KR102186731B1 - Composite photocatalyst and manufacturing method thereof - Google Patents

Composite photocatalyst and manufacturing method thereof Download PDF

Info

Publication number
KR102186731B1
KR102186731B1 KR1020180114431A KR20180114431A KR102186731B1 KR 102186731 B1 KR102186731 B1 KR 102186731B1 KR 1020180114431 A KR1020180114431 A KR 1020180114431A KR 20180114431 A KR20180114431 A KR 20180114431A KR 102186731 B1 KR102186731 B1 KR 102186731B1
Authority
KR
South Korea
Prior art keywords
photocatalyst
doped
nickel titanate
molybdenum
precursor
Prior art date
Application number
KR1020180114431A
Other languages
Korean (ko)
Other versions
KR20200034907A (en
Inventor
신은우
팜탄쭉
Original Assignee
울산대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 울산대학교 산학협력단 filed Critical 울산대학교 산학협력단
Priority to KR1020180114431A priority Critical patent/KR102186731B1/en
Publication of KR20200034907A publication Critical patent/KR20200034907A/en
Application granted granted Critical
Publication of KR102186731B1 publication Critical patent/KR102186731B1/en

Links

Images

Classifications

    • B01J35/39
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/002Catalysts characterised by their physical properties
    • B01J35/004Photocatalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment

Abstract

금속이 도핑된 니켈 티타네이트(NiTiO3) 및 카본 나이트라이드(Carbon nitride)를 포함하는 광촉매가 개시된다. 상기 광촉매는 니켈 티타네이트(NiTiO3) 구조에 금속을 도핑시키고, 이를 활용하여 카본 나이트라이드 복합체를 형성함으로써 니켈 티타네이트와 카본 나이트라이드의 접촉성이 우수하여 Ti-N 결합이 증가한다. 또한, 밴드갭이 매우 낮아지고, 재결합(recombination) 현상이 억제되어 우수한 광특성을 나타낸다. 나아가, 메틸렌 블루 광분해 실험을 수행하는 경우 본 발명에 따른 광촉매는 우수한 분해 효율을 나타낸다.A photocatalyst comprising metal-doped nickel titanate (NiTiO 3 ) and carbon nitride is disclosed. The photocatalyst is doped with a metal in the nickel titanate (NiTiO 3 ) structure, and forms a carbon nitride composite by utilizing the same, so that the contact between the nickel titanate and the carbon nitride is excellent, and the Ti-N bond is increased. In addition, the band gap is very low, recombination is suppressed, and excellent optical characteristics are exhibited. Furthermore, when performing a methylene blue photolysis experiment, the photocatalyst according to the present invention exhibits excellent decomposition efficiency.

Description

컴포지트 광촉매 및 이의 제조방법{Composite photocatalyst and manufacturing method thereof}Composite photocatalyst and manufacturing method thereof TECHNICAL FIELD

컴포지트 광촉매 및 이의 제조방법에 관한 것이다.It relates to a composite photocatalyst and a method of manufacturing the same.

광촉매란 자신은 반응 전후에 변화하지 않지만 광(光)을 흡수함으로써 반응을 촉진시키는 물질로서, 빛(예를 들면, 자외선(λ<380 nm) 등)을 흡수하여 전자(electron)와 정공(electron hole)을 형성시킨다. 형성된 전자(e-)와 정공(h+)은 각각 산소(O2) 및 하이드록시기(OH-)와 결합하여 강력한 산화력을 가진 슈퍼옥사이드 음이온(ㆍO2 -)과 하이드록시 라디칼(ㆍOH)을 생성하며, 이런 슈퍼옥사이드 음이온과 하이드록시 라디칼은 유기물을 산화 분해시켜 최종적으로 물(H2O)과 탄산가스(CO2)로 변화시킨다. 이와 같은 원리로 광촉매는 오염물질이나 공기 중의 냄새 분자 등을 산화 분해시켜 인체에 무해한 물(H2O)과 탄산가스(CO2)로 변화시키므로, 탈취제, 정화제 등의 용도로 사용되고 있다. 또한, 세균도 광촉매의 강한 산화작용에 의해 산화분해 되어 살균된다. 따라서 광촉매는 항균제로서 사용될 뿐만 아니라, 암을 비롯한 생체 내의 질병 치료제로도 이용되고 있다. A photocatalyst itself does not change before or after the reaction, but is a substance that promotes the reaction by absorbing light. It absorbs light (for example, ultraviolet rays (λ<380 nm), etc.) to absorb electrons and holes. hole). Formed electron (e -) and holes (h +) are each an oxygen (O 2) and hydroxyl (OH -) and superoxide anion (and O 2 -) and has a strong oxidizing power, combined with the hydroxy radical (and OH ), and these superoxide anions and hydroxy radicals oxidize and decompose organic matter and finally change it into water (H 2 O) and carbon dioxide gas (CO 2 ). According to this principle, photocatalysts are used as deodorants and purifiers because they oxidize and decompose pollutants or odor molecules in the air to change them into water (H 2 O) and carbon dioxide gas (CO 2 ) that are harmless to the human body. In addition, bacteria are also sterilized by oxidative decomposition by the strong oxidation of the photocatalyst. Therefore, photocatalysts are used not only as antibacterial agents, but also as treatments for diseases in vivo, including cancer.

흔히 사용되는, 광촉매는 티타늄산화물(TiO2), 아연산화물(ZnO), 텅스텐산화물(WO3), BiOCl, BiVO3 등이 알려져 있으며, 이 중 티타늄산화물이 가장 우수한 광촉매 효율을 나타내며, 화학적으로 안정하고 인체에 무해하므로 백색 안료, 화장품, 식품 첨가물 등으로도 널리 사용되고 있다. Commonly used photocatalysts include titanium oxide (TiO 2 ), zinc oxide (ZnO), tungsten oxide (WO 3 ), BiOCl, and BiVO 3 , among which titanium oxide shows the best photocatalytic efficiency and is chemically stable. Because it is harmless to the human body, it is widely used as a white pigment, cosmetics, and food additives.

하지만, 티타늄산화물을 비롯한 광촉매는 자외선 영역에서는 우수한 광촉매 효율을 나타내지만, 커다란 밴드갭으로 인해 가시광을 흡수할 수 없어 가시광 영역에서는 유기물 분해 효율이 매우 낮다는 한계성을 나타내고 있다. 따라서, 가시광 영역에서 우수한 광촉매 효율을 나타내는 새로운 광촉매 물질의 개발이 절실하게 요구되고 있는 실정이다.However, photocatalysts including titanium oxide exhibit excellent photocatalytic efficiency in the ultraviolet region, but cannot absorb visible light due to a large band gap, thus exhibiting a limitation that the efficiency of decomposition of organic matter is very low in the visible region. Accordingly, there is an urgent need to develop a new photocatalytic material exhibiting excellent photocatalytic efficiency in the visible light region.

한편, 전하이동에 바탕을 둔 광촉매 작용을 Z-scheme 메커니즘이라고 하며, Z-scheme 메커니즘에 기반을 둔 가시광 광촉매로는 지금까지 다양한 시스템이 개발된 바 있다. CuBi2O4/WO3, g-C3N4/BiVO4, g-C3N4/Ag3PO4, g-C3N4/Bi2O3, SiC/Ag3PO4 등이 보고된 바 있다.Meanwhile, a photocatalytic action based on charge transfer is called a Z-scheme mechanism, and various systems have been developed so far as a visible light photocatalyst based on the Z-scheme mechanism. CuBi 2 O 4 /WO 3 , gC 3 N 4 /BiVO 4 , gC 3 N 4 /Ag 3 PO 4 , gC 3 N 4 /Bi 2 O 3 , SiC/Ag 3 PO 4 have been reported.

전술한 문제점을 해결하고자, 본 발명자들은 가시광 영역에서 우수한 광촉매 효율을 나타내는 새로운 광촉매 물질을 개발하기 위한 연구를 수행하던 중, 니켈 티타네이트 구조에 금속을 도핑하고, 이를 이용하여 카본 나이트라이드와 복합화시킨 복합체로 이루어진 광촉매를 개발하였으며, 우수한 광특성을 나타냄을 확인하고 본 발명을 완성하였다. In order to solve the above-described problem, the present inventors were conducting research to develop a new photocatalytic material exhibiting excellent photocatalytic efficiency in the visible light region, and the nickel titanate structure was doped with a metal, which was then combined with carbon nitride. A photocatalyst composed of a composite was developed, and it was confirmed that it exhibits excellent optical properties, and the present invention was completed.

본 발명의 일 측면에서의 목적은 가시광 영역에서 활성이 우수한 광촉매를 제공하는 데 있다.An object of the present invention is to provide a photocatalyst having excellent activity in the visible light region.

본 발명의 다른 측면에서의 목적은 가시광 영역에서 활성이 우수한 광촉매를 제조하는 방법을 제공하는 데 있다.Another object of the present invention is to provide a method for producing a photocatalyst having excellent activity in the visible light region.

상기 목적을 달성하기 위하여, 본 발명의 일 측면에서In order to achieve the above object, in one aspect of the present invention

금속이 도핑된 니켈 티타네이트(NiTiO3) 및Metal-doped nickel titanate (NiTiO 3 ) and

카본 나이트라이드(Carbon nitride)를 포함하는 광촉매가 제공된다.A photocatalyst comprising carbon nitride is provided.

또한, 본 발명의 다른 측면에서In addition, in another aspect of the present invention

유기 용매에 도핑 금속의 전구체를 혼합하여 혼합물을 제조하는 단계;Preparing a mixture by mixing a precursor of a doped metal in an organic solvent;

상기 혼합물에 니켈 전구체 및 티타늄 전구체를 첨가하고 하소시켜 금속이 도핑된 니켈 티타네이트를 제조하는 단계; 및Adding a nickel precursor and a titanium precursor to the mixture and calcining to prepare a metal-doped nickel titanate; And

상기 금속이 도핑된 니켈 티타네이트 및 디시안디아마이드(DCDA)를 혼합한 후, 열처리하여 광촉매를 제조하는 단계;를 포함하는 광촉매의 제조방법이 제공된다.There is provided a method of manufacturing a photocatalyst comprising; mixing the metal-doped nickel titanate and dicyandiamide (DCDA) and then heat-treating to prepare a photocatalyst.

본 발명에 따른 광촉매는 니켈 티타네이트(NiTiO3) 구조에 금속을 도핑시키고, 이를 활용하여 카본 나이트라이드 복합체를 형성함으로써 니켈 티타네이트와 카본 나이트라이드의 접촉성이 우수하여 Ti-N 결합이 증가한다. 또한, 밴드갭이 매우 낮아지고, 재결합(recombination) 현상이 억제되어 우수한 광특성을 나타낸다. 나아가, 메틸렌 블루 광분해 실험을 수행하는 경우 본 발명에 따른 광촉매는 우수한 분해 효율을 나타낸다.The photocatalyst according to the present invention is doped with a metal in a nickel titanate (NiTiO 3 ) structure and forms a carbon nitride composite by using this, so that the contact between nickel titanate and carbon nitride is excellent, so that Ti-N bonding is increased. . In addition, the band gap is very low, recombination is suppressed, and excellent optical characteristics are exhibited. Furthermore, when performing a methylene blue photolysis experiment, the photocatalyst according to the present invention exhibits excellent decomposition efficiency.

도 1은 니켈 티타네이트에 도핑되는 몰리브덴의 함량이 0.5 중량% 내지 10 중량%로 변경된 몰리브덴이 도핑된 니켈 티타네이트 샘플들의 결정 크기, 밴드갭 에너지, 비표면적 및 발광 강도를 측정한 그래프이고;
도 2는 실시예 1, 실시예 2 및 비교예 1 내지 7에서 제조된 샘플들을 X-선 회절 분석(XRD)한 그래프이고;
도 3은 실시예 1, 실시예 2 및 비교예 6에서 제조된 샘플들을 SEM 및 TEM으로 분석한 사진이고;
도 4는 실시예 1, 실시예 2 및 비교예 1 내지 7에서 제조된 샘플들을 UV-Vis spectra(a) 및 PL spectra(b)로 분석한 그래프이고;
도 5는 실시예 1, 실시예 2 및 비교예 1 내지 7에서 제조된 샘플들의 메틸렌블루 흡착거동 및 광분해 반응을 분석한 그래프이다.
1 is a graph measuring crystal size, band gap energy, specific surface area, and luminous intensity of molybdenum-doped nickel titanate samples in which the content of molybdenum doped in nickel titanate is changed from 0.5% to 10% by weight;
2 is a graph obtained by X-ray diffraction analysis (XRD) of samples prepared in Examples 1, 2, and Comparative Examples 1 to 7;
3 is a photograph of samples prepared in Example 1, Example 2, and Comparative Example 6 analyzed by SEM and TEM;
4 is a graph of analysis of samples prepared in Examples 1, 2, and Comparative Examples 1 to 7 with UV-Vis spectra (a) and PL spectra (b);
5 is a graph analyzing methylene blue adsorption behavior and photolysis reaction of samples prepared in Examples 1, 2, and Comparative Examples 1 to 7.

본 발명의 일 측면에서In one aspect of the present invention

금속이 도핑된 니켈 티타네이트(NiTiO3) 및Metal-doped nickel titanate (NiTiO 3 ) and

카본 나이트라이드(Carbon nitride)를 포함하는 광촉매가 제공된다.A photocatalyst comprising carbon nitride is provided.

이하, 본 발명의 일 측면에서 제공되는 광촉매에 대하여 상세히 설명한다.Hereinafter, a photocatalyst provided in one aspect of the present invention will be described in detail.

본 발명의 일 측면에서 제공되는 광촉매는 니켈 티타네이트(NiTiO3) 및 카본 나이트라이드(Carbon nitride)의 복합체로 구성된 광촉매이되, 니켈 티타네이트가 금속 도핑된 것을 특징으로 한다. 니켈 티타네이트(NiTiO3) 구조에 금속이 도핑되고, 금속 도핑된 니켈 티타네이트와 카본 나이트라이드가 복합체를 형성함으로써 금속 도핑된 니켈 티타네이트와 카본 나이트라이드의 우수한 접촉성으로 인해 우수한 광특성을 발현시킬 수 있다.The photocatalyst provided in one aspect of the present invention is a photocatalyst composed of a composite of nickel titanate (NiTiO 3 ) and carbon nitride, and is characterized in that nickel titanate is doped with metal. Nickel titanate (NiTiO 3 ) structure is doped with metal, and metal-doped nickel titanate and carbon nitride form a complex, resulting in excellent optical properties due to excellent contact between metal-doped nickel titanate and carbon nitride I can make it.

본 발명의 일 측면에서 제공되는 광촉매는 가시광 파장 범위에서 활성을 나타내는 것일 수 있다. 상기 가시광 파장 범위는 300 nm 내지 750 nm일 수 있고, 350 nm 내지 700 nm일 수 있으며, 400 nm 내지 650 nm일 수 있다. 상기 광촉매는 가시광 파장 범위에서 종래 광촉매들보다 우수한 광특성을 나타낼 수 있다.The photocatalyst provided in one aspect of the present invention may exhibit activity in the visible wavelength range. The visible light wavelength range may be 300 nm to 750 nm, 350 nm to 700 nm, and 400 nm to 650 nm. The photocatalyst may exhibit optical characteristics superior to conventional photocatalysts in a visible light wavelength range.

상기 금속이 도핑된 니켈 티타네이트에서 니켈 티타네이트에 도핑되는 금속은 몰리브덴(Mo), 텅스텐(W), 코발트(Co), 스칸듐(Sc), 이트륨(Y), 티타늄(Ti), 지르코늄(Zr), 하프늄(Hf), 바나듐(V), 나이오븀(Nb), 탄탈륨(Ta), 크롬(Cr), 망간(Mn), 레늄(Re), 철(Fe), 루테늄(Ru), 니켈(Ni), 팔라듐(Pd), 백금(Pt), 구리(Cu), 은(Ag), 금(Au) 아연(Zn) 및 카드뮴(Cd) 등의 전이금속일 수 있고, 구체적인 일례로 몰리브덴, 텅스텐, 코발트일 수 있다.In the metal-doped nickel titanate, the metal doped to nickel titanate is molybdenum (Mo), tungsten (W), cobalt (Co), scandium (Sc), yttrium (Y), titanium (Ti), and zirconium (Zr). ), hafnium (Hf), vanadium (V), niobium (Nb), tantalum (Ta), chromium (Cr), manganese (Mn), rhenium (Re), iron (Fe), ruthenium (Ru), nickel ( It may be a transition metal such as Ni), palladium (Pd), platinum (Pt), copper (Cu), silver (Ag), gold (Au) zinc (Zn) and cadmium (Cd), and specific examples include molybdenum and tungsten. , May be cobalt.

상기 금속이 도핑된 니켈 티타네이트에서 도핑된 금속의 함량은 니켈 티타네이트 100 중량부 기준으로 0.5 중량부 내지 10 중량부인 것이 바람직하고, 1 중량부 내지 5 중량부일 수 있고, 1 중량부 내지 3 중량부일 수 있다. 도핑되는 금속의 함량이 상기 범위를 벗어나는 경우 표면적이 부족하거나, 재결합 속도가 높아 광학 특성이 떨어지는 문제가 있다.The content of the metal doped in the metal-doped nickel titanate is preferably 0.5 parts by weight to 10 parts by weight based on 100 parts by weight of nickel titanate, may be 1 part by weight to 5 parts by weight, and 1 part by weight to 3 parts by weight It can be wealth. When the content of the doped metal is out of the above range, there is a problem in that the surface area is insufficient or the recombination rate is high and optical properties are deteriorated.

본 발명에 따른 광촉매는 니켈 티타네이트(NiTiO3) 구조에 금속을 도핑시키고, 이를 활용하여 카본 나이트라이드 복합체를 형성함으로써 니켈 티타네이트와 카본 나이트라이드의 접촉성이 우수하여 Ti-N 결합이 증가한다. 또한, 밴드갭이 매우 낮아지고, 재결합(recombination) 현상이 억제되어 우수한 광특성을 나타낸다. 나아가, 메틸렌 블루 광분해 실험을 수행하는 경우 본 발명에 따른 광촉매는 우수한 분해 효율을 나타낸다.The photocatalyst according to the present invention is doped with a metal in a nickel titanate (NiTiO 3 ) structure and forms a carbon nitride composite by using this, so that the contact between nickel titanate and carbon nitride is excellent, so that Ti-N bonding is increased. . In addition, the band gap is very low, recombination is suppressed, and excellent optical characteristics are exhibited. Furthermore, when performing a methylene blue photolysis experiment, the photocatalyst according to the present invention exhibits excellent decomposition efficiency.

또한, 본 발명의 다른 측면에서In addition, in another aspect of the present invention

유기 용매에 도핑 금속의 전구체를 혼합하여 혼합물을 제조하는 단계;Preparing a mixture by mixing a precursor of a doped metal in an organic solvent;

상기 혼합물에 니켈 전구체 및 티타늄 전구체를 첨가하고 하소시켜 금속이 도핑된 니켈 티타네이트를 제조하는 단계; 및Adding a nickel precursor and a titanium precursor to the mixture and calcining to prepare a metal-doped nickel titanate; And

상기 금속이 도핑된 니켈 티타네이트 및 디시안디아마이드(DCDA)를 혼합한 후, 열처리하여 광촉매를 제조하는 단계;를 포함하는 광촉매의 제조방법이 제공된다.There is provided a method of manufacturing a photocatalyst comprising; mixing the metal-doped nickel titanate and dicyandiamide (DCDA) and then heat-treating to prepare a photocatalyst.

이하, 본 발명의 다른 측면에서 제공되는 광촉매의 제조방법에 대하여 각 단계별로 상세히 설명한다.Hereinafter, a method of manufacturing a photocatalyst provided in another aspect of the present invention will be described in detail for each step.

먼저, 본 발명에 따른 광촉매의 제조방법은 유기 용매에 도핑 금속의 전구체를 혼합하여 혼합물을 제조하는 단계를 포함한다.First, the method of manufacturing a photocatalyst according to the present invention includes preparing a mixture by mixing a precursor of a doped metal in an organic solvent.

본 발명의 일 측면에서 제공되는 광촉매인 금속이 도핑된 니켈 티타네이트(NiTiO3) 및 카본 나이트라이드(Carbon nitride)를 포함하는 복합체를 제조하기 위해 상기 단계에서는 먼저 금속 도핑된 니켈 티타네이트를 제조하고자 하며, 이를 위해 니켈 티타네이트에 도핑될 금속의 전구체를 용매와 혼합하여 혼합물을 형성한다.In order to prepare a composite including metal-doped nickel titanate (NiTiO 3 ) and carbon nitride as a photocatalyst provided in one aspect of the present invention, in the above step, first, to prepare metal-doped nickel titanate. To this end, a precursor of a metal to be doped in nickel titanate is mixed with a solvent to form a mixture.

상기 유기 용매는 증류수, 메탄올, 에탄올, 프로판올 등의 알콜류, 에틸렌글리콜 등의 폴리올 용매 등일 수 있다. 이때, 상기 유기 용매는 첨가물을 더 포함할 수 있으며, 상기 첨가물은 시트릭산, 락틱산, 글리콜산 등일 수 있다. 상기 첨가물의 농도는 1 g/L 내지 10 g/L일 수 있고, 5 g/L 내지 8 g/L일 수 있고, 6 g/L 내지 8 g/L일 수 있다. 상기 첨가물 중 시트릭산을 사용하는 경우 시트릭 컴플렉스를 형성하여 니켈 티타네이트의 결정화도를 높여줄 수 있다.The organic solvent may be distilled water, alcohols such as methanol, ethanol, and propanol, and polyol solvents such as ethylene glycol. At this time, the organic solvent may further include an additive, and the additive may be citric acid, lactic acid, glycolic acid, or the like. The concentration of the additive may be 1 g/L to 10 g/L, 5 g/L to 8 g/L, and 6 g/L to 8 g/L. When citric acid is used among the additives, a citric complex may be formed to increase the crystallinity of nickel titanate.

상기 도핑 금속의 전구체는 전이금속 전구체일 수 있고, 몰리브덴(Mo), 텅스텐(W), 코발트(Co), 스칸듐(Sc), 이트륨(Y), 티타늄(Ti), 지르코늄(Zr), 하프늄(Hf), 바나듐(V), 나이오븀(Nb), 탄탈륨(Ta), 크롬(Cr), 망간(Mn), 레늄(Re), 철(Fe), 루테늄(Ru), 니켈(Ni), 팔라듐(Pd), 백금(Pt), 구리(Cu), 은(Ag), 금(Au) 아연(Zn) 및 카드뮴(Cd) 등의 전이금속의 전구체일 수 있으며 상기 전이금속을 포함하는 수화물일 수 있다.The precursor of the doped metal may be a transition metal precursor, and molybdenum (Mo), tungsten (W), cobalt (Co), scandium (Sc), yttrium (Y), titanium (Ti), zirconium (Zr), hafnium ( Hf), vanadium (V), niobium (Nb), tantalum (Ta), chromium (Cr), manganese (Mn), rhenium (Re), iron (Fe), ruthenium (Ru), nickel (Ni), palladium It may be a precursor of a transition metal such as (Pd), platinum (Pt), copper (Cu), silver (Ag), gold (Au) zinc (Zn) and cadmium (Cd), and may be a hydrate containing the transition metal. have.

다음으로, 본 발명에 따른 광촉매의 제조방법은 상기 혼합물에 니켈 전구체 및 티타늄 전구체를 첨가하고 하소시켜 금속이 도핑된 니켈 티타네이트를 제조하는 단계를 포함한다.Next, the method for producing a photocatalyst according to the present invention includes adding a nickel precursor and a titanium precursor to the mixture and calcining to prepare a metal-doped nickel titanate.

상기 단계는 금속 도핑된 니켈 티타네이트를 형성하기 위한 단계로, 도핑될 금속의 전구체가 혼합되어 있는 혼합물에 니켈 티타네이트를 형성하기 위한 니켈 전구체 및 티타늄 전구체를 첨가하여 혼합시키고, 이를 하소시켜 금속이 도핑된 니켈 티타네이트를 제조한다.The step is a step for forming a metal-doped nickel titanate, and a nickel precursor and a titanium precursor for forming nickel titanate are added to the mixture in which the precursor of the metal to be doped is mixed, and the metal is calcined. Doped nickel titanate is prepared.

상기 니켈 전구체는 니켈 양이온 및 음이온을 포함하는 전구체일 수 있으며, 상기 음이온은 나이트레이트(nitrate), 하이드록사이드(hydroxide), 아세테이트(acetate), 프로피오네이트(propionate), 아세틸아세토네이트(acetylacetonate), 2,2,6,6-테트라메틸-3,5-헵탄디오네이트(2,2,6,6-tetramethyl-3,5-heptanedionate), 메톡사이드(methoxide), 2차-부톡사이드(sec-butoxide), 3차-부톡사이드(3-butoxide), n-부톡사이드(n-butoxide), n-프로폭사이드(n-propoxide), i-프로폭사이드(i-propoxide), 에톡사이드(ethoxide), 포스페이트(phosphate), 알킬포스페이트(alkylphosphate), 퍼클로라이트(perchlorate), 설페이트(sulfate), 알킬설포네이트(alkylsulfonate), 페녹사이드(penoxide), 브로마이드(bromide), 아이오다이드(Iodide) 및 클로라이드(Chloride) 등의 음이온 중 1종 이상일 수 있으며, 상기 니켈 전구체는 니켈 양이온 및 음이온을 포함하는 수화물일 수 있다. 구체적인 일례로, 상기 니켈 전구체는 니켈 나이트레이트 헥사하이드레이트(nickel nitrate hexahydrate, Ni(NO3)2ㆍ6H2O)를 사용할 수 있다.The nickel precursor may be a precursor including a nickel cation and an anion, and the anion is nitrate, hydroxide, acetate, propionate, acetylacetonate , 2,2,6,6-tetramethyl-3,5-heptanedionate (2,2,6,6-tetramethyl-3,5-heptanedionate), methoxide, secondary-butoxide (sec -butoxide), tertiary-butoxide (3-butoxide), n-butoxide (n-butoxide), n-propoxide (n-propoxide), i-propoxide (i-propoxide), ethoxide ( ethoxide, phosphate, alkylphosphate, perchlorate, sulfate, alkylsulfonate, phenoxide, bromide, iodide And anions such as chloride, and the nickel precursor may be a hydrate including a nickel cation and an anion. As a specific example, the nickel precursor may be nickel nitrate hexahydrate (Ni(NO 3 ) 2 ㆍ6H 2 O).

상기 티타늄 전구체는 티타늄 양이온 및 음이온을 포함하는 전구체일 수 있으며, 상기 음이온은 나이트레이트(nitrate), 하이드록사이드(hydroxide), 아세테이트(acetate), 프로피오네이트(propionate), 아세틸아세토네이트(acetylacetonate), 2,2,6,6-테트라메틸-3,5-헵탄디오네이트(2,2,6,6-tetramethyl-3,5-heptanedionate), 메톡사이드(methoxide), 2차-부톡사이드(sec-butoxide), 3차-부톡사이드(3-butoxide), n-부톡사이드(n-butoxide), n-프로폭사이드(n-propoxide), i-프로폭사이드(i-propoxide), 에톡사이드(ethoxide), 포스페이트(phosphate), 알킬포스페이트(alkylphosphate), 퍼클로라이트(perchlorate), 설페이트(sulfate), 알킬설포네이트(alkylsulfonate), 페녹사이드(penoxide), 브로마이드(bromide), 아이오다이드(Iodide) 및 클로라이드(Chloride) 등의 음이온 중 1종 이상일 수 있으며, 상기 티타늄 전구체는 티타늄 양이온 및 음이온을 포함하는 수화물일 수 있다. 구체적인 일례로, 상기 티타늄 전구체는 티타늄 n-부톡사이드(titanium n-butoxide, Ti[OC(CH3)3]4)를 사용할 수 있다.The titanium precursor may be a precursor including a titanium cation and an anion, and the anion is nitrate, hydroxide, acetate, propionate, acetylacetonate , 2,2,6,6-tetramethyl-3,5-heptanedionate (2,2,6,6-tetramethyl-3,5-heptanedionate), methoxide, secondary-butoxide (sec -butoxide), tertiary-butoxide (3-butoxide), n-butoxide (n-butoxide), n-propoxide (n-propoxide), i-propoxide (i-propoxide), ethoxide ( ethoxide, phosphate, alkylphosphate, perchlorate, sulfate, alkylsulfonate, phenoxide, bromide, iodide And one or more of anions such as chloride, and the titanium precursor may be a hydrate including a titanium cation and an anion. As a specific example, the titanium precursor may be titanium n-butoxide (titanium n-butoxide, Ti[OC(CH 3 ) 3 ] 4 ).

또한, 상기 니켈 전구체 및 티타늄 전구체는 니켈과 티타늄의 몰수가 1:1의 몰비가 되도록 첨가될 수 있다.In addition, the nickel precursor and the titanium precursor may be added so that the number of moles of nickel and titanium is 1:1.

나아가, 상기 금속이 도핑된 니켈 티타네이트를 제조하는 단계는, 상기 니켈 전구체 및 티타늄 전구체가 첨가된 혼합물을 하소시키기 전에 혼합물을 용매열처리(solvothermal treatment)하는 단계를 더 포함할 수 있다. 상기 용매열처리는 니켈 티타네이트의 모폴로지와 결정화도에 영향을 준다.Furthermore, the step of preparing the metal-doped nickel titanate may further include performing a solvent heat treatment on the mixture before calcining the mixture to which the nickel precursor and the titanium precursor are added. The solvent heat treatment affects the morphology and crystallinity of nickel titanate.

상기 용매열처리는 120℃ 내지 200℃의 온도에서 수행될 수 있고, 150℃ 내지 180℃의 온도에서 수행될 수 있다. 상기 용매열처리는 1시간 내지 12시간 동안 수행될 수 있고, 3시간 내지 9시간 동안 수행될 수 있고, 4시간 내지 8시간 동안 수행될 수 있으며, 5시간 내지 7시간 동안 수행될 수 있다. 만약, 상기 용매열처리의 수행 온도범위 및 시간범위를 벗어나는 경우에는 결정화도가 낮아질 수 있으며, 나노입자 구조를 갖기 어려운 문제가 있다.The solvent heat treatment may be performed at a temperature of 120°C to 200°C, and may be performed at a temperature of 150°C to 180°C. The solvent heat treatment may be performed for 1 to 12 hours, may be performed for 3 to 9 hours, may be performed for 4 to 8 hours, and may be performed for 5 to 7 hours. If the temperature and time range of the solvent heat treatment is out of the range, the crystallinity may be lowered, and it is difficult to have a nanoparticle structure.

또한, 상기 하소는 400℃ 내지 800℃의 온도에서 수행될 수 있으며, 500℃ 내지 700℃의 온도에서 수행될 수 있고, 550℃ 내지 650℃의 온도에서 수행될 수 있다. 만약, 상기 하소를 400℃ 미만의 온도에서 수행하는 경우 전구체 리간드 제거가 불충분한 문제가 있으며, 800℃를 초과하는 온도에서 수행하는 경우 샘플의 물성(비표면적, 기공구조, 결정상)에 악영향을 주는 문제가 있다.Further, the calcination may be performed at a temperature of 400°C to 800°C, may be performed at a temperature of 500°C to 700°C, and may be performed at a temperature of 550°C to 650°C. If the calcination is performed at a temperature of less than 400°C, there is a problem that the precursor ligand removal is insufficient, and when performed at a temperature exceeding 800°C, the physical properties (specific surface area, pore structure, crystalline phase) of the sample are adversely affected. there is a problem.

다음으로, 본 발명에 따른 광촉매의 제조방법은 상기 금속이 도핑된 니켈 티타네이트 및 디시안디아마이드(DCDA)를 혼합한 후, 열처리하여 광촉매를 제조하는 단계를 포함한다.Next, the method of manufacturing a photocatalyst according to the present invention includes the step of preparing a photocatalyst by mixing the metal-doped nickel titanate and dicyandiamide (DCDA), followed by heat treatment.

상기 단계에서는 전단계에서 제조된 금속이 도핑된 니켈 티타네이트를 이용하여 카본 나이트라이드와의 복합체를 제조하는 단계로서, 금속이 도핑된 니켈 티타네이트와 카본 나이트라이드를 합성하기 위한 전구체 물질인 디시안디아마이드(DCDA)를 혼합한 후, 열처리함으로써 금속이 도핑된 니켈 티타네이트 및 카본 나이트라이드 복합체인 광촉매를 제조한다.In the above step, a composite with carbon nitride is prepared using the metal-doped nickel titanate prepared in the previous step, and dicyandiamide, a precursor material for synthesizing the metal-doped nickel titanate and carbon nitride. (DCDA) is mixed and then subjected to heat treatment to prepare a photocatalyst, which is a metal-doped nickel titanate and carbon nitride composite.

상기 열처리는 300℃ 내지 700℃의 온도에서 수행될 수 있으며, 400℃ 내지 600℃의 온도에서 수행될 수 있고, 450℃ 내지 550℃의 온도에서 수행될 수 있다. 만약, 상기 열처리를 300℃ 미만의 온도에서 수행하는 경우 전구체가 니켈 티타네이트와 충분히 반응하지 못해 카본 나이트라이드를 형성하지 못하는 문제가 있으며, 700℃를 초과하는 온도에서 수행하는 경우 카본 나이트라이드가 제거되는 문제가 있다.The heat treatment may be performed at a temperature of 300°C to 700°C, may be performed at a temperature of 400°C to 600°C, and may be performed at a temperature of 450°C to 550°C. If the heat treatment is performed at a temperature of less than 300°C, there is a problem in that the precursor does not sufficiently react with nickel titanate to form carbon nitride, and when it is performed at a temperature exceeding 700°C, carbon nitride is removed. There is a problem.

이하, 본 발명의 실시예 및 실험예를 통해 더욱 상세히 설명한다. Hereinafter, it will be described in more detail through examples and experimental examples of the present invention.

단, 하기 실시예 및 실험예는 본 발명을 예시하는 것일 뿐 본 발명의 내용이 하기 실시예 및 실험예에 의해 한정되는 것은 아니다.However, the following examples and experimental examples are merely illustrative of the present invention, and the contents of the present invention are not limited by the following examples and experimental examples.

<< 실시예Example 1> g- 1> g- CC 33 NN 44 // MoMo -doped -doped NiTiONiTiO 33 복합 complex 광촉매의Photocatalytic 제조-1 Manufacturing-1

단계 1: 0.75 g의 시트릭산(citric acid)을 100 mL의 에탄올과 혼합하여 15분 동안 교반하여 혼합 용매를 제조하였다. 상기 혼합 용매에 암모늄 몰리브데이트 테트라하이드레이트(ammonium molybdate tetrahydrate, (NH4)6Mo7O24ㆍ4H2O)를 0.0092 g을 첨가한 후 균질한 혼합물을 얻을 때까지 30분 동안 교반하였다. Step 1: 0.75 g of citric acid was mixed with 100 mL of ethanol and stirred for 15 minutes to prepare a mixed solvent. 0.0092 g of ammonium molybdate tetrahydrate ((NH 4 ) 6 Mo 7 O 24 ㆍ4H 2 O) was added to the mixed solvent, followed by stirring for 30 minutes until a homogeneous mixture was obtained.

단계 2: 상기 단계 1의 혼합물에 니켈 전구체로 니켈 질산염 육수화물(nickel nitrate hexahydrate, Ni(NO3)2ㆍ6H2O) 0.9313 g 및 티타늄 전구체로 티타늄 n-부톡사이드(titanium n-butoxide, Ti[OC(CH3)3]4) 1.0899 g을 첨가하여 용해시켰다. 전구체의 함량은 니켈과 티타늄의 몰수가 1:1의 몰비가 되도록 첨가하였다.Step 2: In the mixture of Step 1, 0.9313 g of nickel nitrate hexahydrate (Ni(NO 3 ) 2 ㆍ6H 2 O) as a nickel precursor and titanium n-butoxide (Ti) as a titanium precursor [OC(CH 3 ) 3 ] 4 ) 1.0899 g was added and dissolved. The content of the precursor was added so that the mole ratio of nickel and titanium was 1:1.

이후, 혼합물을 160℃의 온도에서 6시간 동안 용매열처리(solvothermal treatment)하고(ramp rate = 2℃/min), 침전물을 원심분리를 통해 얻어 이를 에탄올로 수차례 세척하여 공기분위기에서 건조시킨 후, 최종적으로 600℃의 온도에서 5시간 동안 하소시켜 몰리브덴이 1 중량% 도핑된 니켈 티타네이트(Mo-doped NiTiO3)를 제조하였다.Thereafter, the mixture was subjected to solvent heat treatment at a temperature of 160°C for 6 hours (ramp rate = 2°C/min), and the precipitate was obtained through centrifugation, washed several times with ethanol, and dried in an air atmosphere. Finally, it was calcined at a temperature of 600° C. for 5 hours to prepare a nickel titanate doped with 1% by weight of molybdenum (Mo-doped NiTiO 3 ).

단계 3: 상기 단계 2에서 제조된 Mo-doped NiTiO3 및 디시안디아마이드(dicyandiamide, DCDA)를 1:1의 질량비로 혼합하여 막자 사발에서 10분 동안 분쇄하였다. 분쇄된 혼합 분말을 튜브 퍼니스에 위치시킨 후, 튜브를 통해 질소 가스를 30분 동안 퍼징하여 열처리 전 모든 공기를 제거하고, 500℃의 온도에서 4시간 동안 열처리하였다(ramp rate = 10℃/min). 열처리 후, 고체 시료를 실온에서 꺼내어 다시 분쇄하고 증류수/에탄올 혼합물로 세척하고 80℃의 온도에서 밤새 건조시켜 g-C3N4/Mo-doped NiTiO3 복합체인 광촉매를 제조하였다.Step 3: Mo-doped NiTiO 3 prepared in Step 2 and dicyandiamide (DCDA) were mixed at a mass ratio of 1:1, and pulverized in a mortar for 10 minutes. After placing the pulverized mixed powder in a tube furnace, nitrogen gas was purged through the tube for 30 minutes to remove all air before heat treatment, and heat-treated at a temperature of 500°C for 4 hours (ramp rate = 10°C/min) . After the heat treatment, the solid sample was taken out at room temperature, pulverized again, washed with a mixture of distilled water/ethanol, and dried overnight at 80° C. to prepare a photocatalyst as a gC 3 N 4 /Mo-doped NiTiO 3 composite.

<< 실시예Example 2> g- 2> g- CC 33 NN 44 // MoMo -doped -doped NiTiONiTiO 33 복합 complex 광촉매의Photocatalytic 제조-2 Manufacturing-2

상기 실시예 1의 단계 1에서 암모늄 몰리브데이트 테트라하이드레이트(ammonium molybdate tetrahydrate, (NH4)6Mo7O24ㆍ4H2O)를 0.0276 g을 첨가하여 몰리브덴이 3 중량% 도핑된 니켈 티타네이트(Mo-doped NiTiO3)를 제조한 것을 제외하고 상기 실시예 1과 동일하게 수행하여 광촉매를 제조하였다.In step 1 of Example 1, 0.0276 g of ammonium molybdate tetrahydrate ((NH 4 ) 6 Mo 7 O 24 ㆍ4H 2 O) was added to the nickel titanate doped with 3% by weight of molybdenum ( A photocatalyst was prepared in the same manner as in Example 1, except that Mo-doped NiTiO 3 ) was prepared.

<< 비교예Comparative example 1> g- 1> g- CC 33 NN 44

순수한 흑연 탄소 질화물(Graphitic carbon nitride, g-C3N4)은 디시안디아마이드(dicyandiamide, DCDA)로부터 합성되었다. 구체적으로, 백색 분말 전구체인 DCDA를 막자 사발에서 10분 동안 분쇄하였다. 백색 분말을 튜브 퍼니스에 위치시킨 후, 튜브를 통해 질소 가스를 30분 동안 퍼징하여 열처리 전 모든 공기를 제거하고, 550℃의 온도에서 4시간 동안 열처리하였다(ramp rate = 10℃/min). 열처리 후, 고체 시료를 실온에서 꺼내어 다시 분쇄하고 증류수/에탄올 혼합물로 세척하고 80℃의 온도에서 밤새 건조시켜 g-C3N4를 제조하였다.Pure graphitic carbon nitride (gC 3 N 4 ) was synthesized from dicyandiamide (DCDA). Specifically, DCDA, a white powder precursor, was crushed in a mortar for 10 minutes. After placing the white powder in a tube furnace, nitrogen gas was purged through the tube for 30 minutes to remove all air before heat treatment, and heat-treated at a temperature of 550° C. for 4 hours (ramp rate = 10° C./min). After heat treatment, the solid sample was taken out at room temperature, pulverized again, washed with distilled water/ethanol mixture, and dried overnight at 80° C. to prepare gC 3 N 4 .

<< 비교예Comparative example 2> 2> TiOTiO 22

아나타제-루타일(anatase-rutile) 상의 TiO2를 준비하였다.TiO 2 on anatase-rutile was prepared.

<< 비교예Comparative example 3> 3> NiTiONiTiO 33

0.75 g의 시트릭산(citric acid)을 100 mL의 에탄올과 혼합하여 15분 동안 교반하여 혼합 용매를 제조하였다. 상기 혼합 용매에 니켈 전구체로 니켈 질산염 육수화물(nickel nitrate hexahydrate, Ni(NO3)2ㆍ6H2O) 0.9407 g 및 티타늄 전구체로 티타늄 n-부톡사이드(titanium n-butoxide, Ti[OC(CH3)3]4) 1.1009 g을 첨가하여 용해시켰다. 전구체의 함량은 니켈과 티타늄의 몰수가 1:1의 몰비가 되도록 첨가하였다.0.75 g of citric acid was mixed with 100 mL of ethanol and stirred for 15 minutes to prepare a mixed solvent. 0.9407 g of nickel nitrate hexahydrate (Ni(NO 3 ) 2 ㆍ6H 2 O) as a nickel precursor in the mixed solvent and titanium n-butoxide as a titanium precursor (titanium n-butoxide, Ti[OC(CH 3 )) ) 3 ] 4 ) 1.1009 g was added and dissolved. The content of the precursor was added so that the mole ratio of nickel and titanium was 1:1.

이후, 혼합물을 160℃의 온도에서 6시간 동안 용매열처리(solvothermal treatment)하고(ramp rate = 2℃/min), 침전물을 원심분리를 통해 얻어 이를 에탄올로 수차례 세척하여 공기분위기에서 건조시킨 후, 최종적으로 600℃의 온도에서 5시간 동안 하소시켜 니켈 티타네이트(NiTiO3)를 제조하였다.Thereafter, the mixture was subjected to solvent heat treatment at a temperature of 160°C for 6 hours (ramp rate = 2°C/min), and the precipitate was obtained through centrifugation, washed several times with ethanol, and dried in an air atmosphere. Finally, it was calcined at a temperature of 600° C. for 5 hours to prepare nickel titanate (NiTiO 3 ).

<< 비교예Comparative example 4> 4> 1wt%1wt% MoMo -doped -doped NiTiONiTiO 33

0.75 g의 시트릭산(citric acid)을 100 mL의 에탄올과 혼합하여 15분 동안 교반하여 혼합 용매를 제조하였다. 상기 혼합 용매에 암모늄 몰리브데이트 테트라하이드레이트(ammonium molybdate tetrahydrate, (NH4)6Mo7O24ㆍ4H2O)를 0.0092 g을 첨가한 후 균질한 혼합물을 얻을 때까지 30분 동안 교반하였다. 0.75 g of citric acid was mixed with 100 mL of ethanol and stirred for 15 minutes to prepare a mixed solvent. 0.0092 g of ammonium molybdate tetrahydrate ((NH 4 ) 6 Mo 7 O 24 ㆍ4H 2 O) was added to the mixed solvent, followed by stirring for 30 minutes until a homogeneous mixture was obtained.

상기 혼합물에 니켈 전구체로 니켈 질산염 육수화물(nickel nitrate hexahydrate, Ni(NO3)2ㆍ6H2O) 0.9313 g 및 티타늄 전구체로 티타늄 n-부톡사이드(titanium n-butoxide, Ti[OC(CH3)3]4) 1.0899 g을 첨가하여 용해시켰다. 전구체의 함량은 니켈과 티타늄의 몰수가 1:1의 몰비가 되도록 첨가하였다.In the mixture, as a nickel precursor, nickel nitrate hexahydrate (Ni(NO 3 ) 2 ㆍ6H 2 O) 0.9313 g and titanium n-butoxide as a titanium precursor (titanium n-butoxide, Ti[OC(CH 3 )) 3 ] 4 ) 1.0899 g was added and dissolved. The content of the precursor was added so that the mole ratio of nickel and titanium was 1:1.

이후, 혼합물을 160℃의 온도에서 6시간 동안 용매열처리(solvothermal treatment)하고(ramp rate = 2℃/min), 침전물을 원심분리를 통해 얻어 이를 에탄올로 수차례 세척하여 공기분위기에서 건조시킨 후, 최종적으로 600℃의 온도에서 5시간 동안 하소시켜 몰리브덴이 1 중량% 도핑된 니켈 티타네이트(Mo-doped NiTiO3)를 제조하였다.Thereafter, the mixture was subjected to solvent heat treatment at a temperature of 160°C for 6 hours (ramp rate = 2°C/min), and the precipitate was obtained through centrifugation, washed several times with ethanol, and dried in an air atmosphere. Finally, it was calcined at a temperature of 600° C. for 5 hours to prepare a nickel titanate doped with 1% by weight of molybdenum (Mo-doped NiTiO 3 ).

<< 비교예Comparative example 5> 5> 3wt%3wt% MoMo -doped -doped NiTiONiTiO 33

상기 비교예 4에서 암모늄 몰리브데이트 테트라하이드레이트(ammonium molybdate tetrahydrate, (NH4)6Mo7O24ㆍ4H2O)를 0.0276 g을 첨가하여 몰리브덴이 3 중량% 도핑된 니켈 티타네이트(Mo-doped NiTiO3)를 제조한 것을 제외하고 상기 비교예 4와 동일하게 수행하여 3 중량% 도핑된 니켈 티타네이트(Mo-doped NiTiO3)를 제조하였다.In Comparative Example 4, 0.0276 g of ammonium molybdate tetrahydrate ((NH 4 ) 6 Mo 7 O 24 ㆍ4H 2 O) was added to the nickel titanate doped with 3% by weight of molybdenum (Mo-doped NiTiO 3 ) was prepared in the same manner as in Comparative Example 4 except for preparing 3 wt% doped nickel titanate (Mo-doped NiTiO 3 ).

<< 비교예Comparative example 6> g- 6> g- CC 33 NN 44 // TiOTiO 22

상기 비교예 2에서 준비한 TiO2 및 디시안디아마이드(dicyandiamide, DCDA)를 1:1의 질량비로 혼합하여 막자 사발에서 10분 동안 분쇄하였다. 분쇄된 혼합 분말을 튜브 퍼니스에 위치시킨 후, 튜브를 통해 질소 가스를 30분 동안 퍼징하여 열처리 전 모든 공기를 제거하고, 500℃의 온도에서 4시간 동안 열처리하였다(ramp rate = 10℃/min). 열처리 후, 고체 시료를 실온에서 꺼내어 다시 분쇄하고 증류수/에탄올 혼합물로 세척하고 80℃의 온도에서 밤새 건조시켜 g-C3N4/TiO2 복합체인 광촉매를 제조하였다.TiO 2 prepared in Comparative Example 2 and dicyandiamide (DCDA) were mixed at a mass ratio of 1:1, and pulverized in a mortar for 10 minutes. After placing the pulverized mixed powder in a tube furnace, nitrogen gas was purged through the tube for 30 minutes to remove all air before heat treatment, and heat-treated at a temperature of 500°C for 4 hours (ramp rate = 10°C/min) . After heat treatment, the solid sample was taken out at room temperature, pulverized again, washed with a mixture of distilled water/ethanol, and dried overnight at 80° C. to prepare a photocatalyst of gC 3 N 4 /TiO 2 complex.

<< 비교예Comparative example 7> g- 7> g- CC 33 NN 44 // NiTiONiTiO 33

상기 비교예 3에서 제조된 NiTiO3 및 디시안디아마이드(dicyandiamide, DCDA)를 1:1의 질량비로 혼합하여 막자 사발에서 10분 동안 분쇄하였다. 분쇄된 혼합 분말을 튜브 퍼니스에 위치시킨 후, 튜브를 통해 질소 가스를 30분 동안 퍼징하여 열처리 전 모든 공기를 제거하고, 500℃의 온도에서 4시간 동안 열처리하였다(ramp rate = 10℃/min). 열처리 후, 고체 시료를 실온에서 꺼내어 다시 분쇄하고 증류수/에탄올 혼합물로 세척하고 80℃의 온도에서 밤새 건조시켜 g-C3N4/NiTiO3 복합체인 광촉매를 제조하였다.NiTiO 3 prepared in Comparative Example 3 and dicyandiamide (DCDA) were mixed at a mass ratio of 1:1, and pulverized in a mortar for 10 minutes. After placing the pulverized mixed powder in a tube furnace, nitrogen gas was purged through the tube for 30 minutes to remove all air before heat treatment, and heat-treated at a temperature of 500°C for 4 hours (ramp rate = 10°C/min) . After the heat treatment, the solid sample was taken out at room temperature, pulverized again, washed with a mixture of distilled water/ethanol, and dried overnight at 80° C. to prepare a photocatalyst of gC 3 N 4 /NiTiO 3 composite.

상기 실시예 1, 실시예 2 및 비교예 1 내지 7에서 제조된 샘플들의 표기와 상(phase), 그레인 사이즈(d) 및 밴드갭 에너지(Eg)를 하기 표 1에 표시하였다.Indications and phases, grain sizes (d), and band gap energies (E g ) of the samples prepared in Examples 1, 2 and Comparative Examples 1 to 7 are shown in Table 1 below.

샘플Sample 표기Mark 설명
(descriptions)
Explanation
(descriptions)
PhasePhase d(nm)d(nm) Eg(eV)E g (eV)
실시예 1Example 1 CMNT1CMNT1 g-C3N4/M1-NT compositegC 3 N 4 /M1-NT composite IlmeniteIlmenite 54.4854.48 1.611.61 실시예 2Example 2 CMNT3CMNT3 g-C3N4/M3-NT compositegC 3 N 4 /M3-NT composite IlmeniteIlmenite 47.9847.98 1.561.56 비교예 1Comparative Example 1 CC pristine g-C3N4 pristine gC 3 N 4 g-C3N4 gC 3 N 4 -- 2.102.10 비교예 2Comparative Example 2 TT pristine TiO2 pristine TiO 2 Anatase-RutileAnatase-Rutile 42.5442.54 3.823.82 비교예 3Comparative Example 3 NTNT pristine NiTiO3 pristine NiTiO 3 IlmeniteIlmenite 84.0984.09 2.712.71 비교예 4Comparative Example 4 MNT1MNT1 M1-NTM1-NT IlmeniteIlmenite 43.3043.30 2.182.18 비교예 5Comparative Example 5 MNT3MNT3 M3-NTM3-NT IlmeniteIlmenite 52.6552.65 2.152.15 비교예 6Comparative Example 6 CTCT g-C3N4/TiO2 compositegC 3 N 4 /TiO 2 composite Anatase-RutileAnatase-Rutile 45.8745.87 3.663.66 비교예 7Comparative Example 7 CNTCNT g-C3N4/NiTiO3 compositegC 3 N 4 /NiTiO 3 composite IlmeniteIlmenite 68.7268.72 1.981.98

<< 실험예Experimental example 1> 금속 도핑에 따른 1> According to metal doping NiTiONiTiO 33 of 특성 분석 Characterization

니켈 티타네이트에 금속을 도핑함으로써 변하는 특성을 확인하기 위하여, 비교예 4와 동일한 방법으로 몰리브덴의 함량만 변경하여 0.5 중량% 내지 10 중량%가 도핑된 NiTiO3를 제조하고, 제조된 샘플의 결정 크기(crystallite size), 밴드갭 에너지(band gap energy), 비표면적(specific surface area) 및 발광 강도(Photo luminescence, PL)를 측정하였으며 그 결과를 도 1에 나타내었다.In order to confirm the properties that change by doping nickel titanate with a metal, in the same manner as in Comparative Example 4, only the content of molybdenum was changed to prepare NiTiO 3 doped with 0.5% by weight to 10% by weight, and the crystal size of the prepared sample (crystallite size), band gap energy, specific surface area, and photoluminescence (PL) were measured, and the results are shown in FIG. 1.

도 1에 나타낸 바와 같이, 니켈 티타네이트에 도핑되는 몰리브덴의 함량에 따라 다양한 특성들이 변화하는 것을 확인할 수 있었다.As shown in FIG. 1, it was confirmed that various properties were changed according to the content of molybdenum doped in nickel titanate.

<< 실험예Experimental example 2> 2> 광촉매Photocatalyst 특성 분석 Characterization

1) XRD 분석1) XRD analysis

상기 실시예 1, 실시예 2 및 비교예 1 내지 7에서 제조된 샘플들을 X-선 회절 분석(XRD)으로 분석하였으며, 그 결과를 도 2에 나타내었다.The samples prepared in Examples 1, 2, and Comparative Examples 1 to 7 were analyzed by X-ray diffraction analysis (XRD), and the results are shown in FIG. 2.

도 2에 나타낸 바와 같이, XRD 패턴을 통해 각각의 샘플들이 정상적으로 합성되었음을 확인할 수 있었다.As shown in FIG. 2, it was confirmed that each of the samples was synthesized normally through the XRD pattern.

2) SEM 및 TEM 분석2) SEM and TEM analysis

상기 실시예 1, 실시예 2 및 비교예 6에서 제조된 샘플들을 SEM 및 TEM으로 분석하였으며, 그 결과를 도 3에 나타내었다.The samples prepared in Example 1, Example 2, and Comparative Example 6 were analyzed by SEM and TEM, and the results are shown in FIG. 3.

도 3에 나타낸 바와 같이, 제조된 컴포지트 광촉매는 카본 나이트라이드가 니켈 티타네이트와 이산화 티타늄 표면을 감싼 생선비늘과 유사한 형태를 가지고 있다. 이와 같은 구조를 통해 카본 나이트라이드와 니켈 티타네이트의 접근성이 좋아 컴포지트 광촉매의 광효율을 높여준다.As shown in FIG. 3, the prepared composite photocatalyst has a shape similar to fish scales in which carbon nitride covers the surfaces of nickel titanate and titanium dioxide. Through this structure, the accessibility of carbon nitride and nickel titanate is good, improving the optical efficiency of the composite photocatalyst.

3) UV-Vis 및 PL 분석3) UV-Vis and PL analysis

상기 실시예 1, 실시예 2 및 비교예 1 내지 7에서 제조된 샘플들을 자외선-가시광선 스펙트럼(UV-vis spectra) 및 발광 스펙트럼(PL spectra)으로 분석하였으며, 그 결과를 도 4에 나타내었다.The samples prepared in Example 1, Example 2, and Comparative Examples 1 to 7 were analyzed by ultraviolet-vis spectra and emission spectra, and the results are shown in FIG. 4.

도 4 a에 나타낸 바와 같이, 실시예 1 및 실시예 2의 CMNT1 및 CMNT3의 복합체인 광촉매의 경우 월등히 높은 광흡수율을 나타냄을 확인할 수 있었다. 특히 300 nm 이상, 350 nm 내지 700 nm 영역의 가시광 파장 범위에서 높은 흡수율을 나타냄을 확인할 수 있었다.As shown in Figure 4a, it was confirmed that the photocatalyst, which is a composite of CMNT1 and CMNT3 of Examples 1 and 2, exhibited a remarkably high light absorption. In particular, it was confirmed that a high absorption rate was exhibited in the visible light wavelength range of 300 nm or more and 350 nm to 700 nm.

도 4 b에 나타낸 바와 같이, CMNT1, CMNT3의 PL intensity가 C의 PL intensity보다 현저히 낮아 CMNT1와 CMNT3의 recombination 억제현상이 확인된다. 이는 이들 컴포지트광촉매의 광분해효율을 증진시킬 것으로 보인다.As shown in Fig. 4b, the PL intensity of CMNT1 and CMNT3 is significantly lower than that of C, thereby confirming the inhibition of recombination of CMNT1 and CMNT3. This is expected to improve the photolysis efficiency of these composite photocatalysts.

4) 광촉매의 메틸렌블루 흡착거동 및 광분해 반응 결과 분석4) Methylene blue adsorption behavior of photocatalyst and photolysis reaction result analysis

상기 실시예 1, 실시예 2 및 비교예 1 내지 7에서 제조된 샘플들을 이용하여 메틸렌블루 흡착거동 및 광분해 반응을 수행하였으며, 그 결과를 도 5 및 하기 표 2에 나타내었다.Methylene blue adsorption behavior and photolysis reaction were performed using the samples prepared in Examples 1, 2 and Comparative Examples 1 to 7, and the results are shown in FIG. 5 and Table 2 below.

하기 표 2에서 qe는 흡착 용량(adsorption capacity)이고, kads는 흡착 속도 상수(adsorption rate constant)이고, kapp는 겉보기 속도 상수(apparent rate constant)이고, R2은 가시광선 조사 하에서의 메틸렌 블루(MB) 10 ppm의 광촉매 분해의 대응되는 R의 제곱값이다.In Table 2 below, q e is an adsorption capacity, k ads is an adsorption rate constant, k app is an apparent rate constant, and R 2 is methylene blue under visible light irradiation. (MB) The corresponding squared value of R of the photocatalytic decomposition of 10 ppm.

샘플Sample 표기Mark Dark adsorptionDark adsorption Visible irradiationVisible irradiation qe (mg/g)q e (mg/g) kads×103
(g.mg- 1.min-1)
k ads ×10 3
(g.mg - 1 .min -1 )
R2 R 2 kapp×103
(min-1)
k app ×10 3
(min -1 )
R2 R 2
실시예 1Example 1 CMNT1CMNT1 67.9867.98 69.1369.13 0.9990.999 16.7416.74 0.9670.967 실시예 2Example 2 CMNT3CMNT3 51.2051.20 12.7612.76 0.9880.988 28.0828.08 0.9890.989 비교예 1Comparative Example 1 CC 61.5061.50 25.6325.63 0.9960.996 4.374.37 0.9830.983 비교예 2Comparative Example 2 TT 44.5444.54 83.7283.72 0.9990.999 6.536.53 0.9960.996 비교예 3Comparative Example 3 NTNT 66.2366.23 11.1811.18 0.9980.998 3.413.41 0.9920.992 비교예 4Comparative Example 4 MNT1MNT1 68.9268.92 31.1931.19 0.9990.999 7.477.47 0.9960.996 비교예 5Comparative Example 5 MNT3MNT3 76.6976.69 30.4230.42 0.9990.999 9.419.41 0.9900.990 비교예 6Comparative Example 6 CTCT 71.5371.53 36.5336.53 0.9990.999 5.325.32 0.9850.985 비교예 7Comparative Example 7 CNTCNT 71.0271.02 63.5463.54 0.9990.999 7.927.92 0.9840.984

도 5 및 상기 표 2에 나타낸 바와 같이, 금속이 도핑된 니켈 티타네이트 및 카본 나이트라이드 복합체로 구성된 광촉매인 실시예 1 및 실시예 2의 경우 광촉매 분해효율이 각각 16.74×103 /min 및 28.08×103 /min으로 월등히 우수한 것을 확인할 수 있었다.5 and Table 2, in the case of Examples 1 and 2, which are photocatalysts composed of metal-doped nickel titanate and carbon nitride composites, the photocatalytic decomposition efficiency is 16.74×10 3 /min and 28.08×, respectively. It was confirmed that it was excellent at 10 3 /min.

특히, 실시예 2(CMNT3)의 경우 비교예 7(CNT) 보다 3.55 배 우수한 광촉매 분해효율을 나타내는 것을 확인할 수 있었다.In particular, it was confirmed that Example 2 (CMNT3) showed 3.55 times better photocatalytic decomposition efficiency than Comparative Example 7 (CNT).

이와 같이, 본 발명에 따른 광촉매는 니켈 티타네이트(NiTiO3) 구조에 금속을 도핑시키고, 이를 활용하여 카본 나이트라이드 복합체를 형성함으로써 니켈 티타네이트와 카본 나이트라이드의 접촉성이 우수하여 Ti-N 결합이 증가한다. 또한, 밴드갭이 매우 낮아지고, 재결합(recombination) 현상이 억제되어 우수한 광특성을 나타낸다. 나아가, 메틸렌 블루 광분해 실험을 수행하는 경우 본 발명에 따른 광촉매는 기존 광촉매에 비해 최대 3.55 배의 우수한 분해 효율을 나타낸다.As described above, the photocatalyst according to the present invention is doped with a metal in the nickel titanate (NiTiO 3 ) structure, and formed a carbon nitride composite by using it, thereby having excellent contact between nickel titanate and carbon nitride, and thus Ti-N bonding. Increases. In addition, the band gap is very low, recombination is suppressed, and excellent optical characteristics are exhibited. Furthermore, when performing the methylene blue photolysis experiment, the photocatalyst according to the present invention exhibits an excellent decomposition efficiency of up to 3.55 times compared to the conventional photocatalyst.

Claims (12)

몰리브덴(Mo)이 도핑된 니켈 티타네이트(NiTiO3) 및
카본 나이트라이드(Carbon nitride)를 포함하는 광촉매.
Molybdenum (Mo) doped nickel titanate (NiTiO 3 ) and
Photocatalyst containing carbon nitride.
제1항에 있어서,
상기 광촉매는 가시광 파장 범위에서 활성을 나타내는 것을 특징으로 하는 광촉매.
The method of claim 1,
A photocatalyst, characterized in that the photocatalyst exhibits activity in a visible wavelength range.
삭제delete 제1항에 있어서,
상기 몰리브덴(Mo)이 도핑된 니켈 티타네이트에서 몰리브덴의 함량은 니켈 티타네이트 100 중량부 기준으로 0.5 중량부 내지 10 중량부인 것을 특징으로 하는 광촉매.
The method of claim 1,
In the molybdenum (Mo) doped nickel titanate, the content of molybdenum is 0.5 parts by weight to 10 parts by weight based on 100 parts by weight of nickel titanate.
유기 용매에 도핑 금속인 몰리브덴의 전구체를 혼합하여 혼합물을 제조하는 단계;
상기 혼합물에 니켈 전구체 및 티타늄 전구체를 첨가하고 하소시켜 몰리브덴(Mo)이 도핑된 니켈 티타네이트를 제조하는 단계; 및
상기 몰리브덴(Mo)이 도핑된 니켈 티타네이트 및 디시안디아마이드(DCDA)를 혼합한 후, 열처리하여 광촉매를 제조하는 단계;를 포함하는 광촉매의 제조방법.
Preparing a mixture by mixing a precursor of molybdenum as a doping metal in an organic solvent;
Adding a nickel precursor and a titanium precursor to the mixture and calcining to prepare molybdenum (Mo)-doped nickel titanate; And
Mixing the molybdenum (Mo)-doped nickel titanate and dicyandiamide (DCDA) and then heat-treating to prepare a photocatalyst.
제5항에 있어서,
상기 광촉매는 몰리브덴(Mo)이 도핑된 니켈 티타네이트(NiTiO3) 및 카본 나이트라이드(Carbon nitride)를 포함하는 복합체인 것을 특징으로 하는 광촉매의 제조방법.
The method of claim 5,
The photocatalyst is a method of manufacturing a photocatalyst, characterized in that it is a composite containing molybdenum (Mo) doped nickel titanate (NiTiO 3 ) and carbon nitride.
제5항에 있어서,
상기 유기 용매는 증류수, 메탄올, 에탄올, 프로판올 및 에틸렌글리콜로 이루어지는 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 광촉매의 제조방법.
The method of claim 5,
The organic solvent is a method for producing a photocatalyst, characterized in that at least one selected from the group consisting of distilled water, methanol, ethanol, propanol and ethylene glycol.
제5항에 있어서,
상기 혼합물은 시트릭산, 락틱산 및 글리콜산으로 이루어지는 군으로부터 선택되는 1종 이상을 더 포함하는 광촉매의 제조방법.
The method of claim 5,
The mixture further comprises one or more selected from the group consisting of citric acid, lactic acid, and glycolic acid.
제5항에 있어서,
혼합물을 하소시키기 전에 혼합물을 용매열처리하는 단계를 더 포함하는 광촉매의 제조방법.
The method of claim 5,
A method for producing a photocatalyst further comprising the step of solvent heat treating the mixture before calcining the mixture.
제9항에 있어서,
상기 용매열처리는 120℃ 내지 200℃의 온도에서 수행되는 것을 특징으로 하는 광촉매의 제조방법.
The method of claim 9,
The solvent heat treatment is a method of manufacturing a photocatalyst, characterized in that performed at a temperature of 120 ℃ to 200 ℃.
제5항에 있어서,
상기 하소는 400℃ 내지 800℃의 온도에서 수행되는 것을 특징으로 하는 광촉매의 제조방법.
The method of claim 5,
The calcination is a method of producing a photocatalyst, characterized in that carried out at a temperature of 400 ℃ to 800 ℃.
제5항에 있어서,
상기 열처리는 300℃ 내지 700℃의 온도에서 수행되는 것을 특징으로 하는 광촉매의 제조방법.
The method of claim 5,
The heat treatment method for producing a photocatalyst, characterized in that performed at a temperature of 300 ℃ to 700 ℃.
KR1020180114431A 2018-09-21 2018-09-21 Composite photocatalyst and manufacturing method thereof KR102186731B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180114431A KR102186731B1 (en) 2018-09-21 2018-09-21 Composite photocatalyst and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180114431A KR102186731B1 (en) 2018-09-21 2018-09-21 Composite photocatalyst and manufacturing method thereof

Publications (2)

Publication Number Publication Date
KR20200034907A KR20200034907A (en) 2020-04-01
KR102186731B1 true KR102186731B1 (en) 2020-12-07

Family

ID=70276333

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180114431A KR102186731B1 (en) 2018-09-21 2018-09-21 Composite photocatalyst and manufacturing method thereof

Country Status (1)

Country Link
KR (1) KR102186731B1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111889129B (en) * 2020-07-30 2021-07-30 大连工业大学 Preparation of ultrathin porous nano carbon nitride photocatalyst and application of ultrathin porous nano carbon nitride photocatalyst in synthesis of lactic acid by photocatalytic oxidation of fructose
CN113070084B (en) * 2021-03-22 2022-06-21 湖南大学 Ternary composite material based on graphite phase carbon nitride and preparation method and application thereof
CN113181900A (en) * 2021-04-14 2021-07-30 中国科学院过程工程研究所 Bi2WO6Protonated g-C3N4Nanosheet heterojunction photocatalyst and preparation method and application thereof
CN115430451B (en) * 2022-08-29 2023-10-31 湖南大学 Iron-titanium co-doped porous graphite phase carbon nitride photo-Fenton catalyst and preparation method and application thereof
CN115591558A (en) * 2022-09-19 2023-01-13 重庆大学(Cn) Composite photocatalytic hydrogen production material NiTiO 3 /CdIn 2 S 4 Preparation method of (1)
CN115582116A (en) * 2022-10-28 2023-01-10 南京师范大学 Molecular doping preparation WO 3 /g-C 3 N 4 Method and application of composite photocatalyst

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Applied Catalysis B: Envrionmental, Vol.188, pp.342~350(2016.02.06.)
Applied Surface Science, Vol.411, pp.18~26(2017.03.16.)
Applied Surface Science, Vol.447, pp.757~766(2018.04.07.)
RSC Adv., Vol.5, pp.95643~95648(2015.)

Also Published As

Publication number Publication date
KR20200034907A (en) 2020-04-01

Similar Documents

Publication Publication Date Title
KR102186731B1 (en) Composite photocatalyst and manufacturing method thereof
Adorna Jr et al. Indirect Z-scheme nitrogen-doped carbon dot decorated Bi2MoO6/g-C3N4 photocatalyst for enhanced visible-light-driven degradation of ciprofloxacin
Zaleska Doped-TiO2: a review
Kong et al. Preparation, characterization of the Ta-doped ZnO nanoparticles and their photocatalytic activity under visible-light illumination
KR100945035B1 (en) Tungstates based visible-light induced oxides photocatalysts and synthesis methods thereof
US9433933B2 (en) Titania photocatalytic compounds and methods of making the same
KR102109097B1 (en) Bismuth vanadate, photocatalyst comprising bismuth vanadate and manufacturing method of bismuth vanadate
KR102074872B1 (en) Visible-light photocatalyst comprising zinc iron oxide and tungsten oxide and method of preparing thereof
KR101789296B1 (en) Method for preparing titanium dioxide photocatalyst dopped silver and photocatalyst prepared thereby
EP2459485B1 (en) Photocatalytic materials and process for producing the same
EP2519348B1 (en) Method of production of photocatalytic powder comprising titanium dioxide and manganese dioxide active under ultraviolet and visible light
KR101146899B1 (en) Photocatalyst having titanium dioxide and a metal tungsten oxide junction structure and preparation method thereof
Ghorai Photocatalytic degradation of 4-chlorophenol by CuMoO 4-doped TiO 2 nanoparticles synthesized by chemical route
Huang et al. Enhanced sunlight-driven photocatalytic performance of Bi-doped CdMoO4 benefited from efficient separation of photogenerated charge pairs
Safari et al. Visible light photocatalytic activity enhancing of MTiO3 perovskites by M cation (M= Co, Cu, and Ni) substitution and Gadolinium doping
Channei et al. Preparation and characterization of Pd modified CeO2 nanoparticles for photocatalytic degradation of dye
JP4487362B2 (en) Photocatalytic substance
JP4997627B2 (en) Visible light responsive photocatalyst
CN113544094A (en) Titanium oxide fine particles, dispersion liquid thereof, and method for producing said dispersion liquid
KR102168022B1 (en) Preparation method of photocatalyst for water splitting and photocatalyst for water decomposition prepared by the same
KR102360632B1 (en) Visible Light Sensitive Bismuth Ferrite Nanocrystalline Composite, Method of Preparing the Same and Photocatalyst Using the Same
JP2010149046A (en) Method for producing visible light-responsive photocatalyst and visible light-responsive photocatalyst
KR102247173B1 (en) Fe-doped perovskite photocatalyst, its preparation method and environmental pollution control using it
KR102171101B1 (en) Nickel titanium niobium triple metal oxide visible photocatalyst and manufacturing method thereof
Wei et al. Reactivity and mechanistic insight into visible-light-induced anerobic selective reaction by Ag/brookite titania

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant