KR102155613B1 - A method for producing the higher alkene from butene by using mesoporous aluminosilicate catalyst - Google Patents

A method for producing the higher alkene from butene by using mesoporous aluminosilicate catalyst Download PDF

Info

Publication number
KR102155613B1
KR102155613B1 KR1020170116985A KR20170116985A KR102155613B1 KR 102155613 B1 KR102155613 B1 KR 102155613B1 KR 1020170116985 A KR1020170116985 A KR 1020170116985A KR 20170116985 A KR20170116985 A KR 20170116985A KR 102155613 B1 KR102155613 B1 KR 102155613B1
Authority
KR
South Korea
Prior art keywords
butene
catalyst
range
producing
reaction
Prior art date
Application number
KR1020170116985A
Other languages
Korean (ko)
Other versions
KR20190029912A (en
Inventor
전종기
이동건
김현아
Original Assignee
공주대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 공주대학교 산학협력단 filed Critical 공주대학교 산학협력단
Priority to KR1020170116985A priority Critical patent/KR102155613B1/en
Publication of KR20190029912A publication Critical patent/KR20190029912A/en
Application granted granted Critical
Publication of KR102155613B1 publication Critical patent/KR102155613B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • C07C2/08Catalytic processes
    • C07C2/12Catalytic processes with crystalline alumino-silicates or with catalysts comprising molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/46Iron group metals or copper
    • B01J35/1023
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/617500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • C07C2/08Catalytic processes
    • C07C2/24Catalytic processes with metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00548Flow
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • C07C2529/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11 containing iron group metals, noble metals or copper
    • C07C2529/46Iron group metals or copper

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 부텐의 소중합반응을 통해서 고급 알켄을 제조하는 방법에 관한 것으로, 더욱 상세하게는 중간기공의 알루미노실리케이트 촉매와 니켈이 담지된 중간기공의 알루미노실리케이트를 사용하여 부텐의 소중합반응을 촉진시켜서 항공유 영역의 고급 알켄을 제조하는 방법에 관한 것이다.
본 발명에 따르면, 중간기공의 알루미노실리케이트 촉매와 니켈이 담지된 중간기공의 알루미노실리케이트 촉매는 기존에 사용된 촉매에 비하여 부텐의 전환율과 항공유 영역의 고급 알켄(C8 ~ C16 범위의 알켄) 수율의 향상에 효과적이다. 본 발명은 부텐을 소중합하여 항공유 영역의 고급 알켄(C8 ~ C16 범위의 알켄)을 제조하는데 우수한 성능을 보이므로 산업적으로 유용할 것으로 기대된다.
The present invention relates to a method for producing a high-grade alkene through a micropolymerization reaction of butene, and more particularly, a micropolymerization reaction of butene using a mesoporous aluminosilicate catalyst and a nickel-supported mesoporous aluminosilicate It relates to a method of producing high-grade alkenes in the area of aviation fuel by promoting
According to the present invention, the mesoporous aluminosilicate catalyst and the nickel-supported mesoporous aluminosilicate catalyst have a conversion rate of butene and higher alkenes (alkenes in the range of C 8 to C 16) compared to conventional catalysts. ) It is effective in improving the yield. The present invention is expected to be industrially useful because it exhibits excellent performance in producing high-grade alkenes (alkenes in the C 8 ~ C 16 range) in the aviation oil field by micropolymerization of butene.

Description

중간기공의 알루미노실리케이트 촉매를 이용한 부텐으로부터 고급 알켄 제조방법{A method for producing the higher alkene from butene by using mesoporous aluminosilicate catalyst}A method for producing the higher alkene from butene by using mesoporous aluminosilicate catalyst}

본 발명은 부텐의 소중합반응을 통해서 고급 알켄을 제조하는 방법에 관한 것으로, 더욱 상세하게는 중간기공의 알루미노실리케이트 촉매와 니켈이 담지된 중간기공의 알루미노실리케이트를 사용하여 부텐의 소중합반응을 촉진시켜서 항공유 영역의 고급 알켄을 제조하는 방법에 관한 것이다.The present invention relates to a method for producing a high-grade alkene through a micropolymerization reaction of butene, and more particularly, a micropolymerization reaction of butene using a mesoporous aluminosilicate catalyst and a nickel-supported mesoporous aluminosilicate It relates to a method of producing high-grade alkenes in the area of aviation fuel by promoting

바이오매스를 원료로 활용한 항공유 합성에 관한 연구가 주목을 받고 있다. 바이오매스를 원료로 사용하여 알코올을 제조하고, 알코올로부터 항공유를 제조하기 위한 Alcohol to Jet(ATJ) 공정이 최근 들어 관심을 끌기 시작했다. 특히 부탄올을 원료로 사용하여 항공유를 제조하는 공정이 주목을 받고 있는데, 이 공정은 부탄올의 탈수반응을 통한 부텐 제조, 생성된 부텐의 소중합 반응에 의한 항공유 범위의 고급 알켄(C8 ~ C16 범위의 올레핀) 제조, 그리고 고급 알켄의 수소화 반응 등을 거쳐야 한다. Research on the synthesis of jet fuel using biomass as a raw material is attracting attention. The Alcohol to Jet (ATJ) process for producing alcohol using biomass as a raw material and making jet fuel from alcohol has recently started to attract attention. In particular, the process of manufacturing aviation oil using butanol as a raw material is attracting attention, and this process is a high-grade alkene (C 8 ~ C 16) in the range of aviation oil by the production of butene through the dehydration reaction of butanol and micropolymerization of the produced butene. Range of olefins), and the hydrogenation of higher alkenes.

부텐의 소중합반응에 대해서는 균일계 촉매 또는 제올라이트 등의 불균일계 산 촉매를 사용할 수 있다. 미국특허 제8,395,007호에서는 촉매로 비스(시클로펜타디에닐)지르코늄 염화물을 사용하여, 1-부텐으로부터 디젤유분 범위의 고급알켄을 합성하였다고 보고하였으나, 균일계 촉매를 사용하였기 때문에 촉매 회수 및 재사용이 어렵다는 문제점이 있다. For the micropolymerization reaction of butene, a homogeneous catalyst or a heterogeneous acid catalyst such as zeolite may be used. U.S. Patent No. 8,395,007 reported that bis(cyclopentadienyl)zirconium chloride was used as a catalyst to synthesize higher alkenes ranging from 1-butene to diesel oil, but it was difficult to recover and reuse the catalyst because a homogeneous catalyst was used. There is a problem.

미국특허 제9,732,295호에서는 촉매로 지르코늄메탈로센을 사용하여, 1-부텐으로부터 디젤유분 범위의 고급알켄을 합성하였다고 보고하였으나, 균일계 촉매를 사용하였기 때문에 촉매 회수 및 재사용이 어렵다는 문제점이 있다.U.S. Patent No. 9,732,295 reported that zirconium metallocene was used as a catalyst to synthesize higher alkenes ranging from 1-butene to diesel oil, but there is a problem in that it is difficult to recover and reuse the catalyst because a homogeneous catalyst is used.

미국특허 제4,227,992호와 미국 특허 제4,211,640호는 올레핀 소중합 공정을 위한 촉매로서 ZSM-11을 청구하고 ZSM-12, ZSM-21 및 모데나이트와 같은 다른 미세기공 제올라이트를 사용 가능하다고 보고하였다. 영국 특허 제2,106,131호 및 영국 특허 제2,106,533호는 경질 올레핀의 소중합 반응에 미세기공 제올라이트인 ZSM-5 및 ZSM-11를 사용하는 방법을 보고하였다. WO93/082780에는 미세기공 제올라이트 ZSM-23을 촉매로 사용하여 부텐의 소중합 반응을 수행하는 방법이 제시되어 있다. 미국특허 제9,550,706호에는 미세기공 제올라이트인  ITQ-39 촉매를 사용하여 부텐으로부터 고급알켄을 제조하는 방법이 기술되어 있다. 이상에서 언급한 미세기공 제올라이트 촉매들은 기공의 크기가 작기 때문에 기공 내부에서 반응물과 생성물의 확산이 제한을 받을 가능성이 높고 코크의 생성 가능성이 높다는 문제점이 있다.U.S. Patent No. 4,227,992 and U.S. Patent No. 4,211,640 claim ZSM-11 as a catalyst for the olefin micropolymerization process and report that other microporous zeolites such as ZSM-12, ZSM-21 and mordenite can be used. British Patent No. 2,106,131 and British Patent No. 2,106,533 report a method of using microporous zeolites, ZSM-5 and ZSM-11, in the micropolymerization reaction of light olefins. WO93/082780 discloses a method of performing a micropolymerization reaction of butene using microporous zeolite ZSM-23 as a catalyst. U.S. Patent No. 9,550,706 describes a method for producing higher alkenes from butene using a microporous zeolite   ITQ-39 catalyst. Since the microporous zeolite catalysts mentioned above have a small pore size, there is a problem that the diffusion of reactants and products within the pores is likely to be limited, and the possibility of coke generation is high.

이에, 본 발명자들은 상술한 문제를 해결하기 위하여 연구 노력한 결과, 불균일계 촉매인 중간기공의 알루미노실리케이트 촉매와 니켈이 담지된 중간기공의 알루미노실리케이트를 사용하여 부텐의 소중합 반응을 촉진시켜서 항공유 영역의 고급 알켄(C8 ~ C16 범위의 알켄)을 고수율로 제조 할 수 있음을 확인함으로써 본 발명을 완성하게 되었다. Accordingly, the present inventors have made efforts to solve the above-described problem, and as a result, by using a mesoporous aluminosilicate catalyst, which is a heterogeneous catalyst, and a mesoporous aluminosilicate, which is supported by nickel, the micropolymerization reaction of butene is accelerated. The present invention was completed by confirming that high-grade alkenes (alkenes in the C 8 ~ C 16 range) can be prepared in high yield.

따라서, 본 발명의 목적은 중간기공의 알루미노실리케이트 촉매와 니켈이 담지된 중간기공의 알루미노실리케이트를 사용하여 부텐의 소중합반응을 촉진시켜서 항공유 영역의 고급 알켄을 제조하는 방법을 제공하는 데 있다.Accordingly, it is an object of the present invention to provide a method for producing high-grade alkenes in the aviation oil domain by promoting the micropolymerization reaction of butene using a mesoporous aluminosilicate catalyst and a nickel-supported mesoporous aluminosilicate. .

다만, 본 발명이 이루고자 하는 기술적 과제들은 이상에서 언급한과제들로 제한되지 않으며, 또 다른 기술적 과제들은 아래의 기재로부터 평균적 기술자에게 명확하게 이해될 수 있을 것이다.However, the technical problems to be achieved by the present invention are not limited to the above-mentioned problems, and other technical problems will be clearly understood by the average engineer from the following description.

상기 목적을 달성하기 위하여 본 발명의 일 구현예는 중간기공의 알루미노 실리케이트가 고정 촉매상으로 충진된 반응기에 부텐을 반응물로 통과시켜 소중합반응을 실시하여 부텐으로부터 항공유 영역의 고급 알켄(C8 ~ C16 범위의 알켄)을 제조하는 방법을 제공하는 것이다. In order to achieve the above object, an embodiment of the present invention is to perform a micropolymerization reaction by passing butene as a reactant in a reactor filled with a mesoporous alumino silicate as a fixed catalyst bed, thereby performing a micropolymerization reaction from butene to a high-grade alkene (C 8 It is to provide a method of preparing an alkene in the range of ~ C 16 ).

본 발명의 다른 일 구현예는 니켈이 담지된 중간기공의 알루미노 실리케이트가 고정 촉매상으로 충진된 반응기에 부텐을 반응물로 통과시켜 소중합반응을 실시하여 부텐으로부터 항공유 영역의 고급 알켄(C8 ~ C16 범위의 알켄)을 제조하는 방법을 제공하는 것이다. Another embodiment of the present invention is to carry out a micropolymerization reaction by passing butene as a reactant in a reactor filled with nickel-supported mesoporous alumino silicate as a fixed catalyst bed, thereby performing a micropolymerization reaction from butene to high-grade alkenes (C 8 ~ C 16 range alkene) to provide a method for preparing.

기타 본 발명의 구현예들의 구체적인 사항은 이하의 상세한 설명에 포함되어 있다.Other specifics of the embodiments of the present invention are included in the detailed description below.

본 발명에 따르면, 중간기공의 알루미노실리케이트 촉매와 니켈이 담지된 중간기공의 알루미노실리케이트 촉매의 기공의 크기가 2 ~ 10㎚이어서 부텐 분자 또는 부텐 소중합체 분자의 촉매 기공 내의 확산이 빨라서 촉매 기공 내의 표면 활성점에 도달하기 용이하고 코크의 생성에 의한 기공 막힘현상을 지연시킬 수 있는 촉매를 제조할 수 있었으며, 기존에 사용된 촉매에 비하여 부텐의 전환율과 항공유 영역의 고급 알켄(C8 ~ C16 범위의 알켄) 수율의 향상에 효과적이었다. 따라서 본 발명에 따른 방법은 부텐을 소중합하여 항공유 영역의 고급 알켄(C8 ~ C16 범위의 알켄)을 제조하는데 우수한 성능을 보이므로 산업적으로 유용할 것으로 기대된다.According to the present invention, the pores of the mesoporous aluminosilicate catalyst and the mesoporous aluminosilicate catalyst supported by nickel are 2 to 10 nm, so that the butene molecules or butene oligomer molecules diffuse rapidly in the catalyst pores It was possible to manufacture a catalyst that could easily reach the surface active point in the inside and delay the pore clogging caused by the formation of coke, and the conversion of butene and high-grade alkenes (C 8 ~ C) in the aviation oil range compared to the existing catalysts. 16 range of alkenes) was effective in improving the yield. Therefore, the method according to the present invention is expected to be industrially useful because it exhibits excellent performance in producing high-grade alkenes (alkenes in the C 8 ~ C 16 range) in the aviation oil field by micropolymerization of butene.

이하, 본 발명을 상세히 설명하면 다음과 같다. Hereinafter, the present invention will be described in detail.

전술한 바와 같이, 본 발명은 중간기공의 알루미노실리케이트가 고정 촉매상으로 충진된 반응기에 부텐을 반응물로 통과시켜 소중합반응을 실시하여 부텐으로부터 항공유 영역의 고급 알켄(C8 ~ C16 범위의 알켄)을 제조하는 방법에 관한 것이다. As described above, the present invention carries out micropolymerization reaction by passing butene as a reactant in a reactor filled with mesoporous aluminosilicate in a fixed catalyst bed, and high-grade alkenes (C 8 ~ C 16 range from butene) Alkenes).

본 발명에서 촉매는 중간기공의 알루미노실리케이트 촉매와 니켈이 담지된 중간기공의 알루미노실리케이트 촉매이다. 본 발명에 따른 중간기공 알루미노 실리케이트 촉매는 표면적이 600m2/g ~ 1000m2/g이고, ZSM-5 단위구조로 구성되어 있어서 산점을 보유하기 때문에 소중합 반응을 촉진시킬 수 있고, 기공의 크기가 2 ~ 10㎚이어서 부텐 분자 또는 부텐 소중합체 분자의 촉매 기공 내의 확산이 빨라서 촉매 기공 내의 표면 활성점에 도달하기 용이하다는 장점이 있다. 또한, 니켈이 담지된 중간기공의 알루미노실리케이트 촉매는 상기 메조기공 알루미노 실리케이트 촉매의 장점과 더불어서 강한 세기의 산점을 보유하고 있어서 소중합 반응을 효과적으로 촉진시킬 수 있다는 장점이 있다. In the present invention, the catalyst is a mesoporous aluminosilicate catalyst and a mesoporous aluminosilicate catalyst supported by nickel. The mesoporous alumino silicate catalyst according to the present invention has a surface area of 600 m 2 /g ~ 1000 m 2 /g, and is composed of a ZSM-5 unit structure, so it has an acid point, so it can promote the micropolymerization reaction, and the pore size Since is 2 to 10 nm, diffusion of butene molecules or butene oligomer molecules in the pores of the catalyst is fast, so that it is easy to reach a surface active point in the pores of the catalyst. In addition, the nickel-supported mesoporous aluminosilicate catalyst has the advantage of being able to effectively promote the micropolymerization reaction because it has a strong acid point in addition to the mesoporous aluminosilicate catalyst.

본 발명에서 니켈이 담지된 중간기공의 알루미노실리케이트 촉매는 니켈의 담지량이 10 wt% 미만인 촉매가 바람직하게 사용될 수 있으며, 더욱 바람직하게는, 5 wt% 미만인 촉매가 사용된다. 여기서 니켈의 담지량을 10 wt% 이상인 촉매를 사용하면 니켈에 의해 중간기공의 알루미노실리케이트 촉매의 기공이 막혀서 촉매의 표면적과 기공크기가 큰 폭으로 감소하는 문제점으로 인하여 바람직하지 않게 된다.In the present invention, as the nickel-supported mesoporous aluminosilicate catalyst, a catalyst having a supported amount of nickel of less than 10 wt% may be preferably used, and more preferably, a catalyst having less than 5 wt% is used. Here, if a catalyst having a supported amount of nickel of 10 wt% or more is used, the pores of the mesoporous aluminosilicate catalyst are blocked by nickel, and the surface area and pore size of the catalyst are greatly reduced.

상기 중간기공의 알루미노실리케이트 촉매와 니켈이 담지된 중간기공의 알루미노실리케이트 촉매는, 1-부텐, 2-부텐, 또는 1-부텐과 2-부텐의 혼합물을 반응물로 이용한 소중합반응에 다음과 같은 반응조건에서 적용될 수 있다. The mesoporous aluminosilicate catalyst and the mesoporous aluminosilicate catalyst on which nickel is supported were subjected to a small polymerization reaction using 1-butene, 2-butene, or a mixture of 1-butene and 2-butene as a reactant. It can be applied under the same reaction conditions.

본 발명에서 중간기공의 알루미노실리케이트와 니켈이 담지된 중간기공의 알루미노실리케이트를 사용하여 부텐의 소중합 반응을 촉진시켜서 항공유 영역의 고급 알켄을 제조하는 반응은 고정 촉매상으로 충진된 반응기에서 부텐을 반응물로 통과시켜 200℃ ~ 550℃, 바람직하게는 250℃ ~ 450℃의 반응온도에서 수행되는 데, 상기 반응온도가 200℃ 미만이면 반응활성이 낮아지고,  550℃를 초과하면 중간기공 촉매 구조에 변화가 와서 반응 활성이 낮아질 수 있다. 또한, 부텐의 유량과 촉매의 비는 WHSV(weigh hour space velocity)로 1 hr-1 ~ 50 hr-1, 더욱 바람직하게는 WHSV 5 hr-1 ~ 30 hr-1이며, 1 hr-1 미만에서는 부반응으로 인하여 선택도가 감소할 수 있고, 30 hr-1 를 초과하면 접촉시간이 너무 짧아서 활성이 낮아질 수 있다. In the present invention, the reaction of producing high-grade alkenes in the aviation oil region by promoting the micropolymerization reaction of butene using mesoporous aluminosilicate and nickel-supported mesoporous aluminosilicate is performed in a reactor filled with a fixed catalyst bed. The reaction is carried out at a reaction temperature of 200°C to 550°C, preferably 250°C to 450°C by passing through the reaction product.If the reaction temperature is less than 200°C, the reaction activity is lowered, and if it exceeds 550°C, the structure of the mesoporous catalyst The reaction activity may decrease due to changes in In addition, the ratio of the flow rate of butene and the catalyst is WHSV (weigh hour space velocity) of 1 hr -1 to 50 hr -1 , more preferably WHSV 5 hr -1 to 30 hr -1 , and less than 1 hr -1 Selectivity may decrease due to side reactions, and if it exceeds 30 hr -1 , the contact time may be too short and the activity may decrease.

본 발명에서 중간기공의 알루미노실리케이트와 니켈이 담지된 중간기공의 알루미노실리케이트를 사용하여 부텐의 소중합 반응을 촉진시켜서 항공유 영역의 고급 알켄을 제조하는 반응에 사용하는 반응기는 내경 1/4인치(inch), 길이 10㎝의 스테인레스 스틸 튜브로 제작하여 사용하였다. 부텐 저장탱크와 반응기 사이에 질량 유량 조절기를 설치하여 유량을 조절하였다. 반응기의 온도는 주문 제작한 관상로를 사용하여 조절하였으며, 액상 생성물을 받아 낸 후에 기상 생성물은 가스 크로마토그래피에 직접 연결하여 분석하였다. 하기의 수학식 1 내지 3에 의해 전환율, 선택도 및 수율을 계산하였다.In the present invention, the reactor used for the reaction of producing high-grade alkenes in the aviation oil area by promoting the micropolymerization reaction of butene using mesoporous aluminosilicate and nickel-supported mesoporous aluminosilicate is 1/4 inch inner diameter (inch), 10 cm long stainless steel tube was used. A mass flow controller was installed between the butene storage tank and the reactor to adjust the flow rate. The temperature of the reactor was controlled using a custom-made tube furnace, and after receiving the liquid product, the gaseous product was directly connected to gas chromatography for analysis. Conversion rate, selectivity, and yield were calculated by the following equations 1 to 3.

Figure 112017088829715-pat00001
Figure 112017088829715-pat00001

Figure 112017088829715-pat00002
Figure 112017088829715-pat00002

Figure 112017088829715-pat00003
Figure 112017088829715-pat00003

이하, 실시예를 통해 본 발명을 좀 더 구체적으로 설명하나, 이에 본 발명의 범주가 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail through examples, but the scope of the present invention is not limited thereto.

[비교예 1][Comparative Example 1]

고정층 연속식반응기에 미세기공 제올라이트인 HZSM-5 촉매를 1g 충진하고 1-부텐과 2-부텐이 1:1.3의 중량비로 혼합된 부텐 혼합물을 10.0g/h의 유량으로 투입하고, 350℃, 10기압에서 소중합반응 실험을 실시하였다. 반응 시작 5시간 후에 가스 크로마토그래피를 사용하여 생성물을 분석한 결과 부텐 전환율은 76.9%, C8 ~ C16 범위의 알켄 선택도는 64.9%, C8 ~ C16 범위의 알켄의 수율은 49.9%이었다. A fixed bed continuous reactor was charged with 1 g of a microporous zeolite HZSM-5 catalyst, and a butene mixture in which 1-butene and 2-butene were mixed in a weight ratio of 1:1.3 was added at a flow rate of 10.0 g/h, and 350°C, 10 A micropolymerization experiment was conducted at atmospheric pressure. As a result of analyzing the product using gas chromatography 5 hours after the start of the reaction, the butene conversion rate was 76.9%, the alkene selectivity in the range of C 8 to C 16 was 64.9%, and the yield of the alkenes in the range of C 8 to C 16 was 49.9%. .

[실시예 1][Example 1]

중간기공의 알루미노실리케이트를 사용하여 부텐혼합물의 소중합반응을 수행하는 것이다. 상기 중간기공의 알루미노실리케이트는 제조한 것을 사용하였으며, 이러한 상기 중간기공의 알루미노실리케이트의 제조 방법은 제올라이트와 염기성 수용액을 이용하여 제올라이트 골격의 중간기공의 물질을 제조하는 방법을 이용한다. It is to carry out the micropolymerization reaction of the butene mixture using mesoporous aluminosilicate. The mesoporous aluminosilicate was prepared, and the mesoporous aluminosilicate was prepared by using a zeolite and a basic aqueous solution to prepare a mesoporous material of the zeolite skeleton.

먼저, 76.5g의 증류수에 15g의 수산화나트륨을 용해하여 수산화나트륨 수용액을 제조하고, 33.8g의 HZSM-5 제올라이트(실리콘과 알루미늄의 비가 50)를 수산화나트륨 수용액에 섞어 1시간 동안 교반하여 중간기공 물질을 합성하기 위한 전구체 용액으로 사용한다. 헥사데실트리메틸암모늄브로마이드 69g을 1050g의 증류수에 용해하여 계면활성제 용액을 준비하고, 상기 계면활성제 용액을 HZSM-5 제올라이트가 포함된 용액에 한 방울씩 떨어뜨려 첨가하면서 24시간 동안 교반한다. 100℃ 오븐에서 교반 없이 12시간 동안 수열합성 반응한 후, 실온에서 50% 초산으로 pH 10을 맞추고 100 오븐에서 12시간 건조하였다. 전술한 pH 조절과 건조 과정을 2회 더 반복하였다. 이렇게 얻어진 침전물을 진공여과법으로 얻어내고 증류수로 세척하고, 100℃ 오븐에서 24시간 건조하였다. 전술한 세척과 건조 과정을 2회 더 반복한다. 에탄올로 세척하여 잔존한 계면활성제를 제거하고, 100℃ 오븐에서 24시간 건조한 후, 550℃에서 3시간 동안 소성한다. 1M의 염화암모늄 수용액을 이용해 이온교환을 실시하여 암모늄 치환 물질로 전환 시키고, 500℃에서 3시간 동안 소성과정을 거쳐 수소 치환 물질로 전환된 중간기공을 가지는 알루미노실리케이트(MMZZSM-5)를 얻을 수 있게 된다. First, a sodium hydroxide aqueous solution was prepared by dissolving 15 g of sodium hydroxide in 76.5 g of distilled water, and 33.8 g of HZSM-5 zeolite (a ratio of silicon to aluminum was 50) was mixed with the aqueous sodium hydroxide solution and stirred for 1 hour to form a mesoporous material. It is used as a precursor solution for synthesizing. 69 g of hexadecyltrimethylammonium bromide was dissolved in 1050 g of distilled water to prepare a surfactant solution, and the surfactant solution was added dropwise to the solution containing HZSM-5 zeolite and stirred for 24 hours. After the hydrothermal synthesis reaction in an oven at 100° C. for 12 hours without stirring, the pH was adjusted to 10 with 50% acetic acid at room temperature and dried in an oven at 100 for 12 hours. The above-described pH adjustment and drying process were repeated two more times. The precipitate thus obtained was obtained by vacuum filtration, washed with distilled water, and dried in an oven at 100° C. for 24 hours. The washing and drying process described above is repeated two more times. After washing with ethanol to remove the residual surfactant, drying in an oven at 100° C. for 24 hours, and then calcined at 550° C. for 3 hours. Aluminosilicate (MMZ ZSM-5 ) having mesopores converted into hydrogen-substituted materials is obtained through a sintering process at 500°C for 3 hours by performing ion exchange using 1M aqueous ammonium chloride solution. You will be able to.

고정층 연속식반응기에 상기 중간기공의 알루미노실리케이트(MMZZSM -5) 촉매를 1g 충진하고 1-부텐과 2-부텐이 1:1.3의 중량비로 혼합된 부텐 혼합물을 10.0g/h의 유량으로 투입하고, 350℃, 10기압에서 소중합반응 실험을 실시하였다. 반응 시작 5시간 후에 가스 크로마토그래피를 사용하여 생성물을 분석한 결과 부텐 전환율은 85.0%, C8 ~ C16 범위의 알켄의 선택도는 68.0%, C8 ~ C16 범위의 알켄의 수율은 57.8%이었다. 1g of the mesoporous aluminosilicate (MMZ ZSM- 5 ) catalyst was charged to a fixed bed continuous reactor, and a butene mixture in which 1-butene and 2-butene were mixed in a weight ratio of 1:1.3 was added at a flow rate of 10.0 g/h. Then, a small polymerization experiment was conducted at 350°C and 10 atmospheres. As a result of analyzing the product using gas chromatography 5 hours after the start of the reaction, the butene conversion rate was 85.0%, the selectivity of alkenes in the range of C 8 to C 16 was 68.0%, and the yield of alkenes in the range of C 8 to C 16 was 57.8%. Was.

[실시예 2][Example 2]

니켈이 담지된 중간기공의 알루미노실리케이트를 사용하여 부텐혼합물의 소중합반응을 수행하는 것이다. 상기 니켈이 담지된 중간기공의 알루미노실리케이트는 제조한 것을 사용하였으며, 이러한 상기 중간기공의 알루미노실리케이트의 제조 방법은 제올라이트와 염기성 수용액을 이용하여 제올라이트 골격의 중간기공의 물질을 지지체로 사용하고 이 지지체에 니켈금속을 담지하여 제조하는 방법을 이용한다.This is to carry out the micropolymerization reaction of the butene mixture by using a mesoporous aluminosilicate supported with nickel. The nickel-supported mesoporous aluminosilicate was prepared, and the mesoporous aluminosilicate was prepared using a zeolite and a basic aqueous solution, using a material of the mesopores of the zeolite skeleton as a support. A method of manufacturing by supporting nickel metal on a support is used.

먼저, 실시예 1에서 전술한 바와 동일한 방법으로 중간기공의 알루미노실리케이트(MMZZSM-5)를 제조한다. 질산니켈수화물(Nickel nitrate hexahydrate) 0,47g을 증류수 5g에 니켈 수용액을 제조한 후, 중간기공의 알루미노실리케이트(MMZZSM-5) 3g에 젖음법을 사용하여 상기 니켈 수용액을 담지하였다. 이렇게 제조한 촉매의 니켈 금속 담지량은 3wt%이다. 100℃ 오븐에서 24시간 건조한 후, 550℃에서 4시간 동안 소성과정을 거쳐 니켈이 담지된 중간기공의 알루미노실리케이트 (NiO/MMZZSM-5)촉매를 완성하였다. First, a mesoporous aluminosilicate (MMZ ZSM-5 ) was prepared in the same manner as described above in Example 1. Nickel nitrate hexahydrate (0,47 g) was prepared in 5 g of distilled water to prepare an aqueous nickel solution, and then the aqueous nickel solution was supported on 3 g of mesoporous aluminosilicate (MMZ ZSM-5 ) using a wetting method. The amount of nickel metal supported on the catalyst thus prepared is 3 wt%. After drying in an oven at 100° C. for 24 hours, a sintering process at 550° C. for 4 hours was performed to complete a mesoporous aluminosilicate (NiO/MMZ ZSM-5 ) catalyst with nickel.

고정층 연속식반응기에 상기 니켈이 담지된 중간기공의 알루미노실리케이트 (Ni/MMZZSM-5)촉매를 1g 충진하고 1-부텐과 2-부텐이 1:1.3의 중량비로 혼합된 부텐 혼합물을 10.0g/h의 유량으로 투입하고, 350℃, 10기압에서 소중합반응 실험을 실시하였다. 반응 시작 5시간 후에 가스 크로마토그래피를 사용하여 생성물을 분석한 결과 부텐 전환율은 89.4%, C8 ~ C16 범위의 알켄의 선택도는 69.1%, C8 ~ C16 범위의 알켄의 수율은 61.0 %이었다. 1g of the aluminosilicate (Ni/MMZ ZSM-5 ) catalyst of the mesoporous aluminosilicate (Ni/MMZ ZSM-5 ) on which the nickel is supported was charged to a fixed bed continuous reactor, and a butene mixture in which 1-butene and 2-butene were mixed in a weight ratio of 1:1.3 was 10.0 g. It was introduced at a flow rate of /h, and a micropolymerization experiment was conducted at 350°C and 10 atm. As a result of analyzing the product using gas chromatography 5 hours after the start of the reaction, the butene conversion rate was 89.4%, the selectivity of alkenes in the range of C 8 to C 16 was 69.1%, and the yield of alkenes in the range of C 8 to C 16 was 61.0%. Was.

  촉매 catalyst 반응온도
(℃)
Reaction temperature
(℃)
반응압력 (bar)Reaction pressure (bar) WHSV
(hr-1)
WHSV
(hr -1 )
부텐
전환율(%)
Butene
Conversion rate (%)
C8 ~ C16 범위의
알켄 선택도(%)
C 8 to C 16 range
Alkene selectivity (%)
C8 ~ C16 범위의 알켄 수율(%)Alkene yield in the range of C 8 to C 16 (%)
비교예 1Comparative Example 1 HZSM-5HZSM-5 350350 1010 1010 76.976.9 64.964.9 49.949.9 실시예 1Example 1 MMZZSM -5 MMZ ZSM -5 350350 1010 1010 85.085.0 68.068.0 57.857.8 실시예 2Example 2 Ni/MMZZSM -5 Ni/MMZ ZSM -5 350350 1010 1010 89.489.4 69.169.1 61.061.0

상기 실시예 및 비교예에 나타낸 바와 같이, 종래 부텐의 소중합반응에 사용되었던 촉매에 비하여 본 발명에 따른 촉매를 사용할 경우, 부텐의 전환율과 C8 ~ C16 범위의 알켄의 수율이 향상됨을 확인할 수 있었다.  As shown in the above Examples and Comparative Examples, when using the catalyst according to the present invention compared to the catalyst used in the conventional micropolymerization reaction of butene, it was confirmed that the conversion rate of butene and the yield of alkenes in the C 8 ~ C 16 range were improved. Could

Claims (8)

중간기공의 알루미노실리케이트 촉매가 고정 촉매 상으로 충진된 반응기에 부텐을 반응물로 통과시켜 소중합 반응을 실시하여 C8 ~ C16 범위의 알켄을 수득하며,
상기 중간기공의 알루미노실리케이트 촉매는 기공 크기가 3~10 nm이고,
1~9 wt%의 니켈이 담지된 것을 특징으로 하는 부텐으로부터 C8 ~ C16 범위의 알켄의 제조방법.
A small-pore aluminosilicate catalyst was charged with a fixed catalyst by passing butene as a reactant to carry out a micropolymerization reaction to obtain an alkene in the range of C 8 to C 16 ,
The mesoporous aluminosilicate catalyst has a pore size of 3 to 10 nm,
A method for producing alkene in the range of C 8 to C 16 from butene, characterized in that 1 to 9 wt% of nickel is supported.
제1항에 있어서, 상기 부텐은 1-부텐, 2-부텐, 또는 1-부텐과 2-부텐의 혼합물인 것을 특징으로 하는 C8 ~ C16 범위의 알켄의 제조방법.  The method of claim 1, wherein the butene is 1-butene, 2-butene, or a method for producing 1-butene and 2 of C 8 ~ C 16 range, characterized in that a mixture of butene-alkene. 제1항에 있어서, 상기 소중합 반응은 200 ℃ 내지 550 ℃의 반응온도에서 수행되는 것을 특징으로 하는 C8 ~ C16 범위의 알켄의 제조방법. The method of claim 1, wherein the predetermined polymerization method for producing a C 8 ~ C 16 range, characterized in that is carried out at a reaction temperature of 200 ℃ to 550 ℃ alkene. 제1항에 있어서, 상기 소중합 반응의 WHSV(weight hour space velocity)는 1 hr-1 내지  50 hr-1인 것을 특징으로 하는 C8 ~ C16 범위의 알켄의 제조방법. The method of claim 1, wherein the address of the polymerization WHSV (weight hour space velocity) is 1 hr -1 to 50 hr -1 in the method of producing a alkene of C 8 ~ C 16 range, characterized. 제 1항에 있어서, 상기 중간기공의 알루미노실리케이트 촉매는 ZSM-5 단위구조로 구성되는 것을 특징으로 하는 C8 ~ C16 범위의 알켄의 제조방법. The method of claim 1, wherein the aluminosilicate catalyst of the mesopores is method of producing a alkene of C 8 ~ C 16 range, characterized in that consisting of a ZSM-5 structure unit. 제5항에 있어서, 상기 중간기공의 알루미노실리케이트 촉매는 표면적이 600 내지 1000 m2/g 인 것을 특징으로 하는 C8 ~ C16 범위의 알켄의 제조방법.According to claim 5, C 8 ~ process for producing a C 16 range alkene of aluminosilicate catalysts are characterized in that a surface area of 600 to 1000 m 2 / g of the mesopores. 삭제delete 삭제delete
KR1020170116985A 2017-09-13 2017-09-13 A method for producing the higher alkene from butene by using mesoporous aluminosilicate catalyst KR102155613B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170116985A KR102155613B1 (en) 2017-09-13 2017-09-13 A method for producing the higher alkene from butene by using mesoporous aluminosilicate catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170116985A KR102155613B1 (en) 2017-09-13 2017-09-13 A method for producing the higher alkene from butene by using mesoporous aluminosilicate catalyst

Publications (2)

Publication Number Publication Date
KR20190029912A KR20190029912A (en) 2019-03-21
KR102155613B1 true KR102155613B1 (en) 2020-09-14

Family

ID=66036800

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170116985A KR102155613B1 (en) 2017-09-13 2017-09-13 A method for producing the higher alkene from butene by using mesoporous aluminosilicate catalyst

Country Status (1)

Country Link
KR (1) KR102155613B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116023535A (en) * 2021-10-25 2023-04-28 中国石油化工股份有限公司 Polymerization method of low-carbon olefin

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013540861A (en) * 2010-09-21 2013-11-07 シンフュエルズ インターナショナル,インコーポレーテッド System and method for production of liquid fuel

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011505490A (en) * 2007-12-03 2011-02-24 ジーヴォ,インコーポレイテッド Renewable composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013540861A (en) * 2010-09-21 2013-11-07 シンフュエルズ インターナショナル,インコーポレーテッド System and method for production of liquid fuel

Also Published As

Publication number Publication date
KR20190029912A (en) 2019-03-21

Similar Documents

Publication Publication Date Title
JP6084963B2 (en) Method for producing 1,3-butadiene
KR101921891B1 (en) Dual catalyst system for the production of propylene
EP1249486B1 (en) Process for obtaining a "diesel cut" fuel by the oligomerization of olefins or their mixtures
RU2656602C1 (en) One-step method of obtaining butadiene
US8609568B2 (en) Catalyst for oxidative dehydrogenation of propane to propylene
CN101684059A (en) Method for producing propylene and ethylene through catalytic cracking of olefins
KR102155613B1 (en) A method for producing the higher alkene from butene by using mesoporous aluminosilicate catalyst
CN103028435B (en) Propylene catalyst from methanol conversion and preparation method thereof
JPWO2014129248A1 (en) Method for selectively producing 1,3-butadiene from ethanol
KR101553899B1 (en) Preparation method for oligomer of dicyclopentadiene and cyclopentadiene using aluminium silicate catalyst, aluminium silicate catalyst, and preparing method for the same
JP6976679B2 (en) Methods for Producing Aromatic Hydrocarbons, P-Xylene and Terephthalic Acid
KR102090402B1 (en) A method for producing the higher alkene from butene by using desilicated pentasil structure zeolite catalyst
CN109180409B (en) Method for preparing propylene by catalyzing methanol
KR101266637B1 (en) Process for the Selective Production of 1-butene from 2-butene
CN107955639A (en) The method of six alkane cracking of carbon
KR101262549B1 (en) Preparation method mesoporous zsm-5 catalyst and production method of light olefins using the catalyst
CN103349996A (en) Catalyst and preparation method thereof
CN114054056A (en) Hydroisomerization bifunctional catalyst, and preparation method and application thereof
KR102110743B1 (en) Method for producing saturated aldehyde from 1,2-alkanediol
CN103030502B (en) The method of propylene preparation through methanol conversion
CN101590422A (en) Be used for the catalyst and the application thereof of olefin catalytic cracking to produce propylene and ethene
JP2016209881A (en) Zeolite catalyst, method for producing zeolite catalyst and method for producing lower olefin
CN107952470B (en) Synthetic method and application of composite molecular sieve
RU2635110C1 (en) Method of producing petrol factions from olefin-containing gases
CN115990513A (en) Catalyst for producing propylene by catalytic cracking of olefin, preparation method and application thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant