KR102178424B1 - Prediction Method and Apparatus for Chemical Cleaning of Membrane - Google Patents

Prediction Method and Apparatus for Chemical Cleaning of Membrane Download PDF

Info

Publication number
KR102178424B1
KR102178424B1 KR1020190061114A KR20190061114A KR102178424B1 KR 102178424 B1 KR102178424 B1 KR 102178424B1 KR 1020190061114 A KR1020190061114 A KR 1020190061114A KR 20190061114 A KR20190061114 A KR 20190061114A KR 102178424 B1 KR102178424 B1 KR 102178424B1
Authority
KR
South Korea
Prior art keywords
reverse osmosis
osmosis membrane
chemical cleaning
pressure
permeate
Prior art date
Application number
KR1020190061114A
Other languages
Korean (ko)
Inventor
김지혜
김준하
임승지
Original Assignee
한국수자원공사
광주과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국수자원공사, 광주과학기술원 filed Critical 한국수자원공사
Priority to KR1020190061114A priority Critical patent/KR102178424B1/en
Application granted granted Critical
Publication of KR102178424B1 publication Critical patent/KR102178424B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/10Testing of membranes or membrane apparatus; Detecting or repairing leaks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/08Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/10Accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/16Use of chemical agents

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

The present invention relates to a prediction apparatus and prediction method of chemical cleaning timing of a reverse osmosis membrane, which can contribute to a reduction in operation cost and stable supply of water and, more specifically, to a prediction apparatus of chemical cleaning timing of a reverse osmosis membrane, comprising: a plant operation data measurement unit; a reverse osmosis membrane contamination index calculation unit; a plant performance calculation unit; a calculation result output unit; and a chemical cleaning timing prediction unit, and to a prediction method using the same.

Description

역삼투막의 화학세정시기 예측 장치 및 예측 방법{Prediction Method and Apparatus for Chemical Cleaning of Membrane}Prediction Method and Apparatus for Chemical Cleaning of Membrane {Prediction Method and Apparatus for Chemical Cleaning of Membrane}

본 발명은 역삼투막의 화학세정시기 예측 장치 및 예측 방법에 관한 것으로, 보다 상세하게는 역삼투막의 운전 데이터, 공정 데이터 그리고 차압이나 총 용존고형물의 예측식을 이용하여 사전에 화학세정 시기를 알 수 있는 역삼투막의 화학세정시기 예측 장치 및 예측 방법에 관한 것이다.The present invention relates to an apparatus and a method for predicting a chemical cleaning time of a reverse osmosis membrane, and more particularly, a reverse osmosis membrane that can know the chemical cleaning time in advance using the operation data, process data, and differential pressure or total dissolved solids prediction formula of the reverse osmosis membrane. It relates to a chemical cleaning time prediction device and prediction method of.

음용수, 공업용수 등 매일 필요로 하는 물은 하천이나 호소수와 같은 지표수를 사용하여 생산하는 것이 일반적이다. 통상 지표수에는 각종 부유물질이나 용존성 유해물질들이 함께 포함되어 있어 물의 용도에 맞게 적절한 정화과정이 수반되어야 한다.It is common to produce water that is needed daily, such as drinking water and industrial water, using surface water such as river or lake water. In general, surface water contains various suspended substances or dissolved hazardous substances together, so a proper purification process should be followed according to the purpose of the water.

한편, 생활수준 향상에 따라 1인당 물소비량이 증가하는 추세이고, 지구온난화로 인해 지역적 가뭄현상이 갈수록 심각해지고 있는 상황이어서 물부족 국가가 늘어나고 있다. 우리나라의 경우에도 계절적 및 지형적 영향으로 인해 물부족 문제가 발생하고 있고, 특히 일부 도서산간 지역은 심각한 물부족 현상에 직면하고 있다.Meanwhile, water consumption per capita is increasing as living standards improve, and regional drought is becoming more and more serious due to global warming, so the number of countries with water shortages is increasing. In the case of Korea, there is also a water shortage problem due to seasonal and topographical influences, and some islands and mountains in particular are facing severe water shortages.

해수의 양은 전 세계에 약 10억 ㎦이 존재하는 것으로 알려져 있어 물부족을 해결할 수 있는 유일한 수원이지만, 각종 염류가 함께 용해되어 있어 이들 염류를 제거하지 않으면 사용할 수 없고, 따라서 부유 물질에서부터 이온성 물질까지 완벽하게 제거할 수 역삼투막을 비롯하여 전기투석법, 해수를 가열하는 증발법 등을 사용하여 해수를 담수로 만들고 있는 상황이다.The amount of seawater is known to exist around 1 billion ㎦ in the world, so it is the only water source that can solve the water shortage, but various salts are dissolved together, so it cannot be used unless these salts are removed. Therefore, from floating substances to ionic substances Seawater is made into fresh water using a reverse osmosis membrane that can be completely removed, electrodialysis, and evaporation to heat seawater.

이중 역삼투막은 이물질에 대한 탁월한 제거 성능, 운전 및 조작이 간단하여 해수 담수화에 가장 많이 이용되고 있는 상황이나, 해수로부터 담수를 얻기 위해서는 삼투압 이상의 높은 압력이 필요하여 에너지소모가 크다. 또 막의 기공이나 표면에 이물질들이 부착하여 여과 성능이 저하될 시에는, 막의 성능을 다시 회복시키기 위하여 화학약품을 사용하여 세척해야만 한다. 하지만 정확한 약품세정시기를 알 수 없어 여과 성능과는 무관하게 일정한 시간 간격으로 약품세정을 실시하는 경우가 많고, 결과적으로 불필요한 약품세정으로 인한 운전비용 증가와 폐수 발생으로 이어진다.Of these, the reverse osmosis membrane is the most widely used situation for seawater desalination due to its excellent removal performance for foreign matter, simple operation and operation.However, in order to obtain fresh water from seawater, a high pressure higher than the osmotic pressure is required, so energy consumption is large. In addition, when the filtration performance is deteriorated due to the adhesion of foreign substances to the pores or surfaces of the membrane, it must be cleaned with chemicals to restore the membrane's performance. However, since the exact timing of chemical cleaning is not known, chemical cleaning is often performed at regular intervals irrespective of filtration performance, resulting in an increase in operating costs and wastewater generation due to unnecessary chemical cleaning.

한국등록특허공보 제1193902호Korean Patent Publication No. 11193902

본 발명은 상술한 문제점을 해결하기 위해 안출된 것으로, 역삼투막의 화학약품 세정시기를 예측함으로써 운전비용 절감과 안정적인 물공급에 기여할 수 있는 역삼투막의 화학세정시기 예측 장치 및 예측 방법을 제공하는 것을 목적으로 한다.The present invention was conceived to solve the above-described problems, and an object of the present invention is to provide an apparatus and a method for predicting chemical cleaning timing of a reverse osmosis membrane that can contribute to reducing operating costs and supplying stable water by predicting the timing of chemical cleaning of the reverse osmosis membrane do.

상기 문제점을 해결하기 위한 본 발명의 역삼투막의 화학세정시기 예측 장치는, 플랜트 운영 데이터 측정부(100), 역삼투막 오염지수 연산부(200), 플랜트 성능 연산부(300), 연산 결과 출력부(600), 및 화학세정 시기 예측부(700)를 포함하는 것을 특징으로 한다.The apparatus for predicting chemical cleaning timing of the reverse osmosis membrane of the present invention for solving the above problems includes a plant operation data measurement unit 100, a reverse osmosis membrane contamination index calculation unit 200, a plant performance calculation unit 300, an operation result output unit 600, And it characterized in that it comprises a chemical cleaning time prediction unit 700.

또 본 발명의 역삼투막의 화학세정시기 예측 장치는, 플랜트 공정 조건 입력부(400), 및 화학세정 기준 입력부(500)를 더 포함할 수 있다.In addition, the apparatus for predicting chemical cleaning timing of the reverse osmosis membrane of the present invention may further include a plant process condition input unit 400 and a chemical cleaning reference input unit 500.

또 본 발명의 역삼투막의 화학세정시기 예측 장치에서, 측정부(100)는, 공급원수의 온도(T), 공급원수의 총 용존고형물 농도(

Figure 112019053377234-pat00001
), 원수 공급 압력(
Figure 112019053377234-pat00002
), 투과수 유량(
Figure 112019053377234-pat00003
), 투과수 압력(
Figure 112019053377234-pat00004
), 투과수의 총 용존고형물 농도(
Figure 112019053377234-pat00005
), 농축수 압력(
Figure 112019053377234-pat00006
), 및 농축수 유량(
Figure 112019053377234-pat00007
)을 측정하기 위한 센서를 더 포함할 수 있다.In addition, in the apparatus for predicting chemical cleaning timing of the reverse osmosis membrane of the present invention, the measurement unit 100 includes the temperature (T) of the source water and the total dissolved solid concentration of the source water (
Figure 112019053377234-pat00001
), raw water supply pressure (
Figure 112019053377234-pat00002
), permeate flow rate (
Figure 112019053377234-pat00003
), permeate pressure (
Figure 112019053377234-pat00004
), total dissolved solids concentration in permeate (
Figure 112019053377234-pat00005
), concentrated water pressure (
Figure 112019053377234-pat00006
), and concentrated water flow rate (
Figure 112019053377234-pat00007
) May further include a sensor for measuring.

또 본 발명의 역삼투막의 화학세정시기 예측 방법은, 역삼투 플랜트의 운전데이터를 수집하는 제1 단계, 역삼투막의 오염 지수를 계산하는 제2 단계, 역삼투막 플랜트 성능을 연산하는 제3 단계, 결과를 표현하는 제4 단계, 및 화학세정 시기를 예측하는 제5 단계를 포함하는 것을 특징으로 한다.In addition, the method for predicting the chemical cleaning timing of the reverse osmosis membrane of the present invention includes the first step of collecting operation data of the reverse osmosis plant, the second step of calculating the contamination index of the reverse osmosis membrane, the third step of calculating the reverse osmosis membrane plant performance, and expressing the result. It characterized in that it comprises a fourth step, and a fifth step of predicting the chemical cleaning timing.

또 본 발명의 역삼투막의 화학세정시기 예측 방법에서, 상기 역삼투 플랜트의 운전데이터를 수집하는 제1 단계에서는, 공급원수의 온도(T), 공급원수의 총 용존고형물 농도(

Figure 112019053377234-pat00008
), 원수 공급 압력(
Figure 112019053377234-pat00009
), 투과 유량(
Figure 112019053377234-pat00010
), 투과수 압력(
Figure 112019053377234-pat00011
), 투과수의 총 용존고형물 농도(
Figure 112019053377234-pat00012
), 농축수 압력(
Figure 112019053377234-pat00013
), 및 농축수 유량(
Figure 112019053377234-pat00014
)의 측정값을 수집하는 것을 특징으로 한다.In addition, in the method for predicting chemical cleaning timing of the reverse osmosis membrane of the present invention, in the first step of collecting operation data of the reverse osmosis plant, the temperature of the source water (T) and the total dissolved solid concentration of the source water (
Figure 112019053377234-pat00008
), raw water supply pressure (
Figure 112019053377234-pat00009
), permeate flow rate (
Figure 112019053377234-pat00010
), permeate pressure (
Figure 112019053377234-pat00011
), total dissolved solids concentration in permeate (
Figure 112019053377234-pat00012
), concentrated water pressure (
Figure 112019053377234-pat00013
), and concentrated water flow rate (
Figure 112019053377234-pat00014
Characterized in that it collects the measured value of ).

또 본 발명의 역삼투막의 화학세정시기 예측 방법에서, 상기 역삼투막의 오염 지수를 계산하는 제2 단계에서는, 하기식으로 정의되는 수 투과율(A)과 염분 투과율(B)을 함께 계산하는 것을 특징으로 한다.In addition, in the method for predicting chemical cleaning time of the reverse osmosis membrane of the present invention, in the second step of calculating the contamination index of the reverse osmosis membrane, the water transmittance (A) and the salt transmittance (B) defined by the following formula are calculated together. .

Figure 112019053377234-pat00015
, 여기서
Figure 112019053377234-pat00016
는 투과수 플럭스(
Figure 112019053377234-pat00017
),
Figure 112019053377234-pat00018
(bar)는 공급원수 압력(
Figure 112019053377234-pat00019
)-투과수 압력(
Figure 112019053377234-pat00020
),
Figure 112019053377234-pat00021
(bar)는 공급원수 삼투압(
Figure 112019053377234-pat00022
)-투과수 삼투압(
Figure 112019053377234-pat00023
)이다.
Figure 112019053377234-pat00015
, here
Figure 112019053377234-pat00016
Is the permeate flux (
Figure 112019053377234-pat00017
),
Figure 112019053377234-pat00018
(bar) is the source water pressure (
Figure 112019053377234-pat00019
)-Permeate pressure (
Figure 112019053377234-pat00020
),
Figure 112019053377234-pat00021
(bar) is the osmotic pressure of the source water (
Figure 112019053377234-pat00022
)-Permeable water osmotic pressure (
Figure 112019053377234-pat00023
)to be.

Figure 112019053377234-pat00024
, 여기서
Figure 112019053377234-pat00025
는 염분 플럭스(
Figure 112019053377234-pat00026
),
Figure 112019053377234-pat00027
(
Figure 112019053377234-pat00028
)는 공급원수의 총 용존고형물 농도(
Figure 112019053377234-pat00029
)-투과수의 총 용존고형물 농도(
Figure 112019053377234-pat00030
)이다.
Figure 112019053377234-pat00024
, here
Figure 112019053377234-pat00025
Is the salinity flux (
Figure 112019053377234-pat00026
),
Figure 112019053377234-pat00027
(
Figure 112019053377234-pat00028
) Is the total dissolved solids concentration in the source water (
Figure 112019053377234-pat00029
)-Total dissolved solids concentration in permeated water (
Figure 112019053377234-pat00030
)to be.

또 본 발명의 역삼투막의 화학세정시기 예측 방법에서, 상기 역삼투막의 오염 지수를 계산하는 제2 단계에서는, 하기식으로 정의되는 역삼투막 오염지수(

Figure 112019053377234-pat00031
)와 역삼투막의 총 저항(
Figure 112019053377234-pat00032
)을 함께 계산하는 것을 특징으로 한다.In addition, in the method for predicting chemical cleaning timing of the reverse osmosis membrane of the present invention, in the second step of calculating the contamination index of the reverse osmosis membrane, the reverse osmosis membrane contamination index (
Figure 112019053377234-pat00031
) And the total resistance of the reverse osmosis membrane (
Figure 112019053377234-pat00032
It is characterized by calculating) together.

Figure 112019053377234-pat00033
,
Figure 112019053377234-pat00034
Figure 112019053377234-pat00033
,
Figure 112019053377234-pat00034

여기서

Figure 112019053377234-pat00035
은 역삼투막 본래의 저항(
Figure 112019053377234-pat00036
),
Figure 112019053377234-pat00037
는 오염물에 의한 저항(
Figure 112019053377234-pat00038
),
Figure 112019053377234-pat00039
는 투과수 속도(
Figure 112019053377234-pat00040
),
Figure 112019053377234-pat00041
는 여과시간,
Figure 112019053377234-pat00042
는 시간에 대한 더미변수이다.here
Figure 112019053377234-pat00035
The resistance of the reverse osmosis membrane (
Figure 112019053377234-pat00036
),
Figure 112019053377234-pat00037
Is the resistance by contaminants (
Figure 112019053377234-pat00038
),
Figure 112019053377234-pat00039
Is the permeate rate (
Figure 112019053377234-pat00040
),
Figure 112019053377234-pat00041
Is the filtration time,
Figure 112019053377234-pat00042
Is a dummy variable for time.

또 본 발명의 역삼투막의 화학세정시기 예측 방법에서, 상기 역삼투막 플랜트 성능을 연산하는 제3 단계에서는, 하기식으로 정의되는 여과시간에 따른 역삼투막의 총 저항(

Figure 112019053377234-pat00043
), 여과시간에 따른 투과수 속도(
Figure 112019053377234-pat00044
), 여과시간에 따른 원수 공급 속도(
Figure 112019053377234-pat00045
), 여과시간에 따른 압력(
Figure 112019053377234-pat00046
), 여과시간에 따른 차압(Differential pressure, DP(t)), 여과시간에 따른 역삼투막 표면에서의 농도(
Figure 112019053377234-pat00047
), 여과시간에 따른 계열 당 투과수 유량(
Figure 112019053377234-pat00048
), 투과수 농도(
Figure 112019053377234-pat00049
), 역삼투막 화학세정 후 막저항 변화(
Figure 112019053377234-pat00050
), 표준화된 구동압력(Normalized driving pressure,
Figure 112019053377234-pat00051
), 표준화된 투과수 유량(Normalized permeate flow,
Figure 112019053377234-pat00052
), 평균 투과수 플럭스(Average permeate flux,
Figure 112019053377234-pat00053
) 및 표준화된 염 투과율(Normalized salt passage,
Figure 112019053377234-pat00054
)인 것을 특징으로 한다.Further, in the method for predicting the chemical cleaning time of the reverse osmosis membrane of the present invention, in the third step of calculating the performance of the reverse osmosis membrane plant, the total resistance of the reverse osmosis membrane according to the filtration time defined by the following equation (
Figure 112019053377234-pat00043
), permeate rate according to filtration time (
Figure 112019053377234-pat00044
), raw water supply rate according to filtration time (
Figure 112019053377234-pat00045
), pressure according to filtration time (
Figure 112019053377234-pat00046
), Differential pressure (DP(t)) according to filtration time, concentration at the surface of reverse osmosis membrane according to filtration time (
Figure 112019053377234-pat00047
), permeate flow rate per series according to filtration time (
Figure 112019053377234-pat00048
), permeate concentration (
Figure 112019053377234-pat00049
), change of membrane resistance after chemical cleaning of reverse osmosis membrane (
Figure 112019053377234-pat00050
), Normalized driving pressure,
Figure 112019053377234-pat00051
), Normalized permeate flow,
Figure 112019053377234-pat00052
), Average permeate flux,
Figure 112019053377234-pat00053
) And standardized salt passage (Normalized salt passage,
Figure 112019053377234-pat00054
).

Figure 112019053377234-pat00055
,
Figure 112019053377234-pat00055
,

Figure 112019053377234-pat00056
,
Figure 112019053377234-pat00056
,

Figure 112019053377234-pat00057
,
Figure 112019053377234-pat00057
,

Figure 112019053377234-pat00058
Figure 112019053377234-pat00058

Figure 112019053377234-pat00059
,
Figure 112019053377234-pat00059
,

Figure 112019053377234-pat00060
,
Figure 112019053377234-pat00060
,

Figure 112019053377234-pat00061
,
Figure 112019053377234-pat00061
,

Figure 112019053377234-pat00062
,
Figure 112019053377234-pat00062
,

Figure 112019053377234-pat00063
,
Figure 112019053377234-pat00063
,

Figure 112019053377234-pat00064
,
Figure 112019053377234-pat00065
,
Figure 112019053377234-pat00066
,
Figure 112019053377234-pat00064
,
Figure 112019053377234-pat00065
,
Figure 112019053377234-pat00066
,

Figure 112019053377234-pat00067
,
Figure 112019053377234-pat00067
,

Figure 112019053377234-pat00068
,
Figure 112019053377234-pat00068
,

Figure 112019053377234-pat00069
,
Figure 112019053377234-pat00069
,

Figure 112019053377234-pat00070
,
Figure 112019053377234-pat00070
,

Figure 112019053377234-pat00071
Figure 112019053377234-pat00071

여기서,

Figure 112019053377234-pat00072
은 역삼투막 본래의 저항(
Figure 112019053377234-pat00073
),
Figure 112019053377234-pat00074
는 역삼투막 채널에서의 위치(
Figure 112019053377234-pat00075
),
Figure 112019053377234-pat00076
는 여과시간(day),
Figure 112019053377234-pat00077
는 오염물에 의한 저항(
Figure 112019053377234-pat00078
),
Figure 112019053377234-pat00079
는 역삼투막 총 저항(
Figure 112019053377234-pat00080
),
Figure 112019053377234-pat00081
는 투과수 속도(
Figure 112019053377234-pat00082
),
Figure 112019053377234-pat00083
는 시간에 대한 더미 변수,
Figure 112019053377234-pat00084
는 스페이서로 인한 압력 강하에 대한 마찰 계수,
Figure 112019053377234-pat00085
(bar)는 공급원수 압력(
Figure 112019053377234-pat00086
)-투과수 압력(
Figure 112019053377234-pat00087
),
Figure 112019053377234-pat00088
(bar)는 원수 삼투압(
Figure 112019053377234-pat00089
)-투과수 삼투압(
Figure 112019053377234-pat00090
),
Figure 112019053377234-pat00091
는 역삼투막 채널 높이(m),
Figure 112019053377234-pat00092
는 위치에 대한 더미 변수,
Figure 112019053377234-pat00093
는 점도(
Figure 112019053377234-pat00094
),
Figure 112019053377234-pat00095
은 역삼투막 채널 길이(m),
Figure 112019053377234-pat00096
는 염분 투과율(m/s),
Figure 112019053377234-pat00097
(Temperature correction factor)는 염분 투과율에 대한 온도보정인자,
Figure 112019053377234-pat00098
(Pressure vessel)는 역삼투 베셀 수(ea),
Figure 112019053377234-pat00099
는 역삼투막 채널 폭(m), N은 역삼투막 화학세정 횟수,
Figure 112019053377234-pat00100
은 화학세정 후 역삼투막 성능 회복율,
Figure 112019053377234-pat00101
는 공급원수 삼투압(bar),
Figure 112019053377234-pat00102
는 투과수 삼투압(bar),
Figure 112019053377234-pat00103
는 역삼투 막모듈 개수(ea)이다.here,
Figure 112019053377234-pat00072
The resistance of the reverse osmosis membrane (
Figure 112019053377234-pat00073
),
Figure 112019053377234-pat00074
Is the position in the reverse osmosis membrane channel (
Figure 112019053377234-pat00075
),
Figure 112019053377234-pat00076
Is the filtration time (day),
Figure 112019053377234-pat00077
Is the resistance by contaminants (
Figure 112019053377234-pat00078
),
Figure 112019053377234-pat00079
Is the total resistance of the reverse osmosis membrane (
Figure 112019053377234-pat00080
),
Figure 112019053377234-pat00081
Is the permeate rate (
Figure 112019053377234-pat00082
),
Figure 112019053377234-pat00083
Is a dummy variable for time ,
Figure 112019053377234-pat00084
Is the coefficient of friction for the pressure drop due to the spacer,
Figure 112019053377234-pat00085
(bar) is the source water pressure (
Figure 112019053377234-pat00086
)-Permeate pressure (
Figure 112019053377234-pat00087
),
Figure 112019053377234-pat00088
(bar) is the raw water osmotic pressure (
Figure 112019053377234-pat00089
)-Permeable water osmotic pressure (
Figure 112019053377234-pat00090
),
Figure 112019053377234-pat00091
Is the reverse osmosis membrane channel height (m),
Figure 112019053377234-pat00092
Is a dummy variable for position,
Figure 112019053377234-pat00093
Is the viscosity(
Figure 112019053377234-pat00094
),
Figure 112019053377234-pat00095
Is the reverse osmosis membrane channel length (m),
Figure 112019053377234-pat00096
Is the salt transmittance (m/s),
Figure 112019053377234-pat00097
(Temperature correction factor) is a temperature correction factor for salt transmittance,
Figure 112019053377234-pat00098
(Pressure vessel) is the number of reverse osmosis vessels (ea),
Figure 112019053377234-pat00099
Is the reverse osmosis membrane channel width (m), N is the number of reverse osmosis membrane chemical cleaning,
Figure 112019053377234-pat00100
Reverse osmosis membrane performance recovery rate after chemical cleaning,
Figure 112019053377234-pat00101
Is the source water osmotic pressure (bar),
Figure 112019053377234-pat00102
Is the permeate osmotic pressure (bar),
Figure 112019053377234-pat00103
Is the number of reverse osmosis membrane modules (ea).

또 본 발명의 역삼투막의 화학세정시기 예측 방법에서, 상기 결과를 표현하는 제4 단계에서는, 하기식으로 정의되는 투과수의 총 용존고형물 농도(

Figure 112019053377234-pat00104
), 차압(
Figure 112019053377234-pat00105
), 및 에너지소비량(Specific Energy Consumption, SEC) 중 어느 하나 이상을 표현하는 것을 특징으로 한다.In addition, in the method for predicting the chemical cleaning timing of the reverse osmosis membrane of the present invention, in the fourth step of expressing the above result, the total dissolved solid concentration of the permeated water (
Figure 112019053377234-pat00104
), differential pressure (
Figure 112019053377234-pat00105
), and energy consumption (Specific Energy Consumption, SEC).

Figure 112019053377234-pat00106
,
Figure 112019053377234-pat00106
,

Figure 112019053377234-pat00107
,
Figure 112019053377234-pat00107
,

Figure 112019053377234-pat00108
Figure 112019053377234-pat00108

여기서,

Figure 112019053377234-pat00109
는 투과수 플럭스,
Figure 112019053377234-pat00110
는 염분 플럭스,
Figure 112019053377234-pat00111
는 공급원수 압력,
Figure 112019053377234-pat00112
는 투과수 압력,
Figure 112019053377234-pat00113
는 공급원수 고압펌프 전단 압력,
Figure 112019053377234-pat00114
는 고압펌프 효율이다.here,
Figure 112019053377234-pat00109
Is the permeate flux,
Figure 112019053377234-pat00110
Is the salinity flux,
Figure 112019053377234-pat00111
Is the source water pressure,
Figure 112019053377234-pat00112
Is the permeate pressure,
Figure 112019053377234-pat00113
Is the source water high pressure pump shear pressure,
Figure 112019053377234-pat00114
Is the high pressure pump efficiency.

또 본 발명의 역삼투막의 화학세정시기 예측 방법에서, 상기 화학세정 시기를 예측하는 제5 단계에서는, 하기식으로 정의되는 투과수의 총 용존고형물 농도(

Figure 112019053377234-pat00115
), 차압(
Figure 112019053377234-pat00116
), 및 에너지소비량(SEC) 중 어느 하나 이상으로부터 예측하는 것을 특징으로 한다.In addition, in the method for predicting the chemical cleaning timing of the reverse osmosis membrane of the present invention, in the fifth step of predicting the chemical cleaning timing, the total dissolved solids concentration of the permeated water (
Figure 112019053377234-pat00115
), differential pressure (
Figure 112019053377234-pat00116
), and energy consumption (SEC).

Figure 112019053377234-pat00117
Figure 112019053377234-pat00117

Figure 112019053377234-pat00118
Figure 112019053377234-pat00118

Figure 112019053377234-pat00119
Figure 112019053377234-pat00119

여기서,

Figure 112019053377234-pat00120
는 투과수 플럭스,
Figure 112019053377234-pat00121
는 염분 플럭스,
Figure 112019053377234-pat00122
는 공급원수 압력,
Figure 112019053377234-pat00123
는 투과수 압력,
Figure 112019053377234-pat00124
는 공급원수 고압펌프 전단 압력,
Figure 112019053377234-pat00125
는 고압펌프 효율이다.here,
Figure 112019053377234-pat00120
Is the permeate flux,
Figure 112019053377234-pat00121
Is the salinity flux,
Figure 112019053377234-pat00122
Is the source water pressure,
Figure 112019053377234-pat00123
Is the permeate pressure,
Figure 112019053377234-pat00124
Is the source water high pressure pump shear pressure,
Figure 112019053377234-pat00125
Is the high pressure pump efficiency.

또 본 발명의 역삼투막의 화학세정시기 예측 방법에서, 상기 역삼투막 플랜트 성능을 연산하는 제3 단계와 동시에 또는 이전에, 역삼투막의 운전 조건을 입력하는 단계를 더 포함하는 것을 특징으로 한다.In addition, in the method for predicting a chemical cleaning timing of a reverse osmosis membrane of the present invention, it is characterized in that it further comprises a step of inputting an operating condition of the reverse osmosis membrane simultaneously with or before the third step of calculating the reverse osmosis membrane plant performance.

또 본 발명의 역삼투막의 화학세정시기 예측 방법에서, 상기 역삼투막의 운전 조건은, 원수 수온(T), 공급원수 유량(

Figure 112019053377234-pat00126
), 투과수 유량(
Figure 112019053377234-pat00127
), 공급원수의 총 고형물농도(
Figure 112019053377234-pat00128
), 막모듈 개수, 및 베셀 개수 중 어느 하나 이상인 것을 특징으로 한다.In addition, in the method for predicting the chemical cleaning timing of the reverse osmosis membrane of the present invention, the operating conditions of the reverse osmosis membrane are the raw water temperature (T), the source water flow rate (
Figure 112019053377234-pat00126
), permeate flow rate (
Figure 112019053377234-pat00127
), total solids concentration in source water (
Figure 112019053377234-pat00128
), the number of membrane modules, and the number of vessels.

또 본 발명의 역삼투막의 화학세정시기 예측 방법에서, 상기 역삼투막 플랜트 성능을 연산하는 제3 단계와 동시에 또는 이전에, 화학세정 기준을 입력하는 단계를 더 포함하는 것을 특징으로 한다.In addition, in the method for predicting a chemical cleaning time of a reverse osmosis membrane of the present invention, it is characterized in that it further comprises a step of inputting a chemical cleaning criterion simultaneously with or before the third step of calculating the reverse osmosis membrane plant performance.

또 본 발명의 역삼투막 화학세정시기 예측 방법에서, 상기 화학세정 기준은 차압(

Figure 112019053377234-pat00129
), 표준화된 투과수 플럭스(
Figure 112019053377234-pat00130
), 및 표준화된 염 투과율(
Figure 112019053377234-pat00131
) 중 어느 하나 이상인 것을 특징으로 한다.In addition, in the reverse osmosis membrane chemical cleaning time prediction method of the present invention, the chemical cleaning standard is the differential pressure (
Figure 112019053377234-pat00129
), standardized permeate flux (
Figure 112019053377234-pat00130
), and standardized salt permeability (
Figure 112019053377234-pat00131
) Characterized in that any one or more.

또 본 발명의 역삼투막 화학세정시기 예측 방법에서, 상기 화학세정 기준은 차압(

Figure 112019053377234-pat00132
)이 초기대비 10% 증가한 시점인 것을 특징으로 한다.In addition, in the reverse osmosis membrane chemical cleaning time prediction method of the present invention, the chemical cleaning standard is the differential pressure (
Figure 112019053377234-pat00132
) Is characterized by a 10% increase from the initial period.

또 본 발명의 역삼투막 화학세정시기 예측 방법에서, 상기 화학세정 기준은 표준화된 투과수 플럭스(

Figure 112019053377234-pat00133
)가 초기대비 10% 감소한 시점인 것을 특징으로 한다.In addition, in the method for predicting chemical cleaning timing of the reverse osmosis membrane of the present invention, the chemical cleaning standard is a standardized permeate flux (
Figure 112019053377234-pat00133
) Is characterized by a 10% decrease compared to the initial period.

또 본 발명의 역삼투막 화학세정시기 예측 방법에서, 상기 화학세정 기준은 표준화된 염 투과정도(

Figure 112019053377234-pat00134
)가 초기대비 10% 증가한 시점인 것을 특징으로 한다.In addition, in the method for predicting chemical cleaning time of the reverse osmosis membrane of the present invention, the chemical cleaning standard is a standardized salt permeability (
Figure 112019053377234-pat00134
) Is characterized by a 10% increase from the initial period.

본 발명의 역삼투막의 화학세정시기 예측 장치 및 예측 방법에 의하면, 역삼투막 플랜트의 실측 데이터, 입력한 공정 데이터 그리고 예측식으로부터 화학세정 시기를 사전에 예측할 수 있어 역삼투막 플랜트를 효율적으로 운전하는 것이 가능하고, 궁극적으로는 운전비용 절감과 안정적인 물 공급에 기여할 수 있다는 장점이 있다. According to the chemical cleaning timing prediction apparatus and prediction method for a reverse osmosis membrane of the present invention, the chemical cleaning timing can be predicted in advance from the actual measurement data of the reverse osmosis membrane plant, the input process data, and the prediction formula, so that the reverse osmosis membrane plant can be efficiently operated, Ultimately, it has the advantage of contributing to the reduction of operating costs and stable water supply.

도 1은 본 발명의 바람직한 실시예에 따른 역삼투막의 화학세정시기 예측 장치의 개념도이다.
도 2는 본 발명의 바람직한 실시예에 따른 역삼투막의 화학세정시기 예측 방법의 흐름도이다.
도 3은 본 발명의 플랜트 성능을 연산하는 수식에서 역삼투막의 채널 높이, 채널 폭, 채널 길이를 설명하기 위한 개념도이다.
도 4는 역삼투막 플랜트의 공정 조건 데이터, 화학세정 기준 데이터 및 운전 실측데이터로부터 화학세정시기를 예측하는 방법을 설명하는 모식도이다.
1 is a conceptual diagram of an apparatus for predicting a chemical cleaning time of a reverse osmosis membrane according to a preferred embodiment of the present invention.
2 is a flowchart of a method for predicting a chemical cleaning time of a reverse osmosis membrane according to a preferred embodiment of the present invention.
3 is a conceptual diagram illustrating a channel height, a channel width, and a channel length of a reverse osmosis membrane in an equation for calculating the plant performance of the present invention.
4 is a schematic diagram illustrating a method of predicting a chemical cleaning timing from process condition data, chemical cleaning reference data, and operation measurement data of a reverse osmosis membrane plant.

본 출원에서 “포함한다”, “가지다” 또는 “구비하다” 등의 용어는 명세서 상에 기재된 특징, 숫자, 단계, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.In the present application, terms such as "include", "have" or "have" are intended to designate the presence of features, numbers, steps, components, parts, or combinations thereof described in the specification, but one or more other It is to be understood that the presence or addition of features, numbers, steps, actions, components, parts, or combinations thereof, does not preclude in advance the possibility of being excluded.

어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다. 구성요소들 간의 관계를 설명하는 다른 표현들, 즉 "~사이에"와 "바로 ~사이에" 또는 "~에 이웃하는"과 "~에 직접 이웃하는" 등도 마찬가지로 해석되어야 한다.When a component is referred to as being "connected" or "connected" to another component, it is understood that it may be directly connected or connected to the other component, but other components may exist in the middle. Should be. On the other hand, when a component is referred to as being "directly connected" or "directly connected" to another component, it should be understood that there is no other component in the middle. Other expressions describing the relationship between components, such as "between" and "just between" or "adjacent to" and "directly adjacent to" should be interpreted as well.

또한, 다르게 정의되지 않는 한 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련기술의 문맥상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.In addition, unless otherwise defined, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art to which the present invention belongs. Terms such as those defined in a commonly used dictionary should be interpreted as having a meaning consistent with the meaning of the related technology, and should not be interpreted as an ideal or excessively formal meaning unless explicitly defined in this application. Does not.

이하, 본 발명에 따른 역삼투막의 화학세정시기 예측 장치 및 예측방법에 관하여 설명하기로 한다. 도 1은 본 발명의 바람직한 실시예에 따른 역삼투막의 화학세정시기 예측 장치의 개념도이다.Hereinafter, an apparatus and a method for predicting a chemical cleaning time of a reverse osmosis membrane according to the present invention will be described. 1 is a conceptual diagram of an apparatus for predicting a chemical cleaning time of a reverse osmosis membrane according to a preferred embodiment of the present invention.

본 발명의 역삼투막의 화학세정시기 예측 장치는 도 1에 도시한 바와 같이, 플랜트 운영 데이터 측정부(100), 막 오염지수 연산부(200), 플랜트 성능 연산부(300), 플랜트 공정 조건 입력부(400), 화학세정 기준 입력부(500), 연산 결과 출력부(600), 및 화학세정 시기 예측부(700)를 포함하여 이루어진다.As shown in FIG. 1, the apparatus for predicting chemical cleaning timing of the reverse osmosis membrane of the present invention includes a plant operation data measurement unit 100, a membrane contamination index calculation unit 200, a plant performance calculation unit 300, and a plant process condition input unit 400. , A chemical cleaning reference input unit 500, an operation result output unit 600, and a chemical cleaning time prediction unit 700.

플랜트 운영 데이터 측정부(100)는, 역삼투막 플랜트의 운전 상황을 실시간으로 파악할 수 있도록 역삼투막으로 공급하는 원수의 온도(T), 원수에 포함되어 있는 총 용존고형물(TDS, Total Dissolved Solids) 농도(

Figure 112019053377234-pat00135
), 원수의 공급 압력(
Figure 112019053377234-pat00136
), 역삼투막을 통과한 투과수 유량(
Figure 112019053377234-pat00137
), 투과수 압력(
Figure 112019053377234-pat00138
), 투과수에 포함되어 있는 총 용존고형물 농도(
Figure 112019053377234-pat00139
), 농축수 압력(
Figure 112019053377234-pat00140
), 및 농축수 유량(
Figure 112019053377234-pat00141
)을 측정하기 위한 센서를 더 포함할 수 있다. 물론 필요에 따라서는 상기에 언급하지 않은 측정센서를 더 구비할 수 있음은 자명하다.The plant operation data measuring unit 100 includes the temperature (T) of raw water supplied to the reverse osmosis membrane and the concentration of total dissolved solids (TDS) contained in the raw water so that the operation status of the reverse osmosis membrane plant can be identified in real time.
Figure 112019053377234-pat00135
), supply pressure of raw water (
Figure 112019053377234-pat00136
), flow rate of permeate through the reverse osmosis membrane (
Figure 112019053377234-pat00137
), permeate pressure (
Figure 112019053377234-pat00138
), total dissolved solids concentration in permeate (
Figure 112019053377234-pat00139
), concentrated water pressure (
Figure 112019053377234-pat00140
), and concentrated water flow rate (
Figure 112019053377234-pat00141
) May further include a sensor for measuring. Of course, it is obvious that if necessary, a measurement sensor not mentioned above may be further provided.

막 오염지수 연산부(200)는 데이터 측정부(100)로 전송된 각종 데이터를 활용하여 공급된 원수 중에서 역삼투막을 통과하는 수투과 계수(A)와, 각종 이온성 물질을 포함하는 염분투과 계수(B)를 연산한다. 수투과 계수(A)와 염분투과 계수(B)에 관한 설명은 후술하기로 한다. The membrane contamination index calculation unit 200 utilizes various data transmitted to the data measurement unit 100 to provide a water permeation coefficient (A) passing through the reverse osmosis membrane from the supplied raw water and a salt permeation coefficient (B) including various ionic substances. ). The description of the water permeation coefficient (A) and the salt permeation coefficient (B) will be described later.

플랜트 성능 연산부(300)는 화학세정시기 예측에 필요한 데이터인 여과시간에 따른 막의 총 저항(

Figure 112019053377234-pat00142
), 여과시간에 따른 투과수 속도(
Figure 112019053377234-pat00143
), 여과시간에 따른 원수 공급 속도(
Figure 112019053377234-pat00144
), 여과시간에 따른 압력(
Figure 112019053377234-pat00145
), 여과시간에 따른 차압(
Figure 112019053377234-pat00146
), 여과시간에 따른 막 표면에서의 농도(
Figure 112019053377234-pat00147
), 여과시간에 따른 계열 당 투과수 유량(
Figure 112019053377234-pat00148
), 투과수 농도(
Figure 112019053377234-pat00149
) 및 여과시간에 따른 계열 당 투과수 유량(
Figure 112019053377234-pat00150
), 투과수 농도(
Figure 112019053377234-pat00151
), 역삼투막 화학세정 이후 막저항 변화(
Figure 112019053377234-pat00152
), 표준화된 구동압력(
Figure 112019053377234-pat00153
), 표준화된 투과수 유량(
Figure 112019053377234-pat00154
), 평균 투과수 플럭스(
Figure 112019053377234-pat00155
) 및 표준화된 염 투과정도(
Figure 112019053377234-pat00156
)을 연산한다. 이들 데이터의 연산식에 관해서는 후술하기로 한다.The plant performance calculation unit 300 is the total resistance of the membrane according to the filtration time, which is data necessary for predicting the chemical cleaning time.
Figure 112019053377234-pat00142
), permeate rate according to filtration time (
Figure 112019053377234-pat00143
), raw water supply rate according to filtration time (
Figure 112019053377234-pat00144
), pressure according to filtration time (
Figure 112019053377234-pat00145
), differential pressure according to filtration time (
Figure 112019053377234-pat00146
), concentration at the membrane surface according to filtration time (
Figure 112019053377234-pat00147
), permeate flow rate per series according to filtration time (
Figure 112019053377234-pat00148
), permeate concentration (
Figure 112019053377234-pat00149
) And permeate flow rate per series according to filtration time (
Figure 112019053377234-pat00150
), permeate concentration (
Figure 112019053377234-pat00151
), change in membrane resistance after chemical cleaning of reverse osmosis membrane (
Figure 112019053377234-pat00152
), standardized drive pressure (
Figure 112019053377234-pat00153
), standardized permeate flow rate (
Figure 112019053377234-pat00154
), average permeate flux (
Figure 112019053377234-pat00155
) And standardized salt permeability (
Figure 112019053377234-pat00156
). The calculation formula of these data will be described later.

플랜트 공정 조건 입력부(400)는 원수 공급 유량, 투과수 유량(

Figure 112019053377234-pat00157
), 하나의 베셀에 설치될 막모듈 개수, 그리고 베셀 개수를 입력한다. 예를 들어, 투과수의 유량을 일정하게 운전하는 정유량 운전방식에서는 투과수 유량(
Figure 112019053377234-pat00158
), 하나의 베셀에 설치될 막모듈 개수, 및 총 베셀 개수를 입력할 수 있고, 일정한 압력으로 운전하는 정압 운전방식에서는 원수 공급 압력, 하나의 베셀에 설치될 막모듈 개수, 및 총 베셀 개수를 입력함으로 달성할 수 있다. 물론 상기 자료들 외에도, 멤브레인 면적, 멤브레인 높이, 멤브레인 길이, 멤브레인의 염분 제거율 등을 입력할 수 있다.The plant process condition input unit 400 includes the raw water supply flow rate and permeate water flow rate (
Figure 112019053377234-pat00157
), the number of membrane modules to be installed in one vessel, and the number of vessels. For example, in the constant flow rate operation method in which the permeate flow rate is constantly operated, the permeate flow rate (
Figure 112019053377234-pat00158
), the number of membrane modules to be installed in one vessel, and the total number of vessels can be entered, and in the static pressure operation method operating at a constant pressure, the raw water supply pressure, the number of membrane modules to be installed in one vessel, and the total number of vessels are determined. This can be achieved by typing. Of course, in addition to the above data, you can input the membrane area, membrane height, membrane length, and salt removal rate of the membrane.

화학세정 기준 입력부(500)는 플랜트 운전 중 화학세정을 실시해야 하는 조건을 입력할 수 있다. 일예로 화학세정 기준은 원수의 공급압력(

Figure 112019053377234-pat00159
), 투과수 유량(
Figure 112019053377234-pat00160
), 및 투과수의 총 용존고형물 농도(
Figure 112019053377234-pat00161
) 중 어느 하나 이상일 수 있다.The chemical cleaning standard input unit 500 may input conditions for performing chemical cleaning during plant operation. For example, the standard for chemical cleaning is the supply pressure of raw water (
Figure 112019053377234-pat00159
), permeate flow rate (
Figure 112019053377234-pat00160
), and the total dissolved solids concentration in the permeate (
Figure 112019053377234-pat00161
) May be any one or more.

연산 결과 출력부(600)는 투과수의 총 용존고형물 농도(

Figure 112019053377234-pat00162
), 차압(
Figure 112019053377234-pat00163
), 및 에너지소비량(SEC) 중 어느 하나 이상일 수 있으며, 모니터를 통하여 영상으로 표현하거나 각종 유무선 전송수단을 이용하여 휴대용 모바일기기로 전송할 수 있다.The calculation result output unit 600 is the total dissolved solid concentration of the permeate (
Figure 112019053377234-pat00162
), differential pressure (
Figure 112019053377234-pat00163
), and energy consumption (SEC), and may be expressed as an image through a monitor or transmitted to a portable mobile device using various wired or wireless transmission means.

화학세정 시기 예측부(700)는 전술한 자료들을 바탕으로 화학세정 시기의 적절한 시점을 알려준다. 연산 결과 출력부(600)와 마찬가지로 모니터를 통하여 영상으로 표현하거나 각종 유무선 전송수단을 이용하여 휴대용 모바일기기로 예측시기를 알려주고 관리자 등은 화학세정 시기를 확인할 수 있다.The chemical cleaning timing prediction unit 700 informs the appropriate timing of the chemical cleaning timing based on the above-described data. Similar to the calculation result output unit 600, the predicted timing is notified by a portable mobile device, which is expressed as an image through a monitor or by using various wired/wireless transmission means, and a manager or the like can check the chemical cleaning timing.

도 2는 본 발명의 바람직한 실시예에 따른 역삼투막의 화학세정시기 예측 방법의 흐름도이다. 도 2를 참조하면서 역삼투막의 화학세정시기 예측 방법에 관해 설명하기로 한다.2 is a flowchart of a method for predicting a chemical cleaning time of a reverse osmosis membrane according to a preferred embodiment of the present invention. A method of predicting the chemical cleaning timing of the reverse osmosis membrane will be described with reference to FIG. 2.

본 발명에 따른 역삼투막의 화학세정시기 예측 방법은, 역삼투 플랜트의 운전데이터를 수집하는 제1 단계, 역삼투막의 오염 지수를 계산하는 제2 단계, 역삼투막 플랜트 성능을 연산하는 제3 단계, 결과를 표현하는 제4 단계, 및 화학세정 시기를 예측하는 제5 단계를 포함하여 구성된다.The method for predicting chemical cleaning timing of a reverse osmosis membrane according to the present invention includes a first step of collecting operation data of a reverse osmosis plant, a second step of calculating the contamination index of the reverse osmosis membrane, a third step of calculating the reverse osmosis membrane plant performance, and expressing the result. And a fifth step of predicting the chemical cleaning time and the fourth step.

먼저 역삼투 플랜트의 운전데이터를 수집하는 제1 단계에 관해 보다 구체적으로 설명하면, 플랜트에 설치되어 있는 각종 센서로부터 데이터를 수집한다. 수집하는 데이터는 전술한 바와 같이, 공급원수의 온도(T), 공급원수의 총 용존고형물 농도(

Figure 112019053377234-pat00164
), 원수 공급 압력(
Figure 112019053377234-pat00165
), 투과 유량(
Figure 112019053377234-pat00166
), 투과수 압력(
Figure 112019053377234-pat00167
), 투과수의 총 용존고형물 농도(
Figure 112019053377234-pat00168
), 농축수 압력(
Figure 112019053377234-pat00169
), 및 농축수 유량(
Figure 112019053377234-pat00170
) 측정값이나 이에 제한하지 않는다.First, the first step of collecting operation data of the reverse osmosis plant will be described in more detail. Data is collected from various sensors installed in the plant. The collected data is, as described above, the temperature of the source water (T), the total dissolved solid concentration of the source water (
Figure 112019053377234-pat00164
), raw water supply pressure (
Figure 112019053377234-pat00165
), permeate flow rate (
Figure 112019053377234-pat00166
), permeate pressure (
Figure 112019053377234-pat00167
), total dissolved solids concentration in permeate (
Figure 112019053377234-pat00168
), concentrated water pressure (
Figure 112019053377234-pat00169
), and concentrated water flow rate (
Figure 112019053377234-pat00170
) The measured value is not limited thereto.

역삼투막의 오염 지수를 계산하는 제2 단계에서는, 역삼투막을 통과한 수투과율(A), 각종 이온성 물질을 포함하는 염분투과율(B) 및 염삼투막 오염지수(

Figure 112019053377234-pat00171
)로서, 이들 중 수투과율(A)과 염분투과율(B)은 아래 (식-1) 및 (식-2)로부터 각각 도출될 수 있다.In the second step of calculating the contamination index of the reverse osmosis membrane, the water transmittance through the reverse osmosis membrane (A), the salt transmittance including various ionic substances (B), and the salt osmosis membrane contamination index (
Figure 112019053377234-pat00171
), among these, the water permeability (A) and the salt permeability (B) can be derived from the following (Equation-1) and (Equation-2), respectively.

Figure 112019053377234-pat00172
(식-1)
Figure 112019053377234-pat00172
(Equation-1)

여기서,

Figure 112019053377234-pat00173
는 투과수 플럭스(
Figure 112019053377234-pat00174
),
Figure 112019053377234-pat00175
(bar)는 공급원수 압력(
Figure 112019053377234-pat00176
)-투과수 압력(
Figure 112019053377234-pat00177
),
Figure 112019053377234-pat00178
(bar)는 원수 삼투압(
Figure 112019053377234-pat00179
)-투과수 삼투압(
Figure 112019053377234-pat00180
)이다.here,
Figure 112019053377234-pat00173
Is the permeate flux (
Figure 112019053377234-pat00174
),
Figure 112019053377234-pat00175
(bar) is the source water pressure (
Figure 112019053377234-pat00176
)-Permeate pressure (
Figure 112019053377234-pat00177
),
Figure 112019053377234-pat00178
(bar) is the raw water osmotic pressure (
Figure 112019053377234-pat00179
)-Permeable water osmotic pressure (
Figure 112019053377234-pat00180
)to be.

Figure 112019053377234-pat00181
(식-2)
Figure 112019053377234-pat00181
(Equation-2)

여기서,

Figure 112019053377234-pat00182
는 염분 플럭스(
Figure 112019053377234-pat00183
),
Figure 112019053377234-pat00184
(
Figure 112019053377234-pat00185
)는 공급원수에 포함되어 있는 총 용존고형물 농도(
Figure 112019053377234-pat00186
)-투과수에 포함되어 있는 총 용존고형물 농도(
Figure 112019053377234-pat00187
)이다.here,
Figure 112019053377234-pat00182
Is the salinity flux (
Figure 112019053377234-pat00183
),
Figure 112019053377234-pat00184
(
Figure 112019053377234-pat00185
) Is the total dissolved solids concentration in the source water (
Figure 112019053377234-pat00186
)-Total dissolved solids concentration in permeate water (
Figure 112019053377234-pat00187
)to be.

또한 역삼투막 오염지수(

Figure 112019053377234-pat00188
)는 (식-3)으로부터 얻어질 수 있고, 여과시간이 경과함에 따라 증가하는 역삼투막의 총 저항(
Figure 112019053377234-pat00189
)은 아래 (식-3)과 (식-4)로부터 도출될 수 있다. Also, reverse osmosis membrane contamination index (
Figure 112019053377234-pat00188
) Can be obtained from (Equation-3), and the total resistance of the reverse osmosis membrane increases as the filtration time elapses (
Figure 112019053377234-pat00189
) Can be derived from the following (Equation-3) and (Equation-4).

Figure 112019053377234-pat00190
(식-3)
Figure 112019053377234-pat00190
(Equation-3)

Figure 112019053377234-pat00191
(식-4)
Figure 112019053377234-pat00191
(Equation-4)

여기서,

Figure 112019053377234-pat00192
은 역삼투막 본래의 저항(
Figure 112019053377234-pat00193
),
Figure 112019053377234-pat00194
는 오염물에 의한 저항(
Figure 112019053377234-pat00195
),
Figure 112019053377234-pat00196
는 역삼투막의 총 저항,
Figure 112019053377234-pat00197
는 투과수 속도(
Figure 112019053377234-pat00198
),
Figure 112019053377234-pat00199
는 여과시간,
Figure 112019053377234-pat00200
는 시간에 대한 더미변수이다.here,
Figure 112019053377234-pat00192
The resistance of the reverse osmosis membrane (
Figure 112019053377234-pat00193
),
Figure 112019053377234-pat00194
Is the resistance by contaminants (
Figure 112019053377234-pat00195
),
Figure 112019053377234-pat00196
Is the total resistance of the reverse osmosis membrane,
Figure 112019053377234-pat00197
Is the permeate rate (
Figure 112019053377234-pat00198
),
Figure 112019053377234-pat00199
Is the filtration time,
Figure 112019053377234-pat00200
Is a dummy variable for time.

역삼투막 플랜트 성능을 연산하는 제3 단계에서는 각종 데이터를 수득하는 단계이다. 도 3을 참조하면서 구체적으로 설명하면, 여과시간에 따른 역삼투막의 총 저항(

Figure 112019053377234-pat00201
), 여과시간에 따른 투과수 속도(
Figure 112019053377234-pat00202
), 여과시간에 따른 원수 공급 속도(
Figure 112019053377234-pat00203
), 여과시간에 따른 압력(
Figure 112019053377234-pat00204
), 여과시간에 따른 차압(
Figure 112019053377234-pat00205
), 여과시간에 따른 역삼투막 표면에서의 농도(
Figure 112019053377234-pat00206
), 여과시간에 따른 계열 당 투과수 유량(
Figure 112019053377234-pat00207
), 투과수 농도(
Figure 112019053377234-pat00208
) 및 여과시간에 따른 계열 당 투과수 유량(
Figure 112019053377234-pat00209
), 투과수 농도(
Figure 112019053377234-pat00210
), 역삼투막 화학세정 이후 막저항 변화(
Figure 112019053377234-pat00211
), 표준화된 구동압력(
Figure 112019053377234-pat00212
), 표준화된 투과수 유량(
Figure 112019053377234-pat00213
), 평균 투과수 플럭스(
Figure 112019053377234-pat00214
) 및 표준화된 염 투과정도(
Figure 112019053377234-pat00215
)일 수 있다.The third step of calculating the reverse osmosis membrane plant performance is the step of obtaining various data. When specifically described with reference to Figure 3, the total resistance of the reverse osmosis membrane according to the filtration time (
Figure 112019053377234-pat00201
), permeate rate according to filtration time (
Figure 112019053377234-pat00202
), raw water supply rate according to filtration time (
Figure 112019053377234-pat00203
), pressure according to filtration time (
Figure 112019053377234-pat00204
), differential pressure according to filtration time (
Figure 112019053377234-pat00205
), the concentration at the surface of the reverse osmosis membrane according to the filtration time (
Figure 112019053377234-pat00206
), permeate flow rate per series according to filtration time (
Figure 112019053377234-pat00207
), permeate concentration (
Figure 112019053377234-pat00208
) And permeate flow rate per series according to filtration time (
Figure 112019053377234-pat00209
), permeate concentration (
Figure 112019053377234-pat00210
), change in membrane resistance after chemical cleaning of reverse osmosis membrane (
Figure 112019053377234-pat00211
), standardized drive pressure (
Figure 112019053377234-pat00212
), standardized permeate flow rate (
Figure 112019053377234-pat00213
), average permeate flux (
Figure 112019053377234-pat00214
) And standardized salt permeability (
Figure 112019053377234-pat00215
) Can be.

이들 데이터는 아래 (식-5) 내지 (식-18)로부터 도출될 수 있다. These data can be derived from the following (Equation-5) to (Equation-18).

Figure 112019053377234-pat00216
(식-5)
Figure 112019053377234-pat00216
(Equation-5)

Figure 112019053377234-pat00217
(식-6)
Figure 112019053377234-pat00217
(Equation-6)

Figure 112019053377234-pat00218
(식-7)
Figure 112019053377234-pat00218
(Equation-7)

Figure 112019053377234-pat00219
(식-8)
Figure 112019053377234-pat00219
(Equation-8)

Figure 112019053377234-pat00220
(식-9)
Figure 112019053377234-pat00220
(Equation-9)

Figure 112019053377234-pat00221
(식-10)
Figure 112019053377234-pat00221
(Equation-10)

Figure 112019053377234-pat00222
(식-11)
Figure 112019053377234-pat00222
(Equation-11)

Figure 112019053377234-pat00223
(식-12)
Figure 112019053377234-pat00223
(Equation-12)

Figure 112019053377234-pat00224
(식-13)
Figure 112019053377234-pat00224
(Eq.-13)

Figure 112019053377234-pat00225
,
Figure 112019053377234-pat00226
,
Figure 112019053377234-pat00227
(식-14)
Figure 112019053377234-pat00225
,
Figure 112019053377234-pat00226
,
Figure 112019053377234-pat00227
(Equation-14)

Figure 112019053377234-pat00228
(식-15)
Figure 112019053377234-pat00228
(Equation-15)

여기서,

Figure 112019053377234-pat00229
은 역삼투막 본래의 저항(
Figure 112019053377234-pat00230
),
Figure 112019053377234-pat00231
는 여과시간(day),
Figure 112019053377234-pat00232
는 역삼투막 채널에서의 위치,
Figure 112019053377234-pat00233
는 오염물에 의한 저항(
Figure 112019053377234-pat00234
),
Figure 112019053377234-pat00235
는 역삼투막의 총 저항(
Figure 112019053377234-pat00236
),
Figure 112019053377234-pat00237
는 투과수 속도(
Figure 112019053377234-pat00238
),
Figure 112019053377234-pat00239
는 시간에 대한 더미 변수,
Figure 112019053377234-pat00240
는 스페이서로 인한 압력 강하에 대한 마찰 계수,
Figure 112019053377234-pat00241
(bar)는 투과수 압력(
Figure 112019053377234-pat00242
)-농축수 압력(
Figure 112019053377234-pat00243
),
Figure 112019053377234-pat00244
(bar)는 원수 삼투압(
Figure 112019053377234-pat00245
)-투과수 삼투압(
Figure 112019053377234-pat00246
),
Figure 112019053377234-pat00247
는 역삼투막 채널 높이(m),
Figure 112019053377234-pat00248
는 역삼투막 채널 폭(m),
Figure 112019053377234-pat00249
은 역삼투막 채널 길이(m),
Figure 112019053377234-pat00250
는 위치에 대한 더미 변수,
Figure 112019053377234-pat00251
는 점도(
Figure 112019053377234-pat00252
),
Figure 112019053377234-pat00253
은 역삼투막 채널 길이(m),
Figure 112019053377234-pat00254
는 염분 투과율,
Figure 112019053377234-pat00255
는 염분 투과율에 대한 온도 보정 인자,
Figure 112019053377234-pat00256
는 베셀의 수(ea),
Figure 112019053377234-pat00257
는 역삼투막 채널 폭(m), N은 역삼투막 화학세정 횟수,
Figure 112019053377234-pat00258
은 화학세정 후 막 성능 회복율,
Figure 112019053377234-pat00259
는 공급원수 삼투압(bar),
Figure 112019053377234-pat00260
는 투과수 삼투압(bar),
Figure 112019053377234-pat00261
는 막모듈 개수이다.here,
Figure 112019053377234-pat00229
The resistance of the reverse osmosis membrane (
Figure 112019053377234-pat00230
),
Figure 112019053377234-pat00231
Is the filtration time (day),
Figure 112019053377234-pat00232
Is the position in the reverse osmosis membrane channel,
Figure 112019053377234-pat00233
Is the resistance by contaminants (
Figure 112019053377234-pat00234
),
Figure 112019053377234-pat00235
Is the total resistance of the reverse osmosis membrane (
Figure 112019053377234-pat00236
),
Figure 112019053377234-pat00237
Is the permeate rate (
Figure 112019053377234-pat00238
),
Figure 112019053377234-pat00239
Is a dummy variable for time,
Figure 112019053377234-pat00240
Is the coefficient of friction for the pressure drop due to the spacer,
Figure 112019053377234-pat00241
(bar) is the permeate pressure (
Figure 112019053377234-pat00242
)-Concentrated water pressure (
Figure 112019053377234-pat00243
),
Figure 112019053377234-pat00244
(bar) is the raw water osmotic pressure (
Figure 112019053377234-pat00245
)-Permeable water osmotic pressure (
Figure 112019053377234-pat00246
),
Figure 112019053377234-pat00247
Is the reverse osmosis membrane channel height (m),
Figure 112019053377234-pat00248
Is the reverse osmosis membrane channel width (m),
Figure 112019053377234-pat00249
Is the reverse osmosis membrane channel length (m),
Figure 112019053377234-pat00250
Is a dummy variable for position,
Figure 112019053377234-pat00251
Is the viscosity(
Figure 112019053377234-pat00252
),
Figure 112019053377234-pat00253
Is the reverse osmosis membrane channel length (m),
Figure 112019053377234-pat00254
Is the salt transmittance,
Figure 112019053377234-pat00255
Is the temperature correction factor for salt transmission,
Figure 112019053377234-pat00256
Is the number of Bessels (ea),
Figure 112019053377234-pat00257
Is the reverse osmosis membrane channel width (m), N is the number of reverse osmosis membrane chemical cleaning,
Figure 112019053377234-pat00258
Film performance recovery rate after chemical cleaning,
Figure 112019053377234-pat00259
Is the source water osmotic pressure (bar),
Figure 112019053377234-pat00260
Is the permeate osmotic pressure (bar),
Figure 112019053377234-pat00261
Is the number of membrane modules.

한편, 상기 역삼투막 플랜트 성능을 연산하는 제3 단계와 동시에 또는 이전에, 역삼투막 플랜트 성능을 계산할 수 있도록 역삼투막의 운전 조건과 화학세정 기준을 입력하는 단계를 더 포함한다.Meanwhile, at the same time as or before the third step of calculating the reverse osmosis membrane plant performance, the method further includes inputting operating conditions and chemical cleaning criteria of the reverse osmosis membrane so that the reverse osmosis membrane plant performance can be calculated.

역삼투막의 운전 조건은, 원수 수온(T), 공급원수 유량(

Figure 112019053377234-pat00262
), 투과수 유량(
Figure 112019053377234-pat00263
), 공급원수의 총 고형물농도(
Figure 112019053377234-pat00264
), 막모듈 개수, 및 총 베셀 개수 중 어느 하나 이상이다. 전술한 바와 같이, 투과수의 유량을 일정하게 운전하는 정유량 운전방식에서는 투과수 유량(
Figure 112019053377234-pat00265
), 하나의 베셀에 설치될 막모듈 개수, 및 총 베셀 개수를 입력할 수 있고, 일정한 압력으로 운전하는 정압 운전방식에서는 원수 공급 압력, 하나의 베셀에 설치될 막모듈 개수, 및 총 베셀 개수를 입력한다.The operating conditions of the reverse osmosis membrane are the raw water temperature (T), the feed water flow rate (
Figure 112019053377234-pat00262
), permeate flow rate (
Figure 112019053377234-pat00263
), total solids concentration in source water (
Figure 112019053377234-pat00264
), the number of membrane modules, and the total number of vessels. As described above, in the constant flow rate operation method in which the flow rate of permeate is constantly operated, the permeate flow rate (
Figure 112019053377234-pat00265
), the number of membrane modules to be installed in one vessel, and the total number of vessels can be entered, and in the static pressure operation method operating at a constant pressure, the raw water supply pressure, the number of membrane modules to be installed in one vessel, and the total number of vessels are determined. Enter.

화학세정 기준은 차압(

Figure 112019053377234-pat00266
), 표준화된 투과수 플럭스(
Figure 112019053377234-pat00267
), 및 표준화된 염 투과정도(
Figure 112019053377234-pat00268
) 중 어느 하나 이상이다. 즉, 플랜트 운전 중 어떠한 조건에 도달하면 화학세정을 실시할 것인지 기준을 입력한다. 예를 들어, 화학세정 기준은 차압(
Figure 112019053377234-pat00269
), 표준화된 투과수 플럭스(
Figure 112019053377234-pat00270
), 및 표준화된 염 투과정도(
Figure 112019053377234-pat00271
) 중 어느 하나 이상일 수 있다.Chemical cleaning standard is differential pressure (
Figure 112019053377234-pat00266
), standardized permeate flux (
Figure 112019053377234-pat00267
), and standardized salt permeability (
Figure 112019053377234-pat00268
) Is any one or more. In other words, input the criteria for chemical cleaning when certain conditions are reached during plant operation. For example, the standard for chemical cleaning is differential pressure (
Figure 112019053377234-pat00269
), standardized permeate flux (
Figure 112019053377234-pat00270
), and standardized salt permeability (
Figure 112019053377234-pat00271
) May be any one or more.

구체적으로, 정유량으로 역삼투막 플랜트를 운전하는 경우라면 상기 화학세정 기준을 차압(

Figure 112019053377234-pat00272
)이 10% 증가한 시점으로 입력할 수 있다.Specifically, in the case of operating a reverse osmosis membrane plant with a constant flow rate, the chemical cleaning standard is applied to the differential pressure (
Figure 112019053377234-pat00272
You can enter the point at which) increases by 10%.

또한 정압으로 역삼투막 플랜트를 운전하는 경우라면 상기 화학세정 기준을 투과수 플럭스(

Figure 112019053377234-pat00273
)이 10% 감소한 시점으로 입력할 수 있다.In addition, if the reverse osmosis membrane plant is operated under positive pressure, the chemical cleaning standard is used as permeate flux (
Figure 112019053377234-pat00273
You can enter the point at which) decreases by 10%.

게다가 상기 화학세정 기준을 초기 투과수에 비해 표준화된 염 투과율(

Figure 112019053377234-pat00274
)이 10% 증가한 시점으로 입력할 수 있고, 이 경우에는 정압운전 뿐만 아니라 정유량 운전시에도 적용이 가능하다.In addition, the standardized salt permeability compared to the initial permeate water (
Figure 112019053377234-pat00274
) Can be input at the 10% increase, and in this case, it can be applied not only to constant pressure operation but also to constant flow operation.

또한 정유량 운전시에는 차압(

Figure 112019053377234-pat00275
)과 표준화된 염 투과율(
Figure 112019053377234-pat00276
), 정압 운전시에는 투과수 플럭스(
Figure 112019053377234-pat00277
)과 표준화된 염 투과율(
Figure 112019053377234-pat00278
)를 함께 이용할 수도 있다.Also, differential pressure (
Figure 112019053377234-pat00275
) And standardized salt permeability (
Figure 112019053377234-pat00276
), permeate flux (
Figure 112019053377234-pat00277
) And standardized salt permeability (
Figure 112019053377234-pat00278
) Can also be used together.

Figure 112019053377234-pat00279
(식-16)
Figure 112019053377234-pat00279
(Equation-16)

Figure 112019053377234-pat00280
(식-17)
Figure 112019053377234-pat00280
(Equation-17)

Figure 112019053377234-pat00281
(식-18)
Figure 112019053377234-pat00281
(Equation-18)

Figure 112019053377234-pat00282
(식-19)
Figure 112019053377234-pat00282
(Equation-19)

제4 단계는 제3 단계에서 얻어진 각종 자료들의 결과를 표현하는 단계이다. 특히, 투과수의 총 용존고형물 농도(

Figure 112019053377234-pat00283
), 차압(
Figure 112019053377234-pat00284
), 및 에너지소비량(SEC, Specific Energy Consumption) 중 어느 하나 이상을 반드시 포함하며, 모니터를 통하여 영상으로 표현하거나 각종 유무선 전송수단을 이용하여 관리자의 휴대용 모바일기기로 전송할 수 있다. The fourth step is to express the results of the various data obtained in the third step. In particular, the total dissolved solids concentration in the permeate (
Figure 112019053377234-pat00283
), differential pressure (
Figure 112019053377234-pat00284
), and Specific Energy Consumption (SEC) must be included, and can be expressed as an image through a monitor or transmitted to the manager's portable mobile device using various wired or wireless transmission means.

여기서, SEC는 일정량의 투과수(

Figure 112019053377234-pat00285
)를 생산하는데 필요한 에너지(kWh)이다.Here, SEC is a certain amount of permeate (
Figure 112019053377234-pat00285
) Is the energy required to produce (kWh).

화학세정 시기를 예측하는 제5 단계에서는 전술한 자료들을 바탕으로 화학세정 시기의 적절한 시점을 알려주는 단계이다.In the fifth step of predicting the timing of chemical cleaning, it is a step that informs the appropriate timing of the chemical cleaning time based on the above data.

도 4는 역삼투막 플랜트의 공정 조건 데이터, 화학세정 기준 데이터 및 운전 실측데이터로부터 화학세정시기를 예측하는 방법의 일예를 설명하는 모식도이다.4 is a schematic diagram illustrating an example of a method of predicting a chemical cleaning timing from process condition data, chemical cleaning reference data, and operation measurement data of a reverse osmosis membrane plant.

도 4(a)에서, 역삼투막 플랜트로부터 얻은 대략 30일간의 실측 데이터를 활용하여 여과시간에 따른 차압(

Figure 112019053377234-pat00286
) 변화와, 전술한 식으로부터 계산된 예측 차압(
Figure 112019053377234-pat00287
) 변화를 보면, 적절한 화학세정 기준이라고 사전에 입력한 차압(
Figure 112019053377234-pat00288
)에 도달하기 위해서는 상당 시간 운전이 가능함을 예측할 수 있다.In Fig. 4(a), the differential pressure according to the filtration time was used by using the measured data for approximately 30 days obtained from the reverse osmosis membrane plant.
Figure 112019053377234-pat00286
) Change and the predicted differential pressure calculated from the above equation (
Figure 112019053377234-pat00287
) Looking at the change, the differential pressure (
Figure 112019053377234-pat00288
In order to reach ), it can be predicted that it is possible to operate for a considerable time.

반면 도 4(b)에서는, 30일 이후부터의 실측 데이터 차압(

Figure 112019053377234-pat00289
)이 다소 가파르게 증가하고, 이러한 조건에서의 예측 차압(
Figure 112019053377234-pat00290
)은 대략 115일 부근에서 화학세정을 실시할 필요가 있음을 예측할 수 있다.On the other hand, in Fig. 4(b), the measured data differential pressure (
Figure 112019053377234-pat00289
) Increases somewhat steeply, and the predicted differential pressure (
Figure 112019053377234-pat00290
) Can predict the need to perform chemical cleaning around 115 days.

이와 같이, 본 발명에서는 역삼투막 플랜트의 실측 데이터와 입력한 공정 데이터를 활용하여 화학세정 시기를 예측할 수 있어, 역삼투막 플랜트를 효율적으로 운전하는 것이 가능하다.As described above, in the present invention, it is possible to predict the timing of chemical cleaning by using the actual measurement data of the reverse osmosis membrane plant and the input process data, and thus it is possible to efficiently operate the reverse osmosis membrane plant.

제4 단계와 마찬가지로 모니터를 통하여 영상으로 표현하거나 각종 유무선 전송수단을 이용하여 휴대용 모바일기기로 예측시기를 알려주고 관리자 등은 화학세정 시기를 확인할 수 있다.As in the fourth step, the predicted time is notified through a portable mobile device by expressing it as an image through a monitor or using various wired/wireless transmission means, and the administrator or the like can check the chemical cleaning time.

한편, 역삼투막을 운전함에 있어 전력비는 아래 (식-20), 세정에 필요한 약품비는 (식-21), 그리고 총 운전비용(식-22)은 (식-20)과 (식-21)로부터 산출할 수 있다.On the other hand, when operating a reverse osmosis membrane, the power cost is calculated from the following (Equation-20), the chemical cost for cleaning (Equation-21), and the total operating cost (Equation-22) is calculated from (Equation-20) and (Equation-21). can do.

Figure 112019053377234-pat00291
(식-20)
Figure 112019053377234-pat00291
(Equation-20)

Figure 112019053377234-pat00292
(식-21)
Figure 112019053377234-pat00292
(Eq.-21)

Figure 112019053377234-pat00293
(식-22)
Figure 112019053377234-pat00293
(Eq.-22)

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것은 아니며, 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연하다.Specific parts of the present invention have been described in detail above. For those of ordinary skill in the art, these specific descriptions are only preferred embodiments, and the scope of the present invention is not limited thereby, It is obvious to those skilled in the art that various changes and modifications are possible within the scope and scope of the technical idea, and it is natural that such modifications and modifications fall within the appended claims.

100 : 플랜트 운영 데이터 측정부
200 : 역삼투막 오염지수 연산부
300 : 플랜트 성능 연산부
400 : 플랜트 공정 조건 입력부
500 : 화학세정 기준 입력부
600 : 연산 결과 출력부
700 : 화학세정 시기 예측부
100: plant operation data measurement unit
200: Reverse osmosis membrane contamination index calculation unit
300: plant performance calculation unit
400: Plant process condition input unit
500: Chemical cleaning standard input unit
600: calculation result output unit
700: Chemical cleaning time prediction unit

Claims (17)

삭제delete 삭제delete 삭제delete 역삼투 플랜트의 운전데이터를 수집하는 제1 단계;
역삼투막의 오염 지수를 계산하는 제2 단계;
역삼투막 플랜트 성능을 연산하는 제3 단계;
결과를 표현하는 제4 단계; 및
화학세정 시기를 예측하는 제5 단계를 포함하되,
상기 결과를 표현하는 제4 단계에서는, 하기식으로 정의되는 투과수의 총 용존고형물 농도(
Figure 112020090736269-pat00433
), 차압(
Figure 112020090736269-pat00434
), 및 에너지소비량(Specific Energy Consumption, SEC) 중 어느 하나 이상을 표현하는 것을 특징으로 하는 역삼투막의 화학세정시기 예측방법.
Figure 112020090736269-pat00435
,
Figure 112020090736269-pat00436
,
Figure 112020090736269-pat00437

여기서,
Figure 112020090736269-pat00438
는 투과수 플럭스,
Figure 112020090736269-pat00439
는 염분 플럭스,
Figure 112020090736269-pat00440
는 공급원수 압력,
Figure 112020090736269-pat00441
는 투과수 압력,
Figure 112020090736269-pat00442
는 공급원수 고압펌프 전단 압력,
Figure 112020090736269-pat00443
는 고압펌프 효율.
A first step of collecting operation data of the reverse osmosis plant;
A second step of calculating the contamination index of the reverse osmosis membrane;
A third step of calculating reverse osmosis membrane plant performance;
A fourth step of expressing the result; And
Including a fifth step of predicting the timing of chemical cleaning,
In the fourth step of expressing the above result, the total dissolved solid concentration of permeate water defined by the following formula (
Figure 112020090736269-pat00433
), differential pressure (
Figure 112020090736269-pat00434
), and energy consumption (Specific Energy Consumption, SEC). A method for predicting chemical cleaning timing of a reverse osmosis membrane, characterized in that expressing at least one of.
Figure 112020090736269-pat00435
,
Figure 112020090736269-pat00436
,
Figure 112020090736269-pat00437

here,
Figure 112020090736269-pat00438
Is the permeate flux,
Figure 112020090736269-pat00439
Is the salinity flux,
Figure 112020090736269-pat00440
Is the source water pressure,
Figure 112020090736269-pat00441
Is the permeate pressure,
Figure 112020090736269-pat00442
Is the source water high pressure pump shear pressure,
Figure 112020090736269-pat00443
Is the high pressure pump efficiency.
제4항에 있어서,
상기 역삼투 플랜트의 운전데이터를 수집하는 제1 단계에서는, 공급원수의 온도(T), 공급원수의 총 용존고형물 농도(
Figure 112019053377234-pat00301
), 원수 공급 압력(
Figure 112019053377234-pat00302
), 투과 유량(
Figure 112019053377234-pat00303
), 투과수 압력(
Figure 112019053377234-pat00304
), 투과수의 총 용존고형물 농도(
Figure 112019053377234-pat00305
), 농축수 압력(
Figure 112019053377234-pat00306
), 및 농축수 유량(
Figure 112019053377234-pat00307
)의 측정값을 수집하는 것을 특징으로 하는 역삼투막의 화학세정시기 예측방법.
The method of claim 4,
In the first step of collecting operation data of the reverse osmosis plant, the temperature of the source water (T), the total dissolved solid concentration of the source water (
Figure 112019053377234-pat00301
), raw water supply pressure (
Figure 112019053377234-pat00302
), permeate flow rate (
Figure 112019053377234-pat00303
), permeate pressure (
Figure 112019053377234-pat00304
), total dissolved solids concentration in permeate (
Figure 112019053377234-pat00305
), concentrated water pressure (
Figure 112019053377234-pat00306
), and concentrated water flow rate (
Figure 112019053377234-pat00307
A method for predicting chemical cleaning timing of a reverse osmosis membrane, characterized in that collecting the measured value of ).
제4항에 있어서,
상기 역삼투막의 오염 지수를 계산하는 제2 단계에서는, 하기식으로 정의되는 수 투과율(A)과 염분 투과율(B)을 함께 계산하는 것을 특징으로 하는 역삼투막의 화학세정시기 예측방법.
Figure 112019053377234-pat00308
, 여기서
Figure 112019053377234-pat00309
는 투과수 플럭스(
Figure 112019053377234-pat00310
),
Figure 112019053377234-pat00311
(bar)는 공급원수 압력(
Figure 112019053377234-pat00312
)-투과수 압력(
Figure 112019053377234-pat00313
),
Figure 112019053377234-pat00314
(bar)는 공급원수 삼투압(
Figure 112019053377234-pat00315
)-투과수 삼투압(
Figure 112019053377234-pat00316
)
Figure 112019053377234-pat00317
, 여기서
Figure 112019053377234-pat00318
는 염분 플럭스(
Figure 112019053377234-pat00319
),
Figure 112019053377234-pat00320
(
Figure 112019053377234-pat00321
)는 공급원수의 총 용존고형물 농도(
Figure 112019053377234-pat00322
)-투과수의 총 용존고형물 농도(
Figure 112019053377234-pat00323
)
The method of claim 4,
In the second step of calculating the contamination index of the reverse osmosis membrane, a method for predicting a chemical cleaning time of a reverse osmosis membrane, characterized in that the water transmittance (A) and the salt transmittance (B) defined by the following equation are calculated together.
Figure 112019053377234-pat00308
, here
Figure 112019053377234-pat00309
Is the permeate flux (
Figure 112019053377234-pat00310
),
Figure 112019053377234-pat00311
(bar) is the source water pressure (
Figure 112019053377234-pat00312
)-Permeate pressure (
Figure 112019053377234-pat00313
),
Figure 112019053377234-pat00314
(bar) is the osmotic pressure of the source water (
Figure 112019053377234-pat00315
)-Permeable water osmotic pressure (
Figure 112019053377234-pat00316
)
Figure 112019053377234-pat00317
, here
Figure 112019053377234-pat00318
Is the salinity flux (
Figure 112019053377234-pat00319
),
Figure 112019053377234-pat00320
(
Figure 112019053377234-pat00321
) Is the total dissolved solids concentration in the source water (
Figure 112019053377234-pat00322
)-Total dissolved solids concentration in permeated water (
Figure 112019053377234-pat00323
)
제6항에 있어서,
상기 역삼투막의 오염 지수를 계산하는 제2 단계에서, 하기식으로 정의되는 역삼투막 오염지수(
Figure 112019053377234-pat00324
)와 역삼투막의 총 저항(
Figure 112019053377234-pat00325
)을 함께 계산하는 것을 특징으로 하는 역삼투막의 화학세정시기 예측방법.
Figure 112019053377234-pat00326
,
Figure 112019053377234-pat00327

여기서
Figure 112019053377234-pat00328
은 역삼투막 본래의 저항(
Figure 112019053377234-pat00329
),
Figure 112019053377234-pat00330
는 오염물에 의한 저항(
Figure 112019053377234-pat00331
),
Figure 112019053377234-pat00332
는 투과수 속도(
Figure 112019053377234-pat00333
),
Figure 112019053377234-pat00334
는 여과시간,
Figure 112019053377234-pat00335
는 시간에 대한 더미 변수
The method of claim 6,
In the second step of calculating the contamination index of the reverse osmosis membrane, the reverse osmosis membrane contamination index defined by the following formula (
Figure 112019053377234-pat00324
) And the total resistance of the reverse osmosis membrane (
Figure 112019053377234-pat00325
A method for predicting chemical cleaning timing of a reverse osmosis membrane, characterized in that it calculates together.
Figure 112019053377234-pat00326
,
Figure 112019053377234-pat00327

here
Figure 112019053377234-pat00328
The resistance of the reverse osmosis membrane (
Figure 112019053377234-pat00329
),
Figure 112019053377234-pat00330
Is the resistance by contaminants (
Figure 112019053377234-pat00331
),
Figure 112019053377234-pat00332
Is the permeate rate (
Figure 112019053377234-pat00333
),
Figure 112019053377234-pat00334
Is the filtration time,
Figure 112019053377234-pat00335
Is a dummy variable for time
제4항에 있어서,
상기 역삼투막 플랜트 성능을 연산하는 제3 단계에서는, 하기식으로 정의되는 여과시간에 따른 역삼투막의 총 저항(
Figure 112019053377234-pat00336
), 여과시간에 따른 투과수 속도(
Figure 112019053377234-pat00337
), 여과시간에 따른 원수 공급 속도(
Figure 112019053377234-pat00338
), 여과시간에 따른 압력(
Figure 112019053377234-pat00339
), 여과시간에 따른 차압(Differential pressure,
Figure 112019053377234-pat00340
), 여과시간에 따른 역삼투막 표면에서의 농도(
Figure 112019053377234-pat00341
), 여과시간에 따른 계열 당 투과수 유량(
Figure 112019053377234-pat00342
), 투과수 농도(
Figure 112019053377234-pat00343
), 분리막 세정 이후의 막 저항 변화(
Figure 112019053377234-pat00344
), 표준화된 구동압력(Normalized driving pressure,
Figure 112019053377234-pat00345
), 표준화된 투과수 유량(Normalized permeate flow,
Figure 112019053377234-pat00346
), 평균 투과수 플럭스(Average permeate flux,
Figure 112019053377234-pat00347
) 및 표준화된 염 투과율(Normalized salt passage,
Figure 112019053377234-pat00348
)인 것을 특징으로 하는 역삼투막의 화학세정시기 예측방법.
Figure 112019053377234-pat00349
,
Figure 112019053377234-pat00350
,
Figure 112019053377234-pat00351
,
Figure 112019053377234-pat00352

Figure 112019053377234-pat00353
,
Figure 112019053377234-pat00354
,
Figure 112019053377234-pat00355
,
Figure 112019053377234-pat00356
,
Figure 112019053377234-pat00357
,
Figure 112019053377234-pat00358
,
Figure 112019053377234-pat00359
,
Figure 112019053377234-pat00360
,
Figure 112019053377234-pat00361
,
Figure 112019053377234-pat00362
,
Figure 112019053377234-pat00363
,
Figure 112019053377234-pat00364
,
Figure 112019053377234-pat00365

여기서,
Figure 112019053377234-pat00366
은 역삼투막 본래의 저항(
Figure 112019053377234-pat00367
),
Figure 112019053377234-pat00368
는 역삼투막 채널에서의 위치(
Figure 112019053377234-pat00369
),
Figure 112019053377234-pat00370
는 여과시간(day),
Figure 112019053377234-pat00371
는 오염물에 의한 저항(
Figure 112019053377234-pat00372
),
Figure 112019053377234-pat00373
는 역삼투막 총 저항(
Figure 112019053377234-pat00374
),
Figure 112019053377234-pat00375
는 투과수 속도(
Figure 112019053377234-pat00376
),
Figure 112019053377234-pat00377
는 시간에 대한 더미 변수,
Figure 112019053377234-pat00378
는 스페이서로 인한 압력 강하에 대한 마찰 계수,
Figure 112019053377234-pat00379
(bar)는 공급원수 압력(
Figure 112019053377234-pat00380
)-투과수 압력(
Figure 112019053377234-pat00381
),
Figure 112019053377234-pat00382
(bar)는 공급원수 삼투압(
Figure 112019053377234-pat00383
)-투과수 삼투압(
Figure 112019053377234-pat00384
),
Figure 112019053377234-pat00385
는 역삼투막 채널 높이(m),
Figure 112019053377234-pat00386
는 위치에 대한 더미 변수,
Figure 112019053377234-pat00387
는 점도(
Figure 112019053377234-pat00388
),
Figure 112019053377234-pat00389
은 역삼투막 채널 길이(m),
Figure 112019053377234-pat00390
는 염분 투과율,
Figure 112019053377234-pat00391
(Temperature correction factor)는 염분 투과율에 대한 온도 보정 인자,
Figure 112019053377234-pat00392
(Pressure vessel)는 역삼투 베셀 수(ea),
Figure 112019053377234-pat00393
는 역삼투막 채널 폭(m), N은 역삼투막 화학세정 횟수,
Figure 112019053377234-pat00394
은 화학세정 후 역삼투막 성능 회복율,
Figure 112019053377234-pat00395
는 공급원수 삼투압,
Figure 112019053377234-pat00396
는 투과수 삼투압,
Figure 112019053377234-pat00397
는 막모듈 개수.
The method of claim 4,
In the third step of calculating the reverse osmosis membrane plant performance, the total resistance of the reverse osmosis membrane according to the filtration time defined by the following equation (
Figure 112019053377234-pat00336
), permeate rate according to filtration time (
Figure 112019053377234-pat00337
), raw water supply rate according to filtration time (
Figure 112019053377234-pat00338
), pressure according to filtration time (
Figure 112019053377234-pat00339
), Differential pressure according to filtration time
Figure 112019053377234-pat00340
), the concentration at the surface of the reverse osmosis membrane according to the filtration time (
Figure 112019053377234-pat00341
), permeate flow rate per series according to filtration time (
Figure 112019053377234-pat00342
), permeate concentration (
Figure 112019053377234-pat00343
), change in membrane resistance after cleaning the separator (
Figure 112019053377234-pat00344
), Normalized driving pressure,
Figure 112019053377234-pat00345
), Normalized permeate flow,
Figure 112019053377234-pat00346
), Average permeate flux,
Figure 112019053377234-pat00347
) And standardized salt passage (Normalized salt passage,
Figure 112019053377234-pat00348
A method for predicting chemical cleaning timing of a reverse osmosis membrane, characterized in that).
Figure 112019053377234-pat00349
,
Figure 112019053377234-pat00350
,
Figure 112019053377234-pat00351
,
Figure 112019053377234-pat00352

Figure 112019053377234-pat00353
,
Figure 112019053377234-pat00354
,
Figure 112019053377234-pat00355
,
Figure 112019053377234-pat00356
,
Figure 112019053377234-pat00357
,
Figure 112019053377234-pat00358
,
Figure 112019053377234-pat00359
,
Figure 112019053377234-pat00360
,
Figure 112019053377234-pat00361
,
Figure 112019053377234-pat00362
,
Figure 112019053377234-pat00363
,
Figure 112019053377234-pat00364
,
Figure 112019053377234-pat00365

here,
Figure 112019053377234-pat00366
The resistance of the reverse osmosis membrane (
Figure 112019053377234-pat00367
),
Figure 112019053377234-pat00368
Is the position in the reverse osmosis membrane channel (
Figure 112019053377234-pat00369
),
Figure 112019053377234-pat00370
Is the filtration time (day),
Figure 112019053377234-pat00371
Is the resistance by contaminants (
Figure 112019053377234-pat00372
),
Figure 112019053377234-pat00373
Is the total resistance of the reverse osmosis membrane (
Figure 112019053377234-pat00374
),
Figure 112019053377234-pat00375
Is the permeate rate (
Figure 112019053377234-pat00376
),
Figure 112019053377234-pat00377
Is a dummy variable for time ,
Figure 112019053377234-pat00378
Is the coefficient of friction for the pressure drop due to the spacer,
Figure 112019053377234-pat00379
(bar) is the source water pressure (
Figure 112019053377234-pat00380
)-Permeate pressure (
Figure 112019053377234-pat00381
),
Figure 112019053377234-pat00382
(bar) is the osmotic pressure of the source water (
Figure 112019053377234-pat00383
)-Permeable water osmotic pressure (
Figure 112019053377234-pat00384
),
Figure 112019053377234-pat00385
Is the reverse osmosis membrane channel height (m),
Figure 112019053377234-pat00386
Is a dummy variable for position,
Figure 112019053377234-pat00387
Is the viscosity(
Figure 112019053377234-pat00388
),
Figure 112019053377234-pat00389
Is the reverse osmosis membrane channel length (m),
Figure 112019053377234-pat00390
Is the salt transmittance,
Figure 112019053377234-pat00391
(Temperature correction factor) is a temperature correction factor for salt transmittance,
Figure 112019053377234-pat00392
(Pressure vessel) is the number of reverse osmosis vessels (ea),
Figure 112019053377234-pat00393
Is the reverse osmosis membrane channel width (m), N is the number of reverse osmosis membrane chemical cleaning,
Figure 112019053377234-pat00394
Reverse osmosis membrane performance recovery rate after chemical cleaning,
Figure 112019053377234-pat00395
Is the osmotic pressure of the source water,
Figure 112019053377234-pat00396
Is the permeate osmotic pressure,
Figure 112019053377234-pat00397
Is the number of membrane modules.
삭제delete 제4항에 있어서,
상기 화학세정 시기를 예측하는 제5 단계에서는, 하기식으로 정의되는 투과수의 총 용존고형물 농도(
Figure 112019053377234-pat00409
), 차압(
Figure 112019053377234-pat00410
), 및 에너지소비량(SEC) 중 어느 하나 이상으로부터 예측하는 것을 특징으로 하는 역삼투막의 화학세정시기 예측방법.
Figure 112019053377234-pat00411
,
Figure 112019053377234-pat00412
,
Figure 112019053377234-pat00413

여기서,
Figure 112019053377234-pat00414
는 투과수 플럭스,
Figure 112019053377234-pat00415
는 염분 플럭스,
Figure 112019053377234-pat00416
는 원수의 공급압력,
Figure 112019053377234-pat00417
는 투과수 압력,
Figure 112019053377234-pat00418
는 공급원수 고압펌프 전단 압력,
Figure 112019053377234-pat00419
는 고압펌프 효율.
The method of claim 4,
In the fifth step of estimating the chemical cleaning timing, the total dissolved solid concentration in the permeated water (
Figure 112019053377234-pat00409
), differential pressure (
Figure 112019053377234-pat00410
), and the chemical cleaning time prediction method of a reverse osmosis membrane, characterized in that predicting from any one or more of the energy consumption (SEC).
Figure 112019053377234-pat00411
,
Figure 112019053377234-pat00412
,
Figure 112019053377234-pat00413

here,
Figure 112019053377234-pat00414
Is the permeate flux,
Figure 112019053377234-pat00415
Is the salinity flux,
Figure 112019053377234-pat00416
Is the supply pressure of raw water,
Figure 112019053377234-pat00417
Is the permeate pressure,
Figure 112019053377234-pat00418
Is the source water high pressure pump shear pressure,
Figure 112019053377234-pat00419
Is the high pressure pump efficiency.
제8항에 있어서,
상기 역삼투막 플랜트 성능을 연산하는 제3 단계와 동시에 또는 이전에, 역삼투막의 운전 조건을 입력하는 단계를 더 포함하는 것을 특징으로 하는 역삼투막의 화학세정시기 예측방법.
The method of claim 8,
And inputting operating conditions of the reverse osmosis membrane simultaneously with or before the third step of calculating the reverse osmosis membrane plant performance.
제11항에 있어서,
상기 역삼투막의 운전 조건은, 원수 수온(T), 공급원수 유량(
Figure 112019053377234-pat00420
), 투과수 유량(
Figure 112019053377234-pat00421
), 공급원수의 총 고형물농도(
Figure 112019053377234-pat00422
), 막모듈 개수, 및 베셀 개수 중 어느 하나 이상인 것을 특징으로 하는 역삼투막의 화학세정시기 예측방법.
The method of claim 11,
The operating conditions of the reverse osmosis membrane are the raw water temperature (T), the source water flow rate (
Figure 112019053377234-pat00420
), permeate flow rate (
Figure 112019053377234-pat00421
), total solids concentration in source water (
Figure 112019053377234-pat00422
), the number of membrane modules, and the number of vessels.
제8항에 있어서,
상기 역삼투막 플랜트 성능을 연산하는 제3 단계와 동시에 또는 이전에, 화학세정 기준을 입력하는 단계를 더 포함하는 것을 특징으로 하는 역삼투막의 화학세정시기 예측방법.
The method of claim 8,
A method for predicting a chemical cleaning time of a reverse osmosis membrane, further comprising inputting a chemical cleaning criterion simultaneously with or before the third step of calculating the reverse osmosis membrane plant performance.
제13항에 있어서,
상기 화학세정 기준은 차압(
Figure 112019053377234-pat00423
), 표준화된 투과수 플럭스(
Figure 112019053377234-pat00424
), 및 표준화된 염 투과율(
Figure 112019053377234-pat00425
) 중 어느 하나 이상인 것을 특징으로 하는 역삼투막의 화학세정시기 예측방법.
The method of claim 13,
The chemical cleaning standard is the differential pressure (
Figure 112019053377234-pat00423
), standardized permeate flux (
Figure 112019053377234-pat00424
), and standardized salt permeability (
Figure 112019053377234-pat00425
) Method for predicting chemical cleaning timing of reverse osmosis membrane, characterized in that at least one of.
제13항에 있어서,
상기 화학세정 기준은 차압(
Figure 112019053377234-pat00426
)이 10% 증가한 시점인 것을 특징으로 하는 역삼투막의 화학세정시기 예측방법.
The method of claim 13,
The chemical cleaning standard is the differential pressure (
Figure 112019053377234-pat00426
) Is a 10% increase in the chemical cleaning time prediction method of the reverse osmosis membrane, characterized in that.
제13항에 있어서,
상기 화학세정 기준은 표준화된 투과수 플럭스(
Figure 112019053377234-pat00427
)이 10% 감소한 시점인 것을 특징으로 하는 역삼투막의 화학세정시기 예측방법.
The method of claim 13,
The chemical cleaning standard is a standardized permeate flux (
Figure 112019053377234-pat00427
) Is a 10% reduction in the chemical cleaning time prediction method of the reverse osmosis membrane, characterized in that.
제13항에 있어서,
상기 화학세정 기준은 표준화된 염 투과율(
Figure 112019053377234-pat00428
)가 10% 증가한 시점인 것을 특징으로 하는 역삼투막의 화학세정시기 예측방법.
The method of claim 13,
The chemical cleaning standard is a standardized salt transmittance (
Figure 112019053377234-pat00428
) Is a 10% increase in the chemical cleaning time prediction method of the reverse osmosis membrane, characterized in that.
KR1020190061114A 2019-05-24 2019-05-24 Prediction Method and Apparatus for Chemical Cleaning of Membrane KR102178424B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190061114A KR102178424B1 (en) 2019-05-24 2019-05-24 Prediction Method and Apparatus for Chemical Cleaning of Membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190061114A KR102178424B1 (en) 2019-05-24 2019-05-24 Prediction Method and Apparatus for Chemical Cleaning of Membrane

Publications (1)

Publication Number Publication Date
KR102178424B1 true KR102178424B1 (en) 2020-11-13

Family

ID=73399001

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190061114A KR102178424B1 (en) 2019-05-24 2019-05-24 Prediction Method and Apparatus for Chemical Cleaning of Membrane

Country Status (1)

Country Link
KR (1) KR102178424B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114112954A (en) * 2021-10-18 2022-03-01 中国工程物理研究院激光聚变研究中心 Method for calculating process time length of organic pollutants cleaned by low-pressure oxygen plasma

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101193902B1 (en) 2011-08-24 2012-10-29 웅진코웨이주식회사 Water-purifying system and method using membrane filtration for manufacturing purified water
KR101462565B1 (en) * 2009-12-15 2014-12-04 한국건설기술연구원 Monitoring method real-time fouling potential in Reverse Osmosis Process for Seawater Desalination and Desalination equipment having such monitoring function
KR20160130006A (en) * 2015-04-30 2016-11-10 부경대학교 산학협력단 Realtime sensing method for membrane abnormal state
WO2018026020A1 (en) * 2016-08-05 2018-02-08 東レ株式会社 Computer-readable recording medium on which clogging location specification program for separation membrane module is recorded, water production system, and water production method
KR101901343B1 (en) * 2017-04-28 2018-09-27 주식회사 멤텍리서치앤컨설팅 Apparatus and method for cleaning reverse osmosis membrane

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101462565B1 (en) * 2009-12-15 2014-12-04 한국건설기술연구원 Monitoring method real-time fouling potential in Reverse Osmosis Process for Seawater Desalination and Desalination equipment having such monitoring function
KR101193902B1 (en) 2011-08-24 2012-10-29 웅진코웨이주식회사 Water-purifying system and method using membrane filtration for manufacturing purified water
KR20160130006A (en) * 2015-04-30 2016-11-10 부경대학교 산학협력단 Realtime sensing method for membrane abnormal state
WO2018026020A1 (en) * 2016-08-05 2018-02-08 東レ株式会社 Computer-readable recording medium on which clogging location specification program for separation membrane module is recorded, water production system, and water production method
KR101901343B1 (en) * 2017-04-28 2018-09-27 주식회사 멤텍리서치앤컨설팅 Apparatus and method for cleaning reverse osmosis membrane

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114112954A (en) * 2021-10-18 2022-03-01 中国工程物理研究院激光聚变研究中心 Method for calculating process time length of organic pollutants cleaned by low-pressure oxygen plasma
CN114112954B (en) * 2021-10-18 2024-04-19 中国工程物理研究院激光聚变研究中心 Process duration calculation method for cleaning organic pollutants by low-pressure oxygen plasma

Similar Documents

Publication Publication Date Title
Warsinger et al. Inorganic fouling mitigation by salinity cycling in batch reverse osmosis
Warsinger et al. Theoretical framework for predicting inorganic fouling in membrane distillation and experimental validation with calcium sulfate
Yan et al. Reverse osmosis brine treatment using direct contact membrane distillation: Effects of feed temperature and velocity
KR101394237B1 (en) System for controlling membrane process for desalination using multi-water source as feed water and sea water as draw solution, and method for the same
Duong et al. Optimising thermal efficiency of direct contact membrane distillation by brine recycling for small-scale seawater desalination
Thiruvenkatachari et al. Application of integrated forward and reverse osmosis for coal mine wastewater desalination
Curcio et al. Membrane technologies for seawater desalination and brackish water treatment
Riera et al. Nanofiltration of UHT flash cooler condensates from a dairy factory: Characterisation and water reuse potential
Guerra et al. Development of a techno-economic model to compare ceramic and polymeric membranes
Ansari et al. Performance evaluation of a brackish water reverse osmosis pilot-plant desalination process under different operating conditions: Experimental study
Li et al. Ultrafiltration fouling: Impact of backwash frequency and air sparging
Park et al. Application of nanofiltration pretreatment to remove divalent ions for economical seawater reverse osmosis desalination
Abbasi-Garravand et al. Role of two different pretreatment methods in osmotic power (salinity gradient energy) generation
Al-Rawajfeh et al. Integrated salts precipitation and nano-filtration as pretreatment of multistage flash desalination system
Lee et al. Low-pressure RO membrane desalination of agricultural drainage water
Ruiz-García et al. Performance evaluation and boron rejection in a SWRO system under variable operating conditions
Shahzad et al. Draw solution recovery using direct contact membrane distillation (DCMD) from osmotic membrane bioreactor (Os-MBR)
KR102178424B1 (en) Prediction Method and Apparatus for Chemical Cleaning of Membrane
Jeon et al. An optimal design approach of forward osmosis and reverse osmosis hybrid process for seawater desalination
Abbasi-Garravand et al. Investigation of the fouling effect on a commercial semi-permeable membrane in the pressure retarded osmosis (PRO) process
Peters et al. Exploring the limitations of osmotically assisted reverse osmosis: Membrane fouling and the limiting flux
Hafiz et al. Techno-economic assessment of forward osmosis as a pretreatment process for mitigation of scaling in multi-stage flash seawater desalination process
Lee et al. Evaluation of membrane-based desalting processes for RO brine treatment
Elsayed et al. Experimental investigation on the performance of a small reverse osmosis unit
Altaee Theoretical study on feed water designs to reverse osmosis pressure vessel

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant