KR102184637B1 - A diagnostic method and kit that can simultaneously detect and identify tuberculosis and non-tuberculosis mycobacteria based on the Quanta Matrix Assay Platform and whether tuberculosis bacteria are resistant to rifampin - Google Patents

A diagnostic method and kit that can simultaneously detect and identify tuberculosis and non-tuberculosis mycobacteria based on the Quanta Matrix Assay Platform and whether tuberculosis bacteria are resistant to rifampin Download PDF

Info

Publication number
KR102184637B1
KR102184637B1 KR1020197003372A KR20197003372A KR102184637B1 KR 102184637 B1 KR102184637 B1 KR 102184637B1 KR 1020197003372 A KR1020197003372 A KR 1020197003372A KR 20197003372 A KR20197003372 A KR 20197003372A KR 102184637 B1 KR102184637 B1 KR 102184637B1
Authority
KR
South Korea
Prior art keywords
mycobacterium
tuberculosis
ttt ttt
seq
dna
Prior art date
Application number
KR1020197003372A
Other languages
Korean (ko)
Other versions
KR20190022871A (en
Inventor
왕혜영
김현일
박철세
이혜영
Original Assignee
연세대학교 원주산학협력단
주식회사 옵티팜
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 연세대학교 원주산학협력단, 주식회사 옵티팜 filed Critical 연세대학교 원주산학협력단
Publication of KR20190022871A publication Critical patent/KR20190022871A/en
Application granted granted Critical
Publication of KR102184637B1 publication Critical patent/KR102184637B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/689Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for bacteria
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B45/00ICT specially adapted for bioinformatics-related data visualisation, e.g. displaying of maps or networks
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B5/00ICT specially adapted for modelling or simulations in systems biology, e.g. gene-regulatory networks, protein interaction networks or metabolic networks
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2563/00Nucleic acid detection characterized by the use of physical, structural and functional properties
    • C12Q2563/107Nucleic acid detection characterized by the use of physical, structural and functional properties fluorescence
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Abstract

본 발명은 퀀타매트릭스 어세이 플랫폼 기반 결핵 및 비결핵 항산균의 검출 및 동정과 결핵균의 리팜핀 및 아이나 내성여부를 동시 확인할 수 있는 진단법 및 그 키트에 관한 것이다.The present invention relates to a diagnostic method capable of simultaneously confirming the detection and identification of tuberculosis and non-tuberculosis mycobacteria based on the Quanta Matrix assay platform and resistance to Rifampin and Iina of Mycobacterium tuberculosis, and a kit thereof.

Description

퀀타매트릭스 어세이 플랫폼 기반 결핵 및 비결핵 항산균의 검출 및 동정과 결핵균의 리팜핀 내성여부를 동시 확인할 수 있는 진단법 및 그 키트A diagnostic method and kit that can simultaneously detect and identify tuberculosis and non-tuberculosis mycobacteria based on the Quanta Matrix Assay Platform and whether tuberculosis bacteria are resistant to rifampin

본 발명은 퀀타매트릭스 어세이 플랫폼 기반 결핵 및 비결핵 항산균의 검출 및 동정과 결핵균의 리팜핀 내성여부를 동시 확인할 수 있는 진단법 및 그 키트에 관한 것이다.The present invention relates to a diagnostic method capable of simultaneously confirming the detection and identification of tuberculosis and non-tuberculosis mycobacteria based on a quanta matrix assay platform and whether or not the tuberculosis bacteria are resistant to rifampin and a kit thereof.

결핵은 결핵균(Mycobacterium tuberculosis, MTB)이 원인이 되어 발생하는 만성 감염성 질환이고 우리나라에서 결핵의 유병률은 지속적으로 감소하는 추세이나 외국에 비해 높은 편이다. 또한, 효과적인 항결핵제가 사용되어 왔음에도 불구하고 다제내성 결핵 및 광범위내성 결핵 등 난치성 결핵이 증가함에 따라 아직도 세계적으로 결핵환자가 매년 800만 명이 발병하고 결핵으로 인해서 200만 명이 사망하고 있다. 따라서 치료가 어려운 난치성 결핵균의 내성 여부를 신속하게 판별하는 것이 환자의 효과적인 치료와 생존에 필수적이다. 결핵의 원인균으로는 결핵균뿐만 아니라 외국의 경우 비결핵 항산균(nontuberculous mycobacteria, NTM)의 빈도가 높은 지역에서는 항산균 도말 양성 객담의 30%에서 50%까지 비결핵 항산균이 분리되고 있으며 선진국화될수록 비결핵 항산균에 의한 결핵환자의 발생이 증가하는 것으로 보고되면서 마이코박테리아 균동정이 매우 중요한 문제가 되고 있다[Wright PW, Wallace RJ Jr, Wright NW, Brown BA, Griffith DE. J Clin Microbiol 1998;36:1046-9;Marras TK and Daley CL. Clin Chest Med 2002;23:553-67;Diagnosis and treatment of disease caused by nontuberculous mycobacteria. This official statement of the American Thoracic Society. Management of opportunist mycobacterial infections: Joint Tuberculosis Committee Guidelines 1999. Thorax 2000;55:210-8]. Tuberculosis is a chronic infectious disease caused by Mycobacterium tuberculosis (MTB), and the prevalence of tuberculosis in Korea is constantly decreasing, but it is higher than in foreign countries. In addition, even though effective anti-tuberculosis agents have been used, as intractable tuberculosis such as multi-drug-resistant tuberculosis and widespread tuberculosis increases, there are still 8 million tuberculosis patients worldwide and 2 million deaths due to tuberculosis. Therefore, it is essential for effective treatment and survival of patients to quickly determine the resistance of intractable Mycobacterium tuberculosis, which is difficult to treat. As the causative agent of tuberculosis, not only Mycobacterium tuberculosis, but also nontuberculous mycobacteria (NTM) in foreign countries, are isolated from 30% to 50% of Sputum-positive Sputum in areas where nontuberculous mycobacteria (NTM) are high. As the incidence of tuberculosis patients due to non-tuberculosis mycobacterium is reported to increase, the identification of mycobacteria has become a very important problem [Wright PW, Wallace RJ Jr, Wright NW, Brown BA, Griffith DE. J Clin Microbiol 1998;36:1046-9; Marras TK and Daley CL. Clin Chest Med 2002;23:553-67;Diagnosis and treatment of disease caused by nontuberculous mycobacteria. This official statement of the American Thoracic Society. Management of opportunist mycobacterial infections: Joint Tuberculosis Committee Guidelines 1999. Thorax 2000;55:210-8].

국내의 경우 비결핵 항산균 질환의 빈도가 낮다고 알려져 있었기 때문에 항산균 도말양성일 경우 대부분 결핵으로 간주하고 항결핵제 치료를 시행하는 것이 일반적이었으나, 국내에서도 항산균 도말 양성 객담의 10.3-12.2%까지 비결핵 항산균의 검출이 보고되어 왔으나 최근에는 30% 수준까지 그 비율이 높아지고 있는 추세이다[Koh WJ, Kwon OJ, Yu CM, Jeon K, Suh GY, Chung MP, et al. Tuberc Respir Dis 2003;54:22-32]. 또한 비결핵 항산균은 면역 기능 저하자에서 질병을 일으킬 수 있고 진단이 쉽지 않으며 균종에 따라 자연적으로 가지는 약재내성이 다르므로 비결핵 항산균에 의한 결핵의 경우 그 치료법이 결핵균에 의한 결핵의 치료법과 다를 수 있다[Koh WJ, Kwon OJ, Lee KS. J Korean Med Sci 2005;20:913-25;Wagner D and Young LS. Nontuberculous mycobacterial infections: a clinical review. Infection 2004;32:257-70]. In Korea, it was known that the incidence of non-tuberculosis mycobacterial disease was low. Therefore, most cases of mycobacterial smear-positive were regarded as tuberculosis and treatment with anti-tuberculosis drugs was generally practiced. The detection of bacteria has been reported, but recently, the rate is increasing to the level of 30% [Koh WJ, Kwon OJ, Yu CM, Jeon K, Suh GY, Chung MP, et al. Tuberc Respir Dis 2003;54:22-32]. In addition, non-tuberculosis mycobacterium can cause disease in people with reduced immune function, and diagnosis is not easy, and the resistance to medicinal substances is different depending on the species. Therefore, in the case of tuberculosis caused by non-tuberculosis mycobacterium, the treatment is different from that of tuberculosis caused by tuberculosis. It can be different [Koh WJ, Kwon OJ, Lee KS. J Korean Med Sci 2005;20:913-25; Wagner D and Young LS. Nontuberculous mycobacterial infections: a clinical review. Infection 2004;32:257-70].

그러므로 결핵균과 비결핵 항산균을 신속하게 구별할 수 있는 적절한 검사방법이 요구되고 있다.Therefore, there is a need for an appropriate test method that can quickly distinguish between Mycobacterium tuberculosis and Mycobacterium tuberculosis.

결핵의 진단에는 보편적으로 항산균 도말검사와 배양검사를 이용해왔다. 항산균 도말검사는 신속하게 결과를 얻을 수 있고 기법이 간편하다는 장점이 있으나 민감도와 특이도가 떨어지며 결핵균과 비결핵 항산균을 구분할 수 없다는 단점이 있으며 배양검사는 결핵진단의 표준법으로 결핵을 진단하는 가장 정확한 방법이지만 천천히 자라는 결핵균의 특성상 시간이 오래 걸린다는 단점이 있으며, 장기간 배양을 하기 때문에 다른 균에 의해 오염이 되는 경우가 많다[Yang HY, Lee HJ, Park WY, Lee KK, Suh JT. Korean J Lab Med 2006;26:174-8]. 최근 결핵균 배양시간을 단축하기 위해서 액체배지를 이용한 자동화 검사법이 등장하였으나 이 방법 역시 결핵균과 비결핵 항산균을 구별할 수 없기 때문에 별도의 동정과정이 필요하다는 단점이 있다[Yang HY, Lee HJ, Park WY, Lee KK, Suh JT. Korean J Lab Med 2006;26:174-8]. 또한 약제 내성 여부를 판별하기 위해 Golden standard로 사용되고 있는 미생물 기반의 진단법은 환자로부터 채취한 객담에서 결핵균을 배양한 후, 다시 약제가 포함된 배지에 배양하여 내성여부를 판단하기에 최소 4 ~ 8주가 경과해야 약제 내성 여부를 판별할 수 있다. In the diagnosis of tuberculosis, an acidophilus smear and culture test have been commonly used. The mycobacterial smear test has the advantage of getting results quickly and the technique is simple, but the sensitivity and specificity are low, and it has the drawback that it is not possible to distinguish between Mycobacterium tuberculosis and non-Tuberculosis mycobacterium. The culture test is a standard method for diagnosing tuberculosis. Although it is the most accurate method, it has the disadvantage that it takes a long time due to the nature of the slow-growing Mycobacterium tuberculosis, and it is often contaminated by other bacteria because it is cultured for a long time [Yang HY, Lee HJ, Park WY, Lee KK, Suh JT. Korean J Lab Med 2006;26:174-8]. Recently, in order to shorten the culture time of Mycobacterium tuberculosis, an automated test method using a liquid medium has appeared, but this method also has a disadvantage in that a separate identification process is required because it cannot distinguish between Mycobacterium tuberculosis and non-TB mycobacterium [Yang HY, Lee HJ, Park. WY, Lee KK, Suh JT. Korean J Lab Med 2006;26:174-8]. In addition, the microbial-based diagnostic method, which is used as the Golden standard to determine drug resistance, takes at least 4 to 8 weeks to determine resistance by culturing Mycobacterium tuberculosis in sputum collected from a patient and then culturing it in a medium containing the drug again. Only after elapse can the drug resistance be determined.

내성결핵균에 의한 치료지연은 내성결핵균의 지역 감염확산으로 이어지므로, 초기 결핵진단시 결핵균의 내성 여부를 판단하는 것은 매우 중요하고 이를 위해서는 신속하게 내성여부를 확인할 수 있는 분자진단검사법이 요구되고 있다.Since treatment delay due to resistant Mycobacterium tuberculosis leads to the spread of local infection of resistant Mycobacterium tuberculosis, it is very important to determine the resistance of Mycobacterium tuberculosis during the initial diagnosis of tuberculosis, and for this purpose, a molecular diagnostic test method that can quickly confirm the resistance is required.

최근에는 분자진단 기술이 발달되면서 이를 이용한 결핵 진단법들이 많이 개발되었다[Chakravorty S and Tyagi JS. Novel multipurpose methodology for detection of Mycobacteria in puilmonary and extrapulmonary specimens by smear microscopy, culture, and PCR. J Clin Microbiol 2005;43:2697-702;Kim YJ, Park MY, Kim SY, Cho SA, Hwang SH, Kim HH, et al. Korean J Lab Med 2008;28:34-8]. 결핵의 확실한 진단방법은 결핵균에 의한 감염을 증명하는 것이므로 임상 검체에서 직접 MTB를 검출하는 방법이 가장 확실하다. Recently, with the development of molecular diagnosis technology, many methods of tuberculosis diagnosis using it have been developed [Chakravorty S and Tyagi JS. Novel multipurpose methodology for detection of Mycobacteria in puilmonary and extrapulmonary specimens by smear microscopy, culture, and PCR. J Clin Microbiol 2005;43:2697-702; Kim YJ, Park MY, Kim SY, Cho SA, Hwang SH, Kim HH, et al. Korean J Lab Med 2008;28:34-8]. Since the reliable diagnosis method of tuberculosis is to prove the infection by the tuberculosis bacteria, the method of directly detecting MTB in a clinical sample is the most reliable.

따라서 PCR[Yang HY, Lee HJ, Park WY, Lee KK, Suh JT. Korean J Lab Med 2006;26:174-8;Chakravorty S and Tyagi JS. J Clin Microbiol 2005;43:2697-702], Therefore, PCR [Yang HY, Lee HJ, Park WY, Lee KK, Suh JT. Korean J Lab Med 2006;26:®-8;Chakravorty S and Tyagi JS. J Clin Microbiol 2005;43:2697-702],

실시간 PCR[Kim YJ, Park MY, Kim SY, Cho SA, Hwang SH, Kim HH, et al. Korean J Lab Med 2008;28:34-8;Jung CL, Kim MY, Seo DC, Lee MA. Korean J Clin Microbiol 2008;1;29-33], Real-time PCR [Kim YJ, Park MY, Kim SY, Cho SA, Hwang SH, Kim HH, et al. Korean J Lab Med 2008;28:34-8;Jung CL, Kim MY, Seo DC, Lee MA. Korean J Clin Microbiol 2008;1;29-33],

교잡화[Makinen J, Marjamaki M, Marttila H, Soini H. Clin Microbiol Infect. 2006;12:481-3;Padilla E, Gonzalez V, Manterola JM, Perez A, Quesada MD, Gordillo S, et al. J Clin Microbial. 2004;42:3083-8;Sanguinetti M, B Posteraro, F Ardito, S Zanetti, A Cingolani, L Sechi, et al. J Clin Microbiol. 1998;36:1530-3;Tortuli, E, A Mariottini, and G Mazzarelli. J Clin Microbiol. 2003;41:4418-20], 및 Hybridization [Makinen J, Marjamaki M, Marttila H, Soini H. Clin Microbiol Infect. 2006;12:481-3; Padilla E, Gonzalez V, Manterola JM, Perez A, Quesada MD, Gordillo S, et al. J Clin Microbial. 2004;42:3083-8; Sanguinetti M, B Posteraro, F Ardito, S Zanetti, A Cingolani, L Sechi, et al. J Clin Microbiol. 1998;36:1530-3; Tortuli, E, A Mariottini, and G Mazzarelli. J Clin Microbiol. 2003;41:4418-20], and

올리고뉴크레오타이드 어레이[Park H, Jang H, Song E, Chang CL, Lee M, Jeong S, et al. J Clin Microbial 2005;43:1782-8] 등, 신속하면서도 민감도와 특이도가 높은 분자생물학적 방법을 이용하여 환자로부터 분리한 직접 검체에서 결핵균을 검출하는 방법의 이용이 점차 늘어나고 있는 추세이다. 또한 비결핵 항산균의 동정법으로 많이 사용되고 있는 방법 중의 하나가 PCR-restriction fragment length polymorphism (PCR-RFLP) analysis (PRA) 방법이다[18]. PRA방법은 결핵균과 비결핵 항산균의 동정이 가능한 유전자 부위를 PCR로 증폭한 후, 적절한 제한효소를 처리하여 그 절편의 양상을 보고 균을 동정하는 방법이다[Lee HY, Park HJ, Cho SN, Bai GH, Kim SJ. J Clin Microbiol. 2000;38:2966-71; Bannalikar AS, Verma R. Indian J Med Res. 2006;123:165-72;Aravindhan V, Sulochana S, Narayanan S, Paramasivam CN, Narayanan PR. Indian J Med Res. 2007;126:575-9]. Oligonucleotide array [Park H, Jang H, Song E, Chang CL, Lee M, Jeong S, et al. J Clin Microbial 2005;43:1782-8], etc., the use of methods for detecting Mycobacterium tuberculosis in direct specimens isolated from patients using a rapid, highly sensitive and highly specific molecular biological method is on the rise. In addition, one of the most widely used methods for the identification of non-tuberculosis mycobacteria is the PCR-restriction fragment length polymorphism (PCR-RFLP) analysis (PRA) [18]. The PRA method is a method of amplifying a gene site capable of identification of Mycobacterium tuberculosis and non-Tuberculosis Mycobacterium tuberculosis by PCR, and then treating the appropriate restriction enzyme to identify the bacteria by viewing the pattern of the fragment [Lee HY, Park HJ, Cho SN, Bai GH, Kim SJ. J Clin Microbiol. 2000;38:2966-71; Bannalikar AS, Verma R. Indian J Med Res. 2006;123:165-72; Aravindhan V, Sulochana S, Narayanan S, Paramasivam CN, Narayanan PR. Indian J Med Res. 2007;126:575-9].

그러나 PRA방법은 결핵균과 비결핵 항산균 등 두 가지 이상의 균이 섞여 있는 경우에는 제한효소를 처리한 절편의 양상이 복합적으로 나타나기 때문에 동정이 불가능하다는 단점이 있다. 이러한 불편함을 보완하고자 최근에는 결핵균과 비결핵 항산균을 동시에 진단 및 동정할 수 있으며, 다양한 균이 섞여있는 경우에도 동정이 가능한 QuantaMatrix assay Platform (QMAP) 기반 분자진단검사법을 개발하였다. QMAP은 퀀타매트릭스사의 원천기술 (특허 등록번호 1011013100000 (2011.12.26) / 1015823840000 (2015.12.28) 로 suspension array technology를 기반으로 하고 있으며 50μm 크기의 자성을 띠고 있는 디스크 (Microdisk)에 프로브를 결합시키고 PCR산물과 반응시킨 후, 돌연변이를 여부를 형광으로 확인할 수 있는 검사법으로 QMAP의 가장 큰 특징은 디스크에 고유의 코드를 새겨 이 코드로 간섭현상 없이 디스크를 구별하며 기술적으로 1024개의 코드가 가능하므로 각각 고유의 코드가 새겨진 1024종의 디스크를 이용한 다중검사가 가능하며 모든 과정이 96 well plate에서 진행되기 때문에 high throughput이 가능한 시스템이다 (도 1). However, the PRA method has a drawback that identification is impossible because when two or more bacteria such as Mycobacterium tuberculosis and Mycobacterium tuberculosis are mixed, the pattern of the section treated with the restriction enzyme appears complex. In order to compensate for this inconvenience, we recently developed a molecular diagnostic test method based on QuantaMatrix assay Platform (QMAP) that can simultaneously diagnose and identify Mycobacterium tuberculosis and Mycobacterium tuberculosis, and can identify even when various bacteria are mixed. QMAP is based on the suspension array technology with the original technology of Quanta Matrix (Patent Registration No. 1011013100000 (2011.12.26) / 1015823840000 (2015.12.28). A probe is bonded to a 50μm-sized magnetic disk (Microdisk) and PCR is performed. After reacting with the product, it is a test method that can confirm mutations by fluorescence. The biggest feature of QMAP is that the unique code is engraved on the disk to distinguish the disk without interference, and 1024 codes are technically possible. It is a system capable of high throughput since it is possible to perform multiple tests using 1024 types of disks engraved with the code of and all processes are performed in a 96 well plate (Fig. 1).

본 발명은 상기의 필요성에 의하여 안출된 것으로서 본 발명의 목적은 신규한 결핵 및 비결핵 항산균의 검출 및 동정과 결핵균의 리팜핀 내성여부를 확인할 수 있는 진단법을 제공하는 것이다.The present invention was conceived by the necessity of the above, and an object of the present invention is to provide a diagnostic method capable of detecting and identifying novel tuberculosis and non-tuberculosis mycobacteria and whether or not the tuberculosis bacteria are resistant to rifampin.

본 발명의 다른 목적은 신규한 결핵 및 비결핵 항산균의 검출 및 동정과 결핵균의 리팜핀 내성여부를 확인할 수 있는 진단용 키트를 제공하는 것이다.Another object of the present invention is to provide a diagnostic kit capable of detecting and identifying novel Mycobacterium tuberculosis and non-Tuberculosis mycobacteria and whether or not the Mycobacterium tuberculosis is resistant to rifampin.

상기의 목적을 달성하기 위하여 본 발명은 a)검체 시료로부터 DNA를 분리하는 단계;b)서열번호 1 내지 서열번호 12의 프라이머를 사용하여, 상기 DNA로부터 PCR 증폭하는 단계;및 c) 서열번호 13 내지 68의 올리고머 프로브가 커플링된 디스크와 상기 단계 b)에서 얻어진 PCR 증폭산물을 하이브리드형성시키는 후,퀀타매트릭스 어세이 플랫폼 소프트웨어를 통하여 상기 디스크의 이미지를 측정하는 단계를 포함하는 결핵균 및 비결핵 항산균 검출과 동정 및 결핵균의 리팜핀, 아이나 내성 여부를 동시에 확인하는 방법을 제공한다.In order to achieve the above object, the present invention a) isolating DNA from a sample sample; b) PCR amplifying from the DNA using primers of SEQ ID NOs: 1 to 12; And c) SEQ ID NO: 13 After hybridizing the disk to which the oligomer probes of to 68 are coupled with the PCR amplified product obtained in step b), measuring the image of the disk through the Quanta Matrix assay platform software, Mycobacterium tuberculosis and non-tuberculosis antioxidant Provides a method of simultaneously detecting and identifying bacteria and whether or not the tuberculosis bacteria are resistant to rifampin or Aiina.

본 발명의 일 구현예에 있어서, 상기 검출 및 확인 균주는 마이코박테리움 투버큘로시스(Mycobacterium tuberculosis) H37Rv, 마이코박테리움 아비움(M. avium), 마이코박테리움 인트라셀룰라(M. intracellulare), 마이코박테리움 스크로풀라시움(M. scrofulaceum), 마이코박테리움 압세수스(M. abscessus), 마이코박테리움 켈로나이(M. chelonae), 마이코박테리움 포르투이툼(M. fortuitum), 마이코박테리움 얼서런스 (M. ulcerans), 마이코박테리움 마리눔(M. marinum), 마이코박테리움 칸사시(M. kansasii), 마이코박테리움 제나벤스(M. genavense), 마이코박테리움 시미에 (M. simmiae), 마이코박테리움 테라(M. terrae), 마이코박테리움 넌크로모제니쿰(M. nonchromogenicum), 마이코박테리움 켈라툼(M. celatum), 마이코박테리움 고르도네이(M. gordonae), 마이코박테리움 줄게일(M. szulgail), 마이코박테리움 무코제니쿰(M. mucogenicum), 마이코박테리움 오박넨스(M. aubagnense), 마이코박테리움 말모엔스(M. malmoense), 마이코박테리움 펠레(M. phlei), 마이코박테리움 스메그마티스 (M. smegmatis), 마이코박테리움 제노피(M. xenopi), 마이코박테리움 페레그리넘 (M. peregrinum) 및 마이코박테리움 프라제센스(M. flavescens)으로 구성된 군으로부터 선택된 것이 바람직하나 이에 한정되지 아니한다. In one embodiment of the present invention, the detection and identification strain is Mycobacterium tuberculosis H37Rv, Mycobacterium avium , Mycobacterium intracellulare ( M. intracellulare) ), Mycobacterium scrofulaceum ( M. scrofulaceum), Mycobacterium abscessus ( M. abscessus ), Mycobacterium kelonae ( M. chelonae ), Mycobacterium fortuitum ( M. fortuitum ), Mycobacterium ulcerans ( M. ulcerans ), Mycobacterium marinum ( M. marinum), Mycobacterium cansashi ( M. kansasii ), Mycobacterium genavense ( M. genavense), Mycobacterium simmiae ( M. simmiae ), Mycobacterium terra ( M. terrae ), Mycobacterium nonchromogenicum ( M. nonchromogenicum ), Mycobacterium celatum ( M. celatum ), Mycobacterium gordonae ( M. gordonae ), Mycobacterium szulgail ( M. szulgail), Mycobacterium mucogenicum ( M. mucogenicum ), Mycobacterium obagnense ( M. aubagnense ), Mycobacterium malmoense ( M. malmoense ), Mycobacterium Pele ( M. phlei ), Mycobacterium smegmatis (M. smegmatis), Mycobacterium xenopi ( M. xenopi ), Mycobacterium peregrinum ( M. peregrinum ) and Mycobacterium prasesens ( M. flavescens ) is preferably selected from the group consisting of, but is not limited thereto.

본 발명의 다른 구현예에 있어서, 상기 프라이머는 바이오틴이 표지된 것이 바람직하나 이에 한정되지 아니한다.In another embodiment of the present invention, the primer is preferably biotin-labeled, but is not limited thereto.

또 본 발명은 서열번호 1 내지 서열번호 12의 프라이머 및 서열번호 13 내지 68의 올리고머 프로브가 커플링된 디스크를 포함하는 결핵균 및 비결핵 항산균 검출과 동정 및, 결핵균의 리팜핀, 아이나 내성 여부를 동시에 확인하기 위한 키트를 제공한다.In addition, the present invention detects and identifies Mycobacterium tuberculosis and non-tuberculosis mycobacterium including a disk coupled with primers of SEQ ID NOs: 1 to 12 and oligomeric probes of SEQ ID NOs: 13 to 68, and whether or not rifampin and Ina resistance of Mycobacterium tuberculosis are simultaneously Provides a kit to check.

상기 키트는 PCR 증폭 반응을 수행하기 위한 시약으로, DNA 폴리머라제, dNTPs 및 버퍼를 더욱 포함하는 것이 바람직하나 이에 한정되지 아니한다.The kit is a reagent for performing a PCR amplification reaction, and preferably further includes a DNA polymerase, dNTPs, and a buffer, but is not limited thereto.

이하 본 발명을 설명한다.The present invention will be described below.

본 발명에서는 국내에서 개발된 QMAP기반 dual-ID를 이용하여 고체 및 액체배양액을 가지고 유용성을 평가해 보았다.In the present invention, using a QMAP-based dual-ID developed in Korea, the usefulness was evaluated with solid and liquid culture solutions.

본 발명의 QMAP 기반 Myco-ID는 종특이 다형성이 존재하는 rpoB 유전자 부위 (특허 등록번호 10-1377070 (2014.03.12)를 biotin group이 부착된 프라이머로 증폭하고 얻어진 PCR산물을 종특이 프로브가 부착되어있는 microdisk과 반응시켜 결핵균을 포함한 22종 3그룹 (총26종)의 주요 비결핵 항산균(M. avium, M. intracellulare, M. scrofulaceum, M. abscessus complex, M. chelonae, M. fortuitum complex, M. ulcerans/M. marinum, M. kansasii, M. genavense/M. simiae, M. terrae, M. nonchromogenicum, M. celatum, M. gordonae, M. szulgai, M. mucogenicum, M. aubagnense, M. malmoense, M. phlei, M. smegmatis, M. xenopi, M. peregrinum/M. septicum, M. flavescens)을 검출 및 동정이 가능하며, 리팜핀 내성여부를 알 수 있는 분자진단 검사법으로 자동화가 가능하여 96테스트를 진행시 DNA 추출 (30분), PCR 진행 (1시간), TB/NTM 검출 및 동정과 리팜핀, 아이나 내성여부 (1시간 30분) 총 3시간이면 확인이 가능한 부분이 큰 장점이다.QMAP base of the present invention Myco-ID is a species-specific region rpo B gene (Patent Registration No. 10-1377070 (03.12.2014) a biotin group specific for the amplification primers and the resulting PCR product was attached to the probe species polymorphism is present attached M. avium, M. intracellulare, M. scrofulaceum, M. abscessus complex , M. chelonae, M. fortuitum complex of 22 species, 3 groups (26 species) including Mycobacterium tuberculosis by reacting with the microdisk. , M. ulcerans/M. marinum, M. kansasii, M. genavense/M. simiae, M. terrae, M. nonchromogenicum, M. celatum, M. gordonae, M. szulgai, M. mucogenicum, M. aubagnense, M. malmoense, M. phlei, M. smegmatis, M. xenopi, M. peregrinum/M. septicum, M. flavescens ) can be detected and identified, and automation is possible with a molecular diagnostic test method that can determine rifampin resistance. When performing the 96 test, DNA extraction (30 minutes), PCR progress (1 hour), TB/NTM detection and identification, rifampin, Iina resistance (1 hour and 30 minutes) can be confirmed in a total of 3 hours.

본 발명을 통하여 알 수 있는 바와 같이 본 발명의 QMAP기반 Myco-ID는 결핵균 및 비결핵 항산균의 구별이 가능하고, 비결핵 항산균의 동정 및 결핵균의 리팜핀, 아이나 내성여부까지 가능하기 때문에 빠른 시간 내에 원인균을 정확히 동정함으로써 비결핵 항산균에 작용할 수 있는 올바른 약제를 처방할 수 있도록 유용한 정보를 제공하며, 본 발명에서 보았듯이 액체배양의 사용이 점차 늘어남에 따라 결핵균과 빨리 자라는 비결핵 항산균과 섞여있는 경우 비결핵 항산균으로 오진되는 것을 방지할 수 있을 것으로 판단된다. 따라서 QMAP기반 Myco-ID는 결핵균 및 비결핵 항산균 감염증의 진단에 매우 유용하게 사용될 수 있다.As can be seen from the present invention, the QMAP-based Myco-ID of the present invention can distinguish between Mycobacterium tuberculosis and mycobacterium tuberculosis, and it is possible to identify mycobacterium tuberculosis and rifampin of Mycobacterium tuberculosis. By accurately identifying the causative bacteria in the inside, useful information is provided so that the correct drugs that can act on non-tuberculosis antioxidants can be prescribed.As seen in the present invention, as the use of liquid culture gradually increases, the tuberculosis bacteria and the rapidly growing non-tuberculosis antioxidants and If it is mixed, it is believed that it can prevent misdiagnosis as non-tuberculous mycobacteria. Therefore, QMAP-based Myco-ID can be very useful in the diagnosis of Mycobacterium tuberculosis and Mycobacterium tuberculosis infection.

도 1은 QMAP 시스템에 대한 그림,
도 2는 REBA Myco-ID의 예에 대한 그림, Lane 1-2, 9, 11, 13 M. intracellulare; lane 3, M. mucogenicum; lane 4-8, 16-19, M. tuberculosis; lane 10, M. massiliense; lane 12, M. avium; lane 14, M. fortuitum; lane 15, M. abscessus; lane 20, negative control.
1 is a diagram of a QMAP system,
2 is a diagram for an example of REBA Myco-ID, Lanes 1-2, 9, 11, 13 M. intracellulare ; lane 3, M. mucogenicum ; lane 4-8, 16-19, M. tuberculosis ; lane 10, M. massiliense ; lane 12, M. avium ; lane 14, M. fortuitum ; lane 15, M. abscessus ; lane 20, negative control.

이하, 비한정적인 실시예를 통하여 본 발명을 더욱 상세하게 설명한다. 단 하기 실시예는 본 발명을 예시하기 위한 의도로 기재된 것으로서 본 발명의 범위는 하기 실시예에 의하여 제한되는 것으로 해석되지 아니한다.Hereinafter, the present invention will be described in more detail through non-limiting examples. However, the following examples are described with the intention of illustrating the present invention, and the scope of the present invention is not to be construed as being limited by the following examples.

본 발명의 검체는 2009년 5월부터 9월까지 서울아산병원과 성빈센트 병원에서 결핵균 의심환자로부터 항산균 도말검사와 배양검사가 동시에 의뢰된 고체배양균 (234 검체)와 액체배양액 (297 검체)을 대상으로 하였다. The specimens of the present invention are solid culture bacteria (234 samples) and liquid culture solutions (297 samples) that were simultaneously requested for anti-acid bacteria smear and culture tests from patients suspected of tuberculosis at Seoul Asan Hospital and St. Vincent Hospital from May to September 2009. It was targeted.

또한, 결핵균 검출을 위한 항산균 도말 검사와 배양검사는 서울아산병원과 성빈센트 병원에서 수행되었다. 항산균 도말검사는 Carbol-fuchsin을 이용한 Ziehl-Neelsen 염색법을 이용하였고 그 결과는 미국 질병예방통제국의 기준에 따라 판독하였다. 배양검사는 NaOH 처리하여 수거한 균체를 3% Ogawa 배지 (아산제약, 한국)와 BACTEC MGIT 960 (Becton Dickinson Microbiology System, Sparks, Md, USA)에 접종함으로써 검체 내에 포함된 원인균을 배양하였다. In addition, the mycobacterial smear and culture tests for the detection of Mycobacterium tuberculosis were performed at Asan Medical Center and St. Vincent Hospital. Acidophilus smear was performed by Ziehl-Neelsen staining using Carbol-fuchsin, and the results were read according to the standards of the US Agency for Disease Control and Prevention. The culture test was carried out by inoculating the collected cells by NaOH treatment in 3% Ogawa medium (Asan Pharmaceutical, Korea) and BACTEC MGIT 960 (Becton Dickinson Microbiology System, Sparks, Md, USA) to cultivate the causative bacteria contained in the sample.

실시예 1. 항산균의 분리 및 동정Example 1. Isolation and identification of anti-acid bacteria

직접 검체를 3% Ogawa 배지 와 BACTEC MGIT 960 system에 접종하고 37℃ 에서 배양한 후, 배양액의 일부를 취하여 100℃ 에서 20분간 가열하고 13,000rpm에서 5분간 원심분리한 후 상층액을 취하는 방법을 이용하였다. MTB-ID PCR kit를 이용한 분자진단방법으로 결핵균과 비결핵 항산균을 구분하였다. Directly inoculate the sample in 3% Ogawa medium and BACTEC MGIT 960 system, incubate at 37°C, take a part of the culture solution, heat it at 100°C for 20 minutes, centrifuge at 13,000rpm for 5 minutes, and take the supernatant. I did. Mycobacterium tuberculosis and mycobacterium tuberculosis were classified by the molecular diagnosis method using the MTB-ID PCR kit.

실시예 2. REBA Myco-ID의 수행Example 2. Implementation of REBA Myco-ID

REBA Myco-ID를 수행하기 위해서 검체로부터 분리된 핵산을 biotin이 표지된 primer를 이용하여 다음과 같이 PCR을 수행하였다. Pre-denaturation 과정으로 94 ℃ 에서 5분간 반응 후, denaturation 과정으로 94 ℃ 30초와 annealing과 elongation과정으로 65 ℃에서 30초로 45회 시행하고 최종 72 ℃에서 7분간 실시하여 270 bp의 PCR 산물을 증폭하였다.In order to perform REBA Myco-ID, the nucleic acid isolated from the specimen was subjected to PCR using biotin-labeled primers as follows. After reaction at 94 ℃ for 5 minutes as a pre-denaturation process, 45 times for 30 seconds at 94 ℃ as a denaturation process and 30 seconds at 65 ℃ as annealing and elongation process, and finally amplified the PCR product of 270 bp at 72 ℃ for 7 minutes. I did.

증폭한 PCR 산물을 이용한 REBA Myco-ID는 제조자가 제시한 실험조건을 이용하여 시행하였으면 실험방법은 다음과 같다. PCR 산물에 동량의 Denaturation solution (0.2N NaOH, 0.2mM EDTA)을 섞어 실온에 5분간 방치한 후 2X SSPE/0.1% SDS으로 희석시켜 준비된 REBA Myco-ID strip (M&D, Korea)에 넣은 후 50℃ 에서 30분간 반응시키고, WS (washing solution)을 이용하여 62℃에서 10분간 두 번 씻어준 후 1:2000 (v/v)으로 희석한 alkaline phosphatase-labeled streptavidin conjugate (Roche, Mannheim, Germany)을 처리하여 실온에서 30분간 반응시켰다. 반응이 끝난 strip을 TBS용액 (pH7.5)으로 실온에 1분간 2회 세척하고, alkaline phosphatase에 반응하는 발색용 기질 용액인 NBT/BCIP (Nitro blue tetrazolium chloride and 5-Bromo-4-chloro-3-indolylphosphate, toluidine salt, Roche, Germany)를 pH 9.5인 TBS 용액으로 1:50으로 희석하여 실온에서 strip에 5분간 반응시키면서 프로브에 결합한 PCR 산물을 검출하였다.If the REBA Myco-ID using the amplified PCR product was performed using the experimental conditions suggested by the manufacturer, the experiment method is as follows. REBA Myco-ID prepared by mixing the same amount of denaturation solution (0.2N NaOH, 0.2mM EDTA) with the PCR product and leaving it for 5 minutes at room temperature and then diluting with 2X SSPE/0.1% SDS. After putting in a strip (M&D, Korea), react at 50℃ for 30 minutes, rinse twice at 62℃ for 10 minutes using WS (washing solution), and then diluted 1:2000 (v/v) alkaline phosphatase-labeled Treated with streptavidin conjugate (Roche, Mannheim, Germany) and reacted at room temperature for 30 minutes. Wash the strip after the reaction with TBS solution (pH7.5) twice for 1 minute at room temperature, and NBT/BCIP (Nitro blue tetrazolium chloride and 5-Bromo-4-chloro-3), a color development substrate solution that reacts to alkaline phosphatase. -indolylphosphate, toluidine salt, Roche, Germany) was diluted 1:50 with a TBS solution of pH 9.5 and reacted to the strip for 5 minutes at room temperature to detect the PCR product bound to the probe.

실시에 3. QMAP 기반 Dual-ID 수행Implementation 3. QMAP-based Dual-ID implementation

QMAP 기반 Myco-ID 를 수행하기 위해서 검체로부터 분리된 핵산을 biotin이 표지된 primer를 이용하여 다음과 같이 PCR을 수행하였다. Pre-denaturation 과정으로 94 ℃ 에서 5분간 반응 후, denaturation 과정으로 94 ℃ 30초와 annealing과 elongation과정으로 65 ℃에서 30초로 45회 시행하고 최종 72 ℃에서 7분간 실시하여 250 bp의 PCR 산물을 증폭하였다.In order to perform QMAP-based Myco-ID, PCR was performed on the nucleic acid isolated from the sample using biotin-labeled primers as follows. After reaction at 94 ℃ for 5 minutes as a pre-denaturation process, 45 times for 30 seconds at 94 ℃ as a denaturation process and 30 seconds at 65 ℃ as annealing and elongation process, and finally amplified 250 bp PCR product by performing 7 minutes at 72 ℃ I did.

증폭한 PCR 산물에 동량의 Denaturation solution (0.2N NaOH, 0.2mM EDTA)을 섞어 실온에 5분간 방치한 후 hybridization buffer에 희석시켜 준비된 커플링된 disk (Quantamatrix, Seoul, Korea)에 넣은 후 40℃ 에서 30분간 반응시키고, WS (washing solution)을 이용하여 25℃에서 1분간 3회 씻어준 후 1:2000 (v/v)으로 희석한 streptavidin R-phycoerythrin conjugate (Prozyme, San Leandro, CA)을 처리하여 실온에서 10분간 반응시켰다. 반응이 끝난 microdisk를 washing buffer로 실온에 1분간 3회 세척하고, 제공되는 QMAP software를 통해 자동으로 disk의 이미지를 측정하여 MTB 또는 NTM 을 검출하고 NTM의 동정, 결핵균의 리팜핀, 아이나 내성여부를 확인할 수 있다.Mix the same amount of denaturation solution (0.2N NaOH, 0.2mM EDTA) with the amplified PCR product, leave for 5 minutes at room temperature, dilute in hybridization buffer, add to the prepared coupled disk (Quantamatrix, Seoul, Korea), and then at 40℃. After reacting for 30 minutes, washed three times at 25℃ for 1 minute using WS (washing solution), and treated with streptavidin R-phycoerythrin conjugate (Prozyme, San Leandro, CA) diluted 1:2000 (v/v). It was reacted for 10 minutes at room temperature. After the reaction, the microdisk is washed three times at room temperature with a washing buffer for 1 minute, and the image of the disk is automatically measured through the provided QMAP software to detect MTB or NTM, and to identify NTM, rifampin of Mycobacterium tuberculosis, and Iina resistance. I can.

본 발명에서 사용된 프라이머 및 프로브(한국 바이오니아에 의뢰하여 합성) 서열은 표 8에 기재하였다.The primers and probes used in the present invention (synthesized by requesting Bioneer Korea) sequences are shown in Table 8.

상기 실시예의 결과를 하기에서 서술한다.The results of the above examples are described below.

QMAP 기반의 분석적 민감도와 특이도 다중 중합효소연쇄반응(multiplex PCR)인 MTB-ID를 이용한 배양 검체 DNA의 결핵균과 비결핵 항산균 감별Differentiation of Mycobacterium tuberculosis and Mycobacterium tuberculosis from cultured sample DNA using MTB-ID, which is a QMAP-based analytical sensitivity and specificity multiplex PCR

QMAP 기반의 MTB 및 NTM의 분석적 민감도를 알아보기 위해 각 표준 균주 (Mycobacterium tuberculosis H37Rv, M. avium, M. intracellulare, M. scrofulaceum, M. abscessus, M. chelonae, M. fortuitum, M. marinum, M. kansasii, M. genavense, M. terrae, M. nonchromogenicum, M. celatum, M. gordonae, M. szulgail, M. mucogenicum, M. aubagnense, M. malmoense, M. phlei, M. smgmatis, M. xenopi, M. peregrinum, M. flavescens)를 이용하여 10배 (10 ng, 1 ng, 100 pg, 10 pg, 1 pg, 100 fg, and 10 fg (1 bacilli) 희석하여 테스트를 진행해봤으며 그 결과 1 pg (100 bacilli)에서 100 fg (10 bacilli)로 검출이 확인 되었다 (표 1). QMAP 기반의 특이도를 확인하기 위하여 총 108균주 (MTB H37Rv, 44 NTM 균주, 및 63 non-mycobacterial 균주)를 가지고 테스트를 진행해봤으며 28 표준 균주는 각 특이 프로브가 커플링된 disk 에 정확하게 검출됨이 확인되었으며 3가지 프로브는 M. fortuitum-M. marinum, M. kansasii-M. gastri, M. genavense-M. avium 함께 검출되었다 (표 2).To determine the analytical sensitivity of QMAP-based MTB and NTM, each standard strain ( Mycobacterium tuberculosis H37Rv, M. avium , M. intracellulare, M. scrofulaceum, M. abscessus, M. chelonae, M. fortuitum, M. marinum, M. kansasii, M. genavense, M. terrae, M. nonchromogenicum, M. celatum, M. gordonae , M. szulgail, M. mucogenicum, M. aubagnense, M. malmoense, M. phlei, M. smgmatis, M. xenopi , M. peregrinum, and M. flavescens ) were diluted 10 times (10 ng, 1 ng, 100 pg, 10 pg, 1 pg, 100 fg, and 10 fg (1 bacilli), and the result was 1 Detection was confirmed at 100 fg (10 bacilli) in pg (100 bacilli) (Table 1) A total of 108 strains (MTB H37Rv, 44 NTM strains, and 63 non-mycobacterial strains) were identified to confirm the QMAP-based specificity. Test was conducted with 28 standard strains, and it was confirmed that each specific probe was accurately detected on the coupled disk, and the three probes were M. fortuitum-M. marinum, M. kansasii-M. gastri, and M. genavense-M. avium was detected together (Table 2).

No.No. SpeciesSpecies Detection limitDetection limit Fluorescence intensity Fluorescence intensity Copies,Mean copies (SD)Copies,Mean copies (SD) CV (%)CV (%) 1One Mycobacterium tuberculosis H37RvMycobacterium tuberculosis H37Rv 10ng-100fg10ng-100fg 5108.7-798.35108.7-798.3 2.96 (±1.85) x10002.96 (±1.85) x1000 62.562.5 22 M. aviumM. avium 10ng-1pg10ng-1pg 2583.3-9112583.3-911 8.01 (±1.6) x10008.01 (±1.6) x1000 20.020.0 33 M. intracellulareM. intracellulare 10ng-1pg10ng-1pg 2013-697.52013-697.5 1.31 (±0.48) x10001.31 (±0.48) x1000 36.336.3 44 M. scrofulaceumM. scrofulaceum 10ng-1pg10ng-1pg 3118.7-696.73118.7-696.7 1.82 (±0.89) x10001.82 (±0.89) x1000 48.748.7 55 M. abscessus M. abscessus 10ng-100fg10ng-100fg 3056-7743056-774 2.24 (±0.84) x10002.24 (±0.84) x1000 37.437.4 66 M. chelonaeM. chelonae 10ng-100fg10ng-100fg 4850.5-703.84850.5-703.8 2.96 (±1.51) x10002.96 (±1.51) x1000 51.151.1 77 M. fortuitum complexM. fortuitum complex 10ng-100fg10ng-100fg 2264-6212264-621 1.4 (±0.59) x10001.4 (±0.59) x1000 41.341.3 88 M. marinumM. marinum 10ng-100fg10ng-100fg 3602.5-7093602.5-709 2.2 (±1.1) x10002.2 (±1.1) x1000 50.650.6 99 M. kansasiiM. kansasii 10ng-100fg10ng-100fg 4143.5-5314143.5-531 2.12 (±1.21) x10002.12 (±1.21) x1000 57.257.2 1010 M. genavenseM. genavense 10ng-100fg10ng-100fg 3982-6543982-654 2.17 (±1.4) x10002.17 (±1.4) x1000 64.964.9 1111 M. terraeM. terrae 10ng-100fg10ng-100fg 3057-603.33057-603.3 1.85 (±0.92) x10001.85 (±0.92) x1000 49.949.9 1212 M. nonchromogenicumM. nonchromogenicum 10ng-100fg10ng-100fg 2310-861.82310-861.8 1.5 (±0.5) x10001.5 (±0.5) x1000 34.334.3 1313 M. celatumM. celatum 10ng-100fg10ng-100fg 3852-6253852-625 2.27 (±1.23) x10002.27 (±1.23) x1000 54.354.3 1414 M. gordonaeM. gordonae 10ng-1pg10ng-1pg 2157-7062157-706 1.56 (±0.59) x10001.56 (±0.59) x1000 37.637.6 1515 M. szulgai M. szulgai 10ng-1pg10ng-1pg 3753.5-763.53753.5-763.5 2.31 (±1.22) x10002.31 (±1.22) x1000 52.852.8 1616 M. mucogenicumM. mucogenicum 10ng-1pg10ng-1pg 4166.3-8984166.3-898 2.8 (±1.4) x10002.8 (±1.4) x1000 51.551.5 1717 M. aubagnenseM. aubagnense 10ng-100fg10ng-100fg 3683-964.53683-964.5 2.61 (±0.98) x10002.61 (±0.98) x1000 37.337.3 1818 M. malmoenseM. malmoense 10ng-1pg10ng-1pg 3595.5-828.53595.5-828.5 2.5 (±1.06) x10002.5 (±1.06) x1000 42.642.6 1919 M. phleiM. phlei 10 ng-100 fg10 ng-100 fg 5,009-9285,009-928 3.1 (±1.7) x 10003.1 (±1.7) x 1000 55.255.2 2020 M. smegmatisM. smegmatis 10 ng-100 fg10 ng-100 fg 3,897-7733,897-773 2.3 (±1.2) x 10002.3 (±1.2) x 1000 53.153.1 2121 M. xenopiM. xenopi 10ng-100fg10ng-100fg 3404.5-8143404.5-814 2.15 (±0.96) x10002.15 (±0.96) x1000 44.644.6 2222 M. peregrinumn M. peregrinumn 10ng-100fg10ng-100fg 3063.7-647.33063.7-647.3 2.07 (±0.86) x10002.07 (±0.86) x1000 41.641.6 2222 M. flavescensM. flavescens 10ng-100fg10ng-100fg 3139.5-833.53139.5-833.5 2.16 (±0.89) x10002.16 (±0.89) x1000 4141

표 1은 QMAP system의 분석적 민감도를 나타낸 표로, 약어: CV, Coefficients of Variation (상관계수)Table 1 is a table showing the analytical sensitivity of the QMAP system, abbreviation: CV, Coefficients of Variation (correlation coefficient)

Figure 112019011776950-pct00001
Figure 112019011776950-pct00001

Figure 112019011776950-pct00002
Figure 112019011776950-pct00002

Figure 112019011776950-pct00003
Figure 112019011776950-pct00003

Figure 112019011776950-pct00004
Figure 112019011776950-pct00004

Figure 112019011776950-pct00005
Figure 112019011776950-pct00005

표 2는 108 표준균주를 이용한 QMAP system의 특이도 검사를 나타낸 표,Table 2 is a table showing the specificity test of the QMAP system using 108 standard strains.

임상검체에서 QMAP기반 Myco-ID의 유용성 평가 Evaluation of the usefulness of QMAP-based Myco-ID in clinical specimens

QMAP기반 Myco-ID의 유용성 평가를 확인하기 위해서 531 균주 (234 고체배양균과 297 액체배양균) 를 이용하여 MTB와 NTM 검출 및 NTM 동정을 테스트하였다. 그 결과 234 고체배양균은 223 MTB와 11 NTM으로 확인되었으며, 검출된 223 MTB 측정값의 (fluorescence intensity) 범위는 2074에서 4765 (mean 4255.6 ± SD 458.7)와 11 NTM 측정값은 609에서 3569 (1892 ± 923.2)으로 각각 나타났다. 또한 297 액체배양액에서 212 MTB 및 77 NTM 은 QMAP 테스트에서 각각 양성 시그날이 나타났다. 총 531 균주 중 4균주를 제외한 527 (99.2%)가 정확하게 MTB와 NTM으로 확인되었으며, 검출되지 않은 4균주 중 2균주는 배양음성이었으며, 나머지 2 균주는 sequencing에 의해 각각 Rhodococcus erythropolisR. jostii 로 확인되었다. QMAP기반 Myco-ID의 결과를 재확인하기 위하여 또 다른 분자진단방법인 REBA Myco-ID (도 2)를 이용하여 그 결과를 비교한 결과 QMAP 기반의 Myco-ID결과와 모두 일치하는 것을 확인하였다 (표 3). To confirm the usefulness evaluation of QMAP-based Myco-ID, 531 strains (234 solid cultured bacteria and 297 liquid cultured bacteria) were used to test MTB and NTM detection and NTM identification. As a result, 234 solid cultured bacteria were identified as 223 MTB and 11 NTM, and the (fluorescence intensity) range of the detected 223 MTB measured values was from 2074 to 4765 (mean 4255.6 ± SD 458.7) and the measured values of 11 NTM were from 609 to 3569 (1892) ± 923.2) respectively. In addition, 212 MTB and 77 NTM in 297 liquid cultures showed positive signals in the QMAP test, respectively. Of the total 531 strains, 527 (99.2%) excluding 4 strains were accurately identified as MTB and NTM, and 2 of the 4 strains that were not detected were culture-negative, and the remaining 2 strains were identified as Rhodococcus erythropolis and R. jostii , respectively, by sequencing. Confirmed. To reconfirm the results of QMAP-based Myco-ID, another molecular diagnosis method, REBA Myco-ID (Fig. 2), was used to compare the results, and as a result, it was confirmed that all the results of QMAP-based Myco-ID were consistent (Table 3).

AFB smear (n)AFB smear (n) Culture (Ogawa), n (%)Culture (Ogawa), n (%) Culture (MGIT 960), n (%)Culture (MGIT 960), n (%) QMAP system, n (%)QMAP system, n (%) Molecutech REBA Myco-ID, n %)Molecutech REBA Myco-ID, n%) Positive (n=340)Positive (n=340) MTBMTB 223 (95.3)223 (95.3) MTBMTB 92 (40)92 (40) MTBMTB 315 (59.3)315 (59.3) MTBMTB 315 (59.3)315 (59.3) NTMNTM 11 (4.7)11 (4.7) NTMNTM 14 (4.7)14 (4.7) NTMNTM 25 (4.7)25 (4.7) NTMNTM 25 (4.7)25 (4.7) Negative (n=191)Negative (n=191) MTBMTB 120 (40.4)120 (40.4) MTBMTB 120 (22.6)120 (22.6) MTBMTB 120 (22.6)120 (22.6) NTMNTM 63 (21.2)63 (21.2) NTMa NTM a 61 (11.5)61 (11.5) NTMaNTMa 61 (11.5)61 (11.5) Co-infectionb Co-infection b 6 (2)6 (2) Co-infectionb Co-infection b 6 (1.1)6 (1.1) Co-infectionbCo-infectionb 6 (1.1)6 (1.1) NDC ND C 2 (0.7)2 (0.7) NDC ND C 2 (0.4)2 (0.4) NDcNDc 2 (0.4)2 (0.4) Total (n=531)Total (n=531)   234 (100)234 (100)   297 (100)297 (100)   529 (99.6)529 (99.6)   529 (99.6)529 (99.6)

표 3은 총 531 배양균 DNA에서 MTB와 NTM 검출을 위한 통상의 방법들, QMAP system과 REBA Myco-ID의 비교 표, 약어: AFB, acid-fast bacilli; MTB, M. tuberculosis; NTM, nontuberculous mycobacteria; ND, 검출 안됨.Table 3 is a comparison table of conventional methods for the detection of MTB and NTM in 531 cultured DNA, QMAP system and REBA Myco-ID, abbreviations: AFB, acid-fast bacilli; MTB, M. tuberculosis ; NTM, nontuberculous mycobacteria; ND, not detected.

aNTM의 두 균주는QMAP system과 REBA Myco-ID에서 검출되지 않았으며, rpoB 서열 분석에 의하여 Rhodococcus erythropolis 및 R. jostii로 확인됨. a Two strains of NTM were not detected by the QMAP system and REBA Myco-ID, and were identified as Rhodococcus erythropolis and R. jostii by rpoB sequence analysis.

b NTM 및 NTM로 혼합된 케이스. b Case mixed with NTM and NTM.

C 도말-배양음성을 가지는 두 케이스. C smear-culture negative two cases.

비결핵 항산균의 검출분포Distribution of detection of non-tuberculosis mycobacterium

531 배양균 전체 검체에서 QMAP기반을 통해 94균주가 NTM으로 검출되었으며, NTM의 동정결과를 살펴보면, 전체 94 검체 중 M. intracellulare가 36검체(39.1%)로 가장 많이 동정이 되었으며, M. avium이 21검체(22.8%), M. abscessus complex가 14검체(15.2%), M. fortuitum이 7검체(7.6%)의 순으로 분포하고 있었다. 그 외에 M. gordonae가 각각 4검체(4.3%)로 나왔으며, M. kansasii가 2검체 (2.2%), M. chelonae가 1검체 (1.1%)가 나왔으며, M. aviumM. intracellulare, M. aviumM. abscessus이 각각 섞여있는 경우가 2검체 (2.2%)였으며, M. aviumM. mucogenicum, M. aviumM. mucogenicum 이 각각 섞여있는 경우가 1검체(1.1%)였다(표 4). 이 결과는 REBA Myco-ID의 결과와 모두 동일하게 나타났으며, 두 종류의 이상의 비결핵 항산균이 섞여 나온 경우까지도 QMAP system에서 모두 정확하게 분리할 수 있음이 확인할 수 있었다.In all 531 cultured samples, 94 strains were detected as NTM through QMAP-based. Looking at the identification results of NTM, M. intracellulare was most often identified as 36 samples (39.1%) out of 94 samples, and M. avium was the most identified. There were 21 samples (22.8%), 14 samples (15.2%) of M. abscessus complex , and 7 samples (7.6%) of M. fortuitum . Other M. gordonae is or has a four specimens (4.3%), respectively, M. kansasii 2 samples (2.2%), M. chelonae that has the first sample (1.1%) or, M. avium and M. intracellulare, M. avium and M. abscessus are mixed There were 2 samples (2.2%), and 1 sample (1.1%) was M. avium and M. mucogenicum, and M. avium and M. mucogenicum were mixed, respectively (Table 4). These results were the same as those of REBA Myco-ID, and it was confirmed that even when two or more types of non-tuberculosis mycobacterium were mixed, all of them could be accurately separated from the QMAP system.

MTB/NTM differentiationMTB/NTM differentiation   Identification of mycobacterial speciesIdentification of mycobacterial species   Culture methodsCulture methods REBA Myco-ID with culture samplesREBA Myco-ID with culture samples n (%)n (%) QMAP system with culture samplesQMAP system with culture samples n (%)n (%) Ranged fluorensce intensityRanged fluorensce intensity Mean ( ± SD) valueMean (± SD) value NTM (86)NTM (86) M. intracellulareM. intracellulare 36 (39.1)36 (39.1) 36 (39.1)36 (39.1) 513-2610513-2610 932.7 ( ± 381.7)932.7 (± 381.7) M. aviumM. avium 21 (22.8)21 (22.8) 21 (22.8)21 (22.8) 517-3569517-3569 2065.7 ( ± 885.9)2065.7 (± 885.9) M. abscessus complexM. abscessus complex 14 (15.2)14 (15.2) 14 (15.2)14 (15.2) 1338-35431338-3543 2534.5 ( ± 654.9)2534.5 (±654.9) M. fortuitumM. fortuitum 7 (7.6)7 (7.6) 7 (7.6)7 (7.6) 699-1883699-1883 1082.1 ( ± 424.5)1082.1 (±424.5) M. gordonaeM. gordonae 4 (4.3)4 (4.3) 4 (4.3)4 (4.3) 540-1150540-1150 776 ( ± 267.9)776 (± 267.9) M. kansasiiM. kansasii 2 (2.2)2 (2.2) 2 (2.2)2 (2.2) 537-949537-949 741.5 ( ± 289.2)741.5 (± 289.2) M. chelonaeM. chelonae 1 (1.1)1 (1.1) 1 (1.1)1 (1.1) 16401640 -- M. mucogenicumM. mucogenicum 1 (1.1)1 (1.1) 1 (1.1)1 (1.1) 26962696 -- Co-infection (6)Co-infection (6) M. avium and M. intracellulareM. avium and M. intracellulare 2 (2.2)2 (2.2) 2 (2.2)2 (2.2) 691-2407691-2407 1188 ( ± 836.5)1188 (± 836.5) M. avium and M. abscessusM. avium and M. abscessus 2 (2.2)2 (2.2) 2 (2.2)2 (2.2) 608-3013608-3013 2054.8 ( ± 10003.3)2054.8 (± 10003.3) M. avium and M. mucogenicumM. avium and M. mucogenicum 1 (1.1)1 (1.1) 1 (1.1)1 (1.1) 625-1625625-1625 1125 ( ± 707.1)1125 (± 707.1) M. gordonae and M. mucogenicumM. gordonae and M. mucogenicum 1 (1.1)1 (1.1) 1 (1.1)1 (1.1) 509-2463509-2463 1486 ( ± 1381.7)1486 (±1381.7) TotalTotal   92 (100)92 (100) 92 (100)92 (100)    

표 4는 REBA Myco-ID 및 QMAP system에 의해 분리된 NTM의 분표 비교Table 4 compares the classification of NTM separated by REBA Myco-ID and QMAP system

QMAP 기반 리팜핀, 아이나 내성의 유용성 평가Evaluation of the usefulness of QMAP-based rifampin and IINA resistance

총 531 균주 중 결핵균으로 검출된 435 균주에서 Conventional Drug Susceptibility Test (DST) 결과가 있는 고체배양 223 균주를 대상으로 QMAP 기반 리팜핀 내성의 유용성 평가를 진행하였다. 223 결핵 균주 중 리팜핀 내성으로 확인된 균주는 27 (12.1%)이었으며 전통 DST결과와 비교시 모두 일치함을 확인할 수 있었다. 내성으로 확인된 27 균주의 내성 부위는 531TTG가 13균주 (48.1%), △WT4 에서 5 균주 (18.5%), △WT5와 526TAC가 각각 3 (11.1%), 그리고 516GTC, △WT4, △WT2와 △WT4 에서 각각 1 균주 (3.7%)가 내성으로 나타났다. 결과는 리팜핀 내성 확인이 가능한 REBA MTB-MDR을 이용하여 비교하였으며 리팜핀 내성과 내성부위가 모두 일치하게 나타나는 것을 확인할 수 있었다 (표 5).Among 531 strains, 435 strains detected as Mycobacterium tuberculosis were evaluated for the usefulness of QMAP-based rifampin resistance for 223 strains in solid culture with the results of the Conventional Drug Susceptibility Test (DST). Among the 223 tuberculosis strains, 27 (12.1%) strains were identified as resistant to rifampin, and when compared with the traditional DST results, all were confirmed to be consistent. Resistant sites of 27 strains identified as resistance were 13 strains (48.1%) in 531TTG, 5 strains (18.5%) in △WT4, 3 (11.1%) in △WT5 and 526TAC, respectively, and 516GTC, △WT4, △WT2 and Each 1 strain (3.7%) in ΔWT4 was resistant. The results were compared using REBA MTB-MDR, which can confirm rifampin resistance, and it was confirmed that both rifampin resistance and resistance sites appeared consistently (Table 5).

Conventional method (n=223)Conventional method (n=223) Molecular DSTMolecular DST   REBA MTB-MDRREBA MTB-MDR QMAP systemQMAP system Rifampin-susceptible (n=196)Rifampin-susceptible (n=196) 196 (87.9%)196 (87.9%) 196 (87.9%)196 (87.9%) Rifampin-resistant (n=27)Rifampin-resistant (n=27) 27 (12.1%)27 (12.1%) 27 (12.1%)27 (12.1%) 531TTG531TTG 13 (48.1%)13 (48.1%) 13 (48.1%)13 (48.1%) △S4△S4 5 (18.5%)5 (18.5%) 5 (18.5%)5 (18.5%) 526TAC526TAC 3 (11.1%)3 (11.1%) 3 (11.1%)3 (11.1%) △S5△S5 3 (11.1%)3 (11.1%) 3 (11.1%)3 (11.1%) 516GTC516GTC 1 (3.7%)1 (3.7%) 1 (3.7%)1 (3.7%) △S3△S3 1 (3.7%)1 (3.7%) 1 (3.7%)1 (3.7%) △S2, △S4△S2, △S4 1 (3.7%)1 (3.7%) 1 (3.7%)1 (3.7%)

표 5는 총 226 배양균 DNA에서 리팜핀 내성여부 검출을 위한 통상적인 방법, QMAP system과 REBA Myco-ID의 비교 Table 5 shows a conventional method for detecting rifampin resistance in a total of 226 cultured DNA, a comparison of the QMAP system and REBA Myco-ID

아이나 내성으로 확인된 균주는 모두 108균주였으며, 이 중 82 (75.9%)가 katG 315부분에서내성을 나타냈다 (표 6). 결과는 아이나 내성 확인이 가능한 DNA 시퀀싱을 이용하여 비교하였으며 아이나 내성과 내성부위가 모두 일치하게 나타나는 것을 확인할 수 있었다 (표 6).All the strains identified as resistant to Iina were 108 strains, of which 82 (75.9%) showed resistance at 315 parts of katG (Table 6). The results were compared using DNA sequencing capable of confirming Iina resistance, and it was confirmed that both Iina resistance and resistance sites appeared consistently (Table 6).

Conventional DST (no.)Conventional DST (no.) QMAP systemQMAP system DNA SequencingDNA Sequencing TypeType no. (%)no. (%) Sequencing resultSequencing result no. (%)no. (%) INH-susceptible (56)INH-susceptible (56) Wild typeWild type 54 (96.4)54 (96.4) Wild typeWild type 54 (96.4)54 (96.4)   Mutant type Mutant type 2 (3.6)2 (3.6) Mutant typeMutant type 2 (3.6)2 (3.6)   △katG WT △katG WT 1 (50/0.9)a1 (50/0.9)a katG315 AGC-AACkatG315 AGC-AAC 1 (50/0.9)1 (50/0.9)   △oxyR-ahpC WT1△oxyR-ahpC WT1 1 (50/0.9)1 (50/0.9) G-A at position -46G-A at position -46 1 (50/0.9)1 (50/0.9)           INH-resistant (144)INH-resistant (144) Wild typeWild type 36 (25)36 (25) Wild typeWild type 36 (25)36 (25)   Mutant typeMutant type 108 (75)108 (75) Mutant typeMutant type 108 (75)108 (75)   katG315 MTkatG315 MT 75 (69.4/67.6)75 (69.4/67.6) katG315 AGC-ACCkatG315 AGC-ACC 75 (69.4/67.6)75 (69.4/67.6)   △katGWT△katGWT 7 (6.5/6.3)7 (6.5/6.3) katG315 AGC-AACkatG315 AGC-AAC 3 (2.8/2.7)3 (2.8/2.7)       katG315 AGC-ACAkatG315 AGC-ACA 2 (1.9/1.8)2 (1.9/1.8)       katG315 AGC-AGAkatG315 AGC-AGA 1 (0.9/0.9)1 (0.9/0.9)       katG315 AGC-ATCkatG315 AGC-ATC 1 (0.9/0.9)1 (0.9/0.9)   inhA 15ups MTinhA 15ups MT 22 (20.4/19.8)22 (20.4/19.8) inhA -15C-TinhA -15C-T 22 (20.4/19.8)22 (20.4/19.8)   inhA 8ups MTinhA 8ups MT 1 (0.9/0.9)1 (0.9/0.9) inhA -8T-CinhA -8T-C 1 (0.9/0.9)1 (0.9/0.9)   △oxyR-ahpC WT3△oxyR-ahpC WT3 2 (1.9/1.8)2 (1.9/1.8) C-A at position -11C-A at position -11 2 (1.9/1.8)2 (1.9/1.8)   katG315 MTinhA 15ups MTkatG315 MTinhA 15ups MT 1 (0.9/NE)1 (0.9/NE) katG315 AGC-ACCinhA -15C-TkatG315 AGC-ACCinhA -15C-T 1 (0.9/NE)1 (0.9/NE)

표 6은 배양균 DNA에서 아이나 내성여부 검출을 위한 통상적인 방법, QMAP system과 DNA 시퀀싱의 비교 Table 6 shows a conventional method for detecting AINA resistance in cultured DNA, a comparison between QMAP system and DNA sequencing.

추가로, Phenotypic DST 결과와 비교하여, QMAP 기반의 리팜핀과 아이나 내성에 대한 민감도는 각각 96.4% (106/110)와 75% (108/144)으로 나타났다. 그러나, DNA 시퀀싱 결과와 비교했을 때, QMAP 기반의 민감도는 리팜핀과 아이나에서 모두 100% (124/124; 95% CI: 0.9743-1.0000)와 100% (110/110, 95% CI: 0.9711-1.0000)를 보였다 (표 7).In addition, compared to the Phenotypic DST results, the sensitivity to QMAP-based rifampin and Iina resistance was 96.4% (106/110) and 75% (108/144), respectively. However, compared with the DNA sequencing results, the QMAP-based sensitivity was 100% (124/124; 95% CI: 0.9743-1.0000) and 100% (110/110, 95% CI: 0.9711-1.0000) for both rifampin and AINA. ) Was shown (Table 7).

QMAP systemQMAP system DST results, no.DST results, no. Sensitivity, % (no.)(95% CI)Sensitivity,% (no.)(95% CI) Specificity, % (no.)(95% CI)Specificity,% (no.)(95% CI) PPV, % (no.)(95% CI)PPV,% (no.)(95% CI) NPV, % (no.)(95% CI)NPV,% (no.)(95% CI) ResistantResistant Susceptible Susceptible RifampicinRifampicin MutantMutant 106106 1818 96.4 (106/110)(0.9072-0.9888)96.4 (106/110)(0.9072-0.9888) 80 (72/90)(0.7052-0.8705)80 (72/90)(0.7052-0.8705) 85.5 (106/124)(0.7813-0.9070)85.5 (106/124) (0.7813-0.9070) 94.7 (72/76)(0.8684-0.9833)94.7 (72/76) (0.8684-0.9833) Wild typeWild type 4 4 7272 IsoniazidIsoniazid MutantMutant 108108 2 2 75 (108/144)(0.6731-0.8139)75 (108/144)(0.6731-0.8139) 96.4 (54/56)(0.8718-0.9972)96.4 (54/56) (0.8718-0.9972) 98.2 (108/110)(0.9321-0.9991)98.2 (108/110) (0.9321-0.9991) 60 (54/90)(0.4966-0.6952)60 (54/90)(0.4966-0.6952) Wild typeWild type 36 36 5454 DNA-sequencing results, no.DNA-sequencing results, no. ResistantResistant Susceptible Susceptible RifampicinRifampicin MutantMutant 124124 0 0 100 (124/124)(0.9743-1.0000)100 (124/124)(0.9743-1.0000) 100 (76/76)(0.9587-1.0000)100 (76/76)(0.9587-1.0000) 100 (124/124)(0.97432-1.0000)100 (124/124)(0.97432-1.0000) 100 (76/76)(0.9587-1.0000)100 (76/76)(0.9587-1.0000) Wild typeWild type 0 0 7676 IsoniazidIsoniazid MutantMutant 110110 0 0 100 (110/110)(0.9711-1.0000)100 (110/110)(0.9711-1.0000) 100 (90/90)(0.9649-1.0000)100 (90/90)(0.9649-1.0000) 100 (110/110)(0.9711-1.0000)100 (110/110)(0.9711-1.0000) 100 (90/90)(0.9649-1.0000)100 (90/90)(0.9649-1.0000) Wild typeWild type 0 0 9090

DST, drug susceptibility testing; PPV, positive predictive value; NPV, negative predictive value; CI, confidence interval.DST, drug susceptibility testing; PPV, positive predictive value; NPV, negative predictive value; CI, confidence interval.

표 7은 QMAP system과 DST 결과 및 DNA 시퀀싱 결과의 비교Table 7 is a comparison of the QMAP system and DST results and DNA sequencing results.

NameName Primer sequence (5'-3')Primer sequence (5'-3')   360long-F360long-F TCAAGGAGAAGCGCTACGACCTGGC(서열번호 1)TCAAGGAGAAGCGCTACGACCTGGC (SEQ ID NO: 1) Myco-IDMyco-ID 250R*250R* ACS CGG ATC TGG TTC TGG ATC ARC(서열번호 2)ACS CGG ATC TGG TTC TGG ATC ARC (SEQ ID NO: 2) 5'-Biotin5'-Biotin I417-FI417-F CTTGGTGGTGGGGTGTGGTGTTTGA (서열번호 3)CTTGGTGGTGGGGTGTGGTGTTTGA (SEQ ID NO: 3) Myco-IDMyco-ID I638R*I638R* GCCAAGGCATYCACCATGYGCCCTTA(서열번호 4)GCCAAGGCATYCACCATGYGCCCTTA (SEQ ID NO: 4) 5'-Biotin5'-Biotin TR9 TR9 TCGCCGCGATCAAGGAGTTCT(서열번호 5)TCGCCGCGATCAAGGAGTTCT (SEQ ID NO: 5) RifampinRifampin TR8*TR8* TGCACGTCGCGGACCTCCA(서열번호 6)TGCACGTCGCGGACCTCCA (SEQ ID NO: 6) 5'-Biotin5'-Biotin katG-FkatG-F   AGCTCGTATGGCACCGGAAC (서열번호 7)AGCTCGTATGGCACCGGAAC (SEQ ID NO: 7)  IsoniazidIsoniazid katG-R*katG-R* CCGTACAGGATCTCGAGGAA (서열번호 8)CCGTACAGGATCTCGAGGAA (SEQ ID NO: 8) 5'-Biotin5'-Biotin inhA-FinhA-F GCTCGTGGACATACCGATTT (서열번호 9)GCTCGTGGACATACCGATTT (SEQ ID NO: 9)  IsoniazidIsoniazid inhA-R*inhA-R* ACTGAACGGGATACGAATGG (서열번호 10)ACTGAACGGGATACGAATGG (SEQ ID NO: 10) 5'-Biotin5'-Biotin ahpC-FahpC-F CCGGCTAGCACCTCTTGGCG (서열번호 11)CCGGCTAGCACCTCTTGGCG (SEQ ID NO: 11)  IsoniazidIsoniazid ahpC-R*ahpC-R* ATTGATCGCCAATGGTTAGC (서열번호 12)ATTGATCGCCAATGGTTAGC (SEQ ID NO: 12) 5'-Biotin5'-Biotin NameName Myco-Probe sequence (5'-3')Myco-Probe sequence (5'-3')   Myc-14Myc-14 TTT TTT TTT TTT TTT ACCGARGARGACGTCGTCGCCACCATCGA (서열번호 13)TTT TTT TTT TTT TTT ACCGARGARGACGTCGTCGCCACCATCGA (SEQ ID NO: 13) Mycobacterium spp.Mycobacterium spp. TB-13TB-13 TTT TTT TTT TTT TTT G CAT GTC GGC GAG CCC atc acgT(서열번호 14)TTT TTT TTT TTT TTT G CAT GTC GGC GAG CCC atc acgT (SEQ ID NO: 14) MTB complexMTB complex IMTBIMTB TTT TTT TTT TTT TTT GAGCATCAATGGATACGCTGCCGGCTAGC (서열번호 15)TTT TTT TTT TTT TTT GAGCATCAATGGATACGCTGCCGGCTAGC (SEQ ID NO: 15) MTB complexMTB complex Avi-1Avi-1 TTT TTT TTT TTT TTT CAC GCCGGTGAGCCGATCACCA(서열번호 16)TTT TTT TTT TTT TTT CAC GCCGGTGAGCCGATCACCA (SEQ ID NO: 16) M. aviumM. avium Iavi-1Iavi-1 TTT TTT TTT TTT TTT GCGAGCATCTAGATGAACGCGTGGTCTTCATG(서열번호 17)TTT TTT TTT TTT TTT GCGAGCATCTAGATGAACGCGTGGTCTTCATG (SEQ ID NO: 17) M. aviumM. avium Int-1Int-1 TTT TTT TTT TTT TTT CTC CGGCCTGCACGCGGGCGAG(서열번호 18)TTT TTT TTT TTT TTT CTC CGGCCTGCACGCGGGCGAG (SEQ ID NO: 18) M. intracellulareM. intracellulare Iint-2Iint-2 TTT TTT TTT TTT TTT TAGATGAGCGCATAGTCCTTAGGGCTGATGC (서열번호 19)TTT TTT TTT TTT TTT TAGATGAGCGCATAGTCCTTAGGGCTGATGC (SEQ ID NO: 19) M. intracellulareM. intracellulare SC-long-3SC-long-3 TTT TTT TTT TTT TTT CAC GCCCGTACGGATGGCCAGC (서열번호 20)TTT TTT TTT TTT TTT CAC GCCCGTACGGATGGCCAGC (SEQ ID NO: 20) M. scrofulaceumM. scrofulaceum Ab-4Ab-4 TTT TTT TTT TTT TTT GC ACC AAT CCG GCTC AGG TG A CCA CCA CC(서열번호 21)TTT TTT TTT TTT TTT GC ACC AAT CCG GCTC AGG TG A CCA CCA CC (SEQ ID NO: 21) M. abscessusM. abscessus IabsIabs TTT TTT TTT TTT TTT CA TAGCCTCGCTCGTTTTCGAGTGGGGCTG(서열번호 22)TTT TTT TTT TTT TTT CA TAGCCTCGCTCGTTTTCGAGTGGGGCTG (SEQ ID NO: 22) M. abscessusM. abscessus 3a-CH-13a-CH-1 TTT TTT TTT TTT TTT TGCCAACCCGGCTCTGGTGACTG(서열번호 23)TTT TTT TTT TTT TTT TGCCAACCCGGCTCTGGTGACTG (SEQ ID NO: 23) M. chelonaeM. chelonae IcheIche TTT TTT TTT TTT TTT TAACAAGCCTCGCTCGTTTACGAGTGAGGTTA(서열번호 24)TTT TTT TTT TTT TTT TAACAAGCCTCGCTCGTTTACGAGTGAGGTTA (SEQ ID NO: 24) M. chelonaeM. chelonae Forts-1Forts-1 TTT TTT TTT TTT TTT GGG CCTGAACGCCGGCCAG(서열번호 25)TTT TTT TTT TTT TTT GGG CCTGAACGCCGGCCAG (SEQ ID NO: 25) M. fortuitumM. fortuitum Ifort-1Ifort-1 TTT TTT TTT TTT TTT AGTGTGGCTGGGGGCCTTCGGGTTTC (서열번호 26)TTT TTT TTT TTT TTT AGTGTGGCTGGGGGCCTTCGGGTTTC (SEQ ID NO: 26) M. fortuitumM. fortuitum 4a-U/M-L4a-U/M-L TTT TTT TTT TTT TTT AGGCCAGCCCATCACCAGC(서열번호 27)TTT TTT TTT TTT TTT AGGCCAGCCCATCACCAGC (SEQ ID NO: 27) M. ulcerans/M. marinumM. ulcerans/M. marinum Imari-6Imari-6 TTT TTT TTT TTT TTT AAA TT GGATGCGCTGCCTTT(서열번호 28)TTT TTT TTT TTT TTT AAA TT GGATGCGCTGCCTTT (SEQ ID NO: 28) M. ulcerans/M. marinumM. ulcerans/M. marinum Ikan-1Ikan-1 TTT TTT TTT TTT TTT ATCAAATGGATGCGTTGCCCTACGGGTA(서열번호 29)TTT TTT TTT TTT TTT ATCAAATGGATGCGTTGCCCTACGGGTA (SEQ ID NO: 29) M. kansasiiM. kansasii kanII-L1-2kanII-L1-2 TTT TTT TTT TTT TTT GGCCTCAACACCAAGGACCCGATCACCACG(서열번호 30)TTT TTT TTT TTT TTT GGCCTCAACACCAAGGACCCGATCACCACG (SEQ ID NO: 30) M. kansasiiM. kansasii Igen/sim-1Igen/sim-1 TTT TTT TTT TTT TTT ATCTAAATGAACGCGTCGCCGGCAAC GGTTA(서열번호 31)TTT TTT TTT TTT TTT ATCTAAATGAACGCGTCGCCGGCAAC GGTTA (SEQ ID NO: 31) M. genavense/M. simmiaeM. genavense/M. simmiae TE2-3TE2-3 TTT TTT TTT TTT TTT CCGGCCGCACCCGCCGACGTCGAGACGT(서열번호 32)TTT TTT TTT TTT TTT CCGGCCGCACCCGCCGACGTCGAGACGT (SEQ ID NO: 32) M. terraeM. terrae 3a-Non-L-13a-Non-L-1 TTT TTT TTT TTT TTT ACCG CCA ACC CGG G TGAGGCGCA(서열번호 33)TTT TTT TTT TTT TTT ACCG CCA ACC CGG G TGAGGCGCA (SEQ ID NO: 33) M. nonchromogenicumM. nonchromogenicum Cel-ICel-I TTT TTT TTT TTT TTT CGAGAGCCCAATCACCACC(서열번호 34)TTT TTT TTT TTT TTT CGAGAGCCCAATCACCACC (SEQ ID NO: 34) M. celatumM. celatum Cel-IICel-II TTT TTT TTT TTT TTT CGCGTCCCCGATCACGAC(서열번호 35)TTT TTT TTT TTT TTT CGCGTCCCCGATCACGAC (SEQ ID NO: 35) M. celatumM. celatum Igo-2Igo-2 TTT TTT TTT TTT TTT CGAGCATCAAAATGTATGCGTTGTCGTTCTC(서열번호 36)TTT TTT TTT TTT TTT CGAGCATCAAAATGTATGCGTTGTCGTTCTC (SEQ ID NO: 36) M. gordonaeM. gordonae Szul-4Szul-4 TTT TTT TTT TTT TTT GAACGTCGGCGAGCCGATCACCAGTT (서열번호 37)TTT TTT TTT TTT TTT GAACGTCGGCGAGCCGATCACCAGTT (SEQ ID NO: 37) M. szulgaiM. szulgai Iszul-4Iszul-4 TTT TTT TTT TTT TTT AAA GGATGCGCTGCCCTCG(서열번호 38)TTT TTT TTT TTT TTT AAA GGATGCGCTGCCCTCG (SEQ ID NO: 38) M. szulgai M. szulgai Muco-16Muco-16 TTT TTT TTT TTT TTT CACG ACG GCAACCCGGCTCAGGTGACCGCG(서열번호 39)TTT TTT TTT TTT TTT CACG ACG GCAACCCGGCTCAGGTGACCGCG (SEQ ID NO: 39) M. mucogenicumM. mucogenicum Auba-3Auba-3 TTT TTT TTT TTT TTT GCGAACTCCGACGGCACGCAGCCGCT(서열번호 40)TTT TTT TTT TTT TTT GCGAACTCCGACGGCACGCAGCCGCT (SEQ ID NO: 40) M. aubagnenseM. aubagnense malmal TTT TTT TTT TTT TTT CGA GTCGGCCGTACCCGCCTCGACCAC(서열번호 41)TTT TTT TTT TTT TTT CGA GTCGGCCGTACCCGCCTCGACCAC (SEQ ID NO: 41) M. malmoenseM. malmoense IphleiIphlei TTT TTT TTT TTT TTT CCTTT TTTTGGGGGTTCTTGGGTGTTCG (서열번호 42)TTT TTT TTT TTT TTT CCTTT TTTTGGGGGTTCTTGGGTGTTCG (SEQ ID NO: 42) M. phleiM. phlei IsmegIsmeg TTT TTT TTT TTT TTT TAAGAGTGTGGCTGCCGGCCTTTGAGGT(서열번호 43)TTT TTT TTT TTT TTT TAAGAGTGTGGCTGCCGGCCTTTGAGGT (SEQ ID NO: 43) M. smegmatisM. smegmatis IxenoIxeno TTT TTT TTT TTT TTT TGCGAGCATCTGGCAAAGACTGTGGTAAGCGG(서열번호 44)TTT TTT TTT TTT TTT TGCGAGCATCTGGCAAAGACTGTGGTAAGCGG (SEQ ID NO: 44) M. xenopiM. xenopi IflavIflav TTT TTT TTT TTT TTT GAACAGGTGGCTCCCTTTTGGGGGTTGCTT(서열번호 45)TTT TTT TTT TTT TTT GAACAGGTGGCTCCCTTTTGGGGGTTGCTT (SEQ ID NO: 45) M. flavescensM. flavescens IpereIpere TTT TTT TTT TTT TTT AAAATGTGTGGTCTCACTCCTTGTGGGTG(서열번호 46)TTT TTT TTT TTT TTT AAAATGTGTGGTCTCACTCCTTGTGGGTG (SEQ ID NO: 46) M. peregrinum / M. septicumM. peregrinum / M. septicum  NameName Rifampin probe sequence (5'-3') Rifampin probe sequence (5'-3')  positionposition S1S1 TTT TTT TTT TTT TTT AGCCAGCTGAGCCAATTC(서열번호 47)TTT TTT TTT TTT TTT AGCCAGCTGAGCCAATTC (SEQ ID NO: 47) 509-514509-514 S2S2 TTT TTT TTT TTT TTT CATGGACCAGAACAACCCGC(서열번호 48)TTT TTT TTT TTT TTT CATGGACCAGAACAACCCGC (SEQ ID NO: 48) 514-520514-520 S3S3 TTT TTT TTT TTT TTT CCGCTGTCGGGGTTGACC(서열번호 49)TTT TTT TTT TTT TTT CCGCTGTCGGGGTTGACC (SEQ ID NO: 49) 520-525520-525 S4S4 TTT TTT TTT TTT TTT G TTG ACC CAC AAG CGC CGA(서열번호 50)TTT TTT TTT TTT TTT G TTG ACC CAC AAG CGC CGA (SEQ ID NO: 50) 524-529524-529 S5-1S5-1 TTT TTT TTT TTT TTT AAA CTGTCGGCGCTGGGGC(서열번호 51)TTT TTT TTT TTT TTT AAA CTGTCGGCGCTGGGGC (SEQ ID NO: 51) 530-534530-534 S5-3S5-3 TTT TTT TTT TTT TTT ACTGTCGGCGCTGGGGC(서열번호 52)TTT TTT TTT TTT TTT ACTGTCGGCGCTGGGGC (SEQ ID NO: 52) 530-534 530-534 531TTG-3531TTG-3 TTT TTT TTT TTT TTT AAG CGC C GA CTG TTG GC G CTGGGGCC(서열번호 53)TTT TTT TTT TTT TTT AAG CGC C GA CTG TTG GC G CTGGGGCC (SEQ ID NO: 53)   526TAC-3526TAC-3 TTT TTT TTT TTT TTT A G G TTG ACC TAC AAG CGCCGA(서열번호 54)TTT TTT TTT TTT TTT A G G TTG ACC TAC AAG CGCCGA (SEQ ID NO: 54)   516GTC-2516GTC-2 TTT TTT TTT TTT TTT TTC ATG GTC CAG AAC AAC CC G (서열번호 55)TTT TTT TTT TTT TTT TTC ATG GTC CAG AAC AAC CC G (SEQ ID NO: 55)   516TAC-2516TAC-2 TTT TTT TTT TTT TTT CAA TTC ATG TAC CAG AAC AAC CC (서열번호 56)TTT TTT TTT TTT TTT CAA TTC ATG TAC CAG AAC AAC CC (SEQ ID NO: 56)   513CCA513CCA TTT TTT TTT TTT TTT G CTG AGC CCA TTC ATG GAC (서열번호 57)TTT TTT TTT TTT TTT G CTG AGC CCA TTC ATG GAC (SEQ ID NO: 57)    NameName Isoniazid probe sequence (5'-3') Isoniazid probe sequence (5'-3')  positionposition katG-WTkatG-WT TTT TTT TTT TTT TTT AAATCACCAGCGGCATCGAG (서열번호 58)TTT TTT TTT TTT TTT AAATCACCAGCGGCATCGAG (SEQ ID NO: 58) katG 315 WT-1katG 315 WT-1 katG-MTkatG-MT TTT TTT TTT TTT TTT AAATCACCACCGGCATCGAAG (서열번호 59)TTT TTT TTT TTT TTT AAATCACCACCGGCATCGAAG (SEQ ID NO: 59) katG-315MT-3katG-315MT-3 inhA-15WTinhA-15WT TTTTTTTTTTTTTTT AAA GCCGCGGCGAGACGATAGGTT (서열번호 60)TTTTTTTTTTTTTTT AAA GCCGCGGCGAGACGATAGGTT (SEQ ID NO: 60) inhA-15WT2-3inhA-15WT2-3 inhA-15MTinhA-15MT TTTTTTTTTTTTTTT AAAGCGGCGAGATGATAGGTTGT (서열번호 61)TTTTTTTTTTTTTTT AAAGCGGCGAGATGATAGGTTGT (SEQ ID NO: 61) inhA-15MT-6inhA-15MT-6 inhA-8WTinhA-8WT TTTTTTTTTTTTTTT GACGATAGGTTGTCGGGGTGA (서열번호 62)TTTTTTTTTTTTTTT GACGATAGGTTGTCGGGGTGA (SEQ ID NO: 62) inhA-8WT-1inhA-8WT-1 inhA-8MTinhA-8MT TTT TTT TTT TTT TTT GACGATAGGCTGTCGGG (서열번호 63)TTT TTT TTT TTT TTT GACGATAGGCTGTCGGG (SEQ ID NO: 63) inhA-8MT-1inhA-8MT-1 ahpC-WT1ahpC-WT1 TTT TTT TTT TTT TTT ATATGGTGTGATATATCACCTTTGC (서열번호 64)TTT TTT TTT TTT TTT ATATGGTGTGATATATCACCTTTGC (SEQ ID NO: 64) ahpC-WT1-4ahpC-WT1-4 ahpC-WT2ahpC-WT2 TTT TTT TTT TTT TTT AAACCTTTGCCTGACAGCGACTT (서열번호 65)TTT TTT TTT TTT TTT AAACCTTTGCCTGACAGCGACTT (SEQ ID NO: 65) ahpC-WT2-2ahpC-WT2-2 ahpC-WT3ahpC-WT3 TTT TTT TTT TTT TTT TTCACGGCACGATGGAATGT (서열번호 66)TTT TTT TTT TTT TTT TTCACGGCACGATGGAATGT (SEQ ID NO: 66) ahpC-WT3-6ahpC-WT3-6 ahpC-WT4ahpC-WT4 TTT TTT TTT TTT TTT CGCAACCAAATGCATTGTC (서열번호 67)TTT TTT TTT TTT TTT CGCAACCAAATGCATTGTC (SEQ ID NO: 67) ahpC-WT4-3ahpC-WT4-3 ahpC-WT5ahpC-WT5 TTT TTT TTT TTT TTT TTTGATGATGAGGAGAGTCATGC (서열번호 68)TTT TTT TTT TTT TTT TTTGATGATGAGGAGAGTCATGC (SEQ ID NO: 68) ahpC-WT5-5ahpC-WT5-5

표 8은 본 발명에 사용된 프라이머 및 프로브 서열Table 8 is the primer and probe sequence used in the present invention

본 발명의 방법과 기존 REBA 비교Comparison of the method of the present invention and conventional REBA

도 2에서 알 수 있는 바와 같이, REBA Myco-ID의 경우 검출가능한 종은 결핵균을 포함하여 모두 19종이다. 이에 반하여 본 발명의 QMAP 기반의 진단법은 REBA Myco-ID보다 7개의 균종이 더 포함되어 있어 더 많은 균종을 분리할 수 있다. 즉, 본 발명의 QMAP system의 경우 결핵균을 포함한 26종의 주요 비결핵 항산균(M. avium, M. intracellulare, M. scrofulaceum, M. abscessus complex, M. chelonae, M. fortuitum complex, M. ulcerans/M. marinum, M. kansasii, M. genavense/M. simiae, M. terrae, M. nonchromogenicum, M. celatum, M. gordonae, M. szulgai, M. mucogenicum, M. aubagnense, 이외에 추가로 M. malmoense, M. phlei, M. smegmatis, M. xenopi, M. peregrinum, M. septicum, M. flavescens이 추가로 분리될 수 있다.As can be seen in Figure 2, in the case of REBA Myco-ID, the detectable species are all 19 species, including Mycobacterium tuberculosis. On the other hand, the QMAP-based diagnostic method of the present invention contains 7 more strains than REBA Myco-ID, and thus more strains can be isolated. That is, in the case of the QMAP system of the present invention, 26 kinds of major non-tuberculosis antioxidant bacteria including Mycobacterium tuberculosis ( M. avium, M. intracellulare, M. scrofulaceum, M. abscessus complex , M. chelonae, M. fortuitum complex, M. ulcerans) /M. marinum, M. kansasii, M. genavense/M. simiae, M. terrae, M. nonchromogenicum, M. celatum, M. gordonae, M. szulgai, M. mucogenicum, M. aubagnense, in addition to M. malmoense, M. phlei, M. smegmatis, M. xenopi, M. peregrinum, M. septicum, M. flavescens can be further isolated.

또한 REBA Myco-ID보다 우수한 점은 REBA Myco-ID경우 결핵과 NTM만을 구별할 수 있으나 QMAP 기반의 진단법은 결핵일 경우 결핵의 1차 약제로 사용되는 가장 중요한 리팜핀의 내성여부까지 확인이 가능하여 빠르게 내성여부를 판단하고 치료제의 선별에 도움을 줄 수 있다.Also superior to REBA Myco-ID is that REBA Myco-ID can only distinguish between tuberculosis and NTM, but the QMAP-based diagnostic method can confirm the resistance of the most important rifampin used as the primary drug for tuberculosis in case of tuberculosis. It can help to determine whether or not and to select a treatment.

상기 표 5-7처럼 QMAP기반의 분자법은 결핵이 나온 경우 리팜핀, 아이나 감성-내성 유무, 내성일 경우 어느위치에서 내성을 보였는지 확인이 가능하다. QMAP기반의 분자법, 이번 출원을 목적으로 하는 검사법의 경우 전통적인 내성방법과 비교하였을때의 결과도 우수한 결과를 나타내는 것을 확인할 수 있었다. REBA Myco-ID의 경우 결핵/NTM 의 동정만 가능하기 때문에 결핵일 경우 리팜핀 내성을 확인하기 위해서는 REBA MTB-MDR과 같은 다른 분자진단법을 이용하여 추가 테스트를 진행해야 하나, 본 발명의 방법은 이러한 추가 테스트가 필요하지 아니하다.As shown in Table 5-7, in the QMAP-based molecular method, it is possible to check whether or not rifampin, child or sensitivity-tolerance is present in case of tuberculosis, and where resistance is shown in case of resistance. In the case of the QMAP-based molecular method and the test method for the purpose of this application, it was confirmed that the result when compared to the traditional resistance method showed excellent results. In the case of REBA Myco-ID, only tuberculosis/NTM identification is possible. In the case of tuberculosis, in order to confirm rifampin resistance, additional tests must be performed using other molecular diagnostic methods such as REBA MTB-MDR. No testing is required.

또한, 본 발명의 QMAP 기반의 진단법의 또 한가지의 장점은 검출 시간의 단축이다. 통상 96 테스트를 진행하기 위해서 REBA Myco-ID의 경우 5시간 이상이 소요 (REBA진행시간만)가 되나 QMAP의 경우는 1시간 40분의 검출시간을 단축시킬 수 있어서 진단에서 가장 중요한 시간을 단축시킬 수 있는 효과가 있다.In addition, another advantage of the QMAP-based diagnostic method of the present invention is a reduction in detection time. In general, it takes more than 5 hours for REBA Myco-ID to proceed with 96 tests (REBA processing time only), but in the case of QMAP, the detection time of 1 hour and 40 minutes can be shortened, thus reducing the most important time in diagnosis. It can have an effect.

<110> Optipharm.CO.,LTD UNIVERSITY INDUSTRY FOUNDATION, YONSEI UNIVERSITY WONJU CAMPUS <120> A method for simultaneously detecting and identifying Mycobacterium tuberculosis and nontuberculous mycobacteria and rifampicin-resistance of Mycobacterium tuberculosis, and a kit therefor based QuantaMatrix assay Platform <130> OP17-0031HSPCT <150> KR 10-2016-0099515 <151> 2016-08-04 <160> 68 <170> KopatentIn 2.0 <210> 1 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 1 tcaaggagaa gcgctacgac ctggc 25 <210> 2 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 2 acscggatct ggttctggat carc 24 <210> 3 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 3 cttggtggtg gggtgtggtg tttga 25 <210> 4 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 4 gccaaggcat ycaccatgyg ccctta 26 <210> 5 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 5 tcgccgcgat caaggagttc t 21 <210> 6 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 6 tgcacgtcgc ggacctcca 19 <210> 7 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 7 agctcgtatg gcaccggaac 20 <210> 8 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 8 ccgtacagga tctcgaggaa 20 <210> 9 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 9 gctcgtggac ataccgattt 20 <210> 10 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 10 actgaacggg atacgaatgg 20 <210> 11 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 11 ccggctagca cctcttggcg 20 <210> 12 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 12 attgatcgcc aatggttagc 20 <210> 13 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 13 tttttttttt tttttaccga rgargacgtc gtcgccacca tcga 44 <210> 14 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 14 tttttttttt tttttgcatg tcggcgagcc catcacgt 38 <210> 15 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 15 tttttttttt tttttgagca tcaatggata cgctgccggc tagc 44 <210> 16 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 16 tttttttttt tttttcacgc cggtgagccg atcacca 37 <210> 17 <211> 47 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 17 tttttttttt tttttgcgag catctagatg aacgcgtggt cttcatg 47 <210> 18 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 18 tttttttttt tttttctccg gcctgcacgc gggcgag 37 <210> 19 <211> 46 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 19 tttttttttt ttttttagat gagcgcatag tccttagggc tgatgc 46 <210> 20 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 20 tttttttttt tttttcacgc ccgtacggat ggccagc 37 <210> 21 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 21 tttttttttt tttttgcacc aatccggctc aggtgaccac cacc 44 <210> 22 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 22 tttttttttt tttttcatag cctcgctcgt tttcgagtgg ggctg 45 <210> 23 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 23 tttttttttt ttttttgcca acccggctct ggtgactg 38 <210> 24 <211> 47 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 24 tttttttttt ttttttaaca agcctcgctc gtttacgagt gaggtta 47 <210> 25 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 25 tttttttttt tttttgggcc tgaacgccgg ccag 34 <210> 26 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 26 tttttttttt tttttagtgt ggctgggggc cttcgggttt c 41 <210> 27 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 27 tttttttttt tttttaggcc agcccatcac cagc 34 <210> 28 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 28 tttttttttt tttttaaatt ggatgcgctg ccttt 35 <210> 29 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 29 tttttttttt tttttatcaa atggatgcgt tgccctacgg gta 43 <210> 30 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 30 tttttttttt tttttggcct caacaccaag gacccgatca ccacg 45 <210> 31 <211> 46 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 31 tttttttttt tttttatcta aatgaacgcg tcgccggcaa cggtta 46 <210> 32 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 32 tttttttttt tttttccggc cgcacccgcc gacgtcgaga cgt 43 <210> 33 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 33 tttttttttt tttttaccgc caacccgggt gaggcgca 38 <210> 34 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 34 tttttttttt tttttcgaga gcccaatcac cacc 34 <210> 35 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 35 tttttttttt tttttcgcgt ccccgatcac gac 33 <210> 36 <211> 46 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 36 tttttttttt tttttcgagc atcaaaatgt atgcgttgtc gttctc 46 <210> 37 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 37 tttttttttt tttttgaacg tcggcgagcc gatcaccagt t 41 <210> 38 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 38 tttttttttt tttttaaagg atgcgctgcc ctcg 34 <210> 39 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 39 tttttttttt tttttcacga cggcaacccg gctcaggtga ccgcg 45 <210> 40 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 40 tttttttttt tttttgcgaa ctccgacggc acgcagccgc t 41 <210> 41 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 41 tttttttttt tttttcgagt cggccgtacc cgcctcgacc ac 42 <210> 42 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 42 tttttttttt tttttccttt ttttgggggt tcttgggtgt tcg 43 <210> 43 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 43 tttttttttt ttttttaaga gtgtggctgc cggcctttga ggt 43 <210> 44 <211> 47 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 44 tttttttttt ttttttgcga gcatctggca aagactgtgg taagcgg 47 <210> 45 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 45 tttttttttt tttttgaaca ggtggctccc ttttgggggt tgctt 45 <210> 46 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 46 tttttttttt tttttaaaat gtgtggtctc actccttgtg ggtg 44 <210> 47 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 47 tttttttttt tttttagcca gctgagccaa ttc 33 <210> 48 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 48 tttttttttt tttttcatgg accagaacaa cccgc 35 <210> 49 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 49 tttttttttt tttttccgct gtcggggttg acc 33 <210> 50 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 50 tttttttttt tttttgttga cccacaagcg ccga 34 <210> 51 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 51 tttttttttt tttttaaact gtcggcgctg gggc 34 <210> 52 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 52 tttttttttt tttttactgt cggcgctggg gc 32 <210> 53 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 53 tttttttttt tttttaagcg ccgactgttg gcgctggggc c 41 <210> 54 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 54 tttttttttt tttttaggtt gacctacaag cgccga 36 <210> 55 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 55 tttttttttt tttttttcat ggtccagaac aacccg 36 <210> 56 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 56 tttttttttt tttttcaatt catgtaccag aacaaccc 38 <210> 57 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 57 tttttttttt tttttgctga gcccattcat ggac 34 <210> 58 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 58 tttttttttt tttttaaatc accagcggca tcgag 35 <210> 59 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 59 tttttttttt tttttaaatc accaccggca tcgaag 36 <210> 60 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 60 tttttttttt tttttaaagc cgcggcgaga cgataggtt 39 <210> 61 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 61 tttttttttt tttttaaagc ggcgagatga taggttgt 38 <210> 62 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 62 tttttttttt tttttgacga taggttgtcg gggtga 36 <210> 63 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 63 tttttttttt tttttgacga taggctgtcg gg 32 <210> 64 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 64 tttttttttt tttttatatg gtgtgatata tcacctttgc 40 <210> 65 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 65 tttttttttt tttttaaacc tttgcctgac agcgactt 38 <210> 66 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 66 tttttttttt tttttttcac ggcacgatgg aatgt 35 <210> 67 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 67 tttttttttt tttttcgcaa ccaaatgcat tgtc 34 <210> 68 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 68 tttttttttt ttttttttga tgatgaggag agtcatgc 38 <110> Optipharm.CO.,LTD UNIVERSITY INDUSTRY FOUNDATION, YONSEI UNIVERSITY WONJU CAMPUS <120> A method for simultaneously detecting and identifying Mycobacterium tuberculosis and nontuberculous mycobacteria and rifampicin-resistance of Mycobacterium tuberculosis, and a kit therefor based QuantaMatrix assay Platform <130> OP17-0031HSPCT <150> KR 10-2016-0099515 <151> 2016-08-04 <160> 68 <170> KopatentIn 2.0 <210> 1 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 1 tcaaggagaa gcgctacgac ctggc 25 <210> 2 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 2 acscggatct ggttctggat carc 24 <210> 3 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 3 cttggtggtg gggtgtggtg tttga 25 <210> 4 <211> 26 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 4 gccaaggcat ycaccatgyg ccctta 26 <210> 5 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 5 tcgccgcgat caaggagttc t 21 <210> 6 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 6 tgcacgtcgc ggacctcca 19 <210> 7 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 7 agctcgtatg gcaccggaac 20 <210> 8 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 8 ccgtacagga tctcgaggaa 20 <210> 9 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 9 gctcgtggac ataccgattt 20 <210> 10 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 10 actgaacggg atacgaatgg 20 <210> 11 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 11 ccggctagca cctcttggcg 20 <210> 12 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> primer <400> 12 attgatcgcc aatggttagc 20 <210> 13 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 13 tttttttttt tttttaccga rgargacgtc gtcgccacca tcga 44 <210> 14 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 14 tttttttttt tttttgcatg tcggcgagcc catcacgt 38 <210> 15 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 15 tttttttttt tttttgagca tcaatggata cgctgccggc tagc 44 <210> 16 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 16 tttttttttt tttttcacgc cggtgagccg atcacca 37 <210> 17 <211> 47 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 17 tttttttttt tttttgcgag catctagatg aacgcgtggt cttcatg 47 <210> 18 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 18 tttttttttt tttttctccg gcctgcacgc gggcgag 37 <210> 19 <211> 46 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 19 tttttttttt ttttttagat gagcgcatag tccttagggc tgatgc 46 <210> 20 <211> 37 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 20 tttttttttt tttttcacgc ccgtacggat ggccagc 37 <210> 21 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 21 tttttttttt tttttgcacc aatccggctc aggtgaccac cacc 44 <210> 22 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 22 tttttttttt tttttcatag cctcgctcgt tttcgagtgg ggctg 45 <210> 23 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 23 tttttttttt ttttttgcca acccggctct ggtgactg 38 <210> 24 <211> 47 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 24 tttttttttt ttttttaaca agcctcgctc gtttacgagt gaggtta 47 <210> 25 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 25 tttttttttt tttttgggcc tgaacgccgg ccag 34 <210> 26 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 26 tttttttttt tttttagtgt ggctgggggc cttcgggttt c 41 <210> 27 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 27 tttttttttt tttttaggcc agcccatcac cagc 34 <210> 28 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 28 tttttttttt tttttaaatt ggatgcgctg ccttt 35 <210> 29 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 29 tttttttttt tttttatcaa atggatgcgt tgccctacgg gta 43 <210> 30 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 30 tttttttttt tttttggcct caacaccaag gacccgatca ccacg 45 <210> 31 <211> 46 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 31 tttttttttt tttttatcta aatgaacgcg tcgccggcaa cggtta 46 <210> 32 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 32 tttttttttt tttttccggc cgcacccgcc gacgtcgaga cgt 43 <210> 33 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 33 tttttttttt tttttaccgc caacccgggt gaggcgca 38 <210> 34 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 34 tttttttttt tttttcgaga gcccaatcac cacc 34 <210> 35 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 35 tttttttttt tttttcgcgt ccccgatcac gac 33 <210> 36 <211> 46 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 36 tttttttttt tttttcgagc atcaaaatgt atgcgttgtc gttctc 46 <210> 37 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 37 tttttttttt tttttgaacg tcggcgagcc gatcaccagt t 41 <210> 38 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 38 tttttttttt tttttaaagg atgcgctgcc ctcg 34 <210> 39 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 39 tttttttttt tttttcacga cggcaacccg gctcaggtga ccgcg 45 <210> 40 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 40 tttttttttt tttttgcgaa ctccgacggc acgcagccgc t 41 <210> 41 <211> 42 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 41 tttttttttt tttttcgagt cggccgtacc cgcctcgacc ac 42 <210> 42 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 42 tttttttttt tttttccttt ttttgggggt tcttgggtgt tcg 43 <210> 43 <211> 43 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 43 tttttttttt ttttttaaga gtgtggctgc cggcctttga ggt 43 <210> 44 <211> 47 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 44 tttttttttt ttttttgcga gcatctggca aagactgtgg taagcgg 47 <210> 45 <211> 45 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 45 tttttttttt tttttgaaca ggtggctccc ttttgggggt tgctt 45 <210> 46 <211> 44 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 46 tttttttttt tttttaaaat gtgtggtctc actccttgtg ggtg 44 <210> 47 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 47 tttttttttt tttttagcca gctgagccaa ttc 33 <210> 48 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 48 tttttttttt tttttcatgg accagaacaa cccgc 35 <210> 49 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 49 tttttttttt tttttccgct gtcggggttg acc 33 <210> 50 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 50 tttttttttt tttttgttga cccacaagcg ccga 34 <210> 51 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 51 tttttttttt tttttaaact gtcggcgctg gggc 34 <210> 52 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 52 tttttttttt tttttactgt cggcgctggg gc 32 <210> 53 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 53 tttttttttt tttttaagcg ccgactgttg gcgctggggc c 41 <210> 54 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 54 tttttttttt tttttaggtt gacctacaag cgccga 36 <210> 55 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 55 tttttttttt tttttttcat ggtccagaac aacccg 36 <210> 56 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 56 tttttttttt tttttcaatt catgtaccag aacaaccc 38 <210> 57 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 57 tttttttttt tttttgctga gcccattcat ggac 34 <210> 58 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 58 tttttttttt tttttaaatc accagcggca tcgag 35 <210> 59 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 59 tttttttttt tttttaaatc accaccggca tcgaag 36 <210> 60 <211> 39 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 60 tttttttttt tttttaaagc cgcggcgaga cgataggtt 39 <210> 61 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 61 tttttttttt tttttaaagc ggcgagatga taggttgt 38 <210> 62 <211> 36 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 62 tttttttttt tttttgacga taggttgtcg gggtga 36 <210> 63 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 63 tttttttttt tttttgacga taggctgtcg gg 32 <210> 64 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 64 tttttttttt tttttatatg gtgtgatata tcacctttgc 40 <210> 65 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 65 tttttttttt tttttaaacc tttgcctgac agcgactt 38 <210> 66 <211> 35 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 66 tttttttttt tttttttcac ggcacgatgg aatgt 35 <210> 67 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 67 tttttttttt tttttcgcaa ccaaatgcat tgtc 34 <210> 68 <211> 38 <212> DNA <213> Artificial Sequence <220> <223> probe <400> 68 tttttttttt ttttttttga tgatgaggag agtcatgc 38

Claims (6)

삭제delete 삭제delete 삭제delete 서열번호 1 내지 서열번호 12의 프라이머 및
서열번호 13 내지 68의 올리고머 프로브가 커플링된 디스크를 포함하는 결핵균 및 비결핵 항산균 검출과 동정 및, 결핵균의 리팜핀, 및 아이나 내성 여부를 동시에 확인하기 위한 키트.
Primers of SEQ ID NO: 1 to SEQ ID NO: 12, and
A kit for detecting and identifying Mycobacterium tuberculosis and non-tuberculosis mycobacterium comprising a disk coupled with the oligomeric probes of SEQ ID NOs: 13 to 68, and simultaneously confirming whether or not rifampin and Aina resistance of Mycobacterium tuberculosis.
제4항에 있어서, 상기 검출 및 확인 균주는 마이코박테리움 투버큘로시스(Mycobacterium tuberculosis) H37Rv, 마이코박테리움 아비움(M. avium), 마이코박테리움 인트라셀룰라(M. intracellulare), 마이코박테리움 스크로풀라시움(M. scrofulaceum), 마이코박테리움 압세수스(M. abscessus), 마이코박테리움 켈로나이(M. chelonae), 마이코박테리움 포르투이툼(M. fortuitum), 마이코박테리움 얼서런스 (M. ulcerans), 마이코박테리움 마리눔(M. marinum), 마이코박테리움 칸사시(M. kansasii), 마이코박테리움 제나벤스(M. genavense), 마이코박테리움 시미에 (M. simmiae), 마이코박테리움 테라(M. terrae), 마이코박테리움 넌크로모제니쿰(M. nonchromogenicum), 마이코박테리움 켈라툼(M. celatum), 마이코박테리움 고르도네이(M. gordonae), 마이코박테리움 줄게일(M. szulgail), 마이코박테리움 무코제니쿰(M. mucogenicum), 마이코박테리움 오박넨스(M. aubagnense), 마이코박테리움 말모엔스(M. malmoense), 마이코박테리움 펠레(M. phlei), 마이코박테리움 스메그마티스 (M. smegmatis), 마이코박테리움 제노피(M. xenopi), 마이코박테리움 페레그리넘 (M. peregrinum 마이코박테리움 프라제센스(M. flavescens)으로 구성된 군으로부터 선택된 것을 특징으로 하는 결핵균 및 비결핵 항산균 검출과 동정 및, 결핵균의 리팜핀, 및 아이나 내성 여부를 동시에 확인하기 위한 키트.The method of claim 4, wherein the detection and identification strain is Mycobacterium tuberculosis H37Rv, Mycobacterium avium , Mycobacterium intracellulare , Mycobacterium intracellulare , and Mycobacterium tuberculosis . Cobacterium scrofulaceum ( M. scrofulaceum), Mycobacterium abscessus ( M. abscessus ), Mycobacterium kelonae ( M. chelonae ), Mycobacterium fortuitum ( M. fortuitum ), Mycobacterium ulcerans ( M. ulcerans ), Mycobacterium marinum ( M. marinum), Mycobacterium cansashi ( M. kansasii ), Mycobacterium genavense ( M. genavense), Mycobacterium simmiae ( M. simmiae ), Mycobacterium terra ( M. terrae ), Mycobacterium nonchromogenicum ( M. nonchromogenicum ), Mycobacterium celatum ( M. celatum ), Mycobacterium gordonae ( M. gordonae ), Mycobacterium szulgail ( M. szulgail), Mycobacterium mucogenicum ( M. mucogenicum ), Mycobacterium obagnense ( M. aubagnense ), Mycobacterium malmoense ( M. malmoense ), Mycobacterium Pele ( M. phlei ), Mycobacterium smegmatis (M. smegmatis), Mycobacterium xenopi ( M. xenopi ), Mycobacterium peregrinum ( M. peregrinum and M. peregrinum) Mycobacterium prajesense ( M. flavescens ), characterized in that selected from the group consisting of Mycobacterium tuberculosis and non-tuberculosis mycobacterium detection and identification, and a kit for simultaneously confirming whether or not rifampin of Mycobacterium tuberculosis, and Iina resistance. 제4항에 있어서, 상기 프라이머는 바이오틴이 표지된 것을 특징으로 결핵균 및 비결핵 항산균 검출과 동정 및, 결핵균의 리팜핀, 및 아이나 내성 여부를 동시에 확인하기 위한 키트.The kit according to claim 4, wherein the primer is labeled with biotin, for detecting and identifying Mycobacterium tuberculosis and non-TB mycobacterium, and for simultaneously checking whether or not rifampin and Aina resistance of Mycobacterium tuberculosis.
KR1020197003372A 2016-08-04 2017-07-28 A diagnostic method and kit that can simultaneously detect and identify tuberculosis and non-tuberculosis mycobacteria based on the Quanta Matrix Assay Platform and whether tuberculosis bacteria are resistant to rifampin KR102184637B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020160099515 2016-08-04
KR20160099515 2016-08-04
PCT/KR2017/008168 WO2018026141A1 (en) 2016-08-04 2017-07-28 Diagnostic method for detection and identification of tuberculosis and non-tuberculosis mycobacteria and simultaneous confirmation of rifampin resistance of tuberculosis bacillus on basis of quanta matrix assay platform and kit therefor

Publications (2)

Publication Number Publication Date
KR20190022871A KR20190022871A (en) 2019-03-06
KR102184637B1 true KR102184637B1 (en) 2020-11-30

Family

ID=61072945

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020197003372A KR102184637B1 (en) 2016-08-04 2017-07-28 A diagnostic method and kit that can simultaneously detect and identify tuberculosis and non-tuberculosis mycobacteria based on the Quanta Matrix Assay Platform and whether tuberculosis bacteria are resistant to rifampin

Country Status (4)

Country Link
KR (1) KR102184637B1 (en)
CN (1) CN110168109B (en)
RU (1) RU2715591C1 (en)
WO (1) WO2018026141A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102241251B1 (en) 2019-07-26 2021-04-16 주식회사 수젠텍 Multiplexing blot assay automation system
CN113136446A (en) * 2021-06-02 2021-07-20 上海康黎诊断技术有限公司 Method, primer group and kit for identifying non-tuberculous mycobacteria and detecting drug-resistant gene mutation
CN113360383A (en) * 2021-06-09 2021-09-07 中电科思仪科技股份有限公司 Automatic test software data dynamic synchronization method of comprehensive detection equipment

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU703947B2 (en) * 1994-06-09 1999-04-01 Innogenetics N.V. Method for the detection of the antibiotic resistance spectrum of mycobacterium species
KR100446850B1 (en) * 2001-07-19 2004-09-04 이혜영 A method for identifying Micobacteria tuberculosis and non-tuberculosis Micobacteria, together with detecting resistance to an antituberculsis drug of Micobacteria obtained by mutation of rpoB gene
KR100454585B1 (en) * 2001-10-09 2004-11-02 주식회사 에스제이하이테크 Microarray comprising probes for Mycobacteria genotyping, M. tuberculosis strain differentiation and antibiotic-resistance detection
JP4383996B2 (en) * 2004-09-29 2009-12-16 株式会社東芝 Refractive index changing device and refractive index changing method
US7842794B2 (en) * 2004-12-17 2010-11-30 Roche Molecular Systems, Inc. Reagents and methods for detecting Neisseria gonorrhoeae
RU2376387C2 (en) * 2005-12-26 2009-12-20 Учреждение Российской академии наук Институт молекулярной биологии им. В.А. Энгельгардта РАН Method for simultaneous detection of mycobacteria of tuberculosis complex and identification of mutations in dna of mycobacteria, which result in microorganisms resistance to rifampicin and isoniazid, on biological microchips, set of primers, biochip and set of oligonucleotide probes used in method
KR100990756B1 (en) * 2008-05-22 2010-10-29 엠앤디 (주) Probe for Detection of drug resistance of Mycobacterium tuberculosis and the kit
WO2011004957A2 (en) * 2009-07-07 2011-01-13 엠앤디(주) Probe for detecting the resistance of mycobacterium tuberculosis to drugs, and kit for same
KR101377070B1 (en) * 2012-02-20 2014-03-20 엠앤디 (주) Method for distinguishing between Mycobacterium tuberculosis and nontuberculous mycobacteria and composition therefor
CN102634575B (en) * 2012-03-26 2014-04-02 中国人民解放军第三O九医院 Rapid identification method and kit of novel mycobacterium strain
RU2015139609A (en) * 2013-02-20 2017-03-24 Ив Байомедикал, Инк. METHODS AND COMPOSITIONS FOR SEQUENING NUCLEIC ACID BASED ON NANOSTRUCTURE
KR101774995B1 (en) * 2014-10-14 2017-09-05 주식회사 퀀타매트릭스 Rapid antimicrobial susceptibility test using microbe cell morphological and growth change under different concentrations of various antimicrobial agents and automatied cell image analysis system using the same
RU2562866C1 (en) * 2014-11-11 2015-09-10 Федеральное Государственное Бюджетное Учреждение Науки Институт Молекулярной Биологии Им. В.А. Энгельгардта Российской Академии Наук (Имб Ран) Detection method of dna of tuberculosis causative agent with simultaneous identification of its genotype and determination of genetic determinants of multiple and wide drug resistance, oligonucleotide microchip, set of primers and set of oligonucleotide probes, which are used in method

Also Published As

Publication number Publication date
KR20190022871A (en) 2019-03-06
RU2715591C1 (en) 2020-03-02
WO2018026141A1 (en) 2018-02-08
CN110168109B (en) 2022-09-20
CN110168109A (en) 2019-08-23

Similar Documents

Publication Publication Date Title
Simner et al. Mycobacterium: laboratory characteristics of slowly growing mycobacteria
Hillemann et al. Feasibility of the GenoType MTBDR sl assay for fluoroquinolone, amikacin-capreomycin, and ethambutol resistance testing of Mycobacterium tuberculosis strains and clinical specimens
Mitarai et al. Comprehensive multicenter evaluation of a new line probe assay kit for identification of Mycobacterium species and detection of drug-resistant Mycobacterium tuberculosis
Hellyer et al. Specificity of IS6110-based amplification assays for Mycobacterium tuberculosis complex
JP4905130B2 (en) Primer and probe for detecting Mycobacterium tuberculosis, and method for detecting Mycobacterium tuberculosis using the same
Guo et al. Rapid, accurate determination of multidrug resistance in M. tuberculosis isolates and sputum using a biochip system
Shamputa et al. Molecular genetic methods for diagnosis and antibiotic resistance detection of mycobacteria from clinical specimens
KR101458781B1 (en) Composition for Detection of M. tuberculosis Complex and Mycobacteria Genus and Simultaneous Detection Method for M. tuberculosis Complex and Mycobacteria Genus with Multiplex Real Time PCR Using the Same
WO1993004201A1 (en) Oligonucleotides complementary to mycobacterial nucleic acids
KR101377070B1 (en) Method for distinguishing between Mycobacterium tuberculosis and nontuberculous mycobacteria and composition therefor
KR102184637B1 (en) A diagnostic method and kit that can simultaneously detect and identify tuberculosis and non-tuberculosis mycobacteria based on the Quanta Matrix Assay Platform and whether tuberculosis bacteria are resistant to rifampin
KR100434244B1 (en) Amplification and detection method of mycobacterium avium complex species
KR20100031188A (en) Composition for detection of m. tuberculosis complex or mycobacteria genus and simultaneous detection method for m. tuberculosis complex and mycobacteria genus with multiplex real time pcr using the same
Varma-Basil et al. Development of a novel PCR restriction analysis of the hsp65 gene as a rapid method to screen for the Mycobacterium tuberculosis complex and nontuberculous mycobacteria in high-burden countries
Pfyffer et al. Mycobacterium: laboratory characteristics of slowly growing mycobacteria
WO2010030049A1 (en) Composition for detection of m. tuberculosis complex or mycobacteria genus and simultaneous detection method for m. tuberculosis complex and mycobacteria genus with multiplex real time pcr using the same
JP5076894B2 (en) Primer and probe for detecting mycobacterium kansasi, and method for detecting mycobacterium kansasi using the same
Wang et al. Performance of the Quantamatrix Multiplexed Assay Platform system for the differentiation and identification of Mycobacterium species
Peter-Getzlaff et al. Development and evaluation of a molecular assay for detection of nontuberculous mycobacteria by use of the cobas amplicor platform
Glennon et al. Detection and diagnosis of mycobacterial pathogens using PCR
KR101962831B1 (en) A method for simultaneously detecting Mycobacterium tuberculosis and nontuberculous mycobacteria and resistance for rifampicin, isoniazid, ethambutol, quinolone and aminoglycoside of Mycobacterium tuberculosis, and a kit therefor based QuantaMatrix assay Platform
Forbes et al. Molecular diagnosis of mycobacterial infections
WILLIAMS 13 PCR and Diagnosis of Tuberculosis
Williams PCR and Diagnosis of Tuberculosis
Baumanis et al. Evaluation of the insertion-sequence-6110-based polymerase chain reaction for detection of pathogenic mycobacteria

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant