KR102233337B1 - Secondary battery - Google Patents

Secondary battery Download PDF

Info

Publication number
KR102233337B1
KR102233337B1 KR1020180156259A KR20180156259A KR102233337B1 KR 102233337 B1 KR102233337 B1 KR 102233337B1 KR 1020180156259 A KR1020180156259 A KR 1020180156259A KR 20180156259 A KR20180156259 A KR 20180156259A KR 102233337 B1 KR102233337 B1 KR 102233337B1
Authority
KR
South Korea
Prior art keywords
active material
negative electrode
current collector
electrode active
buffer
Prior art date
Application number
KR1020180156259A
Other languages
Korean (ko)
Other versions
KR20200069099A (en
Inventor
오영주
윤중락
이종규
최강민
Original Assignee
삼화콘덴서공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼화콘덴서공업 주식회사 filed Critical 삼화콘덴서공업 주식회사
Priority to KR1020180156259A priority Critical patent/KR102233337B1/en
Publication of KR20200069099A publication Critical patent/KR20200069099A/en
Application granted granted Critical
Publication of KR102233337B1 publication Critical patent/KR102233337B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 이차전지에 관한 것으로, 양극(cathode); 양극과 이격되어 배치되는 음극(anode); 및 양극과 음극 사이에 배치되는 분리막를 포함하고, 양극은 제1집전체와 제1집전체의 표면에 형성되는 양극활물질 전극층을 포함하며, 음극은 제2집전체와 제2집전체의 표면에 형성되는 음극활물질 전극층과 제2집전체와 음극활물질 전극층의 사이에 형성되는 버퍼층을 포함하는 것을 특징으로 한다. The present invention relates to a secondary battery, comprising: a cathode; A cathode disposed to be spaced apart from the anode; And a separator disposed between the positive electrode and the negative electrode, wherein the positive electrode includes a positive electrode active material electrode layer formed on the surfaces of the first current collector and the first current collector, and the negative electrode is formed on the surfaces of the second current collector and the second current collector. And a buffer layer formed between the negative electrode active material electrode layer and the second current collector and the negative electrode active material electrode layer.

Description

이차전지{Secondary battery}Secondary battery

본 발명은 이차전지에 관한 것으로, 특히 SiOx(0.1<x<2.0)와 도전제로 형성되는 음극에 다수개의 버퍼 공간을 갖는 버퍼층을 형성하여 SiOx(0.1<x<2.0)가 리튬과 반응하여 부피가 팽창하는 경우에 다수개의 버퍼 공간으로 팽창하도록 버퍼 공간을 제공함으로써 SiOx(0.1<x<2.0)가 부피 팽창으로 인한 압력으로 미분화되는 것을 방지할 수 있어 음극활물질로 SiOx(0.1<x<2.0)가 적용된 이차 전지의 사이클 특성을 개선시킬 수 있는 이차 전지에 관한 것이다.The present invention relates to a secondary battery, and in particular, by forming a buffer layer having a plurality of buffer spaces on a negative electrode formed of SiOx (0.1<x<2.0) and a conductive agent, SiOx (0.1<x<2.0) reacts with lithium, resulting in a By providing a buffer space to expand into a plurality of buffer spaces in case of expansion, SiOx (0.1<x<2.0) can be prevented from being micronized under pressure due to volume expansion.SiOx (0.1<x<2.0) is used as a negative electrode active material. It relates to a secondary battery capable of improving the cycle characteristics of the applied secondary battery.

리튬이온 이차전지는 충전시에는 양극으로부터 리튬이 이온으로서 용출하여 음극으로 이동하여 흡장되고, 방전시에는 반대로 음극으로부터 양극으로 리튬 이온이 되돌아가는 구조의 2차 전지인데, 높은 에너지 밀도는 양극 활물질의 전위에 기인한다. 이러한 리튬이온 이차전지에 관련된 기술이 한국등록특허공보 제10-1463880호에 공개되어 있다. Lithium ion secondary batteries are secondary batteries with a structure in which lithium is eluted as ions from the positive electrode and moved to the negative electrode during charging, and lithium ions are returned from the negative electrode to the positive electrode during discharge. Caused by electric potential. A technology related to such a lithium ion secondary battery is disclosed in Korean Patent Publication No. 10-1463880.

한국등록특허공보 제10-1463880호는 리튬 전지용 양극 활물질 재료로서 사용하는 스피넬형 리튬망간계 복합 산화물(LMO: LiMn2O4는)에 관한 것으로, 리튬 전지용 양극 활물질 재료는 결정자 사이즈가 250㎚ 내지 350㎚이며, 변형이 0.085 이하이며, 25℃, pH7의 물에 넣고 초음파 강도 40 W(watt)로 600초간 초음파 분산시켰을 경우의 비표면적 증가율이 10.0% 이하인 것이 사용된다. Korean Patent Publication No. 10-1463880 relates to a spinel-type lithium manganese composite oxide (LMO: LiMn 2 O 4 ) used as a positive electrode active material for a lithium battery, and the positive electrode active material material for a lithium battery has a crystallite size of 250 nm or less. It is 350 nm, the strain is 0.085 or less, and the specific surface area increase rate of 10.0% or less when it is ultrasonically dispersed for 600 seconds with an ultrasonic intensity of 40 W (watt) in water at 25° C. and pH 7 is used.

한국등록특허공보 제10-1463880호에 공개된 리튬이온 이차전지는 보다 높은 고용량을 위해 음극 활물질로 큰 이론 용량을 갖는 SiOx(0.1<x<2.0)이 제안되고 있으나 충방전을 반복하는 경우에 SiOx는 리튬과 반응하여 부피가 팽창하게 되고 이로 인해 균열이 발생되어 미분화될 수 있어 충분한 사이클 특성을 얻을 수 없는 문제점이 있다. In the lithium ion secondary battery disclosed in Korean Patent Publication No. 10-1463880, SiOx (0.1<x<2.0) having a large theoretical capacity as a negative electrode active material is proposed for higher capacity, but when charging and discharging are repeated, SiOx There is a problem in that the volume expands by reacting with lithium, which may cause cracks to be pulverized, so that sufficient cycle characteristics cannot be obtained.

1): 한국등록특허공보 제10-1463880호1): Korean Patent Publication No. 10-1463880

본 발명의 목적은 전술한 문제점을 해결하기 위한 것으로, SiOx(0.1<x<2.0)와 도전제로 형성되는 음극에 다수개의 버퍼 공간을 갖는 버퍼층을 형성하여 SiOx(0.1<x<2.0)가 리튬과 반응하여 부피가 팽창하는 경우에 다수개의 버퍼 공간으로 팽창하도록 버퍼 공간을 제공함으로써 SiOx(0.1<x<2.0)가 부피 팽창으로 인한 압력으로 미분화되는 것을 방지할 수 있어 음극활물질로 SiOx(0.1<x<2.0)가 적용된 이차 전지의 사이클 특성을 개선시킬 수 있는 이차 전지를 제공함에 있다.An object of the present invention is to solve the above-described problem, by forming a buffer layer having a plurality of buffer spaces on a negative electrode formed of SiOx (0.1<x<2.0) and a conductive material, SiOx (0.1<x<2.0) By providing a buffer space to expand into a plurality of buffer spaces when the volume expands due to reaction, SiOx (0.1<x<2.0) can be prevented from being micronized under pressure due to volume expansion, so that SiOx (0.1<x) is used as a negative electrode active material. It is to provide a secondary battery that can improve the cycle characteristics of the secondary battery to which <2.0) is applied.

본 발명의 이차 전지는 양극(cathode); 상기 양극과 이격되어 배치되는 음극(anode); 및 상기 양극과 상기 음극 사이에 배치되는 분리막를 포함하고, 상기 양극은 제1집전체와 상기 제1집전체의 표면에 형성되는 양극활물질 전극층을 포함하며, 상기 음극은 제2집전체와 상기 제2집전체의 표면에 형성되는 음극활물질 전극층과 상기 제2집전체와 상기 음극활물질 전극층의 사이에 형성되는 버퍼층을 포함하며, 상기 양극활물질 전극층의 재질은 LCO(LiCoO2), NCM111(LiNi1/3Co1/3Mn1/3O2), NCM622(LiNi0.6Co0.2Mn0.2O2), NCM811(LiNi0.8Co0.1Mn0.1O2), LMO(LiMn2O4) 및 LNMO(LiNi0.5Mn1.5O4) 중 하나가 선택되어 형성되고, 상기 음극활물질 전극층의 재질은 도전제와 SiOx(0.1<x<2.0)를 혼합하여 사용되며, 상기 버퍼층의 재질은 활성탄과 도전제로 형성되는 것을 특징으로 한다. The secondary battery of the present invention includes a cathode; A cathode disposed to be spaced apart from the anode; And a separator disposed between the positive electrode and the negative electrode, wherein the positive electrode includes a first current collector and a positive electrode active material electrode layer formed on a surface of the first current collector, and the negative electrode includes a second current collector and the second A negative electrode active material electrode layer formed on the surface of the current collector, and a buffer layer formed between the second current collector and the negative electrode active material electrode layer, and the material of the positive electrode active material electrode layer is LCO (LiCoO 2 ), NCM111 (LiNi 1/3). Co 1/3 Mn 1/3 O 2 ), NCM622 (LiNi 0.6 Co 0.2 Mn 0.2 O 2 ), NCM811 (LiNi 0.8 Co 0.1 Mn 0.1 O 2 ), LMO (LiMn 2 O 4 ) and LNMO (LiNi 0.5 Mn 1.5) O 4 ) is selected and formed, the material of the negative electrode active material electrode layer is used by mixing a conductive agent and SiOx (0.1<x<2.0), and the material of the buffer layer is formed of activated carbon and a conductive material. .

본 발명의 이차 전지는 SiOx(0.1<x<2.0)와 도전제로 형성되는 음극에 다수개의 버퍼 공간을 갖는 버퍼층을 형성하여 iOx(0.1<x<2.0)와 도전제로 형성되는 음극에 다수개의 버퍼 공간을 갖는 버퍼층을 형성하여 SiOx(0.1<x<2.0)가 리튬과 반응하여 부피가 팽창하는 경우에 다수개의 버퍼 공간으로 팽창하도록 버퍼 공간을 제공함으로써 SiOx(0.1<x<2.0)가 부피 팽창으로 인한 압력으로 미분화되는 것을 방지할 수 있어 음극활물질로 SiOx(0.1<x<2.0)가 적용된 이차 전지의 사이클 특성을 개선시킬 수 있는 이점이 있다.In the secondary battery of the present invention, a buffer layer having a plurality of buffer spaces is formed on a negative electrode formed of SiOx (0.1<x<2.0) and a conductive material, and a plurality of buffer spaces are formed on the negative electrode formed of iOx (0.1<x<2.0) and a conductive material. By forming a buffer layer having SiOx (0.1<x<2.0), SiOx (0.1<x<2.0) is caused by volume expansion by providing a buffer space to expand into a plurality of buffer spaces when the volume expands due to reaction of SiOx (0.1<x<2.0) with lithium. Micronization under pressure can be prevented, so there is an advantage of improving the cycle characteristics of a secondary battery to which SiOx (0.1<x<2.0) is applied as a negative electrode active material.

도 1은 본 발명의 이차 전지의 단면도,
도 2는 도 1에 도시된 음극의 일실시예를 나타낸 확대 단면도,
도 3은 도 1에 도시된 음극의 다른 실시예를 나타낸 확대 단면도,
도 4는 도 1에 도시된 음극의 또 다른 실시예를 나타낸 확대 단면도.
1 is a cross-sectional view of a secondary battery of the present invention,
2 is an enlarged cross-sectional view showing an embodiment of the negative electrode shown in FIG. 1;
3 is an enlarged cross-sectional view showing another embodiment of the negative electrode shown in FIG. 1;
Figure 4 is an enlarged cross-sectional view showing another embodiment of the negative electrode shown in Figure 1;

이하, 본 발명의 이차 전지의 실시예를 첨부된 도면을 참조하여 설명하면 다음과 같다.Hereinafter, an embodiment of a secondary battery of the present invention will be described with reference to the accompanying drawings.

도 1 및 도 2에서와 같이 본 발명의 이차 전지는 양극(cathode)(10), 음극(anode)(20), 분리막(30), 전해액(40) 및 케이스(50)를 포함하여 구성된다. 1 and 2, the secondary battery of the present invention includes a cathode 10, an anode 20, a separator 30, an electrolyte solution 40, and a case 50.

양극(cathode)(10)은 케이스(50)의 내측에 배치되며, 음극(anode)(20)은 양극(10)과 이격되어 배치된다. 분리막(30)은 양극(10)과 음극(20) 사이에 배치되며, 전해액(40)은 양극(10)과 음극(20)에 함침된 상태로 케이스(50)의 내측에 위치되며 케이스(50)는 본 발명의 이차 전지를 전반적으로 지지한다. 여기서, 양극(10)은 제1집전체(11)와 제1집전체(11)의 표면에 형성되는 양극활물질 전극층(12)을 포함하며, 양극활물질 전극층(12)의 재질은 LCO(LiCoO2), NCM111(LiNi1/3Co1/3Mn1/3O2), NCM622(LiNi0.6Co0.2Mn0.2O2), NCM811(LiNi0.8Co0.1Mn0.1O2), LMO(LiMn2O4) 및 LNMO(LiNi0.5Mn1.5O4) 중 하나가 선택되어 형성된다. 음극(20)은 제2집전체(21)와 제2집전체(21)의 표면에 형성되는 음극활물질 전극층(22)과 제2집전체(21)와 음극활물질 전극층(22)의 사이에 형성되는 버퍼층(23)을 포함하며, 음극활물질 전극층(22)의 재질은 SiOx(0.1<x<2.0)가 사용되며, 버퍼층(23)의 재질은 활성탄(23a)과 도전제(23b)로 형성된다.The anode 10 is disposed inside the case 50, and the cathode 20 is disposed to be spaced apart from the anode 10. The separator 30 is disposed between the anode 10 and the cathode 20, and the electrolyte 40 is located inside the case 50 in a state impregnated with the anode 10 and the cathode 20, and the case 50 ) Generally supports the secondary battery of the present invention. Here, the positive electrode 10 includes a first current collector 11 and a positive electrode active material electrode layer 12 formed on the surface of the first current collector 11, and the material of the positive electrode active material electrode layer 12 is LCO (LiCoO 2 ). ), NCM111(LiNi 1/3 Co 1/3 Mn 1/3 O 2 ), NCM622(LiNi 0.6 Co 0.2 Mn 0.2 O 2 ), NCM811(LiNi 0.8 Co 0.1 Mn 0.1 O 2 ), LMO(LiMn 2 O 4 ) And LNMO (LiNi 0.5 Mn 1.5 O 4 ) is selected and formed. The negative electrode 20 is formed between the negative electrode active material electrode layer 22 formed on the surface of the second current collector 21 and the second current collector 21 and between the second current collector 21 and the negative electrode active material electrode layer 22 A buffer layer 23 is included, and the material of the negative electrode active material electrode layer 22 is SiOx (0.1<x<2.0), and the material of the buffer layer 23 is formed of activated carbon 23a and a conductive agent 23b. .

본 발명의 이차 전지의 구성을 상세히 설명하면 다음과 같다. The configuration of the secondary battery of the present invention will be described in detail as follows.

양극(cathode)(10)은 도 1에서와 같이 케이스(50)의 내측에 배치되며, 제1집전체(11)와 양극활물질 전극층(12)을 포함하여 구성된다. The cathode 10 is disposed inside the case 50 as shown in FIG. 1, and includes a first current collector 11 and a cathode active material electrode layer 12.

제1집전체(11)는 양극활물질 전극층(12)을 전반적으로 지지하며, 재질은 Al, Cu 및 Ni 중 하나를 선택하여 사용하거나 둘 이상을 혼합하여 사용된다. 양극활물질 전극층(12)은 제1집전체(11)의 표면에 형성되며, 재질은 LCO(LiCoO2), NCM111(LiNi1/3Co1/3Mn1/3O2), NCM622(LiNi0.6Co0.2Mn0.2O2), NCM811(LiNi0.8Co0.1Mn0.1O2), LMO(LiMn2O4) 및 LNMO(LiNi0.5Mn1.5O4) 중 하나가 선택되어 형성된다. 이러한 양극활물질 전극층(12)의 제조방법은 LCO(LiCoO2), NCM111(LiNi1/3Co1/3Mn1/3O2), NCM622(LiNi0.6Co0.2Mn0.2O2), NCM811(LiNi0.8Co0.1Mn0.1O2), LMO(LiMn2O4) 및 LNMO(LiNi0.5Mn1.5O4) 중 하나, 바인더 및 도전제를 혼합한 후 제1집전체(11)의 표면에 도포하여 형성한다. 바인더는 PVDF(polyvinylidene difluoride), PTFE(polytetrafluoroethylene), SBR(styrene butadiene rubber) 및 CMC(carboxymethylcellulose) 중 하나를 선택하여 사용하였으며, 도전제는 슈퍼-피(Super-P), 케쳔블랙(ketjen black) 및 카본블랙(carbon black) 중 하나를 선택하여 사용하였다. The first current collector 11 generally supports the positive electrode active material electrode layer 12, and the material is used by selecting one of Al, Cu, and Ni, or a mixture of two or more. The positive electrode active material electrode layer 12 is formed on the surface of the first current collector 11, and the materials are LCO (LiCoO 2 ), NCM111 (LiNi 1/3 Co 1/3 Mn 1/3 O 2 ), NCM622 (LiNi 0.6 Co 0.2 Mn 0.2 O 2 ), NCM811 (LiNi 0.8 Co 0.1 Mn 0.1 O 2 ), LMO (LiMn 2 O 4 ) and LNMO (LiNi 0.5 Mn 1.5 O 4 ) is formed by selecting one of. The manufacturing method of the cathode active material electrode layer 12 is LCO (LiCoO 2 ), NCM111 (LiNi 1/3 Co 1/3 Mn 1/3 O 2 ), NCM622 (LiNi 0.6 Co 0.2 Mn 0.2 O 2 ), NCM811 (LiNi 0.8 Co 0.1 Mn 0.1 O 2 ), one of LMO (LiMn 2 O 4 ) and LNMO (LiNi 0.5 Mn 1.5 O 4 ), a binder and a conductive agent are mixed and applied to the surface of the first current collector 11 to form do. The binder was selected from one of PVDF (polyvinylidene difluoride), PTFE (polytetrafluoroethylene), SBR (styrene butadiene rubber), and CMC (carboxymethylcellulose), and the conducting agent was Super-P, ketjen black. And carbon black was selected and used.

음극(anode)(20)은 도 1 및 도 2에서와 같이 케이스(50)의 내측에서 양극(10)과 이격되어 배치되며, 제2집전체(21), 음극활물질 전극층(22) 및 버퍼층(23)을 포함하여 구성된다. As shown in FIGS. 1 and 2, the anode 20 is disposed inside the case 50 to be spaced apart from the anode 10, and the second current collector 21, the anode active material electrode layer 22, and the buffer layer ( 23).

제2집전체(21)는 음극활물질 전극층(22)과 버퍼층(23)을 전반적으로 지지하며, 재질은 Al, Cu 및 Ni 중 하나를 선택하여 사용하거나 둘 이상을 혼합하여 사용된다.The second current collector 21 generally supports the negative electrode active material electrode layer 22 and the buffer layer 23, and the material is used by selecting one of Al, Cu, and Ni, or a mixture of two or more.

음극활물질 전극층(22)은 제2집전체(21)의 표면에 형성되며, 재질은 도전제와 SiOx(0.1<x<2.0)를 혼합하여 형성된다. 즉, 음극활물질 전극층(22)은 도전제와 SiOx(0.1<x<2.0)를 혼합한 후 제1집전체(11)의 표면에 도포하여 형성한다. 여기서, 음극활물질 전극층(22)은 도전제 85 내지 90wt%와 SiOx(0.1<x<2.0) 10 내지 15wt%로 혼합되어 형성되며, 도전제는 그래파이트(graphite), 하드 카본(hard carbon), 소프트 카본(soft carbon) 및 그래핀(graphene) 중 하나가 사용된다. The negative electrode active material electrode layer 22 is formed on the surface of the second current collector 21, and the material is formed by mixing a conductive agent and SiOx (0.1<x<2.0). That is, the negative electrode active material electrode layer 22 is formed by mixing a conductive agent and SiOx (0.1<x<2.0) and then applying it to the surface of the first current collector 11. Here, the negative electrode active material electrode layer 22 is formed by mixing 85 to 90 wt% of a conductive agent and 10 to 15 wt% of SiOx (0.1<x<2.0), and the conductive agent is graphite, hard carbon, and soft One of soft carbon and graphene is used.

버퍼층(23)은 제2집전체(21)와 음극활물질 전극층(22)의 사이에 형성되며, 재질은 활성탄(23a)과 도전제(23b)로 형성된다. 이러한 버퍼층(23)은 활성탄(23a) 85 내지 95wt%와 도전제(23b) 5 내지 15wt%가 되도록 형성되며, 도전제(23b)는 슈퍼-피(Super-P), 케쳔블랙(ketjen black) 및 카본블랙(carbon black) 중 하나를 선택하여 사용된다. 즉, 버퍼층(23)은 활성탄(23a)과 도전제(23b)를 각각 스크린 인쇄법(Screening Printing)이나 그라비아 인쇄법(Gravure Printing)을 이용해 다수개의 버퍼 공간(23c)을 갖도록 형성된다. 예를 들어, 버퍼층(23)은 평균입경(D1)이 3 내지 20㎛인 활성탄(23a)과 평균입경(D2)이 10 내지 40㎚인 도전제(23b)를 스크린 인쇄법이나 그라비아 인쇄법을 이용해 형성하는 과정 중에 다수개의 버퍼 공간(23c)을 갖도록 형성한다. 이러한 음극활물질 전극층(22)은 SiOx(0.1<x<2.0), 바인더 및 도전제를 혼합한 후 제1집전체(11)의 표면에 도포하여 형성한다. 바인더는 PVDF(polyvinylidene difluoride), PTFE(polytetrafluoroethylene), SBR(styrene butadiene rubber) 및 CMC(carboxymethylcellulose) 중 하나를 선택하여 사용하였으며, 도전제는 슈퍼-피(Super-P), 케쳔블랙(ketjen black) 및 카본블랙(carbon black) 중 하나를 선택하여 사용하였다. The buffer layer 23 is formed between the second current collector 21 and the negative electrode active material electrode layer 22, and the material is made of activated carbon 23a and a conductive agent 23b. The buffer layer 23 is formed to be 85 to 95 wt% of the activated carbon 23a and 5 to 15 wt% of the conductive agent 23b, and the conductive agent 23b is Super-P, ketjen black. And carbon black. That is, the buffer layer 23 is formed to have a plurality of buffer spaces 23c by using the activated carbon 23a and the conductive agent 23b, respectively, using a screen printing method or a gravure printing method. For example, the buffer layer 23 is prepared by using a screen printing method or a gravure printing method using activated carbon 23a having an average particle diameter (D1) of 3 to 20 μm and a conductive agent 23b having an average particle diameter (D2) of 10 to 40 nm. It is formed to have a plurality of buffer spaces 23c during the forming process. The negative electrode active material electrode layer 22 is formed by mixing SiOx (0.1<x<2.0), a binder, and a conductive agent, and then coating it on the surface of the first current collector 11. The binder was selected from one of PVDF (polyvinylidene difluoride), PTFE (polytetrafluoroethylene), SBR (styrene butadiene rubber), and CMC (carboxymethylcellulose), and the conducting agent was Super-P, ketjen black. And carbon black was selected and used.

버퍼층(23)은 활성탄(23a)과 도전제(23b)를 각각 스크린 인쇄법(Screening Printing)이나 그라비아 인쇄법(Gravure Printing)을 이용해 다수개의 버퍼 공간(23c)을 갖도록 형성된다. 예를 들어, 버퍼층(23)은 도 2에서와 같이 평균입경(D1)이 3 내지 20㎛인 활성탄(23a)을 스크린 인쇄법이나 그라비아 인쇄법을 이용해 형성한 후 활성탄(23a)보다 평균입경(D2)이 10 내지 40㎚로 작은 도전제(23b)를 스크린 인쇄법이나 그라비아 인쇄법을 이용해 활성탄(23a)과 활성탄(23a) 사이를 채움과 아울러 다수개의 버퍼 공간(23c)이 형성되도록 한다. The buffer layer 23 is formed to have a plurality of buffer spaces 23c by using the activated carbon 23a and the conductive agent 23b, respectively, using a screen printing method or a gravure printing method. For example, the buffer layer 23 has an average particle diameter (D1) of 3 to 20 μm, as shown in FIG. 2, after forming activated carbon 23a using a screen printing method or a gravure printing method, and then having an average particle diameter ( A conductive agent 23b having a small D2 of 10 to 40 nm is filled between the activated carbon 23a and the activated carbon 23a using a screen printing method or a gravure printing method, and a plurality of buffer spaces 23c are formed.

다수개의 버퍼 공간(23c)의 평균입경(D3)은 음극활물질 전극층(22)으로 사용되는 SiOx(0.1<x<2.0)나 도전제의 평균입경(도시 않음)보다 작게 형성함으로써 음극활물질 전극층(22)의 형성으로 인해 다수개의 버퍼 공간(23c)이 축소되는 것을 방지하거나, SiOx(0.1<x<2.0), 바인더 및 도전제를 혼합시 점도를 10000 내지 50000 CPS(Centipoise)로 높게 혼합하여 SiOx(0.1<x<2.0)나 도전제가 다수개의 버퍼 공간(23c)으로 침투하여 다수개의 버퍼 공간(23c)이 축소되는 것을 방지한다.The average particle diameter (D3) of the plurality of buffer spaces 23c is smaller than the average particle diameter (not shown) of SiOx (0.1<x<2.0) or the conductive agent used as the negative electrode active material electrode layer 22, so that the negative electrode active material electrode layer 22 ) To prevent the plurality of buffer spaces (23c) from shrinking due to the formation of SiOx (0.1<x<2.0), a binder, and a conductive agent by mixing a high viscosity of 10000 to 50000 CPS (Centipoise) to SiOx ( 0.1<x<2.0) or conductive agent penetrates into the plurality of buffer spaces 23c to prevent the plurality of buffer spaces 23c from being reduced.

음극(20)의 다른 실시예는 도 3 및 도 4에서와 같이 제2집전체(21)의 표면에 둘 이상의 음극활물질 전극층(22)을 형성하고, 제2집전체(21)와 음극활물질 전극층(22)사이나 둘 이상의 음극활물질 전극층(22) 사이에 버퍼층(23)을 형성한다. 예를 들어, 음극(20)의 다른 실시예는 도 3에서와 같이 제2집전체(21)의 표면에 두개의 음극활물질 전극층(22)을 형성한 후 두개의 음극활물질 전극층(22) 사이에 다수개의 버퍼 공간(23c)을 갖는 버퍼층(23)을 형성한다. 음극(20)의 또 다른 실시예는 도 4에서와 같이 제2집전체(21)와 음극활물질 전극층(22)사이와 두개의 음극활물질 전극층(22) 사이에 각각 다수개의 버퍼 공간(23c)을 갖는 버퍼층(23)을 형성한다. 도 3 및 도 4에 각각 도시된 음극(20)에 적용된 제2집전체(21), 음극활물질 전극층(22) 및 버퍼층(23)의 재질이나 제조방법은 도 2에 도시된 음극(20)과 동일하게 적용됨으로 상세한 설명을 생략한다. In another embodiment of the negative electrode 20, as shown in FIGS. 3 and 4, two or more negative electrode active material electrode layers 22 are formed on the surface of the second current collector 21, and the second current collector 21 and the negative electrode active material electrode layer are formed. (22) A buffer layer 23 is formed between two or more negative electrode active material electrode layers 22. For example, in another embodiment of the negative electrode 20, after forming two negative electrode active material electrode layers 22 on the surface of the second current collector 21 as shown in FIG. 3, between the two negative electrode active material electrode layers 22 A buffer layer 23 having a plurality of buffer spaces 23c is formed. Another embodiment of the negative electrode 20 includes a plurality of buffer spaces 23c, respectively, between the second current collector 21 and the negative electrode active material layer 22 and between the two negative electrode active material electrode layers 22, as shown in FIG. 4. A buffer layer 23 is formed. Materials and manufacturing methods of the second current collector 21, the negative electrode active material electrode layer 22, and the buffer layer 23 applied to the negative electrode 20 shown in FIGS. 3 and 4, respectively, are Since the same is applied, a detailed description is omitted.

분리막(30)은 도 1에서와 같이 케이스(50)의 내측에서 분리막(30)은 양극(10)과 음극(20) 사이에 위치되도록 배치되어 양극(10)과 음극(20)이 서로 물리적으로 접촉되는 것을 방지하며, 재질은 공지된 이차 전지에 적용되는 재질이 사용된다. The separator 30 is disposed so that the separator 30 is positioned between the anode 10 and the cathode 20 on the inside of the case 50 as shown in FIG. 1 so that the anode 10 and the cathode 20 are physically connected to each other. It prevents contact, and the material used is a material applied to a known secondary battery.

전해액(40)은 도 1에서와 같이 이차 전지에 포함되며, 유기용매, 염 및 첨가제를 혼합하여 사용함으로써 본 발명의 이차 전지에 적용될 수 있도록 한다.The electrolyte solution 40 is included in the secondary battery as shown in FIG. 1, and can be applied to the secondary battery of the present invention by mixing and using an organic solvent, a salt, and an additive.

유기용매는 Acetonitrile(ACN), Ethylene carbonate(EC), Propylene carbonate(PC), Dimethyl carbonate(DMC), Diethyl carbonate(DEC), Ethylmethyl carbonate(EMC), 1,2-dimethoxyethane(DME), γ-buthrolactone(GBL), Methyl formate(MF), Methyl propionate(MP) 중 셋 이상을 선택한 후 혼합하여 사용된다. 여기서, 유기용매는 Acetonitrile(ACN), Ethylene carbonate(EC), Propylene carbonate(PC), Dimethyl carbonate(DMC), Diethyl carbonate(DEC), Ethylmethyl carbonate(EMC), 1,2-dimethoxyethane(DME), γ-buthrolactone(GBL), Methyl formate(MF), Methyl propionate(MP) 중 선택된 셋 이상의 유기용매가 각각 동일한 wt%의 비율로 혼합되하여 사용된다. Organic solvents are Acetonitrile (ACN), Ethylene carbonate (EC), Propylene carbonate (PC), Dimethyl carbonate (DMC), Diethyl carbonate (DEC), Ethylmethyl carbonate (EMC), 1,2-dimethoxyethane (DME), γ-buthrolactone (GBL), Methyl formate (MF), and Methyl propionate (MP) are used after selecting three or more. Here, the organic solvent is Acetonitrile (ACN), Ethylene carbonate (EC), Propylene carbonate (PC), Dimethyl carbonate (DMC), Diethyl carbonate (DEC), Ethylmethyl carbonate (EMC), 1,2-dimethoxyethane (DME), γ -Three or more organic solvents selected from buthrolactone (GBL), methyl formate (MF), and methyl propionate (MP) are mixed in the same wt% ratio and used.

염은 리튬염과 비리튬염을 혼합하여 사용하며, 리튬염은 LiBF4, LiPF6, LiClO4, LiAsF6, LiAlCl4, LiCF3SO3, LiN(SO2CF3)2, LiC(SO2CF3)3, LiBOB(LiBOB : Lithium bis(oxalato)borate) 중 하나 이상 선택하여 사용된다. 비리튬염은 TEABF4(Tetraethylammonium tetrafluoroborate), TEMABF4(triethylmethylammonium tetrafluorborate) 및 SBPBF4(spiro-(1,1′)-bipyrrolidium tetrafluoroborate) 중 하나 이상 선택하여 사용된다. 염에 포함되는 리튬염은 0.8 내지 2M(molarity)인 것을 사용하며, 비리튬염은 0.1 내지 0.5M(molarity)인 것이 사용된다. The salt is used by mixing a lithium salt and a non-lithium salt, and the lithium salt is LiBF 4 , LiPF 6 , LiClO 4 , LiAsF 6 , LiAlCl 4 , LiCF 3 SO 3 , LiN(SO 2 CF3)2, LiC(SO2CF3)3 , LiBOB (LiBOB: Lithium bis(oxalato)borate). The non-lithium salt is used by selecting one or more of TEABF4 (tetraethylammonium tetrafluoroborate), TEMABF4 (triethylmethylammonium tetrafluorborate), and SBPBF4 (spiro-(1,1′)-bipyrrolidium tetrafluoroborate). The lithium salt contained in the salt is 0.8 to 2M (molarity), and the non-lithium salt is 0.1 to 0.5M (molarity).

첨가제는 VC(Vinylene Carbonate), VEC(Vinyl ethylene carbonate) 및 FEC(Fluoroethylene carbonate) 중 하나 이상 선택하여 사용된다.The additive is used by selecting one or more of VC (Vinylene Carbonate), VEC (Vinyl ethylene carbonate), and FEC (Fluoroethylene carbonate).

이러한 본 발명의 이차 전지의 전기적인 시험을 위해 먼저, 표 1과 같이 다양한 실시예의 양극활물질 전극층(12), 음극활물질 전극층(22) 및 버퍼층(23)을 각각 제조하였다. For the electrical test of the secondary battery of the present invention, first, as shown in Table 1, a positive electrode active material electrode layer 12, a negative electrode active material electrode layer 22, and a buffer layer 23 of various embodiments were prepared, respectively.


양극활물질 전극층(wt%)Positive electrode active material electrode layer (wt%) 음극활물질 전극층(wt%)Anode active material electrode layer (wt%) 버퍼층(wt%)Buffer layer (wt%)
NCM811NCM811 바인더bookbinder 도전제Challenge 도전제Challenge SiOx(0.1<x<2.0)SiOx(0.1<x<2.0) 활성탄Activated carbon 도전제Challenge 실시예1Example 1 8888 22 1010 8585 1515 8585 1515 실시예2Example 2 9494 1One 55 8585 1515 8585 1515 실시예3Example 3 8888 22 1010 9090 1010 9595 55 실시예4Example 4 9494 1One 55 9090 1010 9595 55

표 1에서와 같이 양극활물질 전극층(12)은 실시예 1 내지 4로 제조하였다. 실시예1 및 3에 따른 양극활물질 전극층(12)은 각각 NCM811(LiNi0.8Co0.1Mn0.1O2) 88 wt%, 바인더 2 wt% 및 도전제 10 wt%가 되도록 혼합하여 형성하였고, 실시예2 및 실시예4에 따른 양극활물질 전극층(12)은 각각 NCM811(LiNi0.8Co0.1Mn0.1O2) 94 wt%, 바인더 1 wt% 및 도전제 5 wt%가 되도록 혼합하여 형성하였다. 여기서, 바인더는 PVDF(polyvinylidene difluoride), PTFE(polytetrafluoroethylene), SBR(styrene butadiene rubber) 및 CMC(carboxymethylcellulose) 중 PVDF(polyvinylidene difluoride)를 사용하였으며, 도전제는 슈퍼-피(Super-P), 케쳔블랙(ketjen black) 및 카본블랙(carbon black) 중 슈퍼-피(Super-P)을 사용하였다. As shown in Table 1, the positive electrode active material electrode layer 12 was prepared in Examples 1 to 4. The positive electrode active material electrode layers 12 according to Examples 1 and 3 were formed by mixing 88 wt% of NCM811 (LiNi 0.8 Co 0.1 Mn 0.1 O 2 ), 2 wt% of a binder, and 10 wt% of a conductive agent, respectively, and Example 2 And the positive electrode active material electrode layer 12 according to Example 4 was formed by mixing NCM811 (LiNi 0.8 Co 0.1 Mn 0.1 O 2 ) 94 wt%, a binder 1 wt%, and a conductive agent 5 wt%, respectively. Here, as the binder, polyvinylidene difluoride (PVDF) was used among polyvinylidene difluoride (PVDF), polytetrafluoroethylene (PTFE), styrene butadiene rubber (SBR), and carboxymethylcellulose (CMC). (Ketjen black) and carbon black (Super-P) was used.

음극활물질 전극층(22)의 실시예1은 표 1에서와 같이 도전제 85wt%와 SiOx(x=0.1) 15wt%를 혼합하여 형성하였으며, 도전제는 그래파이트(graphite), 하드 카본(hard carbon), 소프트 카본(soft carbon) 및 그래핀(graphene) 중 그래파이트(graphite)를 선택하여 사용하였다. 음극활물질 전극층(22)의 실시예2는 표 1에서와 같이 도전제 85wt%와 SiOx(x=2.0) 15wt%를 혼합하여 형성하였으며, 도전제는 그래파이트(graphite), 하드 카본(hard carbon), 소프트 카본(soft carbon) 및 그래핀(graphene) 중 그래파이트(graphite)를 선택하여 사용하였다. Example 1 of the negative electrode active material electrode layer 22 was formed by mixing 85 wt% of a conductive agent and 15 wt% of SiOx (x=0.1), as shown in Table 1, and the conductive agents were graphite, hard carbon, and Graphite was selected and used among soft carbon and graphene. Example 2 of the negative electrode active material electrode layer 22 was formed by mixing 85 wt% of a conductive agent and 15 wt% of SiOx (x=2.0) as shown in Table 1, and the conductive agents were graphite, hard carbon, and Graphite was selected and used among soft carbon and graphene.

음극활물질 전극층(22)의 실시예3은 표 1에서와 같이 도전제 90wt%와 SiOx(x=0.1) 10wt%를 혼합하여 형성하였으며, 도전제는 그래파이트(graphite), 하드 카본(hard carbon), 소프트 카본(soft carbon) 및 그래핀(graphene) 중 그래파이트(graphite)를 선택하여 사용하였다. 음극활물질 전극층(22)의 실시예4는 또한, 표 1에서와 같이 도전제 90wt%와 SiOx(x=2.0) 10wt%를 혼합하여 형성하였으며, 도전제는 그래파이트(graphite), 하드 카본(hard carbon), 소프트 카본(soft carbon) 및 그래핀(graphene) 중 그래파이트(graphite)를 선택하여 사용하였다. 여기서, 음극활물질 전극층(22)은 바인더를 포합하여 혼합되며, 바인더는 도전제와 SiOx(x=0.1, x-2.0)의 혼합물 95wt%에 대해 5wt%가 되도록 혼합하여 형성하였다.Example 3 of the anode active material electrode layer 22 was formed by mixing 90 wt% of a conductive agent and 10 wt% of SiOx (x=0.1), as shown in Table 1, and the conductive agents were graphite, hard carbon, and Graphite was selected and used among soft carbon and graphene. Example 4 of the negative electrode active material electrode layer 22 was also formed by mixing 90 wt% of a conductive agent and 10 wt% of SiOx (x=2.0) as shown in Table 1, and the conductive agents were graphite and hard carbon. ), graphite among soft carbon and graphene was selected and used. Here, the negative electrode active material electrode layer 22 is mixed with a binder, and the binder is formed by mixing a conductive agent and a mixture of SiOx (x=0.1, x-2.0) to 95wt% to 95wt%.

버퍼층(23)은 표 1에서와 같이 실시예1 및 2는 평균입경(D1)이 3㎛인 활성탄(23a) 85wt%와 평균입경(D2)이 10㎚인 도전제(23b) 15wt%를 혼합하여 형성하였고, 실시예3 및 4는 평균입경(D1)이 20㎛인 활성탄(23a) 95wt%와 평균입경(D2)이 40㎚인 도전제(23b) 5wt%를 혼합하여 형성하였다. 버퍼층(23)의 도전제(23b)는 슈퍼-피(Super-P), 케쳔블랙(ketjen black) 및 카본블랙(carbon black) 중 카본블랙(carbon black)를 선택하여 사용하였으며, 그라비아 인쇄법을 이용해 다수개의 버퍼 공간(23c)을 갖도록 형성하였다. 즉, 버퍼층(23)은 집전체(21)의 표면에 형성 시 그라비아 인쇄법을 이용해 다수개의 버퍼 공간(23c)을 갖도록 인쇄한 후 제2집전체(21)의 표면과 접촉함과 아울러 다수개의 버퍼 공간(23c)이 채워지지 않도록 활성탄(23a)과 도전제(23b)를 각각 도포하여 다수개의 버퍼 공간(23c)이 확보되도록 하였다. 여기서, 다수개의 버퍼 공간(23c)의 평균입경(D3)은 각각 음극활물질 전극층(22)으로 사용되는 SiOx(0.1<x<2.0)나 도전제의 평균입경(도시 않음)보다 작게 형성함으로써 음극활물질 전극층(22)의 형성으로 인해 다수개의 버퍼 공간(23c)이 축소되는 것을 방지하거나, 음극활물질 전극층(22)의 제조 시 점도를 10000 내지 50000 CPS(Centipoise)로 높게 혼합하여 도전제와 SiOx(0.1<x<2.0)가 다수개의 버퍼 공간(23c)으로 침투하여 다수개의 버퍼 공간(23c)이 축소되는 것을 방지한다.As shown in Table 1, the buffer layer 23 is a mixture of 85 wt% of activated carbon (23a) having an average particle diameter (D1) of 3 μm and 15 wt% of a conductive agent (23b) having an average particle diameter (D2) of 10 nm as shown in Table 1. Examples 3 and 4 were formed by mixing 95 wt% of activated carbon (23a) having an average particle diameter (D1) of 20 µm and 5 wt% of a conductive agent (23b) having an average particle diameter (D2) of 40 nm. As the conductive agent 23b of the buffer layer 23, carbon black was selected and used among Super-P, ketjen black, and carbon black, and the gravure printing method was used. It was formed to have a plurality of buffer spaces (23c). That is, when the buffer layer 23 is formed on the surface of the current collector 21, after printing to have a plurality of buffer spaces 23c by using a gravure printing method, the buffer layer 23 contacts the surface of the second current collector 21 and a plurality of The activated carbon 23a and the conductive agent 23b were respectively coated so that the buffer space 23c was not filled, so that a plurality of buffer spaces 23c were secured. Here, the average particle diameter D3 of the plurality of buffer spaces 23c is formed smaller than the average particle diameter (not shown) of SiOx (0.1<x<2.0) or conductive agent used as the anode active material electrode layer 22, respectively. Due to the formation of the electrode layer 22, the plurality of buffer spaces 23c are prevented from shrinking, or when the negative electrode active material electrode layer 22 is manufactured, the viscosity is mixed with a high viscosity of 10000 to 50000 CPS (Centipoise), and the conductive agent and SiOx (0.1 <x<2.0) penetrates into the plurality of buffer spaces 23c to prevent the plurality of buffer spaces 23c from being reduced.

양극활물질 전극층(12), 음극활물질 전극층(22) 및 버퍼층(23)이 형성되고 이를 이용해 양극(10)과 음극(20)을 제조하였고, 양극(10)과 음극(20)이 제조되어 준비되면 양극(10)과 음극(20) 사이에 분리막(30)을 개재시킨 상태에서 양극(10)과 음극(20)은 도 1에서와 같이 전해액(40)에 함침된 후 케이스(50)의 내측에 수납되어 조립된다. 양극(10)과 음극(20)을 케이스(50)의 내측에 조립 시 양극(10)과 음극(20)은 각각의 단자(13,24)가 양극(10)의 제1집전체(11)와 음극(20)의 제2집전체(21)에 연결된 상태에서 케이스(50)의 외부로 노출되도록 조립된다. 여기서, 분리막(30)은 이차 전지(도시 않음)에 적용되는 공지된 분리막이 적용됨으로 설명을 생략한다. When the positive electrode active material electrode layer 12, the negative electrode active material electrode layer 22, and the buffer layer 23 were formed, and the positive electrode 10 and the negative electrode 20 were manufactured, and the positive electrode 10 and the negative electrode 20 were prepared and prepared. In the state where the separator 30 is interposed between the anode 10 and the cathode 20, the anode 10 and the cathode 20 are impregnated with the electrolyte solution 40 as shown in FIG. It is housed and assembled. When assembling the positive electrode 10 and the negative electrode 20 to the inside of the case 50, the positive electrode 10 and the negative electrode 20, respectively, the terminals 13 and 24 are the first current collector 11 of the positive electrode 10 And the cathode 20 are assembled to be exposed to the outside of the case 50 while being connected to the second current collector 21. Here, the description of the separator 30 is omitted because a known separator applied to a secondary battery (not shown) is applied.

전해액(40)은 도 1에서와 같이 이차 전지에 포함되며, 유기용매, 염 및 첨가제를 혼합하여 사용함으로써 본 발명의 이차 전지에 적용될 수 있도록 한다. 유기용매는 Ethylene carbonate(EC), Dimethyl carbonate(DMC) 및 Ethylmethyl carbonate(EMC)가 각각 1:1:1로 동일한 wt%의 비율이 되도록 혼합하여 사용하였고, 염은 리튬염은 LiBF4를 사용하였으며, 비리튬염은 TEABF4(Tetraethylammonium tetrafluoroborate)를 선택하였으며, 첨가제는 VC(Vinylene Carbonate)를 선택하였으며, 실시예1 및 2의 경우에 리튬염은 0.8M(molarity)인 것을 사용하며 비리튬염은 0.5M(molarity)인 것이 사용되었으며, 실시예3 및 실시예4는 각각 리튬염은 2M인 것을 사용하며, 비리튬염은 0.1M인 것을 사용하였다. The electrolyte solution 40 is included in the secondary battery as shown in FIG. 1 and can be applied to the secondary battery of the present invention by mixing and using an organic solvent, a salt, and an additive. As an organic solvent, ethylene carbonate (EC), dimethyl carbonate (DMC), and ethylmethyl carbonate (EMC) were mixed and used in a ratio of 1:1:1 in the same wt%, and the lithium salt was LiBF 4 . , TEABF4 (Tetraethylammonium tetrafluoroborate) was selected as the non-lithium salt, and VC (Vinylene Carbonate) was selected as the additive, and in Examples 1 and 2, the lithium salt was 0.8M (molarity), and the non-lithium salt was 0.5 M (molarity) was used, and in Example 3 and Example 4, a lithium salt of 2M was used, and a non-lithium salt of 0.1M was used.

실시예1 내지 실시예4에 따른 이차 전지가 제조되면 비교예에 따른 이차 전지를 제조하였다. 비교예에 따른 이차 전지는 양극은 전극재질로 공지된 LiMn2O4를 사용하였으며 음극의 전극재질은 공지된 활성탄을 적용하였으며, 양극과 음극의 두께와 표면적은 실시예1 내지 실시예4에 따른 이차 전지의 양극(10)과 음극(20)과 동일하게 제조하였다. When secondary batteries according to Examples 1 to 4 were manufactured, secondary batteries according to Comparative Examples were manufactured. The secondary battery according to the comparative example used LiMn 2 O 4 known as an electrode material for the positive electrode, and a known activated carbon was applied as the electrode material for the negative electrode, and the thickness and surface area of the positive electrode and the negative electrode were determined according to Examples 1 to 4. It was manufactured in the same manner as the positive electrode 10 and the negative electrode 20 of the secondary battery.

실시예1 내지 실시예4에 따른 이차 전지와 비교예에 따른 이차 전지가 제조되면 각각에 대한 전기적인 특성을 시험하였으며, 그 결과가 표 2에 도시되어 있다. When the secondary batteries according to Examples 1 to 4 and the secondary batteries according to Comparative Examples were manufactured, electrical characteristics of each were tested, and the results are shown in Table 2.


에너지밀도(Wh/L)Energy density (Wh/L) 출력효율(%)Output efficiency (%)
1C1C 15C15C 1C1C 15C15C 실시예1Example 1 380380 325325 100100 85.585.5 실시예2Example 2 400400 320320 100100 80.080.0 실시예3Example 3 380380 305305 100100 80.280.2 실시예4Example 4 400400 300300 100100 75.275.2 비교예Comparative example 350350 210210 100100 60.060.0

표 2에서와 같이 실시예 1 내지 실시예 4 및 비교예에 따른 에너지 밀도와 출력효율을 검사한 결과, 에너지 밀도는 실시예 1인 경우에 1C에서 380 Wh/L이고 15C에서 325 Wh/L로 측정되었다. 실시예 2는 1C(씨)에서 400 Wh/L이고 15C에서 320 Wh/L로 측정되었으며, 실시예 3은 1C에서 380 Wh/L이고 15C에서 305 Wh/L로 측정되었다. 실시예 4는 1C에서 400 Wh/L이고 15C에서 300 Wh/L로 측정되었으며, 비교예는 1C에서 350 Wh/L이고 15C에서 210 Wh/L로 측정되었다. As shown in Table 2, as a result of examining the energy density and output efficiency according to Examples 1 to 4 and Comparative Examples, the energy density was 380 Wh/L at 1C and 325 Wh/L at 15C in the case of Example 1. Was measured. Example 2 was measured at 400 Wh/L at 1C (seed) and 320 Wh/L at 15C, and in Example 3 at 380 Wh/L at 1C and 305 Wh/L at 15C. Example 4 was measured at 400 Wh/L at 1C and 300 Wh/L at 15C, and in Comparative Example, 350 Wh/L at 1C and 210 Wh/L at 15C.

출력효율은 실시예 1인 경우에 1C에서 100%이고 15C에서 85.5%로 측정되었으며, 실시예 2는 1C에서 100%이고 15C에서 80.0%로 측정되었다. 실시예 3은 1C에서 100%이고 15C에서 80.2%로 측정되었고, 실시예 4는 1C에서 100%이고 15C에서 75.0%로 측정되었으며, 비교예는 1C에서 100%이고 15C에서 60%로 측정되었다. 여기서, 에너지 밀도와 출력효율의 검사 내지 측정은 공지된 검사 장비를 이용함으로 상세한 설명을 생략하며, 1C(씨) 방전조건은 C-rate(씨-레이트) = 1인 방전조건을 나타내는 것으로 방전전류가 전지의 정격용량과 같다는 것을 나타낸다. In the case of Example 1, the output efficiency was measured as 100% at 1C and 85.5% at 15C, and in Example 2, 100% at 1C and 80.0% at 15C. Example 3 measured 100% at 1C and 80.2% at 15C, Example 4 measured 100% at 1C and 75.0% at 15C, and Comparative Example measured 100% at 1C and 60% at 15C. Here, the energy density and output efficiency are inspected or measured using a known test equipment, so detailed descriptions are omitted, and the 1C (C) discharge condition indicates a discharge condition in which C-rate (C-rate) = 1, and the discharge current Indicates that is equal to the rated capacity of the battery

실시예 1 내지 실시예 4로 제조된 본 발명의 이차 전지는 표 2에서와 같이 비교예에 따라 제조된 이차 전지와 에너지 밀도와 출력효율을 비교하면 다수개의 버퍼 공간(23c)을 갖는 버퍼층(23)에 의해 15C에서 감소하는 비율이 작으며 이로 인해 이차 전지의 사이클 특성을 개선시킬 수 있게 된다. 즉, 본 발명의 이차 전지는 음극(20)을 구성하는 제2집전체(21)와 음극활물질 전극층(22) 사이나 다수개의 음극활물질 전극층(22)의 사이에 다수개의 버퍼 공간(23c)을 갖는 버퍼층(23)을 형성하여 SiOx(0.1<x<2.0)가 리튬과 반응하여 부피가 팽창하는 경우에 다수개의 버퍼 공간으로 팽창하도록 버퍼 공간을 제공함으로써 SiOx(0.1<x<2.0)가 부피 팽창으로 인한 압력으로 미분화되는 것을 방지할 수 있어 음극활물질로 SiOx(0.1<x<2.0)가 적용된 이차 전지의 사이클 특성을 개선시킬 수 있게 된다.As shown in Table 2, when comparing energy density and output efficiency with the secondary battery manufactured according to the comparative example, the secondary battery of the present invention manufactured in Examples 1 to 4 is a buffer layer 23 having a plurality of buffer spaces 23c. ), the rate of decrease at 15C is small, and this makes it possible to improve the cycle characteristics of the secondary battery. That is, the secondary battery of the present invention provides a plurality of buffer spaces 23c between the second current collector 21 constituting the negative electrode 20 and the negative electrode active material electrode layer 22 or between the plurality of negative electrode active material electrode layers 22. SiOx (0.1<x<2.0) volume expands by providing a buffer space to expand into a plurality of buffer spaces when SiOx (0.1<x<2.0) reacts with lithium to expand the volume by forming the buffer layer 23 It is possible to prevent micronization due to the pressure caused by the negative electrode active material SiOx (0.1<x<2.0) can be applied to improve the cycle characteristics of the secondary battery is applied.

본 발명의 이차 전지는 전지나 커패시터 제조 산업 분야에 적용할 수 있다.The secondary battery of the present invention can be applied to a battery or capacitor manufacturing industry.

10: 양극
20: 음극
30: 분리막
40: 전해액
50: 케이스
10: anode
20: cathode
30: separator
40: electrolyte
50: case

Claims (9)

제1집전체와 상기 제1집전체의 표면에 형성되는 양극활물질 전극층을 포함하는 양극(cathode);
상기 양극과 이격되어 배치되고, 제2집전체와 상기 제2집전체의 표면에 형성되는 음극활물질 전극층, 및 상기 제2집전체와 음극활물질 전극층 사이에 형성되는 버퍼층을 포함하는 음극(anode); 및
상기 양극과 음극 사이에 배치되는 분리막;을 포함하고,
상기 양극활물질 전극층은 LCO(LiCoO2), NCM111(LiNi1/3Co1/3Mn1/3O2), NCM622(LiNi0.6Co0.2Mn0.2O2), NCM811(LiNi0.8Co0.1Mn0.1O2), LMO(LiMn2O4) 및 LNMO(LiNi0.5Mn1.5O4) 중에서 선택된 하나이고,
상기 음극활물질 전극층은 도전제 85 내지 90wt%와 SiOx(0.1<x<2.0) 10 내지 15wt%로 혼합되어 형성되며,
상기 음극활물질 전극층의 도전제는 그래파이트(graphite), 하드 카본(hard carbon), 소프트 카본(soft carbon) 및 그래핀(graphene) 중 하나가 사용되며,
상기 버퍼층은 활성탄 85 내지 95wt%와 도전제 5 내지 15wt%로 형성되며, 상기 버퍼층은 평균입경 3 내지 20㎛ 활성탄과 평균입경 10 내지 40㎚ 도전제를 이용해 다수개의 버퍼 공간을 갖도록 형성하며, 상기 다수개의 버퍼 공간의 평균입경은 상기 음극활물질 전극층의 도전제와 SiOx(0.1<x<2.0)의 평균입경보다 작게 형성되어 상기 음극활물질 전극층의 형성으로 인해 다수개의 버퍼 공간이 축소되는 것을 방지하고, SiOx(0.1<x<2.0)가 팽창하는 경우에 버퍼 공간으로 팽창하도록 버퍼 공간을 제공하며,
상기 버퍼층의 도전제는 슈퍼-피(Super-P), 케쳔블랙(ketjen black) 및 카본블랙(carbon black) 중 하나를 선택하여 사용하는 이차 전지.
A cathode including a first current collector and a cathode active material electrode layer formed on a surface of the first current collector;
A negative electrode disposed spaced apart from the positive electrode and including a second current collector and a negative electrode active material layer formed on the surface of the second current collector, and a buffer layer formed between the second current collector and the negative electrode active material electrode layer; And
Including; a separator disposed between the anode and the cathode,
The cathode active material electrode layer is LCO (LiCoO 2 ), NCM111 (LiNi 1/3 Co 1/3 Mn 1/3 O 2 ), NCM622 (LiNi 0.6 Co 0.2 Mn 0.2 O 2 ), NCM811 (LiNi 0.8 Co 0.1 Mn 0.1 O 2 ), is one selected from LMO (LiMn 2 O 4 ) and LNMO (LiNi 0.5 Mn 1.5 O 4 ),
The negative electrode active material electrode layer is formed by mixing 85 to 90wt% of a conductive agent and 10 to 15wt% of SiOx (0.1<x<2.0),
One of graphite, hard carbon, soft carbon, and graphene is used as the conductive agent of the negative electrode active material electrode layer,
The buffer layer is formed of 85 to 95 wt% of activated carbon and 5 to 15 wt% of a conductive agent, and the buffer layer is formed to have a plurality of buffer spaces using activated carbon with an average particle diameter of 3 to 20 µm and a conductive agent with an average particle diameter of 10 to 40 nm, and the The average particle diameter of the plurality of buffer spaces is formed smaller than the average particle diameter of the conductive agent and SiOx (0.1<x<2.0) of the negative electrode active material electrode layer to prevent the plurality of buffer spaces from being reduced due to the formation of the negative electrode active material electrode layer, Provides a buffer space to expand into the buffer space when SiOx (0.1<x<2.0) expands,
A secondary battery using one of Super-P, ketjen black, and carbon black as the conductive agent of the buffer layer.
제1항에 있어서,
상기 제1집전체와 상기 제2집전체의 각각의 재질은 Al, Cu 및 Ni 중 하나를 선택하여 사용하거나 둘 이상을 혼합하여 사용되는 이차 전지.
The method of claim 1,
Each material of the first current collector and the second current collector is used by selecting one of Al, Cu, and Ni, or a mixture of two or more.
제1항에 있어서,
상기 제2집전체의 표면에 형성되는 상기 음극활물질 전극층은 둘 이상의 음극활물질 전극층으로 구성되고,
상기 버퍼층은 상기 제2집전체와 상기 음극활물질 전극층 사이에 형성되거나, 혹은 음극활물질 전극층들 사이에 형성되는 이차 전지.
The method of claim 1,
The negative electrode active material electrode layer formed on the surface of the second current collector is composed of two or more negative electrode active material electrode layers,
The buffer layer is formed between the second current collector and the anode active material electrode layer or between the anode active material electrode layers.
삭제delete 삭제delete 제1항 또는 제3항에 있어서,
상기 버퍼층은 활성탄과 도전제를 각각 스크린 인쇄법(Screening Printing)이나 그라비아 인쇄법(Gravure Printing)을 이용해 다수개의 버퍼 공간을 갖도록 형성되는 이차 전지.
The method according to claim 1 or 3,
The buffer layer is a secondary battery formed to have a plurality of buffer spaces by using a screen printing method or a gravure printing method, respectively, of activated carbon and a conductive agent.
삭제delete 제1항에 있어서,
상기 이차 전지는 전해액을 포함하고,
상기 전해액은 유기용매, 염 및 첨가제를 혼합한 것으로,
상기 유기용매는 Acetonitrile(ACN), Ethylene carbonate(EC), Propylene carbonate(PC), Dimethyl carbonate(DMC), Diethyl carbonate(DEC), Ethylmethyl carbonate(EMC), 1,2-dimethoxyethane(DME), γ-buthrolactone(GBL), Methyl formate(MF), Methyl propionate(MP) 중 셋 이상을 혼합한 것이고,
상기 염은 리튬염과 비리튬염을 혼합한 것으로, 상기 리튬염은 LiBF4, LiPF6, LiClO4, LiAsF6, LiAlCl4, LiCF3SO3, LiN(SO2CF3)2, LiC(SO2CF3)3, LiBOB(LiBOB : Lithium bis(oxalato)borate) 중 하나 이상이고, 상기 비리튬염은 TEABF4(Tetraethylammonium tetrafluoroborate), TEMABF4(triethylmethylammonium tetrafluorborate) 및 SBPBF4(spiro-(1,1′)-bipyrrolidium tetrafluoroborate) 중 하나 이상이고,
상기 첨가제는 VC(Vinylene Carbonate), VEC(Vinyl ethylene carbonate) 및 FEC(Fluoroethylene carbonate) 중 하나 이상인 이차 전지.
The method of claim 1,
The secondary battery includes an electrolyte solution,
The electrolyte is a mixture of an organic solvent, a salt and an additive,
The organic solvent is Acetonitrile (ACN), Ethylene carbonate (EC), Propylene carbonate (PC), Dimethyl carbonate (DMC), Diethyl carbonate (DEC), Ethylmethyl carbonate (EMC), 1,2-dimethoxyethane (DME), γ- It is a mixture of three or more of buthrolactone (GBL), methyl formate (MF), and methyl propionate (MP),
The salt is a mixture of a lithium salt and a non-lithium salt, and the lithium salt is LiBF 4 , LiPF 6 , LiClO 4 , LiAsF 6 , LiAlCl 4 , LiCF 3 SO 3 , LiN(SO 2 CF3)2, LiC(SO2CF3) 3, LiBOB (LiBOB: Lithium bis(oxalato)borate), and the non-lithium salt is TEABF4 (Tetraethylammonium tetrafluoroborate), TEMABF4 (triethylmethylammonium tetrafluorborate), and SBPBF4 (spiro-(1,1′)-bipyrrolidium tetrafluoroborate). More than one,
The additive is at least one of VC (Vinylene Carbonate), VEC (Vinyl ethylene carbonate), and FEC (Fluoroethylene carbonate) secondary battery.
제8항에 있어서,
상기 유기용매는 선택된 셋 이상의 유기용매가 각각 동일한 wt%의 비율로 혼합한 것이고,
상기 리튬염은 0.8 내지 2M(molarity)이고,
상기 비리튬염은 0.1 내지 0.5M(molarity)인 이차 전지.
The method of claim 8,
The organic solvent is a mixture of three or more selected organic solvents in the same wt% ratio,
The lithium salt is 0.8 to 2M (molarity),
The non-lithium salt is 0.1 to 0.5M (molarity) secondary battery.
KR1020180156259A 2018-12-06 2018-12-06 Secondary battery KR102233337B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180156259A KR102233337B1 (en) 2018-12-06 2018-12-06 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180156259A KR102233337B1 (en) 2018-12-06 2018-12-06 Secondary battery

Publications (2)

Publication Number Publication Date
KR20200069099A KR20200069099A (en) 2020-06-16
KR102233337B1 true KR102233337B1 (en) 2021-03-29

Family

ID=71141676

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180156259A KR102233337B1 (en) 2018-12-06 2018-12-06 Secondary battery

Country Status (1)

Country Link
KR (1) KR102233337B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112635712A (en) * 2020-12-17 2021-04-09 珠海冠宇电池股份有限公司 Negative plate and lithium ion battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010238426A (en) * 2009-03-30 2010-10-21 Nissan Motor Co Ltd Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
KR101846727B1 (en) 2016-10-27 2018-04-06 동원시스템즈 주식회사 Electrode current collector and lithium-ion secondary battery with the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2503138B (en) 2011-03-02 2019-05-01 Mitsui Mining & Smelting Co Spinel-type lithium manganese-based composite oxide
KR20170107213A (en) * 2016-03-15 2017-09-25 주식회사 엘지화학 Multilayered electrode for lithium secondary battery, preparation method thereof, and lithium secondary battery comprising the same
KR102111482B1 (en) * 2016-05-31 2020-05-15 주식회사 엘지화학 Electrode for lithium secondary battery and lithium secondary battery comprising the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010238426A (en) * 2009-03-30 2010-10-21 Nissan Motor Co Ltd Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
KR101846727B1 (en) 2016-10-27 2018-04-06 동원시스템즈 주식회사 Electrode current collector and lithium-ion secondary battery with the same

Also Published As

Publication number Publication date
KR20200069099A (en) 2020-06-16

Similar Documents

Publication Publication Date Title
US9520240B2 (en) Lithium titanium oxide (LTO)/carbon composite, preparation method for LTO/carbon composite, negative electrode material using LTO/carbon composite, and hybrid super capacitor using negative electrode material
US10749179B2 (en) Graphite-based negative electrode active material, negative electrode, and lithium ion secondary battery
KR102093972B1 (en) Lithium secondary battery
US6610109B2 (en) Method of manufacturing lithium secondary cell
KR101407085B1 (en) Secondary battery comprising electrodes having multi layered active layers
KR101486130B1 (en) Lithium metal electrode modified by conductive polymer, method for preparing the same and lithium metal battery comprising the same
KR102284480B1 (en) Organic/inorganic composite electrolyte, electrode-electrolyte assembly and lithium secondary battery containing the same, and manufacturing method of the electrode-electrolyte assembly
KR101211327B1 (en) Anode active material for secondary battery and method for preparing the same
KR101595333B1 (en) Electrode for Secondary Battery Improved Energy Density and Lithium Secondary Battery Comprising the Same
EP3474351B1 (en) Anode comprising electrode protective layer and lithium secondary battery employing same
KR20120080227A (en) Lithium secondary battery
KR20200049674A (en) Lithium secondary battery
US20050271797A1 (en) Method for manufacturing high power electrode for lithium secondary battery
US10305108B2 (en) Graphite-based active material, negative electrode, and lithium ion secondary battery
JP2019140054A (en) Positive electrode and non-aqueous electrolyte secondary battery
KR20030091741A (en) Non-aqueous electrolyte battery and method of manufacturing the same
KR102510888B1 (en) Positive electrode for lithium secondary battery, preparing method thereof, and lithium secondary battery comprising the same
KR102207527B1 (en) Anode comprising electrode protective layer and lithium secondary battery comprising the same
KR101225882B1 (en) Anode for secondary battery
KR102049438B1 (en) Electrode having dual layer structure, method for preparing thereof and lithium secondary battery comprising the same
KR102233337B1 (en) Secondary battery
KR20190063931A (en) Non-aqueous electrolyte for secondary battery and secondary battery comprising the same
KR102151074B1 (en) Secondary battery
KR102125965B1 (en) Hybrid capacitor
KR100456648B1 (en) Method of preparing lithium ion polymer secondary battery

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant