a 93.6±4.8a 149.4±15.4a 2.7±0.3ab
5 91.3±4.0 21.6±0.4 54.2±3.8b 10.4±1.0b 11.8±1.0a 2.6±0.2b 135.2±13.4ab 155.2±16.5a 2.8±0.3ab
10 102.4±93.3 22.0±0.3 76.2±7.9c 11.2±1.6c 12.8±1.0a 3.1±0.3c 161.8±11.9b 170.5±16.3a 2.9±0.1ab
15 93.3±5.2 21.4±0.5 82.5±9.2d 12.6±1.8d 15.5±1.4ab 3.3±0.3d 119.3±11.7ab 191.4±17.2ab 2.9±0.3ab
3
일째
0 104.4±6.9 22.3±0.7 23.4±2.2a 7.6±0.2a 9.3±2.3a 1.6±0.1a 98.0±10.2a 155.4±18.0a 2.9±0.3ab
5 96.3±6.4 21.8±0.8 30.0±2.0a 7.0±0.5a 16.2±0.9ab 2.5±0.3b 144.3±8.1b 161.0±16.4a 3.0±0.3ab
10 110.0±8.0 22.2±0.6 39.8±3.8ab 7.6±0.6a 18.0±1.3ab 2.8±0.3bc 181.0±17.7c 171.4±18.8a 3.3±0.2b
15 99.8±9.0 21.9±0.4 42.5±3.48ab 8.3±0.2a 19.0±0.7ab 3.0±0.3c 135.2±11.6b 178.1±16.4a 3.5±0.3c
7
일째
0 107.9±12.0 22.3±0.8 25±0.8a 7.3±1.0a 8.7±0.9a 1.6±0.1a 100.0±10.6a 155.2±19.0a 2.8±0.3ab
5 111.5±12.9 22.9±1.0 19.6±1.24a 7.0±0.3a 16.8±0.7ab 2.1±0.1ab 153.0±10.8b 168.2±18.2a 2.9±0.3ab
10 107.3±9.6 22.5±0.6 19.4±2.9a 6.4±0.2a 20.2±1.5b 2.2±0.1ab 185.5±8.5c 178.8±16.3a 2.8±0.3ab
15 105.2±7.8 22.3±0.6 21.5±2.1a 6.8±0.9a 25.6±2.5c 3.1±0.4c 170.4±16.3bc 221.4±20.2b 3.2±0.3b
14
일째
0 117.8±4.3 23.3±0.5 21.5±0.5a 6.6±1.0a 9.6±1.1a 1.8±0.1a 99.0±4.8a 160.0±16.3a 2.6±0.3a
5 123.0±18.3 23.5±1.3 20.7±3.6a 6.6±0.2a 22.8±2.9c 2.1±0.2ab 161.8±14.5bc 199.0±20.8ab 2.7±0.3ab
10 116.2±4.4 23.6±0.6 20±2.9a 6.6±0.2a 24.5±2.2c 2.2±0.3ab 190.2±18.3c 229.2±23.9b 2.8±0.2ab
15 111.4±10.3 22.6±0.8 18.8±1.4a 6.6±0.7a 25.0±2.4c 2.4±0.1ab 262.0±22.3d 240.2±23.2b 3.0±0.2ab
28
일째
0 97.7±7.5 22.2±0.7 22.8±1.7a 6.0±1.1a 9.6±0.7a 1.7±0.1a 95.0±4.8a 163.0±16.3a 2.4±0.2a
5 93.1±7.1 22.2±0.6 18±1.0a 5.6±0.5a 16.5±1.4ab 1.8±0.1a 170.2±13.3bc 256.2±28.8bc 2.4±0.2a
10 119.4±13.2 23.6±0.7 18.8±1.4a 5.6±0.4a 19.0±1.1b 1.8±0.2a 199.0±9.4c 271.8±23.6bc 2.5±0.3a
15 100.2±9.4 22.3±0.7 18.6±0.4a 5.3±0.4a 19.6±3.9b 1.9±0.1a 145.0±14.1b 282.0±27.5c 2.4±0.2a
* GOT; glutamic oxaloacetic transaminase, GPT; glutamic pyruvic transaminase, ALP; alkaline phosphatase, GLU; glucose, BUN; blood urea nitrogen, TCHO; total cholesterol, TP; total protein
실시예 5: 톨트라주릴의 넙치에 대한 병리조직학적 조사
혈액생화학적 조사 이후 동일한 시료의 넙치를 해부해 아가미, 간, 비장, 신장, 위, 장, 심장을 적출하여 중성완충포르말린 고정액에 24시간 고정하였다. 고정된 각 장기는 다시 세절하여 같은 고정액에 2차 고정한 후(12시간), 수세하여 탈수, 투명화, 파라핀침투 과정을 거친 후 파라핀 표본을 만들고, 마이크로톰을 사용하여 4~5 μM 두께로 박절하여 슬라이드글라스에 부착시켜, 건조시켰다. 일반적인 조직관찰에 사용되는 Hematoxyline and Eosin(H&E)염색을 실시하여 조직표본을 만들어 현미경으로 변성 정도를 관찰하였다.
독성을 평가할 수 있는 주요 장기(아가미, 간, 신장) 외에 위, 장, 심장, 비장의 총 7가지 장기에 대해서 병리조직학적 조사를 실시하였다. 병리조직학적 독성평가는 Bernet 등(Bernet, D. et al., J Fish Dis 22:25, 1999)의 방법을 기초로 순환장애(출혈, 울혈), 퇴행성 변성(세포괴사, 위축), 진행성 변성(비대, 증식) 및 염증성 변성에 대해서 유의적 변화를 조사하였다.
대조구와 비교하여, 톨트라주릴 5 mg/kg 경구 투여에서는 간에서 울혈, 위축 및 간염, 비장에서는 임파구성 염증세포의 침윤 및 활성, 신장에서는 신장에서 염증소(Reticuloendothelial system 활성, 사구체신염) 발생 및 조혈활성이 항진되어 나타났다. 특히 10 mg/kg, 15 mg/kg 경구 투여구 대상 조직 중, 간에서는 순환장애에 의한 울혈 및 중증도 지방간과 위축의 증상을 나타냈고, 신장에서는 조혈 및 사구체 신염의 염증성 변화가 유의적으로 나타나 톨트라주릴은 농도의존적으로 간과 신장에서 병리조직학적 변성을 나타내었다.
톨트라주릴의 주사 투여구에서도 경구 투여구와 유사하게 농도의존적으로 주로 면역조직에서 병리조직학적으로 유의적 변화를 나타냈다. 대조구에 비하여 5 ppm에서는 간에서 경미한 울혈, 위축, 신장에서는 경미한 조혈활성, 사구체신염의 증상을 보인 반면, 염증성 병변인 비장에서 임파구 침윤이 추가적으로 발생하였다. 10 ppm에서는 경도 울혈 및 지방간과 유리질 변성(hyaline droplet) 생성을 간에서 나타냈고, 중증도 조혈활성 및 세뇨관 위축의 유의적 변화를 보였다. 고농도인 15 ppm에서는 간세포 비대, 임파구 침윤 및 신장에서 다발성 육아종 형성을 나타냈다.
실시예 6: 톨트라주릴 유도체 화합물의 합성
톨트라주릴은 도 7과 같이 크게 세부분, 왼쪽에 4-trifluoromethylsulfanyl phenyl, 중앙에 methyl phenoxy, 오른쪽에 triazinetrione으로 나눌 수 있으며, 특징적으로 fluorine(F), sulfur(S), triazinetrione을 함유하고 있다(도 7).
Fluorine은 시판되는 의약품의 약 25%가 한 개 이상 가지고 있는 만큼, 신약 개발 분야에서 매우 중요한 역할을 하고 있으며, 이를 구조에 도입했을 때, metaboilc stability(대사적 안정성), 표적 기관과의 결합성, 그리고 막 투과성과 같은 약리학적 특성들이 개선됨으로써 생체이용율(bioavailability)과 약효가 증가하기도 한다. 이는 저분자 약물(small molecular drugs)의 개발에서뿐만 아니라 생체이용율(bioavailability)이 낮은 peptides 함유 약물 개발에 있어서도 유용하다.
Sulfur는 공기 중에서뿐만 아니라 체내에서 sulfoxide와 sulfone으로 쉽게 산화되거나 대사된다. 그리고 산화된 sulfone은 앞에서 설명한 바와 같이 더욱 안정하기 때문에 반감기가 상대적으로 길다.
Triazine 또한 anti-inflammatory, anti-mycobacterial, anti-viral, anti-cancer 등의 강력한 생물학적 활성을 나타내는 것으로 알려져 있으며, 항암제(Altretamine과 triethylenemelamine), 제초제(atrazine), 동물용 구충제(cyromazine) 등으로 제한적으로 시판되고 있다.
이들 요소는 톨트라주릴이 갖고 있는 강력한 살충 효과와 더불어 약물의 체내 저류 작용에 상당히 영향을 미칠 것으로 예상되며, 강력한 살충 효과가 넙치에서는 부작용으로 작용할 수도 있을 것이다. 따라서 톨트라주릴 구조를 세부분으로 나누어서 triazine과 유사한 다양한 moiety의 도입, fluorine의 가감, sulfur대신 oxygen을 도입하는 등의 적절한 변화를 주어, 약효는 유지하되 안전성을 확보할 수 있는 화합물들을 합성하고자 한다.
콕시듐증(coccidiosis)과 톨트라주릴의 구조-활성 상관관계는 확실하게 밝혀진 바 없지만, 톨트라주릴에는 살충제로 사용되는 triazine이 triazine trione의 형태로 들어있고, 또한 체내에서 저류 등의 효과를 보이는 fluorin, 체내에서 산화되면 sulfon의 형태가 되어 더욱 안정해지는 sulfur가 함유되어있다. 이는 톨트라주릴의 강력한 살충 효과와 긴 반감기, 이로 인한 독성 발현과 생체 내 저류 등의 문제점들을 초래한다.
이에, 도 8에 나타낸 바와 같이, 왼쪽 부분의 sulfur 대신 oxygen을 도입하거나 (-OCF3), (-CF3), (-OCH3), (-F)로 변화를 주었고, 오른쪽의 triazine trione 부분에서 살충 효과를 획득하기 위한 최소한의 부분 및 결합 부분의 공간의 크기 등을 확인하기 위하여, aniline에 dimethyl, acetyl, acetylamide, oxobutanoic acid를 도입하여 16개의 구조를 확보하였다(도 8).
이를 합성하기 위하여 먼저 네 종류의 phenol(1, 2, 3, 4)을 2-Fluoro-5-nitrotoluene과 nucleophilic aromatic substitution 반응을 하여 methylnitrobenzene(5, 6, 7, 8)을 확보한 후, Fe 와 NH4Cl을 사용해서 nitro group을 환원하여 methylaniline(9, 10, 11, 12)을 얻었다(반응식 1, 도 9).
이렇게 얻어진 methylaniline을 paraformaldehyde와 NaBH3CN을 사용한 reductive methylation으로 dimethyl group을 도입하여, 최종 화합물 PK01, PK02, PK03, PK04를 확보하였고, methylaniline을 acetylchloride와 NaH를 사용해서 acetylation하여, PK05, PK06, PK07, PK08을 획득하였으며, 이렇게 얻어진 PK05, PK06, PK07, PK08을 각각 methyliodide와 NaH를 사용해서 methylation하여, PK09, PK10, PK11, PK12를 얻었다. 또한 methylaniline과 succinic anhydride를 반응시켜서, acid form인 PK13, PK14, PK15, PK16을 확보하였다(반응식 2, 도 10).
16개의 최종 화합물 중에는 톨트라주릴의 용해도가 매우 낮은 점을 고려하여 합성된 네 개의 acid 화합물(PK13, PK14, PK15, PK16)이 포함되어 있다. 이는 물에 대한 용해도가 좋지 않은 PK13, PK14, PK15, PK16을 Na salt로 만들어서 물에 대한 용해를 높일 수 있도록 디자인한 화합물들로서, 아래 PK13의 예에서 관찰할 수 있듯이, acid form은 물에 대한 용해도가 매우 낮지만 이를 같은 당량의 NaOH 수용액으로 녹여서 Na salt가 되면 물에 잘 녹는 것을 확인할 수 있었다.
이렇게 합성된 16개 화합물들은 1H NMR 과 mass spectrometry로 구조를 확인하였으며, 그 중 PK01, PK05, PK09, PK16의 1H NMR data와 PK05의 mass data는 다음에 나타내었다.
(1) Methylnitrophenoxybenzene(5, 6, 7, 8)의 합성
(가) 2-Methyl-4-nitro-1-(4-(trifluoromethoxy)phenoxy)benzene (5)
Figure 112020092292808-pat00057
2-Fluoro-5-nitrotoluene(776 mg, 5.0 mmol, 1.0 당량)과 K2CO3(1.38 g, 10.0 mmol, 2.0 당량)을 15 mL one-arm flask에 넣은 후, 아르곤 가스로 치환하고 증류한 DMF(5 mL)를 넣어서 녹였다. 여기에 trifluoromethoxyphenol(0.78 mL, 6.0 mmol, 1.2 당량)을 추가한 후 108oC에서 22시간 동안 교반하였다. 반응이 끝나고 상온으로 식힌 후, 이를 EtOAc(에틸 아세테이트, 50 mL)를 사용하여 희석하고 증류수(50 mL)로 씻어주었다. 2개의 층을 분리한 후, 수층을 EtOAc(100 mL)로 3번 추출하였다. 추출한 유기층을 모아서 무수 MgSO4로 수분을 제거하고 여과한 후 농축하였다. 실리카겔을 이용한 컬럼 크로마토그래피로 분리 정제하여 화합물 5를 합성하였고, 질량분석계(mass spectometry, MS), 1H NMR 그리고 13C NMR을 이용하여 생성된 화합물을 확인하였다.
수득률 및 성상 : 1.57 g, 50 mmol, 100%, colorless oil.
1 H NMR (400 MHz, CDCl 3 ): δ 8.17 (dd, J = 2.8, 1.2 Hz, 1H), 8.02 (dd, J = 8.8, 2.8 Hz, 1H), 7.28 (m, 1H), 7.25 (m, 1H), 7.08-7.02 (m, 2H), 6.81 (d, J = 8.8 Hz, 1H), 2.40 (s, 3H).
13 C NMR (126 MHz, CDCl 3 ): δ 160.7, 154.0, 145.7, 143.2, 130.0, 127.0, 123.3, 123.1, 120.8, 120.5 (q, J C-F = 258.3 Hz), 116.5, 16.4.
HRMS (ESI) m/z: calculated for C14H10F3NO4 313.0562, found 313.0564.
(나) 2-Methyl-4-nitro-1-(4-(trifluoromethyl)phenoxy)benzene (6)
Figure 112020092292808-pat00058
화합물 5의 합성 방법과 동일한 방법으로, 2-Fluoro-5-nitrotoluene(776 mg, 5.0 mmol, 1.0 당량)과 K2CO3(1.38 g, 10.0 mmol, 2.0 당량)을 증류한 DMF(5 mL)를 넣어서 녹였다. 여기에 4-hydroxybenzotrifluoride (973 mg, 6.0 mmol, 1.2 당량)을 추가한 후 106oC에서 19시간, 118oC에서 5시간 동안 교반하여 화합물 6을 합성하였고, 질량분석계(mass spectometry, MS), 1H NMR 그리고 13C NMR을 이용하여 생성된 화합물을 확인하였다.
수득률 및 성상 : 1.22 g, 4.10 mmol, 82%, white solid.
1 H NMR (400 MHz, CDCl 3 ): δ 8.19 (dd, J = 2.8, 0.4 Hz, 1H), 8.06 (ddd, J = 8.8, 2.8, 0.4 Hz, 1H), 7.66 (d, J = 8.4 Hz, 2H), 7.09 (d, J = 8.4 Hz, 2H), 6.91 (d, J = 8.8 Hz, 1H), 2.38 (s, 3H).
13 C NMR (126 MHz, CDCl 3 ): δ 159.6, 158.6, 143.8, 130.7, 127.7 (d, J C-F = 2.5 Hz), 127.1, 126.6 (q, J C-F = 32.8 Hz), 124.0 (q, J C-F = 272.2 Hz), 123.3, 118.9, 118.0, 16.4.
HRMS (ESI) m/z: calculated for C14H10F3NO3 297.0613, found 297.0614.
(다) 1-(4-Methoxyphenoxy)-2-methyl-4-nitrobenzene (7)
Figure 112020092292808-pat00059
화합물 5의 합성 방법과 동일한 방법으로, 2-Fluoro-5-nitrotoluene(776 mg, 5.0 mmol, 1.0 당량)과 K2CO3(1.38 g, 10.0 mmol, 2.0 당량)을 증류한 DMF(5 mL)를 넣어서 녹였다. 여기에 4-methoxyphenol(745 mg, 6.0 mmol, 1.2 당량)을 추가한 후 110oC에서 22시간 동안 교반하여 화합물 7을 합성하였고, 질량분석계(mass spectometry, MS), 1H NMR 그리고 13C NMR을 이용하여 생성된 화합물을 확인하였다.
수득률 및 성상 : 1.30 g, 5.0 mmol, 100%, pale yellow solid.
1 H NMR (400 MHz, CDCl 3 ): δ 8.13 (dd, J = 2.8, 0.8 Hz, 1H), 7.96 (dd, J = 9.2, 2.8 Hz, 1H), 7.01-6.91 (m, 4H), 6.67 (d, J = 9.2 Hz, 1H), 3.83 (s, 3H), 2.42 (s, 3H).
13 C NMR (126 MHz, CDCl 3 ): δ 162.3, 156.9, 148.4, 142.1, 128.7, 126.7, 123.2, 121.5, 115.3, 114.5, 55.7, 16.4.
HRMS (ESI) m/z: calculated for C14H13NO4 259.0845, found 259.0846.
(라) 1-(4-Fluorophenoxy)-2-methyl-4-nitrobenzene (8)
Figure 112020092292808-pat00060
화합물 5의 합성 방법과 동일한 방법으로, 2-Fluoro-5-nitrotoluene(800 mg, 5.16 mmol, 1.0 당량)과 K2CO3(1.38 g, 10.0 mmol, 1.94 당량)을 증류한 DMF(5 mL)를 넣어서 녹였다. 여기에 4-fluorophenol(0.56 mL, 6.09 mmol, 1.18 당량)을 추가한 후 110oC에서 19시간 동안 교반하여 화합물 8을 합성하였고, 질량분석계(mass spectometry, MS), 1H NMR 그리고 13C NMR을 이용하여 생성된 화합물을 확인하였다.
수득률 및 성상 : 1.27 g, 5.14 mmol, 100%, white solid.
1 H NMR (400 MHz, CDCl 3 ): δ 8.15 (dd, J = 2.8, 0.8 Hz, 1H), 7.99 (ddd, J = 9.2, 2.8, 0.4 Hz, 1H), 7.15-7.07 (m, 2H), 7.05-6.99 (m, 2H), 6.72 (d, J = 9.2 Hz, 1H), 2.41 (s, 3H).
13 C NMR (126 MHz, CDCl 3 ): δ 161.5, 159.7 (d, J C-F = 244.4 Hz), 151.1, 142.6, 129.3, 126.8, 123.2, 121.6 (d, J C-F = 8.8), 116.9 (d, J C-F = 23.9), 115.3, 16.4.
HRMS (ESI) m/z: calculated for C13H10FNO3 247.0645, found 247.0647.
(2) Methylphenoxyaniline (9, 10, 11, 12)의 합성
(가) 3-Methyl-4-(4-(trifluoromethoxy)phenoxy)aniline (9)
Figure 112020092292808-pat00061
Fe(894 mg, 16 mmol, 5.0 당량)과 NH4Cl(171 mg, 3.2 mmol, 1.0 당량)을 50 mL round bottom flask에 넣고 증류수(8 mL)에 녹였다. Methylnitrobenzene(5, 1.0 g, 3.2 mmol, 1 당량)을 EtOH(16 mL)에 녹인 후 이를 상기 flask에 추가하고, 90oC에서 1시간 동안 교반하였다. 반응이 끝나고 상온으로 식힌 후, 이를 celite pad를 사용하여 과량의 Fe을 제거하고, EtOH(10 mL)과 EtOAc(100 mL)을 사용하여 씻어주었다. 여과액을 농축한 후, 다시 EtOAc(10 mL)로 희석하고 증류수(10 mL)로 씻어주었다. 2개의 층을 분리한 후, 수층을 EtOAc(25 mL)로 2번 추출하였다. 추출한 유기층을 모아서 무수 MgSO4로 수분을 제거하고 여과한 후 농축하였다. 실리카겔을 이용한 컬럼 크로마토그래피를 이용하여 분리 정제하여 화합물 9를 확보하였고, 질량분석계(mass spectometry, MS), 1H NMR 그리고 13C NMR을 이용하여 생성된 화합물을 확인하였다.
수득률 및 성상 : 844 mg, 2.98 mmol, 93%, brown oil.
1 H NMR (400 MHz, DMSO- d 6 ): δ 7.28 (d, J = 9.2 Hz, 2H), 6.88-6.81 (m, 2H), 6.70 (d, J = 8.4 Hz, 1H), 6.50 (dd, J = 2.8, 0.8 Hz, 1H), 6.44 (dd, J = 8.4, 2.8 Hz, 1H), 4.97 (s, 2H), 1.96 (s, 3H).
13 C NMR (126 MHz, DMSO- d 6 ): δ 157.9, 146.2, 142.8, 142.2, 130.1, 122.7, 121.8, 120.2 (q, J C-F = 255.8 Hz), 116.4, 116.3, 112.8, 15.8.
HRMS (ESI) m/z: calculated for C14H13F3NO2 + [M+H]+ 284.0893, found 284.0894.
(나) 3-Methyl-4-(4-(trifluoromethyl)phenoxy)aniline (10)
Figure 112020092292808-pat00062
화합물 9의 합성과 동일한 방법으로, Fe(894 mg, 16 mmol, 5.0 당량)과 NH4Cl(171 mg, 3.2 mmol, 1.0 당량)을 증류수 (8 mL)에 녹였다. Methylnitrobenzene(6, 951 mg, 3.2 mmol, 1.0 당량)을 EtOH(16 mL)에 녹인 후 이를 상기 flask에 추가하고, 90oC에서 1시간 동안 교반하여 화합물 10을 합성하였고, 질량분석계(mass spectometry, MS), 1H NMR 그리고 13C NMR을 이용하여 생성된 화합물을 확인하였다.
수득률 및 성상 : 830 mg, 3.11 mmol, 97%, brown oil.
1 H NMR (400 MHz, DMSO- d 6 ): δ 7.65 (d, J = 8.8 Hz, 2H), 6.93 (d, J = 8.8 Hz, 2H), 6.73 (d, J = 8.4 Hz, 1H), 6.51 (d, J = 2.8 Hz, 1H), 6.45 (dd, J = 8.4, 2.8 Hz, 1H), 5.01 (s, 2H), 1.94 (s, 3H).
13 C NMR (126 MHz, DMSO- d 6 ): δ 162.0, 146.5, 142.2, 130.1, 127.3, 124.5 (q, J C-F = 270.9 Hz), 121.8 (q, J C-F = 32.8 Hz), 121.9, 116.3, 115.6, 112.8, 15.8.
HRMS (ESI) m/z: calculated for C14H13F3NO+ [M+H]+ 268.0949, found 268.0949.
(다) 4-(4-Methoxyphenoxy)-3-methylaniline (11)
Figure 112020092292808-pat00063
화합물 9의 합성과 동일한 방법으로, Fe(894 mg, 16 mmol, 5.0 당량)과 NH4Cl(171 mg, 3.2 mmol, 1.0 당량)을 증류수(8 mL)에 녹였다. Methylnitrobenzene(7, 830 mg, 3.2 mmol, 1.0 당량)을 EtOH(16 mL)에 녹인 후 이를 상기 flask에 추가하고, 90oC에서 1시간 동안 교반하여 화합물 11을 합성하였고, 질량분석계(mass spectometry, MS), 1H NMR 그리고 13C NMR을 이용하여 생성된 화합물을 확인하였다.
수득률 및 성상 : 702 mg, 3.06 mmol, 96%, brown solid.
1 H NMR (400 MHz, DMSO- d 6 ): δ 6.89-6.80 (m, 2H), 6.75-6.67 (m, 2H), 6.61 (d, J = 8.4 Hz, 1H), 6.46 (dd, J = 2.8, 0.8 Hz, 1H), 6.39 (ddd, J = 8.4, 2.8, 0.8 Hz, 1H), 4.85 (s, 2H), 3.69 (s, 3H), 1.98 (s, 3H).
13 C NMR (126 MHz, DMSO- d 6 ): δ 153.9, 152.6, 145.4, 144.2, 129.7, 121.1, 116.6, 116.3, 114.7, 112.6, 55.4, 16.0.
HRMS (ESI) m/z: calculated for C14H16NO2 + [M+H]+ 230.1176, found 230.1180.
(라) 4-(4-Fluorophenoxy)-3-methylaniline (12)
Figure 112020092292808-pat00064
화합물 9의 합성과 동일한 방법으로, Fe(894 mg, 16 mmol, 5.0 당량)과 NH4Cl(171 mg, 3.2 mmol, 1.0 당량)을 증류수(8 mL)에 녹였다. Methylnitrobenzene(8, 791 mg, 3.2 mmol, 1.0 당량)을 EtOH(16 mL)에 녹인 후 이를 상기 flask에 추가하고, 90oC에서 1시간 동안 교반하여 화합물 12를 합성하였고, 질량분석계(mass spectometry, MS), 1H NMR 그리고 13C NMR을 이용하여 생성된 화합물을 확인하였다.
수득률 및 성상 : 678 mg, 3.12 mmol, 98%, brown oil.
1 H NMR (400 MHz, DMSO- d 6 ): δ 7.13-7.07 (m, 2H), 6.80-6.74 (m, 2H), 6.66 (d, J = 8.4 Hz, 1H), 6.48 (dd, J = 2.8, 0.8 Hz, 1H), 6.42 (dd, J = 8.4, 2.8 Hz, 1H), 4.92 (s, 2H), 1.96 (s, 3H).
13 C NMR (126 MHz, DMSO- d 6 ): δ 156.8 (d, J C-F = 236.9 Hz), 155.2, 145.8, 143.4, 129.9, 121.5, 116.7 (d, J C-F = 8.8 Hz), 116.3, 116.0 (d, J C-F = 22.7 Hz), 112.6, 15.9.
HRMS (ESI) m/z: calculated for C13H13FNO+ [M+H]+ 218.0976, found 218.0977.
(3) N,N ,3-trimethyl phenoxyaniline (PK01, PK02, PK03, PK04)의 합성
(가) N,N ,3-Trimethyl-4-(4-(trifluoromethoxy)phenoxy)aniline (PK01)
Figure 112020092292808-pat00065
Methylaniline(10, 107 mg, 0.40 mmol, 1.0 당량)을 5 mL one-arm flask에 넣은 후, 아르곤 가스로 치환하고 빙초산(2.1 mL)을 넣어서 녹였다. 여기에 paraformaldehyde (120 mg, 4.0 mmol, 10.0 당량)과 NaBH3CN(118 mg, 1.88 mmol, 4.7 당량)을 0oC에서 첨가하고, 상기 혼합액을 상온에서 16시간 동안 교반하였다. 반응이 종료되고, 2N NaOH 수용액을 0oC에서 첨가하여 pH 14가 되도록 하였다. EtOAc(20 mL) 와 CH2Cl2(20 mL)를 사용하여 각각 3회씩 수층을 추출하고 추출한 유기층을 모아서 무수 Na2SO4로 수분을 제거하고 여과한 후 농축하였다. 실리카겔을 이용한 컬럼 크로마토그래피로 분리 정제하여 화합물 PK01를 합성하였고, 질량분석계(mass spectometry, MS), 1H NMR 그리고 13C NMR을 이용하여 생성된 화합물을 확인하였다.
수득률 및 성상 : 126 mg, 405 μmol, 83%, colorless oil.
1 H NMR (400 MHz, CDCl 3 ): δ 7.09 (dd, J = 5.2, 0.8 Hz, 2H), 6.87 (d, J = 8.8 Hz, 1H), 6.84-6.80 (m, 2H), 6.62 (d, J = 2.8 Hz, 1H), 6.58 (dd, J = 8.8, 2.8 Hz, 1H), 2.94 (s, 6H), 2.14 (s, 3H).
13 C NMR (126 MHz, CDCl 3 ): δ 157.8, 148.3, 144.5, 143.2, 131.0, 122.4, 121.8, 120.6 (q, J C-F = 255.8 Hz), 116.6, 115.5, 111.6, 41.1, 16.6.
HRMS (ESI) m/z: calculated for C16H17F3NO2 + [M+H]+ 312.1206, found 312.1212.
(나) N,N ,3-Trimethyl-4-(4-(trifluoromethyl)phenoxy)aniline (PK02)
Figure 112020092292808-pat00066
화합물 PK01의 합성과 동일한 방법으로, Methylaniline(10, 107 mg, 0.40 mmol, 1.0 당량)을 빙초산 (2.1 mL)을 넣어서 녹였다. 여기에 paraformaldehyde(120 mg, 4.0 mmol, 10.0 당량)과 NaBH3CN(118 mg, 1.88 mmol, 4.7 당량)을 0oC에서 첨가하고, 상기 혼합액을 상온에서 16시간 동안 교반하여 화합물 PK02를 합성하였고, 질량분석계(mass spectometry, MS), 1H NMR 그리고 13C NMR을 이용하여 생성된 화합물을 확인하였다.
수득률 및 성상 : 112 mg, 379 μmol, 95%, white solid.
1 H NMR (400 MHz, CDCl 3 ): δ 7.50 (dd, J = 8.4, 0.8 Hz, 2H), 6.90-6.87 (m, 3H), 6.63-6.58 (m, 2H), 2.95 (s, 6H), 2.12 (s, 3H).
13 C NMR (126 MHz, CDCl 3 ): δ 162.0, 148.5, 143.8, 131.1, 127.0 (q, J C-F = 3.8 Hz), 124.4 (q, J C-F = 272.2 Hz), 123.4 (q, J C-F F = 32.8 Hz), 122.0, 115.6, 115.4, 111.6, 41.0, 16.6.
HRMS (ESI) m/z: calculated for C16H17F3NO+ [M+H]+ 296.1257, found 296.1260.
(다) 4-(4-Methoxyphenoxy)-N,N,3-trimethylaniline (PK03)
Figure 112020092292808-pat00067
화합물 PK01의 합성과 동일한 방법으로, Methylaniline(11, 91.7 mg, 0.40 mmol, 1.0 당량)을 빙초산(2.1 mL)을 넣어서 녹였다. 여기에 paraformaldehyde(120 mg, 4.0 mmol, 10.0 당량)과 NaBH3CN(118 mg, 1.88 mmol, 4.7 당량)을 0oC에서 첨가하고, 상기 혼합액을 상온에서 16시간 동안 교반하여 화합물 PK03을 합성하였고, 질량분석계(mass spectometry, MS), 1H NMR 그리고 13C NMR을 이용하여 생성된 화합물을 확인하였다.
수득률 및 성상: 74.6 mg, 290 μmol, 73%, white solid.
1 H NMR (400 MHz, CDCl 3 ): δ 6.85-6.75 (m, 5H), 6.62 (d, J = 3.2 Hz, 1H), 6.56 (dd, J = 8.8, 3.2 Hz, 1H), 3.77 (s, 3H), 2.91 (s, 6H), 2.18 (s, 3H).
13 C NMR (126 MHz, CDCl 3 ): δ 154.4, 152.9, 147.6, 146.1, 130.6, 120.9, 117.4, 115.8, 114.7, 111.7, 55.7, 41.3, 16.8.
HRMS (ESI) m/z: calculated for C16H20NO2 + [M+H]+ 258.1489, found 258.1491.
(다) 4-(4-Fluorophenoxy)- N,N ,3-trimethylaniline (PK04)
Figure 112020092292808-pat00068
화합물 PK01의 합성과 동일한 방법으로, Methylaniline(12, 87 mg, 0.40 mmol, 1.0 당량)을 빙초산 (2.1 mL)을 넣어서 녹였다. 여기에 paraformaldehyde(120 mg, 4.0 mmol, 10.0 당량)과 NaBH3CN(118 mg, 1.88 mmol, 4.7 당량)을 0oC에서 첨가하고, 상기 혼합액을 상온에서 16시간 동안 교반하여 화합물 PK04를 합성하였고, 질량분석계(mass spectometry, MS), 1H NMR 그리고 13C NMR을 이용하여 생성된 화합물을 확인하였다.
수득률 및 성상 : 80.5 mg, 328 μmol, 82%, white solid.
1 H NMR (400 MHz, CDCl 3 ): δ 6.96-6.90 (m, 2H), 6.84 (d, J = 8.8 Hz, 1H), 6.82-6.77 (m, 2H), 6.62 (d, J = 3.2 Hz, 1H), 6.57 (dd, J = 8.8, 3.2 Hz, 1H), 2.93 (s, 6H), 2.16 (s, 3H).
13 C NMR (126 MHz, CDCl 3 ): δ 157.7 (d, J C-F = 239.4 Hz), 155.2, 148.0, 145.3, 130.8, 121.4, 117.1 (d, J C-F = 2.5 Hz), 115.9 (d, J C-F = 22.3 Hz), 115.6, 111.6, 41.2, 16.6.
HRMS (ESI) m/z: calculated for C15H17FNO+ [M+H]+ 246.1289, found 246.1291.
(4) (Methylphenoxyphenyl)acetamide (PK05, PK06, PK07, PK08)의 합성
(가) N -(3-Methyl-4-(4-(trifluoromethoxy)phenoxy)phenyl)acetamide (PK05)
Figure 112020092292808-pat00069
NaH(60% dispersion in mineral oil, 15.4 mg, 385 μmol, 1.1 당량)을 5 mL one-arm flask에 넣고 아르곤 가스로 치환하고, 합성된 methylaniline 9(99 mg, 350 μmol, 1.0 당량)를 증류한 acetonitrile(1.75 mL)에 녹이고, 0oC에서 이 용액을 상기 flask에 추가하였다. 이 혼합물을 상온에서 1시간 동안 교반하였다. 상기 혼합물을 0oC로 식히고 acetyl chloride(27 μL, 385 μmol, 1.1 당량)을 추가하였다. 상기 혼합물을 상온에서 16시간 동안 교반하였다. 반응이 종료되고 상기 반응물을 EtOAc(5 mL)으로 희석하고 증류수(5 mL)를 사용하여 씻어주었다. 2개의 층을 분리한 후, 수층을 EtOAc(10 mL)로 2번 추출하였다. 추출한 유기층을 모아서 무수 MgSO4로 수분을 제거하고 여과한 후 농축하였다. 실리카겔을 이용한 컬럼 크로마토그래피를 이용하여 분리 정제하여 화합물 PK05를 합성하였고, 질량분석계(mass spectometry, MS), 1H NMR 그리고 13C NMR을 이용하여 생성된 화합물을 확인하였다.
수득률 및 성상 : 93.8 mg, 288 μmol, 82%, pale yellow solid.
1 H NMR (400 MHz, DMSO- d 6 ): δ 9.93 (s, 1H), 7.55 (d, J = 2.4 Hz, 1H), 7.43 (dd, J = 8.8, 2.4 Hz, 1H), 7.32 (d, J = 8.4 Hz, 2H), 6.95-6.90 (m, 3H), 2.10 (s, 3H), 2.03 (s, 3H).
13 C NMR (126 MHz, DMSO- d 6 ): δ 168.1, 156.8, 148.3, 142.7, 136.3, 129.8, 122.9, 121.9, 120.8, 120.1 (q, J C-F = 255.8 Hz), 118.3, 117.3, 23.9, 15.9.
HRMS (ESI) m/z: calculated for C16H15F3NO3 + [M+H]+ 326.0999, found 326.1002.
(나) N -(3-Methyl-4-(4-(trifluoromethyl)phenoxy)phenyl)acetamide (PK06)
Figure 112020092292808-pat00070
화합물 PK05의 합성과 동일한 방법으로, NaH(60% dispersion in mineral oil, 17.6 mg, 440 μmol, 1.1 당량)에, methylaniline 10(107 mg, 400 μmol, 1.0 당량)를 증류한 acetonitrile(2.0 mL)에 녹인 용액을 0oC에서 추가하였다. 이 혼합물을 상온에서 1시간 동안 교반하였다. 상기 혼합물을 0oC로 식히고 acetyl chloride(31 μL, 440 μmol, 1.1 당량)을 추가하여 화합물 PK06을 합성하였고, 질량분석계(mass spectometry, MS), 1H NMR 그리고 13C NMR을 이용하여 생성된 화합물을 확인하였다.
수득률 및 성상 : 109 mg, 352 μmol, 88%, pale yellow solid.
동일한 방법으로 화합물 PK06 (Pale yellow solid, 109 mg, 352 μmol, 88%)
1 H NMR (400 MHz, DMSO- d 6 ): δ 9.96 (s, 1H), 7.68 (dd, J = 9.2, 0.8 Hz, 2H), 7.58 (dd, J = 2.8, 2.0 Hz, 1H), 7.47 (dd, J = 8.8, 2.8 Hz, 1H), 7.04-6.95 (m, 3H), 2.08 (s, 3H), 2.04 (s, 3H).
13 C NMR (126 MHz, DMSO- d 6 ): δ 168.2, 161.0, 147.4, 136.8, 130.1, 127.4 (q, J C-F = 5.0 Hz), 124.4 (q, J C-F = 277.2 Hz), 122.4 (q, J C-F = 32.1 Hz), 121.9, 121.4, 118.4, 116.1, 23.9, 15.9.
HRMS (ESI) m/z: calculated for C16H15F3NO2 + [M+H]+ 310.1049, found 326.1052.
(다) N -(4-(4-Methoxyphenoxy)-3-methylphenyl)acetamide (PK07)
Figure 112020092292808-pat00071
화합물 PK05의 합성과 동일한 방법으로, NaH(60% dispersion in mineral oil, 18 mg, 451 μmol, 1.1 당량)에, methylaniline 11(94.7 mg, 410 μmol, 1.0 당량)를 증류한 acetonitrile(2.0 mL)에 녹인 용액을 0oC에서 추가하였다. 이 혼합물을 상온에서 1시간 동안 교반하였다. 상기 혼합물을 0oC로 식히고 acetyl chloride(32 μL, 451 μmol, 1.1 당량)을 추가하 화합물 PK07을 합성하였고, 질량분석계(mass spectometry, MS), 1H NMR 그리고 13C NMR을 이용하여 생성된 화합물을 확인하였다.
수득률 및 성상 : 95.7 mg, 353 μmol, 86%, pale yellow solid.
1 H NMR (400 MHz, DMSO- d 6 ): 9.85 (s, 1H), 7.49 (dd, J = 2.4, 0.8 Hz, 1H), 7.35 (ddd, J = 8.8, 2.4, 0.8 Hz, 1H), 6.94-6.86 (m, 2H), 6.86-6.79 (m, 2H), 6.75 (d, J = 8.8 Hz, 1H), 3.71 (s, 3H), 2.14 (s, 3H), 2.02 (s, 3H).
13 C NMR (126 MHz, DMSO- d 6 ): δ 168.0, 154.7, 151.1, 150.2, 135.1, 128.8, 121.9, 119.0, 118.2, 118.1, 114.9, 55.4, 23.9, 16.1.
HRMS (ESI) m/z: calculated for C16H18NO3 + [M+H]+ 272.1281, found 272.1283.
(라) N -(4-(4-Fluorophenoxy)-3-methylphenyl)acetamide (PK08)
Figure 112020092292808-pat00072
화합물 PK05의 합성과 동일한 방법으로, NaH(60% dispersion in mineral oil, 19.8 mg, 495 μmol, 1.1 당량)에, methylaniline 12(97.8 mg, 450 μmol, 1.0 당량)를 증류한 acetonitrile(2.3 mL)에 녹인 용액을 0oC에서 추가하였다. 이 혼합물을 상온에서 1시간 동안 교반하였다. 상기 혼합물을 0oC로 식히고 acetyl chloride(35 μL, 495 μmol, 1.1 당량)을 추가하여 화합물 PK08을 합성하였고, 질량분석계(mass spectometry, MS), 1H NMR 그리고 13C NMR을 이용하여 생성된 화합물을 확인하였다.
수득률 및 성상 : 110 mg, 424 μmol, 94%, pale yellow solid.
1 H NMR (400 MHz, DMSO- d 6 ): δ 9.89 (s, 1H), 7.53 (d, J = 2.4 Hz, 1H), 7.40 (dd, J = 8.4, 2.4 Hz, 1H), 7.21-7.10 (m, 2H), 6.92-6.81 (m, 3H), 2.11 (s, 3H), 2.02 (s, 3H).
13 C NMR (126 MHz, DMSO- d 6 ): δ 168.1, 157.4 (d, J C-F = 238.1 Hz), 154.0, 149.2, 135.8, 129.4, 121.9, 120.0, 118.2, 118.0 (d, J C-F = 8.8 Hz), 116.3 (d, J C-F = 22.7), 23.9, 16.0.
HRMS (ESI) m/z: calculated for C15H15FNO2 + [M+H]+ 260.1081, found 260.1084.
(5) N-Methyl-N-(methylphenoxyphenyl)acetamide (PK09, PK10, PK11, PK12)의 합성
(가) N -Methyl- N -(3-methyl-4-(4-(trifluoromethoxy)phenoxy)phenyl)acetamide (PK09)
Figure 112020092292808-pat00073
합성된 Acetamide(PK07, 92.5 mg, 341 μmol, 1.0 당량)을 1 mL one-arm flask에 넣고 아르곤 가스로 치환하고, 여기에 증류한 tetrahydrofuran(0.51 mL)을 넣어서 녹였다. NaH(60% dispersion in paraffin liquid, 40.8 mg, 1.02 mmol, 3.0 당량)을 0oC에서 추가하였다. 이어서 methyliodide(0.21 mL, 3.41 mmol, 10.0 당량)를 추가하고 상기 혼합물을 80oC에서 10시간 동안 교반하였다. 반응이 종료되고 상기 반응물을 EtOAc(5 mL)으로 희석하고 saturated aqueoud NH4Cl(3 mL)를 사용하여 씻어주었다. 2개의 층을 분리한 후, 수 층을 EtOAc(10 mL)로 2번 추출하였다. 추출한 유기층을 모아서 무수 MgSO4로 수분을 제거하고 여과한 후 농축하였다. 실리카겔을 이용한 컬럼 크로마토그래피를 이용하여 분리 정제하여 화합물 PK09를 합성하였고, 질량분석계(mass spectometry, MS), 1H NMR 그리고 13C NMR을 이용하여 생성된 화합물을 확인하였다.
수득률 및 성상 : 91.1 mg, 268 μmol, 89%, white solid.
1 H NMR (400 MHz, CDCl 3 ): δ 7.19 (d, J = 8.8 Hz, 2H), 7.09 (d, J = 2.0 Hz, 1H), 7.03-6.86 (m, 4H), 3.26 (s, 3H), 2.26 (s, 3H), 1.90 (s, 3H).
13 C NMR (126 MHz, CDCl 3 ): δ 170.6, 155.8, 153.7, 144.4, 140.6, 131.4, 130.1, 125.9, 122.8, 120.5 (q, J C-F = 257.0 Hz), 120.1, 118.6, 37.3, 22.4, 16.2.
HRMS (ESI) m/z: calculated for C17H17F3NO3 + [M+H]+ 340.1155, found 340.1160.
(나) N -Methyl- N -(3-methyl-4-(4-(trifluoromethyl)phenoxy)phenyl)acetamide (PK10)
Figure 112020092292808-pat00074
화합물 PK09의 합성과 동일한 방법으로, 합성된 Acetamide(PK06, 112 mg, 362 μmol, 1.0 당량)을 증류한 tetrahydrofuran (0.54 mL)을 넣어서 녹였다. NaH(60% dispersion in paraffin liquid, 43.6 mg, 1.09 mmol, 3.0 당량)을 0oC에서 추가하였다. 이어서 methyliodide(0.23 mL, 3.62 mmol, 10.0 당량)를 추가하고 상기 혼합물을 80oC에서 10시간 동안 교반하여 화합물 PK10을 합성하였고, 질량분석계(mass spectometry, MS), 1H NMR 그리고 13C NMR을 이용하여 생성된 화합물을 확인하였다.
수득률 및 성상 : 102 mg, 315 μmol, 87%, white solid.
1 H NMR (400 MHz, CDCl 3 ): δ 7.58 (d, J = 8.4 Hz, 2H), 7.12 (d, J = 1.6 Hz, 1H), 7.07-6.94 (m, 4H), 3.27 (s, 3H), 2.23 (s, 3H), 1.91 (s, 3H).
13 C NMR (126 MHz, CDCl 3 ): δ 170.5, 160.2, 152.6, 141.3, 132.0, 131.7, 130.2, 127.2 (q, J C-F = 3.8 Hz), 126.1, 124.2 (q, J C-F = 340.2 Hz), 121.2, 116.9, 37.3, 22.5, 16.2.
HRMS (ESI) m/z: calculated for C17H17F3NO2 + [M+H]+ 324.1206, found 324.1210.
(다) N -(4-(4-Methoxyphenoxy)-3-methylphenyl)- N -methylacetamide (PK11)
Figure 112020092292808-pat00075
화합물 PK09의 합성과 동일한 방법으로, 합성된 Acetamide(PK07, 92.5 mg, 341 μmol, 1.0 당량)을 증류한 tetrahydrofuran (0.51 mL)을 넣어서 녹였다. NaH(60% dispersion in paraffin liquid, 40.8 mg, 1.02 mmol, 3.0 당량)을 0oC에서 추가하였다. 이어서 methyliodide(0.21 mL, 3.41 mmol, 10.0 당량)를 추가하고 상기 혼합물을 80oC 에서 10시간 동안 교반하여 화합물 PK11을 합성하였고, 질량분석계(mass spectometry, MS), 1H NMR 그리고 13C NMR을 이용하여 생성된 화합물을 확인하였다.
수득률 및 성상 : 94.4 mg, 331 μmol, 97%, white solid
1 H NMR (400 MHz, CDCl 3 ): 7.04 (d, J = 2.8 Hz, 1H), 6.95-6.87 (m, 5H), 6.74 (d, J = 8.4 Hz, 1H), 3.81 (s, 3H), 3.23 (s, 3H), 2.31 (s, 3H), 1.88 (s, 3H).
13 C NMR (126 MHz, CDCl 3 ): δ 170.8, 155.9, 155.6, 150.2, 139.2, 130.1, 129.7, 125.5, 120.1, 117.8, 115.0, 55.7, 37.3, 22.4, 16.3.
HRMS (ESI) m/z: calculated for C17H20NO3 + [M+H]+ 286.1438, found 286.1442.
(라) N -(4-(4-Fluorophenoxy)-3-methylphenyl)- N -methylacetamide (PK12)
Figure 112020092292808-pat00076
화합물 PK09의 합성과 동일한 방법으로, 합성된 Acetamide(PK08, 108 mg, 416 μmol, 1.0 당량)을 증류한 tetrahydrofuran (0.62 mL)을 넣어서 녹였다. NaH(60% dispersion in paraffin liquid, 50 mg, 1.25 mmol, 3.0 당량)을 0oC에서 추가하였다. 이어서 methyliodide(0.26 mL, 4.16 mmol, 10.0 당량)를 추가하고 상기 혼합물을 80oC에서 10시간 동안 교반하여 화합물 PK12를 합성하였고, 질량분석계(mass spectometry, MS), 1H NMR 그리고 13C NMR을 이용하여 생성된 화합물을 확인하였다.
수득률 및 성상 : 91.3 mg, 334 μmol, 80%, white solid.
1 H NMR (400 MHz, CDCl 3 ): δ 7.09-6.99 (m, 3H), 6.97-6.88 (m, 3H), 6.80 (dd, J = 8.4, 0.4 Hz, 1H), 3.24 (s, 3H), 2.28 (s, 3H), 1.89 (s, 3H).
13 C NMR (126 MHz, CDCl 3 ): δ 170.7, 158.7 (d, J C-F = 241.9 Hz), 154.6, 152.9, 139.9, 130.7, 130.0, 125.7, 119.6 (d, J C-F = 8.3 Hz), 118.9, 116.4 (d, J C-F = 23.4 Hz), 37.3, 22.4, 16.3.
HRMS (ESI) m/z: calculated for C16H17FNO2 + [M+H]+ 274.1238, found 274.1241.
(6) ((Methylphenoxyphenyl)amino)-4-oxobutanoic acid (PK13, PK14, PK15, PK16)의합성
(가) 4-((3-Methyl-4-(4-(trifluoromethoxy)phenoxy)phenyl)amino)-4-oxobutanoic acid (PK13)
Figure 112020092292808-pat00077
Succinic anhydride(44 mg, 440 μmol, 1.1 당량)을 10 mL one-arm flask에 넣고 아르곤 가스로 치환하였다. 합성된 methylaniline(11, 91.7 mg, 400 μmol, 1.0 당량)을 증류한 toluene(4 mL)에 녹이고, 이를 상기 flask에 첨가하였다. 상기 혼합물을 상온에서 16 시간 동안 교반하였다. 반응이 종료되고 상기 반응물을 EtOAc(10 mL)으로 희석하고 증류수(5 mL)를 사용하여 씻어주었다. 2개의 층을 분리한 후, 수층을 EtOAc(10 mL)로 3번 추출하였다. 추출한 유기층을 모아서 무수 MgSO4로 수분을 제거하고 여과한 후 농축하였다. 남은 잔류물을 hexane(2 mL)을 사용하여 세척하여, PK13을 합성하였고, 질량분석계(mass spectometry, MS), 1H NMR 그리고 13C NMR을 이용하여 생성된 화합물을 확인하였다.
수득률 및 성상 : 152 mg, 397 μmol, 99%, white solid.
1 H NMR (400 MHz, DMSO- d 6 ): δ 12.15 (s, 1H), 9.97 (s, 1H), 7.58 (d, J = 2.4 Hz, 1H), 7.43 (dd, J = 8.8, 2.4 Hz, 1H), 7.35-7.29 (m, 2H), 6.96-6.90 (m, 3H), 2.58-2.51 (m, 4H), 2.10 (s, 3H).
13 C NMR (126 MHz, DMSO- d 6 ): δ 173.8, 170.0, 156.8, 148.2, 142.7, 136.3, 129.9, 122.9, 121.9, 120.9, 120.1 (q, J C-F = 256.3 Hz), 118.2, 117.3, 31.0, 28.8, 15.9.
HRMS (ESI) m/z: calculated for C18H17F3NO5 + [M+H]+ 384.1053, found 384.1057.
(나) 4-((3-Methyl-4-(4-(trifluoromethyl)phenoxy)phenyl)amino)-4-oxobutanoic acid (PK14)
Figure 112020092292808-pat00078
화합물 PK13의 합성과 동일한 방법으로, Succinic anhydride(44 mg, 440 μmol, 1.1 당량)에, 합성된 methylaniline(10, 107 mg, 400 μmol, 1.0 당량)을 증류한 toluene(4 mL)에 녹인 용액을 첨가하였다. 상기 혼합물을 상온에서 16시간 동안 교반하여 화합물 PK14를 합성하였고, 질량분석계(mass spectometry, MS), 1H NMR 그리고 13C NMR을 이용하여 생성된 화합물을 확인하였다.
수득률 및 성상 : 137 mg, 373 μmol, 93%, white solid.
1 H NMR (400 MHz, DMSO- d 6 ): δ 12.16 (bs, 1H), 10.03 (s, 1H), 7.68 (d, J = 8.4 Hz, 2H), 7.61 (d, J = 2.4 Hz, 1H), 7.46 (dd, J C-F = 8.4, 2.4 Hz, 1H), 7.04-6.96 (m, 3H), 2.60-2.51 (m, 4H), 2.08 (s, 3H).
13 C NMR (126 MHz, DMSO- d 6 ): δ 173.8, 170.1, 161.0, 147.4, 136.7, 130.1, 127.4 (q, J C-F = 5.0 Hz), 124.4 (q, J C-F = 272.2 Hz), 122.4 (q, J C-F = 31.5 Hz), 121.9, 121.4, 118.3, 116.1, 31.0, 28.9, 15.9.
HRMS (ESI) m/z: calculated for C18H17F3NO4 + [M+H]+ 368.1104, found 368.1108.
(다) 4-((4-(4-Methoxyphenoxy)-3-methylphenyl)amino)-4-oxobutanoic acid (PK15)
Figure 112020092292808-pat00079
화합물 PK13의 합성과 동일한 방법으로, Succinic anhydride(44 mg, 440 μmol, 1.1 당량)에, 합성된 methylaniline(11, 91.7 mg, 400 μmol, 1.0 당량)을 증류한 toluene(4 mL)에 녹인 용액을 첨가하였다. 상기 혼합물을 상온에서 16시간 동안 교반하여 화합물 PK15를 합성하였고, 질량분석계(mass spectometry, MS), 1H NMR 그리고 13C NMR을 이용하여 생성된 화합물을 확인하였다.
수득률 및 성상 : 129 mg, 392 μmol, 98%, white solid.
1 H NMR (400 MHz, DMSO- d 6 ): δ 12.16 (brs, 1H), 9.90 (s, 1H), 7.52 (d, J = 2.4 Hz, 1H), 7.35 (dd, J = 8.8, 2.4 Hz, 1H), 6.93-6.86 (m, 2H), 6.85-6.79 (m, 2H), 6.75 (d, J = 8.4 Hz, 1H), 3.71 (s, 3H), 2.57-2.51 (m, 4H), 2.13 (s, 3H).
13 C NMR (126 MHz, DMSO- d 6 ): δ 173.9, 169.8, 154.7, 151.2, 150.1, 135.1, 128.9, 121.9, 119.1, 118.2, 118.0, 114.9, 55.4, 31.0, 28.9, 16.1.
HRMS (ESI) m/z: calculated for C18H19NO5Na+ [M+Na]+ 352.1155, found 352.1160.
(라) 4-((4-(4-Fluorophenoxy)-3-methylphenyl)amino)-4-oxobutanoic acid (PK16)
Figure 112020092292808-pat00080
화합물 PK13의 합성과 동일한 방법으로, Succinic anhydride(44 mg, 440 μmol, 1.1 당량)에, 합성된 methylaniline(11, 91.7 mg, 400 μmol, 1.0 당량)을 증류한 toluene(4 mL)에 녹인 용액을 첨가하였다. 상기 혼합물을 상온에서 16시간 동안 교반하여 화합물 PK16을 합성하였고, 질량분석계(mass spectometry, MS), 1H NMR 그리고 13C NMR을 이용하여 생성된 화합물을 확인하였다.
수득률 및 성상 : 124 mg, 391 μmol, 98%, white solid.
1 H NMR (400 MHz, DMSO- d 6 ): δ 12.14 (s, 1H), 9.93 (s, 1H), 7.55 (d, J = 4.0 Hz, 1H), 7.40 (dd, J = 8.0, 4.0 Hz, 1H), 7.19-7.12 (m, 2H), 6.91-6.82 (m, 3H), 2.57-2.51 (m, 4H), 2.11 (s, 3H).
13 C NMR (126 MHz, DMSO- d 6 ): δ 173.8, 169.9, 157.4 (d, J C-F = 239.4 Hz), 154.0, 149.1, 135.8, 129.4, 121.9, 120.1, 118.1, 118.0 (d, J C-F = 8.8 Hz), 116.3 (d, Jcf = 23.9 Hz), 31.0, 28.8, 16.0.
HRMS (ESI) m/z: calculated for C17H17FNO4 + [M+H]+ 318.1136, found 318.1141.
이로써 중간체 8개와 16개의 신규 화합물, 총 24개의 화합물을 표 3에 나타내었다.
합성된 중간체 8개와 16개의 신규 화합물 구조 및 물리적 특징
Code No. Name Structure Physical Property
5 2-Methyl-4-nitro-1-(4-
(trifluoromethoxy)phenoxy)
benzene
Figure 112020092292808-pat00081
colorless oil
6 2-Methyl-4-nitro-1-(4-
(trifluoromethyl)phenoxy)
benzene
Figure 112020092292808-pat00082
white solid
7 1-(4-Methoxyphenoxy)-2-
methyl-4-nitrobenzene
Figure 112020092292808-pat00083
pale yellow solid
8 1-(4-Fluorophenoxy)-2-methyl-4-nitrobenzene
Figure 112020092292808-pat00084
white solid
9 3-Methyl-4-(4-(trifluoromethoxy) phenoxy)aniline
Figure 112020092292808-pat00085
brown oil
10 3-Methyl-4-(4-(trifluoromethyl) phenoxy)aniline
Figure 112020092292808-pat00086
brown oil
11 4-(4-Methoxyphenoxy)-3-
methylaniline
Figure 112020092292808-pat00087
brown solid
12 4-(4-Fluorophenoxy)-3-
methylaniline
Figure 112020092292808-pat00088
brown oil
PK01 N,N,3-Trimethyl-4-(4-
(trifluoromethoxy)phenoxy)
aniline
Figure 112020092292808-pat00089
colorless oil
PK02 N,N,3-Trimethyl-4-(4-
(trifluoromethyl)phenoxy)
aniline
Figure 112020092292808-pat00090
white solid
PK03 4-(4-Methoxyphenoxy)-N,N,3- trimethylaniline
Figure 112020092292808-pat00091
white solid
PK04 4-(4-Fluorophenoxy)-N,N,3- trimethylaniline
Figure 112020092292808-pat00092
white solid
PK05 N-(3-Methyl-4-(4-
(trifluoromethoxy)phenoxy)
phenyl)acetamide
Figure 112020092292808-pat00093
pale yellow
solid
PK06 N-(3-Methyl-4-(4-
(trifluoromethyl)phenoxy)phenyl) acetamide
Figure 112020092292808-pat00094
pale yellow
solid
PK07 N-(4-(4-Methoxyphenoxy)-3-
methylphenyl)acetamide
Figure 112020092292808-pat00095
pale yellow
solid
PK08 N-(4-(4-Fluorophenoxy)-3-
methylphenyl)acetamide
Figure 112020092292808-pat00096
pale yellow
solid
PK09 N-Methyl-N-(3-methyl-4-(4-
(trifluoromethoxy)phenoxy)
phenyl)acetamide
Figure 112020092292808-pat00097
white solid
PK10 N-Methyl-N-(3-methyl-4-(4-
(trifluoromethyl)phenoxy)
phenyl)acetamide
Figure 112020092292808-pat00098
white solid
PK11 N-(4-(4-Methoxyphenoxy)-3-
methylphenyl)-N-
methylacetamide
Figure 112020092292808-pat00099
white solid
PK12 N-(4-(4-Fluorophenoxy)-3-
methylphenyl)-N-
methylacetamide
Figure 112020092292808-pat00100
white solid
PK13 4-((3-Methyl-4-(4-
(trifluoromethoxy)phenoxy)
phenyl)amino)-4-oxobutanoic acid
Figure 112020092292808-pat00101
white solid
PK14 4-((3-Methyl-4-(4-
(trifluoromethyl)phenoxy)
phenyl)amino)-4-oxobutanoic acid
Figure 112020092292808-pat00102
white solid
PK15 4-((4-(4-Methoxyphenoxy)-3-
methylphenyl)amino)-4-
oxobutanoic acid
Figure 112020092292808-pat00103
white solid
PK16 4-((4-(4-Fluorophenoxy)-3-
methylphenyl)amino)-4-
oxobutanoic acid
Figure 112020092292808-pat00104
white solid
실시예 7: 톨트라주릴 유도체 화합물의 쿠도아충에 대한 in vitro 실활 효능성 조사
실시예 6에서 합성한 톨트라주릴 유도체의 쿠도아충에 대한 실활효능을 확인하였다.
넙치 양식장에서 쿠도아충 분리를 위한 양성체의 선별하는 과정은 신속하고, 교차오염 방지를 위하여 무균적으로 진행되어야 한다. 무엇보다 쿠도아충 양성체를 쉽게 스크리닝하기 위하여, 시판하는 신속진단키트시약(POCT Rapido kit, 솔포투)을 사용하였다. 즉 양식장에서 채집한 넙치(500 g 전후)의 등근육(가로 5 cm ㅧ 세로 5 cm ㅧ 깊이 1 cm)을 자르고 껍질을 벗긴 후, 제품의 사용 설명서에 기재된 방법에 따라, 시료를 처리하였다. 최종 양성체로 확인된 넙치로부터 현미경 검사하여 쿠도아충 포자를 확인하고, 고농도로 감염된 양성체로부터 신속하게 쿠도아충을 Ohnishi 등(Ohnishi T. et al., Parasitology Research. 115:2519, 2016)의 방법에 따라 분리 정제하여 실활 효능성 조사를 실시하였다.
분리한 쿠도아충 포자는 최종 1ㅧ106/mL의 농도로 정제하여, 화합물의 농도별 희석액을 대상으로 실활 효능성 조사에 사용하였다. 즉 HBSS(Hank’s Balanced Salt solution)에 희석한 쿠도아충 포자액 90 μL와 합성 화합물 10 μL를 혼합하고, 대조구는 포자액(90 μL)과 HBSS(10 μL)를 혼합하여, e-tube에서 24시간 반응 후, 각각 실활 효능성을 확인하였다. 이는 모두 2회씩 반복하였다.
쿠도아충의 실활을 판정하는 염색법은 세포의 생사를 판정하는 방법으로 사용된 형광색소인 HO&PI(Hoechst 33342와 propidium iodide)에 의한 Yokoyama 등(Yokoyama, H. et al., Foodbornw Pathogens and Disease, 13:21, 2016) 및 도 등(Do, J.W. et al., J Fish Mar Sci Edu, 28:1822, 2016)의 방법에 따라 실시하였다. 즉 분리 정제된 쿠도아충은 광학현미경(도 11의 가)으로 관찰하면, 9개(1~9)의 포자(극낭 5~7개)가 나타나는데, 이들의 生死 여부는 알 수 없다. 그러나 HO&PI 염색을 하고 나서 형광현미경으로 관찰하면, 9개의 포자가 모두 파란색으로 나타나는 사진(도 11의 나)과 9개의 포자 중에서 4개(3, 6, 7, 8)는 모두 붉은색으로, 1개(5)는 극낭의 50%가 붉은색으로 나타났으며, 나머지 4개(1, 2, 4, 9)는 붉은색이 전혀 관찰되지 않는다(도 11 다). 따라서 극낭이 파란색만 보이고 붉은색으로 나타나지 않는 포자는 살아있고, 극낭이 붉은색에서만 반응하는 포자는 죽은 것으로 판정한다.
대조구와 농도별 화합물 처리구에서 쿠도아충 포자의 실활 여부를 조사하고자, HO&PI 염색 1시간 후에 형광현미경으로 염색된 포자를 각각 100개씩 계수하였다. 이 과정에서 포자의 극낭(5~7개)이 모두 파란색인 경우만을 생존율(%)에 반영하였다.
대조구의 포자 생존율(%)을 100으로 하여, 이에 대해 합성 화합물 처리구의 포자 생존율을 백분율로 환산하여 실활 효과를 판정하였다. 즉 포자의 생존율 범위를 0~20%, 20~40%, 40~60%, 60~80%, 80%이상의 5단계로 구분하고, 0~20%의 범위는 포자의 실활 효과가 (++++), 20~40%의 범위는 실활 효과가 (+++), 40~60%의 범위는 실활 효과가 (++), 60~80%의 범위는 실활 효과가 (+), 80%이상은 실활 효과가 (-)로 분류하였다. (++++) > (+++) > (++) > (+)의 순서로 실활 효과가 높고, (-)를 보인 시험구는 실활 효능이 없다고 본다. 단, 포자의 cell이 전부 파괴되어 현미경으로 실활 여부를 확인할 수 없는 경우에는 “N”이라고 표시하였다.
넙치에서 분리 정제된 쿠도아충에 대한 톨트라주릴 유도체 16종 화합물의 고농도 시험(1000, 5000, 10000 ppm)에서 in vitro 실활 효과를 표 4에 나타내었다.
그리고 표 4에서의 1000 ppm을 기준으로, 실활 효능성을 구분하여 표 5에 정리하였다. 실활 효과가 (++++)인 화합물은 PK12 (0%), PK08 (2.6%), PK05 (7.9%), PK07 (15.8%), PK06 (18.4%)의 순서로 가장 좋은 성적을 보였다. 실활 효과가 (+++)인 화합물은 PK11 (21.1%), PK09 (34.2%)이었고, (++)인 화합물은 PK14 (49.5%)이었다. 실활 효과가 미약한 (+)인 화합물은 PK13 (65.8%), PK16 (78.9%) 이었고, 나머지는 (-)로 모두 실활 효과가 없는 것으로 나타났다.
유도체명 농도(ppm) 쿠도아충 포자 생존율(%)
PK01 1000 100
5000 13.2
10000 N
PK02 1000 86.8
5000 0
10000 0
PK03 1000 92.1
5000 7.9
10000 N
PK04 1000 100
5000 0
10000 N
PK05 1000 7.9
5000 0
10000 0
PK06 1000 18.4
5000 0
10000 0
PK07 1000 15.8
5000 0
10000 0
PK08 1000 2.6
5000 0
10000 0
PK09 1000 34.2
5000 0
10000 0
PK10 1000 100
5000 0
10000 0
PK11 1000 21.1
5000 0
10000 0
PK12 1000 0
5000 0
10000 0
PK13 1000 65.8
5000 0
10000 0
PK14 1000 49.5
5000 29.8
10000 0
PK15 1000 87.3
5000 46.4
10000 0
PK16 1000 78.9
5000 0
10000 0
* N: 포자의 cell이 전부 파괴되어 현미경으로 생존유무 확인이 불가능
톨트라주릴 유도체 화합물(16종) 1000 ppm 처리 시 쿠도아충 in vitro 실활 효과
화합물 쿠도아충 포자 생존율(%)의 범위 및 실활 효과
0~20%
(++++)
20~40%
(+++)
40~60%
(++)
60~80%
(+)
80%이상
(-)
PK01 -
PK02 -
PK03 -
PK04 -
PK05 ++++
PK06 ++++
PK07 ++++
PK08 ++++
PK09 +++
PK10 -
PK11 +++
PK12 ++++
PK13 +
PK14 ++
PK15 -
PK16 +
1000 ppm 기준에서 0~20% (++++), 20~40% (+++) 까지를 실활 효과가 높은 그룹으로 분류하였다. 즉 PK05, PK06, PK07, PK08, PK09, PK11, PK12의 7종에 대하여, 이번에는 저농도(10, 100, 500 ppm)로 희석해서, 동일한 방법으로 포자 생존율을 구하였다(표 6).
이로써 양식 넙치에 투약이 예상되는 농도를 최저 10 ppm부터 최고 100 ppm까지로 설정하고 살펴보았다. 10 ppm 기준에서 포자 생존율은 PK07이 12%로 가장 낮았고, 그 다음으로 PK05가 20%를, 나머지(PK06, PK08, PK09, PK11)는 33.3~45%를, PK12는 89.3%를 보였으므로, 쿠도아충의 실활 효과는 PK07 > PK05의 순서로 가장 높았고, 나머지는 실활 효능성이 비슷하였으며, PK12는 가장 낮았다.
100 ppm 기준에서 포자 생존율은 PK06, PK05가 4~5%로 가장 낮았고, 그 다음으로 PK07이 13.7%, 나머지(PK08, PK09, PK11)는 31.2~46.9%를, PK12는 78.9%를 보였으므로, 쿠도아충의 실활 효과는 PK06, PK05 > PK07의 순서로 가장 높았고, 나머지는 실활 효능성이 비슷하였으며, PK12는 가장 낮았다.
톨트라주릴 유도체 화합물(7종) 처리 시 쿠도아충 in vitro 실활 효과
유도체 농도(ppm) 쿠도아 포자 생존율(%)
PK05 10 20.0
100 5.0
500 0.9
PK06 10 37.2
100 4.0
500 0
PK07 10 12.0
100 13.7
500 2.7
PK08 10 40.0
100 46.9
500 0.9
PK09 10 45.0
100 41.1
500 0.9
PK11 10 33.3
100 31.2
500 19.0
PK12 10 89.3
100 78.9
500 0
실시예 8: 톨트라주릴 유도체 화합물의 in vitro 세포독성 반응
본 실시예의 in vitro 세포독성 반응 확인은 실시예 2의 방법과 동일하게 실시하였다.
세포독성 반응을 통해 합성 화합물의 넙치 체내 안전성(독성)을 평가하였다. 선정된 화합물 7종(PK05, PK06, PK07, PK08, PK09, PK11, PK12)이 HINAE 세포의 증식에 미치는 영향을 도 12에 나타내었다.
이로써 양식 넙치에 투약이 예상되는 농도를 최저 10 ppm부터 최고 100 ppm까지로 간주하여 살펴볼 때, 세포 생존율은 PK06, PK11은 90%이상, PK07은 80%이상, PK08, PK09, PK12는 70%이상이었으며, PK05는 22.1%로 가장 낮았다.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시 양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.

Claims (6)

  1. 다음 화학식 2~15 중 어느 하나의 구조를 가지는 것을 특징으로 하는 신규 톨트라주릴 유도체 화합물;
    [화학식 2]
    Figure 112020129152848-pat00112
    ,
    [화학식 3]
    Figure 112020129152848-pat00113
    ,
    [화학식 4]
    Figure 112020129152848-pat00114
    ,
    [화학식 5]
    Figure 112020129152848-pat00115
    ,
    [화학식 6]
    Figure 112020129152848-pat00116
    ,
    [화학식 7]
    Figure 112020129152848-pat00117
    ,
    [화학식 8]
    Figure 112020129152848-pat00118
    ,
    [화학식 9]
    Figure 112020129152848-pat00119
    ,
    [화학식 10]
    Figure 112020129152848-pat00120
    ,
    [화학식 11]
    Figure 112020129152848-pat00121
    ,
    [화학식 12]
    Figure 112020129152848-pat00122
    ,
    [화학식 13]
    Figure 112020129152848-pat00123
    ,
    [화학식 14]
    Figure 112020129152848-pat00124

    [화학식 15]
    Figure 112020129152848-pat00125
    .
  2. 삭제
  3. 다음 화학식 1의 구조를 가지는 톨트라주릴 유도체 유도체 중 어느 하나를 유효성분으로 함유하는 기생충 감염의 예방 또는 치료용 약학 조성물:
    [화학식 1]
    Figure 112020092292808-pat00126

    R1은
    Figure 112020092292808-pat00127
    , CF3, F 및
    Figure 112020092292808-pat00128
    로 구성된 군에서 선택되고,
    R2는 NO2, NH2,
    Figure 112020092292808-pat00129
    ,
    Figure 112020092292808-pat00130
    ,
    Figure 112020092292808-pat00131
    Figure 112020092292808-pat00132
    으로 구성된 군에서 선택되고,
    R3는 H 또는 C1~C3의 알킬기인 것을 특징으로 함.
  4. 제3항에 있어서, 상기 톨트라주릴 유도체는 다음 화학식 2~15 중 어느 하나의 구조를 가지는 것을 특징으로 하는 약학 조성물:
    [화학식 2]
    Figure 112020092292808-pat00133
    ,
    [화학식 3]
    Figure 112020092292808-pat00134
    ,
    [화학식 4]
    Figure 112020092292808-pat00135
    ,
    [화학식 5]
    Figure 112020092292808-pat00136
    ,
    [화학식 6]
    Figure 112020092292808-pat00137
    ,
    [화학식 7]
    Figure 112020092292808-pat00138
    ,
    [화학식 8]
    Figure 112020092292808-pat00139
    ,
    [화학식 9]
    Figure 112020092292808-pat00140
    ,
    [화학식 10]
    Figure 112020092292808-pat00141
    ,
    [화학식 11]
    Figure 112020092292808-pat00142
    ,
    [화학식 12]
    Figure 112020092292808-pat00143
    ,
    [화학식 13]
    Figure 112020092292808-pat00144
    ,
    [화학식 14]
    Figure 112020092292808-pat00145

    [화학식 15]
    Figure 112020092292808-pat00146
    .
  5. 제3항에 있어서, 상기 기생충은 점액포자충, 섬모충, 단생흡충, 미포자충, 기생원충, 편충, 회충 및 구충으로 구성된 군에서 선택되는 것을 특징으로 하는 약학 조성물.
  6. 제4항에 있어서, N-(3-Methyl-4-(4-(trifluoromethoxy)phenoxy) phenyl)acetamide, N-(3-Methyl-4-(4-(trifluoromethyl)phenoxy)phenyl)acetamide, N-(4-(4-Methoxyphenoxy)-3-methylphenyl) acetamide, N-(4-(4-Fluorophenoxy)-3-methylphenyl)acetamide, N-Methyl-N-(3-methyl-4-(4-(trifluoromethoxy)phenoxy) phenyl)acetamide, N-(4-(4-Methoxyphenoxy)-3-methylphenyl)-N-methylacetamide 및 N-(4-(4-Fluorophenoxy)-3-methylphenyl)-N-methylacetamide로 구성된 군에서 선택되는 유도체를 포함하는 것을 특징으로 하는 약학조성물.
KR1020200110958A 2020-09-01 2020-09-01 신규 톨트라주릴 유도체 및 이를 포함하는 쿠도아충 예방·치료를 위한 약학 조성물 KR102234530B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200110958A KR102234530B1 (ko) 2020-09-01 2020-09-01 신규 톨트라주릴 유도체 및 이를 포함하는 쿠도아충 예방·치료를 위한 약학 조성물

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200110958A KR102234530B1 (ko) 2020-09-01 2020-09-01 신규 톨트라주릴 유도체 및 이를 포함하는 쿠도아충 예방·치료를 위한 약학 조성물

Publications (1)

Publication Number Publication Date
KR102234530B1 true KR102234530B1 (ko) 2021-03-31

Family

ID=75237982

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200110958A KR102234530B1 (ko) 2020-09-01 2020-09-01 신규 톨트라주릴 유도체 및 이를 포함하는 쿠도아충 예방·치료를 위한 약학 조성물

Country Status (1)

Country Link
KR (1) KR102234530B1 (ko)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010101774A (ko) * 1999-01-27 2001-11-14 실버스타인 아써 에이. 항암제로서 유용한 치환된 이환 유도체
KR20070053730A (ko) * 2004-08-04 2007-05-25 메이지 세이카 가부시키가이샤 퀴놀린 유도체 및 유효성분으로서 이를 포함하는 살충제
KR20080009112A (ko) * 2005-04-15 2008-01-24 씨이알이피 Npy 길항제, 제법 및 용도
CN103787907A (zh) * 2014-02-17 2014-05-14 华东理工大学 作为法尼基转移酶抑制剂的苯胺类化合物及其用途
WO2014135955A1 (en) * 2013-03-04 2014-09-12 Purdue Pharma L.P. Pyrimidine carboxamides as sodium channel blockers
WO2019141980A1 (en) * 2018-01-17 2019-07-25 Globachem Nv Agricultural chemicals

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010101774A (ko) * 1999-01-27 2001-11-14 실버스타인 아써 에이. 항암제로서 유용한 치환된 이환 유도체
KR20070053730A (ko) * 2004-08-04 2007-05-25 메이지 세이카 가부시키가이샤 퀴놀린 유도체 및 유효성분으로서 이를 포함하는 살충제
KR20080009112A (ko) * 2005-04-15 2008-01-24 씨이알이피 Npy 길항제, 제법 및 용도
WO2014135955A1 (en) * 2013-03-04 2014-09-12 Purdue Pharma L.P. Pyrimidine carboxamides as sodium channel blockers
CN103787907A (zh) * 2014-02-17 2014-05-14 华东理工大学 作为法尼基转移酶抑制剂的苯胺类化合物及其用途
WO2019141980A1 (en) * 2018-01-17 2019-07-25 Globachem Nv Agricultural chemicals

Similar Documents

Publication Publication Date Title
Ludwig et al. Ferrocene derivatives as anti-infective agents
Toledo et al. An update on human echinostomiasis
RU2413513C2 (ru) Антигельминтная композиция на основе соли четвертичного фосфония и замещенного динитробензофуроксана
Harms Treatments for parasitic diseases of aquarium and ornamental fish
ES2414291B2 (es) Compuestos macrocíclicos de tipo escorpiando y su uso como antiparasitarios.
KR102234530B1 (ko) 신규 톨트라주릴 유도체 및 이를 포함하는 쿠도아충 예방·치료를 위한 약학 조성물
Yin et al. Anti-parasitic effects of Leptomycin B isolated from Streptomyces sp. CJK17 on marine fish ciliate Cryptocaryon irritans
JP2008067648A (ja) 魚類の標識剤と標識方法
US10632137B2 (en) Composition containing ivermectin for exterminating Clavinema mariae infection on Sebastes schlegeli
EA029727B1 (ru) Новые соединения пиридинила и пиримидинила, содержащие их фармацевтические композиции и их применение для борьбы с эндопаразитами у животных
CN114249638A (zh) 一类含卤素基团厚朴酚衍生物及其在抗鱼类寄生原虫中的应用
CN110269859B (zh) 喹噁啉-1,4-二氧类化合物在抗弓形虫感染上的应用
CN105669418B (zh) α,β-不饱和酮化合物及其合成方法、以及含有该化合物的药物及应用
US9271947B2 (en) Use of propyl propane thiosulfinate and propyl propane thiosulfonate for the prevention and reduction of parasites in aquatic animals
US10596193B2 (en) Copper (I) complexes with glycine, pyruvate, and succinate
KR100715893B1 (ko) 감성돔의 기생충 구제 방법
Simonini et al. Ecotoxicity of hallachrome, an unusual 1-2 anthraquinone excreted by the infaunal polychaete Halla parthenopeia: evidence for a chemical defence?
Waristha et al. Acute toxicity of clove oil and effects on histopathological changes in gill of Siamese fighting fish Betta splendens
US10143198B2 (en) Use of propyl propane thiosulfinate and propyl propane thiosulfonate for the prevention and reduction of parasites in aquatic animals
BR102020019508A2 (pt) Uso de hexametoxilobelanina, composição farmacêutica, uso da composição farmacêutica e método de tratamento
Duriez et al. Potential anti-echinococcal activity of alkylaminoethers
Abou El-Atta et al. Prevalence of bacterial infection associated with Caligus infestation in cultured Mugil cephalus with trial to control
Singh et al. Sub Lethal Effects of Copper and Arsenic on Some Biochemical and Hematological Parameters of the Blood in an Air Breathing Fish Heteropneustes fossilis
Rehan Design, synthesis and biological evaluation of novel targeted anthelmintic agents
Sateesh et al. Toxicological studies on ayurvedic formulation Mersina in albino rats

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant