KR102153649B1 - 발광 다이오드 부품 - Google Patents

발광 다이오드 부품 Download PDF

Info

Publication number
KR102153649B1
KR102153649B1 KR1020157033477A KR20157033477A KR102153649B1 KR 102153649 B1 KR102153649 B1 KR 102153649B1 KR 1020157033477 A KR1020157033477 A KR 1020157033477A KR 20157033477 A KR20157033477 A KR 20157033477A KR 102153649 B1 KR102153649 B1 KR 102153649B1
Authority
KR
South Korea
Prior art keywords
layer
emitting diode
light emitting
light
diode component
Prior art date
Application number
KR1020157033477A
Other languages
English (en)
Other versions
KR20160003067A (ko
Inventor
토니 로페즈
Original Assignee
루미리즈 홀딩 비.브이.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 루미리즈 홀딩 비.브이. filed Critical 루미리즈 홀딩 비.브이.
Publication of KR20160003067A publication Critical patent/KR20160003067A/ko
Application granted granted Critical
Publication of KR102153649B1 publication Critical patent/KR102153649B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/507Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Device Packages (AREA)
  • Led Devices (AREA)

Abstract

본 발명은 상단 표면을 갖는 발광 반도체 구조물(104); 및 발광 반도체 구조물(104)로부터 광을 유도해내도록 배열되고, 복수의 층을 포함하는 마이크로-광학 다층 구조물(102)을 포함하는 발광 다이오드 부품(101)이며, 여기서 상기 반도체 구조물(104)에서 보았을 때에 순서대로 i+1번째 층이 i번째 층의 상단에 배열되고, i번째 층의 굴절률 ni가 i+1번째 층의 굴절률 ni+1보다 더 크고, i+1번째 층의 두께가 i번째 층의 두께보다 더 큰, 발광 다이오드 부품(101)에 관한 것이다. 본 발명은 또한 이러한 발광 다이오드 부품을 포함하는 발광 다이오드에 관한 것이다.

Description

발광 다이오드 부품 {A LIGHT EMITTING DIODE COMPONENT}
본 발명은 일반적으로 발광 다이오드 부품, 특히 발광 다이오드 부품의 성능을 개선하기 위해 사용되는 마이크로-광학 다층 구조물을 포함하는 발광 다이오드 부품에 관한 것이다.
반도체 기재의 발광 다이오드 (LED)는 오늘날 이용가능한 가장 효율적인 광원에 속한다. LED는 종래의 광원과 비교하여 더 긴 수명, 더 높은 광자속 효능, 더 낮은 동작 전압, 협대역 발광, 및 조립의 관점에서의 유연성(flexibility)을 제공한다.
GaN 기재의 LED는, 예를 들어 조명, 신호등, 실내/실외 디스플레이, 및 백라이팅 전자 디스플레이와 같은 고체 상태(solid state) 조명 용도에서의 고출력 광원으로서 성공적으로 사용된다.
그러나, LED에서 광을 효율적으로 커플링 아웃하는 것은 과제가 된다. 에피택셜 층은 통상적으로 공기 n공기=1 또는 유리 n유리=1.5와 비교하여 높은 굴절률을 갖는다. GaN의 굴절률 nGaN은, 예를 들어 가시 파장에서 2.3 내지 2.5 범위이다. 에피택셜 층과 주위 매체 사이의 큰 굴절률 부정합은, 에피택셜 층 내에서 발생되는 광의 대부분이 에피택셜 층과 그의 주위 매체 사이의 계면에서 산란 또는 반사되는 것을 초래한다. 계면과 연관된 비교적 좁은 탈출 콘(cone) 내에서 기울어져 진행하는 광만이 주위 매체 내로 굴절하고 에피택셜 층을 탈출한다. 다시 말하면, LED의 외부 양자 효율이 낮아서 LED의 휘도 감소를 유발한다.
이러한 상황은 LED를 사용한 백색 광 발생에 관한 경우에 훨씬 더 복잡하다. 백색 광은 일반적으로 에피택셜 층의 방출 에너지의 조정(tailoring)에 의해 발생되지 않는다. 그 대신에, 전형적으로 GaN 기재인 청색 에피택셜 층으로부터의 광은, 에피택셜 층을 둘러싸는 황색 인광체 재료의 도움으로 백색 광으로 변환된다. 주위 인광체 재료는 에피택셜 층의 청색 광의 실질적인 부분을 하향 변환시켜, 그의 색을 황색으로 변화시킨다. 따라서, LED는 청색 및 황색 광 둘 다를 방출하며, 이들은 조합되어 백색 광을 제공한다. 또 다른 접근법에서, 에피택셜 층을 다색 인광체로 둘러쌈으로써 바이올렛(violet) 또는 자외선 방출 에피택셜 층으로부터의 광이 백색 광으로 변환되었다.
에피택셜 층이 상부에 성장된 기판 상에 전형적으로 침착되는 인광체 재료는, 기판과 인광체 재료 사이의 계면에서의 산란 뿐만 아니라 예를 들어 공기/인광체 재료 계면에서의 광의 후방 산란으로 인해 추가의 광 손실을 야기한다.
따라서, LED의 성능을 개선하기 위해, 에피택셜 층으로부터 방출되는 광을 LED로부터 유도해낼 때의 더 양호한 효율이 필요하다.
본 발명의 목적은 상기 논의된 문제를 해결하거나 또는 적어도 저감시키는 것이다.
특히, 본 발명의 제1 양태에 따르면, 상단 표면을 갖는 발광 반도체 구조물, 및 상기 발광 반도체 구조물로부터 광을 유도해내도록 배열되고, 복수의 층을 포함하는 마이크로-광학 다층 구조물을 포함하는 발광 다이오드 부품이며, 여기서 상기 반도체 구조물에서 보았을 때에 순서대로 i+1번째 층이 i번째 층의 상단에 배열되고, i번째 층의 굴절률 ni가 i+1번째 층의 굴절률 ni+1보다 더 큰, 발광 다이오드 부품이 제공된다. i의 값은 양의 정수의 세트로부터 선택되며, 따라서 i는 1, 2, 3, 4 등일 수 있다. 따라서, 본 발명은 국부적인 굴절률 정합 기법을 활용하여 발광 다이오드 부품 내에서의 광 포획(light trapping)을 감소시켜 개선된 광 유도(light guidance) 및 광 출력을 제공한다. 또 다른 이점은, 예를 들어, 돔 렌즈(dome lens)를 사용하여, 발광 다이오드 부품의 벌키 캡슐화(bulky encapsulation)에 대한 필요성이 감소된다는 점이다. 이는 결국 방출체의 부피 크기 뿐만 아니라 그의 관련 비용을 감소시킨다.
본 발명의 한 실시예에 따르면, i+1번째 층의 두께는 i번째 층의 두께보다 더 크다. 이는 내부 전반사를 감소시키며, 이는 광 추출 효율을 증가시키고, 따라서 광 출력 성능을 개선한다. 한 실시예에서, i+1번째 층의 두께는 i번째 층의 두께보다 10% 더 크다. 한 실시예에서, i번째 층에 대한 i+1번째 층의 두께 증가는 i번째 층에 대한 i+1번째 층의 굴절률의 상대적인 증가에 의존한다.
본 발명의 한 실시예에 따르면, i번째 층의 두께 ti는,
Figure 112015114515478-pct00001
에 의해 주어지며, 여기서 A는 다층 구조물의 상단 표면 면적이다.
충분히 두꺼운 마이크로-광학 층의 사용은 내부 전반사를 감소시키 광 아웃커플링(light outcoupling)을 증진시킨다.
본 발명의 한 실시예에 따르면, 상기 반도체 구조물에서 보았을 때에 상기 다층 구조물의 첫번째 층은 상기 반도체 구조물의 상단 영역의 굴절률과 실질적으로 동일한 굴절률을 갖는다. 그에 의해, 첫번째 층과 반도체 구조물 사이의 굴절률에서의 감소된 불연속성이 후방 반사를 감소시킴에 따라, 다층 구조물 내로의 개선된 광 커플링이 달성된다. 그에 의해 발광 다이오드 부품 내에서의 광 포획이 감소된다. 한 실시예에서, 다층 구조물의 굴절률은 상기 반도체 구조물의 상단 영역의 굴절률로부터 10% 미만으로 벗어난다. 또 다른 실시예에서, 다층 구조물의 굴절률은 상기 반도체 구조물의 상단 영역의 굴절률로부터 5% 미만으로 벗어난다. 또 다른 실시예에서, 다층 구조물의 굴절률은 상기 반도체 구조물의 상단 영역의 굴절률로부터 1% 미만으로 벗어난다.
본 발명의 한 실시예에 따르면, 발광 다이오드 부품은 파장 변환 층을 더 포함한다. 이러한 실시예는 발광 다이오드 부품에 의해 발생되는 광의 스펙트럼 범위를 조절하기 위한 수단을 제공한다. 다시 말하면, 반도체 구조물에 의해 발생되는 제1 파장 범위의 직사광(direct light)은 파장 변환 층에 의해 제2 파장 범위의 광으로 변환된다. 단일 유닛인 반도체 구조물 및 파장 변환 층은, 효율적인 조명원을 제공하기 위한 어레이 또는 다른 구성에서의 발광 다이오드의 조립을 더욱 간소화한다.
파장 변환 층은 제1 파장 범위의 광을 제2 파장 범위의 광으로 변환할 수 있는 재료를 포함하는 층을 의미한다.
어구 직사광은 어떠한 이차적인 광학적 프로세스도 없이 반도체 구조물에 의해 직접 발생된 광으로서 이해되어야 한다.
한 실시예에 따르면, 파장 변환 층은 인광체 재료, 양자점 및/또는 형광 염료를 포함한다. 인광체 재료는, 본 발명의 문맥에서, 발광, 형광 또는 인광 프로세스에서의 여기 후에 발광을 나타내는 재료 또는 물질로서 정의된다.
또 다른 실시예에 따르면, 인광체 재료는 다결정질 플레이트, 바람직하게는 Ce(III) 도핑된 가돌리늄 알루미늄 가넷 (Y, GdAG:Ce)을 포함하는 다결정질 플레이트를 포함한다. YAG:Ce의 다결정질 세라믹 플레이트는 고도로 제어가능한 광학적 및 기하학적 특성을 가지며, 이는 발광 다이오드 부품의 개선된 성능을 허용한다는 이점이 있다. 세라믹 플레이트는 재료 내에서의 산란이 적도록 하는 재료 구조를 가지며, 이는 발광 다이오드 부품의 개선된 제조를 허용하고 높은 패키지 효율을 또한 허용한다.
본 발명의 한 실시예에 따르면, 다층 구조물은 상기 파장 변환 층의 상단에 배열된다. 그에 의해 파장 변환 층으로부터 광을 커플링 아웃하기 위한 효율적인 수단을 제공하는 것이 가능하다.
본 발명의 한 실시예에 따르면, 다층 구조물은 상기 파장 변환 층 아래에 배열된다. 그에 의해 상기 발광 반도체 구조물을 향해 반사되는 상기 파장 변환 층으로부터의 광량을 감소시키는 것이 가능하다.
본 발명의 또 다른 실시예에 따르면, 발광 다이오드 부품은 추가의 마이크로-광학 다층 구조물을 더 포함하며, 여기서 상기 파장 변환 층은 상기 마이크로-광학 다층 구조물과 상기 추가의 마이크로-광학 다층 구조물 사이에 배열된다. 그에 의해 파장 변환 층으로부터 광을 커플링 아웃하기 위한 효율적인 수단을 제공하고, 상기 발광 반도체 구조물을 향해 다시 반사되는 상기 파장 변환 층으로부터의 광량을 감소시키는 것이 가능하다.
또 다른 실시예에 따르면, 발광 다이오드 부품은 기판, 바람직하게는 사파이어 기판을 더 포함한다. 발광 반도체 구조물이 상단에 제조된 기판은 제거될 필요가 없다는 이점이 있다. 이는 발광 다이오드 부품의 제조를 간소화하며, 이는 비용 효율적인 제조를 허용한다. 사파이어 기판은, 예를 들어 GaN 기재의 반도체 구조물을 에피택셜 성장시키기에 적합한 저손실 투명 재료이다.
본 발명의 한 실시예에 따르면, 발광 다이오드 부품은 상기 반도체 구조물의 측면 표면에 인접하여 배열된 측면 층을 더 포함한다. 측면 층은 발광 다이오드 부품의 광 출력의 설계시에 더 양호한 설계 유연성을 제공한다.
또 다른 실시예에 따르면, 측면 층은 파장 변환 재료, 바람직하게는 인광체 재료, 양자점 및/또는 형광 염료를 포함한다. 이는 증진된 측면 발광, 및 그에 의한 발광 다이오드 부품의 더 양호한 광 균일성을 허용하며, 이는 백라이팅과 같은 조명 용도에 유리할 수 있다.
본 발명의 또 다른 실시예에 따르면, 측면 층은 광 반사 코팅 재료, 바람직하게는 고반사율 금속 또는 고확산반사율 플루오로중합체를 포함하는 광 반사 코팅 재료를 포함한다. 그에 의해 발광 다이오드 부품의 개선된 광 유도가 획득될 수 있다.
본 발명의 제2 양태에 따르면, 서브-마운트 상에 배열되는 상기 언급된 발광 다이오드 부품을 포함하는 발광 다이오드 (LED)가 제공된다.
본 발명의 제3 양태에 따르면, 다층 구조물이 제공되며, 상단 표면을 갖는 발광 반도체 구조물로부터 광을 유도해내도록 배열되고, 다층 구조물은 복수의 층을 포함하는 다층 구조물이며, 여기서 상기 반도체 구조물에서 보았을 때에 순서대로 i+1번째 층이 i번째 층의 상단에 배열되고, i번째 층의 굴절률 ni가 i+1번째 층의 굴절률 ni+1보다 더 큰, 다층 구조물이 제공된다.
본 발명은 청구범위에 인용된 특징의 모든 가능한 조합에 관한 것임에 유의한다.
이제, 본 발명의 이들 및 다른 양태가 본 발명의 실시예를 나타내는 첨부 도면을 참조하여 더욱 상세하게 기재될 것이다.
도면에 도시된 바와 같이, 층 및 영역의 크기는 예시적인 목적을 위해 과장되어 있으며, 따라서 본 발명의 실시예의 일반적 구조를 도시하기 위해 제공되어 있다. 동일한 도면 부호는 전반에 걸쳐 동일한 요소를 지칭한다.
도 1a는 본 발명에 따른 LED의 실시예의 개략 단면도이다.
도 1b는 본 발명에 따른 LED의 대안적 실시예의 개략 단면도이다.
도 1c는 본 발명에 따른 LED의 또한 대안적 실시예의 개략 단면도이다.
도 1d는 본 발명에 따른 LED의 다른 대안적 실시예의 개략 단면도이다.
도 2는 본 발명에 따른 LED의 또한 대안적 실시예의 개략 단면도이다.
도 3a는 본 발명에 따른 LED의 추가 실시예의 개략 단면도이다.
도 3b는 본 발명에 따른 LED의 대안적 실시예이다.
이제, 본 발명은 본 발명의 현재 바람직한 실시예를 도시하는 첨부된 도면을 참조하여 하기에 더욱 충분히 기재될 것이다. 그러나, 본 발명은 많은 상이한 형태로 구현될 수 있고, 본원에 제시된 실시예에 제한되는 것으로 해석되지 않아야 하며; 오히려, 이들 실시예는 철저성 및 완전성을 위해 제공되고, 통상의 기술자에게 본 발명의 범주를 충분히 전달한다.
도 1a는 본 발명에 따른 LED(100)의 개략 단면도를 도시한다. LED는, 반도체 구조물(104)이 광을 방출하도록 배열되고, 마이크로-광학 다층 구조물(102)이 반도체 구조물(104)로부터 광을 유도해내도록 배열된, 발광 다이오드 부품(101)을 포함한다. 발광 다이오드 부품은 또한 서브-마운트(106)에 부착된다. 마이크로-광학 다층 구조물(102)은 복수의 층(102a 내지 102d)을 포함한다. 상기 반도체 구조물(104)에서 보았을 때에 순서대로 상기 복수의 층(102a 내지 102d) 중 i+1번째 층은 i번째 층의 상단에 배열된다. i의 값이 양의 정수의 세트로부터 선택되며, 따라서 i는 1, 2, 3, 4 등일 수 있다. 예를 들어, 이러한 실시예에서 2번째 층이 1번째 층 상에 제공되고, 3번째 층이 2번째 층 상에 제공되고, 4번째 층이 3번째 층 상에 제공된다. i번째 층의 굴절률 ni는 i+1번째 층의 굴절률 ni+1보다 더욱 더 크다. 게다가, i+1번째 층의 두께는 i번째 층의 두께보다 더 크다. 이는 내부 전반사를 감소시키며, 이는 광 추출 효율을 증가시키고, 따라서 광 출력 성능을 개선한다. 실시예에서, i번째 층의 두께에 대한 i+1번째 층의 두께의 증가는 i번째 층에 대한 i+1번째 층의 굴절률의 상대적인 증가에 의존한다. 예를 들어, i번째 층에 대한 i+1번째 층의 굴절률의 더 큰 증가는 i번째 층의 두께에 대한 i+1번째 층의 두께의 더 큰 증가를 유발한다. 실제 예에서, i+1번째 층은 1.65의 굴절률을 갖고, i번째 층은 1.55의 굴절률을 가지며, 이때 i+1번째 층의 두께는 약 440㎛이고, i번째 층의 두께는 약 360㎛이다. 굴절률에 따라 최적화되는 증가된 두께는 각도 전계 방출(angular field emission)을 변화시킬 수 있으며, 이는 측면 발광을 필요로 하는 많은 응용에 유익하도록 더 넓어질 수 있다.
추가 실시예에서, i번째 층의 두께 ti는,
Figure 112015114515478-pct00002
에 의해 주어지며, 여기서 A는 마이크로-광학 다층 구조물(102)의 상단 표면 면적이다. 다층 구조물(102)의 표면적은 발광 반도체 구조물(104)의 상단 표면의 표면적과 실질적으로 동일하다.
도 1a에서, 반도체 구조물(104)은 플립-칩 (FC) 구성으로 도시되어 있다. 반도체 구조물(104)은 에피택셜 층(104a) 및 기판(104b)을 포함한다. 에피택셜 층(104a)은, 적어도 하나의 n-형 GaN 층, 하나의 GaN 기재의 활성 영역 및 하나의 p-형 GaN 층을 갖는, pn-접합을 더 포함한다. n- 및 p-형 층을 바이어싱한 후에 활성 영역에서 광이 발생된다. 발생된 광은 GaN 층, 전형적으로 n-형 층, 및 기판(104b)의 측면으로부터 추출된다. 따라서, 기판(104b)은 저손실 투명 재료인 사파이어의 것이다. 또한, 사파이어는 GaN의 격자 상수와 유사한 격자 상수를 가져서, GaN의 GaN 에피택셜 층(104a)의 양호한 성장 품질을 가능하게 한다.
반도체 구조물(104)은 서브-마운트(106)에 부착된다. 에피택셜 층(104a)의 n-형 및 p-형 영역은 금속 층(도시하지 않음)을 통해 서브-마운트(106)에서의 금속 콘택트(도시하지 않음)에 전기적으로 접촉될 수 있다. 서브-마운트로의 반도체 구조물(104)의 부착은, 예를 들어 스터드-범프에 의해 이루어질 수 있다. 그러나 통상의 기술자에 의해 알려진 다른 부착 방법이 또한 사용하기에 적합할 수 있다.
서브-마운트(106)는, 반도체 구조물에 의해 발생되고 서브-마운트(106)를 향하는 방향으로 방출된 광을 반사시키기 위해 고반사성이다. 이는 반도체 구조물(104)의 상단 표면을 통한 발광을 개선한다. 서브-마운트는, 예를 들어 SMD 유사 기하구조를 갖는 고반사성 인쇄 회로 기판 (PCB)일 수 있다.
하기 기재된 바와 같이 반도체 구조물의 다른 구성이 가능하다는 것에 유의해야 한다.
발광 다이오드 부품(101)은 파장 변환 층(105)을 더 포함한다. 파장 변환 층(105)의 사용은 발광 다이오드 부품(101)에 의해 발생되는 광의 스펙트럼 범위를 조절하기 위한 수단을 제공한다.
이러한 실시예에 따르면, 발광 다이오드 부품(101)은 백색 광을 방출하도록 배열된다. 청색 스펙트럼 범위에서의 광은 직접적 청색 광을 방출하는 GaN 기재의 에피택셜 층(104a)에 의해 생성되고, 파장 변환 층(105)은 인광체, 여기서는 황색 스펙트럼 영역에서의 광을 발생시키는 Ce(III) 도핑된 가돌리늄 알루미늄 가넷 (Y, GdAG:Ce)을 포함하는 다결정질 플레이트를 포함한다. 따라서, 발광 다이오드 부품(101)은 청색 및 황색 광 둘 다를 방출하며, 이들은 조합되어 백색 광을 제공한다. 이러한 설정의 이점은, YAG:Ce의 다결정질 세라믹 플레이트가 발광 다이오드(101)의 고도로 제어가능한 광학적 및 기하학적 특성을 가지며, 이는 개선된 성능을 허용한다는 점이다. 세라믹 플레이트는, 예를 들어 파장 스펙트럼의 가시 범위에서 약 1.8의 굴절률을 가지며, 이는 사파이어의 굴절률과 가깝게 정합한다. 그에 의해 기판(104b)과 파장 변환 층(105) 사이의 계면에서의 산란의 감소가 획득될 수 있다. 파장 변환 층(105)은 재료 내에서의 산란이 적도록 하는 재료 구조를 또한 가지며, 이는 개선된 발광 효율을 허용한다.
마이크로-광학 다층 구조물(102)은 상기 기재된 바와 같이 배열된 투명 층(102a 내지 102d)을 포함한다. 층의 굴절률을 후속적으로 등급화(grading)함으로써, 반도체 구조물(104)에서 보았을 때에 반도체 구조물(104) 내에서 발생되는 광의 대부분이 발광 다이오드 부품(101)으로부터 방출될 수 있다. 다시 말하면, 층의 계면에서 광 산란이 감소되고, 발광 다이오드(101)로부터의 광 출력의 전반적인 증가가 달성된다. 층의 두께의 상응하는 등급화를 추가로 적용함으로써, 발광 다이오드(101)의 발광 효율이 더욱 개선된다.
마이크로-광학 다층 구조물(102)은 반도체 구조물(104)의 상단 부분인 상기 파장 변환 층(105)의 상단에 배열된다. 마이크로-광학 다층 구조물(102)에서의 개선된 광 커플링은, 반도체 구조물(104)에서 보았을 때에 마이크로-광학 다층 구조물(102)의 첫번째 층(102a) 및 반도체 구조물(104)의 상단 부분의 굴절률을 조정하여 이들 둘의 계면에서의 감소된 광 산란을 유발시킴으로써 달성될 수 있다. 그에 의해 반도체 구조물(104) 내에서의 광 포획이 감소된다.
반도체 구조물(104)에서 보았을 때에 마이크로-광학 다층 구조물(102)의 첫번째 층(102a) 및 반도체 구조물(104)의 상단 부분의 계면에서의 광 산란을 감소시키기 위해, 마이크로-광학 다층 구조물(102)의 첫번째 층(102a)은 반도체 구조물(104)의 상단 영역의 굴절률과 실질적으로 동일한 굴절률을 갖는다. 한 실시예에서, 마이크로-광학 다층 구조물(102)의 첫번째 층(102a)의 굴절률은 상기 반도체 구조물(104)의 상단 영역의 굴절률로부터 10% 미만으로 벗어난다. 또 다른 실시예에서, 마이크로-광학 다층 구조물(102)의 첫번째 층(102a)의 굴절률은 상기 반도체 구조물(104)의 상단 영역의 굴절률로부터 5% 미만으로 벗어난다. 또 다른 실시예에서, 마이크로-광학 다층 구조물(102)의 첫번째 층(102a)의 굴절률은 상기 반도체 구조물(104)의 상단 영역의 굴절률로부터 1% 미만으로 벗어난다. 또 다른 실시예에서, 마이크로-광학 다층 구조물(102)의 첫번째 층(102a)의 굴절률은 상기 반도체 구조물(104)의 상단 영역의 굴절률과 동일하다.
도 1b는 본 발명의 대안적 실시예에 따른 LED(110)의 개략 단면도를 도시한다. LED는, 반도체 구조물(104)이 광을 방출하도록 배열되고, 도 1a와 관련하여 기재된 바와 같이 마이크로-광학 다층 구조물(102)이 반도체 구조물(104)로부터 광을 유도해내도록 배열된, 발광 다이오드 부품(101)을 포함한다. 파장 변환 층(105)이 마이크로-광학 다층 구조물(102)의 상단에 또한 배열되어 있다. 이러한 실시예의 이점은, 마이크로-광학 다층 구조물(102)이, 발광 반도체 구조물을 향해 다시 반사되는 파장 변환 층으로부터 방출되는 광량을 감소시킬 수 있다는 점이다. 따라서, 개선된 LED 성능이 획득된다.
도 1c는 본 발명의 또 다른 실시예에 따른 LED(120)의 개략 단면도를 도시한다. 이러한 발광 다이오드 부품은 도 1a 및 도 1b와 관련하여 기재된 바와 동일한 부품, 뿐만 아니라 추가의 마이크로-광학 다층 구조물(102')을 포함한다. 마이크로-광학 다층 구조물(102) 및 추가의 마이크로-광학 다층 구조물(102')은 파장 변환 층(105)의 대향측 상에 배열되어 있다. 그에 의해 파장 변환 층으로부터 광을 커플링 아웃하기 위한 효율적인 수단을 제공하고, 상기 발광 반도체 구조물을 향해 다시 반사되는 상기 파장 변환 층으로부터의 광량을 감소시키는 것이 가능하다.
이러한 실시예에 따르면, 마이크로-광학 다층 구조물(102) 및 추가의 마이크로-광학 다층 구조물(102')의 첫번째 층(102a, 102'a)의 굴절률이 각각 반도체 구조물(104)의 굴절률 및 파장 변환 층(105)의 굴절률과 동일하거나 또는 그보다 약간 더 낮다는 것에 유의해야 한다. 상기 기재에 따르면, 층(102b, 102'b)의 굴절률은 첫번째 층(102a, 102'a)의 굴절률보다 더 낮다.
게다가, 본 발명의 한 실시예에 따르면, 발광 다이오드 부품(101)의 상단으에서 보았을 때 파장 변환 층(105) 아래에 배열된 마이크로-광학 다층 구조물(102)의 마지막 층(102d)의 굴절률은 파장 변환 층(105)의 굴절률보다 더 낮으며, 이는 에피택셜 층(104a) 또는 기판(104b)의 굴절률과 유사한 굴절률을 가질 수 있다.
마이크로-광학 다층 구조물(102) 및 추가의 마이크로-광학 다층 구조물(102')은 동일할 수 있으며, 따라서 유사한 층 구조를 포함하고 실질적으로 동일한 물리적 특성을 가질 수 있다는 것에 또한 유의해야 한다.
마이크로-광학 다층 구조물(102)은, 예를 들어 SF 11 유형의 표준 유리를 포함할 수 있다. 대안적으로, 다층 구조물(102)은 에폭시 또는 규소 재료를 포함할 수 있다. 적어도 1.48 내지 2의 굴절률을 갖는 이러한 종류의 고투명 재료가 용이하게 입수가능하다. 다층 스택을 형성하기 위한 굴절률 정합 접착제가 또한 필요하며, 일반적으로 시중에서 입수가능하다 (예를 들어, US7423297B2 참조). 대안적으로, 실리콘 기재의 층이 US7452737B2에서 제안된 바와 같은 오버 몰딩 프로세스에 의해 접합될 수 있다.
한 실시예에 따르면, 마이크로-광학 다층 구조물의 상단 층은 마이크로-광학 다층 구조물의 상단에 있는 매체의 굴절률 이상의 굴절률을 갖는다. 마이크로-광학 다층 구조물의 상단 층과, 예를 들어 공기 또는 실리콘일 수 있는 주위 매체 사이의 굴절률 차이의 조정은, 개선된 광 유도 및 광 출력을 제공한다.
본 발명의 또 다른 실시예에 따르면, 발광 다이오드 부품(101)은, 도 1d에 도시된 바와 같이 돔 형상의 렌즈 구조물(108) 내에 봉입되어 있다. 렌즈 구조물은 광 출력을 증가시키고 반도체 구조물로부터의 광을 지향시키도록 배열되어 있다. 돔 형상의 렌즈 구조물(108)은, 예를 들어 실리콘으로 제조될 수 있다.
마이크로-광학 다층 구조물(102)의 상단 층(102d)은 상단 층(102d)의 상단에 있는 매체의 굴절률 이상의 굴절률을 갖는다. 다층 구조물(102)의 상단 층(102d)과, 주위 매체, 즉 공기 또는 렌즈 구조물(108) 사이의 굴절률 차이의 조정은, 개선된 광 유도 및 광 출력을 제공한다.
에피택셜 층에 의해 발생된 광은, 최신 FC 구성, 예컨대 패턴화된 사파이어 기판 (PSS) 기재의 발광 다이오드에서 사파이어 기판을 통해, 공기로, 또는 돔 캡슐화 재료를 통해 이어서 공기로 커플링 아웃된다. 따라서, 발생된 광의 대부분이 발광 다이오드 부품에서 내부 전반사에 의해 포획된다. 사파이어 기판은 또한 전형적으로 두께가 100 내지 800 마이크로미터이며, 이는 광의 대부분이 기판의 측면을 향하는 방향으로 방출되는 것으로 이어진다. 이러한 광은 기판과 그의 주위 매체의 계면에서, 상기 계면에서의 큰 굴절률 부정합으로 인해 큰 정도로 반사된다. 이러한 후방 반사된 광의 적어도 일부가 발광 다이오드 부품을 빠져나올 수 있도록 보장하기 위해, 고반사성 서브-마운트가 FC 기재의 발광 다이오드 부품에서 흔히 사용된다.
본 발명의 한 실시예에 따르면, 이러한 문제를 완화시키는 것을 목적으로 한다.
따라서, 도 2는 본 발명에 따른 LED(200)의 개략 단면도를 도시한다. LED(200)는 도 1a 내지 도 1d와 관련하여 개시된 바와 같은 반도체 구조물(104) 및 마이크로-광학 다층 구조물(102)을 포함하는 발광 다이오드 부품(101)을 포함한다. 발광 다이오드 부품(101)은 상기 반도체 구조물(104)의 측면 표면에 인접하여 배열된 측면 층(104d)을 더 포함한다. 측면 층(104d)은 반도체 구조물(104)의 측면들 중 하나 이상을 덮는다. 측면 층은 발광 다이오드 부품(101)의 광 출력의 설계시에 더 양호한 설계 유연성을 제공한다. 측면 층(104d)은 파장 변환 재료, 바람직하게는 인광체 재료를 포함한다. 측면 층(104d) 및 파장 변환 층(105)은 공통 층을 형성할 수 있다. 측면 층(104d) 및 파장 변환 층(105)은 동일한 색점을 갖는 발광을 제공하도록 배열될 수 있다.
측면 층(104d)이 반도체 구조물(104)의 에피택셜 층(104a)으로부터 적어도 파장 변환 층(105)까지 연장되는 것에 유의해야 한다. 따라서, 그에 의해 기판의 측면을 향하는 방향으로 방출되는 광의 대부분이, 광의 적어도 일부의 스펙트럼 범위를 측면 층(104d)의 파장 변환 재료에 의해 변화시킬 수 있는 측면 층(104d)으로 들어갈 수 있다. 그에 의해 전반적인 개선된 발광이 획득된다. 게다가, 발광 다이오드 부품(101)에 의해 방출되는 광은, 예를 들어 발광 다이오드의 인식되는 광점 정도(light spottiness)가 감소되어야 하는 백라이팅 용도에 유리할 수 있는 증가된 각도 분포를 가질 수 있다.
대안적으로, 측면 층(104d)은, 반도체 구조물(104)로부터, 즉 에피택셜 층(104a) 및 파장 변환 층(105)으로부터 방출된 광을 반사시켜서 상기 방출된 광의 더 많은 부분이 발광 다이오드 부품(101)의 상단 층(102d)에서 커플링 아웃되게 하도록 배열된 광 반사 재료를 포함할 수 있다.
본 발명의 또 다른 실시예에 따르면, 기판은 적어도 부분적으로 제거된다. 기판의 적어도 일부의 제거는, 예컨대 레이저 보조된 리프트-오프, 연삭, 화학 기계적 연마, 또는 습식 에칭 또는 임의의 다른 적합한 가공 기법에 의해 수행될 수 있다. 기판의 적어도 일부의 제거는, 반도체 구조물이 적어도 부분적으로 노출되도록 이루어질 수 있다. 생성된 디바이스 구조물은 통상 박막-플립-칩 (TFFC) 기하구조를 갖는 발광 다이오드라고 지칭된다. TFFC 기하구조를 사용하면, 투명 기판에서의 흡수 손실이 회피되어, 발광 다이오드 부품의 개선된 휘도를 제공할 수 있다. 반도체 구조물의 노출 표면의 조면화 또는 패턴화에 의해 발광 다이오드의 광 출력의 추가의 증가가 달성될 수 있으며, 그에 의해 반도체 구조물로부터 커플링 아웃되는 광의 분율이 개선될 수 있다. 결과적으로, 발광 다이오드 부품의 외부 양자 효율이 개선될 수 있다. 추가의 이점은, 규소 또는 SiC를 비롯한 다른 기판이 에피택셜 성장 동안 사용될 수 있다는 점이다.
도 3a는 TFFC 기하구조를 갖는 발광 다이오드 부품(101)을 포함하는 발광 다이오드 (LED)(300)를 개시한다. 발광 다이오드 부품(101)은, 상기 기재된 바와 같이 파장 변환 층(105) 및 에피택셜 층(104a)을 포함하는 반도체 구조물(104)을 포함한다. 에피택셜 층(104a)은 서브-마운트(106) 상에 탑재되고, 파장 변환 층(105)은 에피택셜 층(104a) 상에 침착된다. 복수의 층(102a 내지 102d)을 포함하는 마이크로-광학 다층 구조물(102)은 파장 변환 층(105)의 상단에 배열된다.
발광 다이오드 부품(101)은 상기 반도체 구조물(104)의 측면 표면에 인접하여 배열된 측면 층(104d)을 더 포함한다. 측면 층(104d)은 반도체 구조물(104)의 측면들 중 하나 이상을 덮는다. 측면 층(104d)은, 반도체 구조물(104)로부터, 즉 에피택셜 층(104a) 및 파장 변환 층(105)으로부터 방출된 광을 반사시켜서 상기 방출된 광의 더 많은 부분이 발광 다이오드 부품(101)의 상단 층(102d)에서 커플링 아웃되게 하도록 배열된 광 반사 재료를 포함한다.
추가로, 측면 층(104d)은 파장 변환 재료, 바람직하게는 인광체 재료를 포함할 수 있다. 변환 재료를 사용하는 것에 대한 기능 및 이익은 상기 기재되어 있다.
도 3b는 TFFC 기하구조를 갖는 발광 다이오드 부품(310)을 포함하는 LED(310)의 대안적 실시예를 개시한다. 발광 다이오드 부품(101)은, 상기 기재된 바와 같이 파장 변환 층(105), 측면 층(104d) 및 에피택셜 층(104a)을 포함하는 반도체 구조물(104)을 포함한다. 발광 다이오드는 파장 변환 층(105)의 대향측 상에 배열된 마이크로-광학 다층 구조물(102) 및 추가의 마이크로-광학 다층 구조물(102')을 더 포함한다.
본 실시예의 이점은 도 1c와 관련하여 기재된 이점과 동일하다. 측면 층(104d)은 에피택셜 층(104a)으로부터 적어도 파장 변환 층(105)까지 연장되어, 에피택셜 층(104a)으로부터 방출된 직사광이 마이크로-광학 다층 구조물(102)의 측면을 빠져나오는 것을 방지한다.
측면 층(104d)이 반사 재료를 포함하는 경우에, 이는 다층 구조물(102)의 측면을 향하는 방향으로 방출되는 광의 대부분이 파장 변환 부재(105)를 향해 반사될 수 있도록 유발한다.
측면 층(104d)이 파장 변환 재료를 포함하는 경우에, 다층 구조물의 측면을 향하는 방향으로 방출되는 광의 대부분이, 광의 적어도 일부의 스펙트럼 범위를 측면 층(104d)의 파장 변환 재료에 의해 변화시킬 수 있는 측면 층(104d)으로 들어갈 수 있다. 따라서, 전반적인 개선된 발광이 획득된다. 게다가, 발광 다이오드 부품(101)에 의해 방출되는 광은, 예를 들어 발광 다이오드의 인식되는 광점 정도가 감소되어야 하는 백라이팅 용도에 유리할 수 있는 증가된 각도 분포를 가질 수 있다.
컴퓨터 시뮬레이션은, 본 발명에 따른 마이크로-광학 다층 구조물을 사용하는 것이 발광 다이오드 부품으로부터의 개선된 광 출력을 유발한다는 것을 보여준다. 2개의 상이한 발광 다이오드 부품으로부터의 광 출력을 최신 PSS 칩 스케일 패키지 (CPS) LED와 비교하였다. PSS-CPS LED는, 1.8의 굴절률을 갖는 기판 층 및 각각 1.5의 굴절률을 갖는 상단 및 측면 층을 갖는 반도체 구조물을 포함한다.
예를 들어 Ce(III) 도핑된 가돌리늄 알루미늄 가넷 (Y, GdAG:Ce)과 같은 고굴절률 재료를 사용함으로써 파장 변환 층의 굴절률을 기판 층의 굴절률과 실질적으로 동일하도록 (약 1.8) 증가시키는 것에 의해, 광 출력에서의 상대 이득은 3.4%인 것으로 시뮬레이션되었다. 고굴절률 재료의 상단에 1.7의 굴절률을 갖는 투명 층을 배열함으로써 추가로 다층 층 구조물이 형성되는 경우에는, 약 7.6%의 광 출력에서의 상대 이득이 달성될 수 있다. 또한, 고굴절률 재료의 상단에 첫번째 층 및 두번째 층을 포함하는 다층 구조물이 사용되는 경우에, 12.1%의 광 출력에서의 상대 이득이 달성될 수 있다. 첫번째 및 두번째 층은 각각 1.7 및 1.48의 굴절률을 갖도록 설정되었다.
단순성을 위해, 각각의 층은 400 마이크로미터의 두께를 갖는다고 가정하였다. 후속 층의 굴절률의 등급화에 상응하는 후속 층의 두께의 등급화에 의해 추가의 발광 효율 개선이 획득될 수 있다. 따라서, 후속 층들 사이의 굴절률의 증가는 후속 층들 사이의 두께의 증가에 상응한다. 유사하게, 후속 층들 사이의 굴절률의 감소는 후속 층들 사이의 두께의 감소에 상응한다.
시뮬레이션은 또한 다층 구조물을 포함하는 경우에 캡슐화된 발광 다이오드가 증가된 광 출력을 가질 수 있음을 보여준다. 시뮬레이션에서, 1.5의 굴절률을 갖는 3 mm 렌즈 구조물 (예를 들어, 실리콘)을 사용하였다. 첫번째 및 두번째 층은 각각 1.75 및 1.6의 굴절률을 갖도록 설정되었다. 상기 개시된 상이한 구성에 대해 달성되는 이득은, 캡슐화된 발광 다이오드에 대해 각각 7.0%, 8.3% 및 8.5%였다.
따라서, 시뮬레이션에 따르면, 다층 구조물을 포함하지만 캡슐화되지 않은 발광 다이오드 부품이, 렌즈 구조물을 갖는 참조 PSS-CSP LED 구조물을 능가할 수 있다는 것에 유의해야 한다. 이러한 통찰은 고효율 발광 다이오드를 제조하는 경우에 유리하고, 추가로 발광 다이오드의 증가된 패킹 효율을 허용할 수 있다.
통상의 기술자는 본 발명이 어떠한 방식으로도 상기 기재된 바람직한 실시예에 제한되지 않음을 인지한다. 이와 반대로, 수많은 변형 및 변경이 첨부된 청구범위의 범주 내에서 가능하다.
예를 들어, 파장 변환 층(105)은 양자점 (QD)을 포함할 수 있다. QD는 일반적으로 단지 수십 나노미터의 폭 또는 직경을 갖는 반도전성 재료의 작은 결정이다. 이들은 입사광에 의해 여기시에 광을 방출한다는 이점을 가지며, 여기서 광의 파장은 QD의 크기 및 재료에 의해 결정된다. 게다가, 이들은 매우 좁은 방출 대역을 나타내어서 포화된 색을 제공하며, 여기서 사용되는 QD의 재료 및 크기를 조정함으로써 특정한 색의 광 출력이 생성될 수 있다. 적색 여기시에 원적외선에서의 방출을 갖는 QD는, 예를 들어 II-VI 및 III-V QD, 바람직하게는 InP, CdTe, CdTe/CdSe 코어-쉘 구조, 삼원 혼합물, 예를 들어 CdSexTey, 또는 황동석 QD, 예를 들어 CuxInySe2 또는 CuxInyS2로 이루어진 군으로부터 선택되지만 이에 제한되지는 않는 재료를 포함하는 QD를 사용함으로써 달성될 수 있다. QD는 증진된 방출 특성을 위해 보다 높은 밴드 갭 재료, CdS 및 ZnS로 오버코팅될 수 있다.
파장 변환 층(105)은 무기 인광체를 포함할 수 있으며, 여기서 상기 무기 인광체는 Cr3 +로 도핑된 재료, 바람직하게는 Y3Al5O12:Cr3 +로 이루어진 군으로부터 선택된 재료를 포함한다.
파장 변환 층(105)은 형광 염료를 포함할 수 있다.
파장 변환 층(105)은 루미라믹(Lumiramic)™을 포함할 수 있다.
예를 들어, 에피택셜 층(104a)의 활성 영역은 밴드 갭 및 그에 의해 발광 다이오드 부품의 방출 파장을 조정하기 위해, 예를 들어 InxAlyG1 -x- yN을 포함하는 헤테로구조 층을 더 포함할 수 있다. 예를 들어 GaIn/InxG1 - xN의 양자 구속 층을 사용하여 획득되는 양자 우물 (QW) 또는 다중-양자 우물 (MQW) 구조가, 또한 활성 영역 내에 위치하여 정공 및 전자의 농도를 국부적으로 증가시킬 수 있으며, 이는 증가된 재결합 비율로 인해, 발광 다이오드 부품으로부터 방출되는 광자의 증사된 수로 이어진다.
GaN 층은 약 5 마이크로미터의 총 두께를 가질 수 있다. 이러한 두께는 임계적이지 않으며, 아마도 LED 성능을 저해할 고농도 결함을 회피할 수 있는 한 달라질 수 있다. 사파이어 기판은 전형적으로 두께가 200 마이크로미터이지만, 다른 실시예에서는 그 두께가 10 내지 800 마이크로미터 범위일 수 있다.
발광 다이오드 부품은 다층 구조물에서의 복수의 층을 연결시키도록 배열된 접합 층을 더 포함할 수 있다. 접합 층은 계면에서의 광 산란을 감소시키기 위해 주위 층과 정합하는 굴절률을 갖는 것이 바람직하다.
접합 층은 실리콘을 포함할 수 있다.
렌즈 구조물은 구형 또는 타원형과 같은 다양한 기하학적 형상을 가질 수 있다. 렌즈 구조물의 상단은 또한 랜덤하게, 프레넬(Fresnel) 렌즈 형상으로, 또는 광자 결정 구조를 갖도록 텍스쳐화될 수 있다.
추가로, 도면, 개시내용 및 첨부된 청구범위의 연구로부터, 청구된 발명을 실시하는데 있어서 통상의 기술자에 의해 개시된 실시예에 대한 변경이 이해되고 이루어질 수 있다. 청구범위에서, 단어 "포함하는(comprising)"은 다른 요소 또는 단계를 배제하지는 않으며, 단수 표현은 복수를 배제하지는 않는다. 특정 척도가 서로 상이한 종속 청구항에 인용되어 있다는 단순 사실은, 이들 척도의 조합이 유리하게 사용될 수 없음을 나타내지는 않는다.

Claims (15)

  1. 발광 다이오드 부품(101)으로서,
    상단 표면을 갖는 발광 반도체 구조물(104), 및
    상기 발광 반도체 구조물(104)의 상단 표면으로부터 광을 유도해내도록 배열되고, 복수의 층을 포함하는 마이크로-광학 다층 구조물(102)
    을 포함하며,
    상기 반도체 구조물(104)에서 보았을 때에 순서대로 i+1번째 층이 i번째 층의 상단에 배열되고, 상기 i번째 층의 굴절률 ni이 i+1번째 층의 굴절률 ni+1보다 더 크고, 상기 i의 값이 양의 정수의 세트로부터 선택되고, 상기 i+1번째 층의 두께가 상기 i번째 층의 두께보다 더 크고, 상기 다층 구조물의 상단 표면의 표면적이 상기 발광 반도체 구조물의 상단 표면의 표면적과 동일한, 발광 다이오드 부품(101).
  2. 제1항에 있어서, 상기 반도체 구조물(104)에서 보았을 때에 상기 i번째 층의 두께 ti가,
    Figure 112015114515478-pct00003

    에 의해 주어지며, 여기서 A는 상기 마이크로-광학 다층 구조물(102)의 상단 표면 면적인, 발광 다이오드 부품(101).
  3. 제1항에 있어서, 상기 반도체 구조물(104)에서 보았을 때에 상기 마이크로-광학 다층 구조물(102)의 첫번째 층(102a)이, 상기 반도체 구조물(104)의 상단 영역의 굴절률과 동일한 굴절률을 갖는 발광 다이오드 부품(101).
  4. 제1항 내지 제3항 중 어느 한 항에 있어서, 파장 변환 층(105)을 더 포함하는 발광 다이오드 부품(101).
  5. 제4항에 있어서, 상기 마이크로-광학 다층 구조물(102)이 상기 파장 변환 층(105)의 상단에 배열된 발광 다이오드 부품(101).
  6. 제4항에 있어서, 상기 마이크로-광학 다층 구조물(102)이 상기 파장 변환 층(105) 아래에 배열된 발광 다이오드 부품(101).
  7. 제4항에 있어서, 추가의 마이크로-광학 다층 구조물(102')을 더 포함하며, 상기 파장 변환 층(105)이 상기 마이크로-광학 다층 구조물(102)과 상기 추가의 마이크로-광학 다층 구조물(102') 사이에 배열된 발광 다이오드 부품(101).
  8. 제5항에 있어서, 상기 파장 변환 층(105)이 인광체 재료, 양자점 및/또는 형광 염료를 포함하는 발광 다이오드 부품(101).
  9. 제8항에 있어서, 상기 인광체 재료가 다결정질 플레이트, 또는 Ce(III) 도핑된 가돌리늄 알루미늄 가넷 (Y, GdAG:Ce)을 포함하는 발광 다이오드 부품(101).
  10. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 발광 반도체 구조물(104)이 기판(104b), 또는 사파이어 기판을 더 포함하는 발광 다이오드 부품(101).
  11. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 반도체 구조물(104)의 측면 표면에 인접하여 배열된 측면 층(104d)을 더 포함하는 발광 다이오드 부품(101).
  12. 제11항에 있어서, 상기 측면 층(104d)이 파장 변환 재료, 인광체 재료, 양자점 및/또는 형광 염료를 포함하는 발광 다이오드 부품(101).
  13. 제11항에 있어서, 상기 측면 층(104d)이 광 반사 코팅 재료, 고반사율 금속 또는 고확산반사율 플루오로중합체를 포함하는 발광 다이오드 부품(101).
  14. 제1항 내지 제3항 중 어느 한 항에 따른 발광 다이오드 부품(101)을 포함하는 발광 다이오드(LED)로서, 상기 발광 다이오드 부품(101)은 서브-마운트(106) 상에 배열되는, 발광 다이오드(LED).
  15. 삭제
KR1020157033477A 2013-04-25 2014-04-17 발광 다이오드 부품 KR102153649B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP13165312.3 2013-04-25
EP13165312 2013-04-25
PCT/EP2014/057939 WO2014173821A1 (en) 2013-04-25 2014-04-17 A light emitting diode component

Publications (2)

Publication Number Publication Date
KR20160003067A KR20160003067A (ko) 2016-01-08
KR102153649B1 true KR102153649B1 (ko) 2020-09-09

Family

ID=48182820

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020157033477A KR102153649B1 (ko) 2013-04-25 2014-04-17 발광 다이오드 부품

Country Status (7)

Country Link
US (2) US9966511B2 (ko)
EP (1) EP2989665B1 (ko)
JP (1) JP6286026B2 (ko)
KR (1) KR102153649B1 (ko)
CN (1) CN105308763B (ko)
TW (1) TWI636584B (ko)
WO (1) WO2014173821A1 (ko)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150116986A (ko) * 2014-04-08 2015-10-19 삼성디스플레이 주식회사 퀀텀 도트 시트 및 이를 포함하는 라이트 유닛과 액정 표시 장치
EP3511974B1 (en) 2014-12-17 2021-02-24 LightLab Sweden AB Field emission light source
CN108369984B (zh) * 2015-06-09 2022-02-18 亮锐控股有限公司 使用高折射率粘合剂的发光二极管制作
CN105679196A (zh) * 2016-04-11 2016-06-15 深圳市丽格特光电有限公司 一种基于氮化镓led和量子点技术的全彩色高分辨率微显示芯片
JP2020513681A (ja) * 2016-11-11 2020-05-14 キューエムエイティ・インコーポレーテッド 層転写によるマイクロ発光ダイオード(led)製造
US10686158B2 (en) 2017-03-31 2020-06-16 Innolux Corporation Display device
US10073294B1 (en) * 2017-03-31 2018-09-11 Innolux Corporation Display device
EP3382754B1 (en) * 2017-03-31 2021-06-30 InnoLux Corporation Display device
CN107565008B (zh) * 2017-08-16 2020-04-14 业成科技(成都)有限公司 Led点状发光结构
US11777059B2 (en) 2019-11-20 2023-10-03 Lumileds Llc Pixelated light-emitting diode for self-aligned photoresist patterning
CA3183835A1 (en) 2020-06-25 2021-12-30 Jeanne E. Baker High affinity antibodies targeting tau phosphorylated at serine 413
CN114335291B (zh) * 2020-09-30 2024-02-02 Tcl科技集团股份有限公司 一种发光元件及其制备方法、光源板
US20220165923A1 (en) * 2020-11-24 2022-05-26 Creeled, Inc. Cover structure arrangements for light emitting diode packages

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090173958A1 (en) * 2008-01-04 2009-07-09 Cree, Inc. Light emitting devices with high efficiency phospor structures

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2012235A (en) 1935-08-20 Purification of
TW383508B (en) * 1996-07-29 2000-03-01 Nichia Kagaku Kogyo Kk Light emitting device and display
US7087936B2 (en) * 2003-04-30 2006-08-08 Cree, Inc. Methods of forming light-emitting devices having an antireflective layer that has a graded index of refraction
US7868343B2 (en) * 2004-04-06 2011-01-11 Cree, Inc. Light-emitting devices having multiple encapsulation layers with at least one of the encapsulation layers including nanoparticles and methods of forming the same
US7452737B2 (en) 2004-11-15 2008-11-18 Philips Lumileds Lighting Company, Llc Molded lens over LED die
US7423297B2 (en) 2006-05-03 2008-09-09 3M Innovative Properties Company LED extractor composed of high index glass
US7626210B2 (en) 2006-06-09 2009-12-01 Philips Lumileds Lighting Company, Llc Low profile side emitting LED
US7638811B2 (en) 2007-03-13 2009-12-29 Cree, Inc. Graded dielectric layer
US7791093B2 (en) * 2007-09-04 2010-09-07 Koninklijke Philips Electronics N.V. LED with particles in encapsulant for increased light extraction and non-yellow off-state color
US8247831B2 (en) * 2007-11-20 2012-08-21 Koninklijke Philipe Electronics N.V. Side emitting device with wavelength conversion
KR20100050430A (ko) * 2008-11-04 2010-05-13 삼성엘이디 주식회사 미세 패턴을 갖는 발광장치
CN102239578B (zh) * 2008-12-02 2015-06-03 皇家飞利浦电子股份有限公司 Led组件
US8334646B2 (en) 2010-09-27 2012-12-18 Osram Sylvania Inc. LED wavelength-coverting plate with microlenses in multiple layers
WO2013043844A1 (en) * 2011-09-20 2013-03-28 The Regents Of The University Of California Light emitting diode with conformal surface electrical contacts with glass encapsulation
US9293641B2 (en) * 2011-11-18 2016-03-22 Invensas Corporation Inverted optical device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090173958A1 (en) * 2008-01-04 2009-07-09 Cree, Inc. Light emitting devices with high efficiency phospor structures

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Ph.D Thesis, Graded refractive index structure on gan based light(2011)*

Also Published As

Publication number Publication date
JP2016518029A (ja) 2016-06-20
CN105308763B (zh) 2018-06-19
KR20160003067A (ko) 2016-01-08
US20180254390A1 (en) 2018-09-06
WO2014173821A1 (en) 2014-10-30
EP2989665A1 (en) 2016-03-02
US10461230B2 (en) 2019-10-29
US9966511B2 (en) 2018-05-08
US20160087171A1 (en) 2016-03-24
EP2989665B1 (en) 2020-09-23
TW201503411A (zh) 2015-01-16
CN105308763A (zh) 2016-02-03
TWI636584B (zh) 2018-09-21
JP6286026B2 (ja) 2018-02-28

Similar Documents

Publication Publication Date Title
KR102153649B1 (ko) 발광 다이오드 부품
CN106415836B (zh) 半导体器件和照明设备
US20190165226A1 (en) Semiconductor element package
JP6852066B2 (ja) テクスチャ基板を有する波長変換式発光デバイス
US9312432B2 (en) Growing an improved P-GaN layer of an LED through pressure ramping
JP5276680B2 (ja) 発光素子パッケージ、照明システム
TW201909451A (zh) 發光裝置封裝
JP2019021919A (ja) 発光素子パッケージ
JP2006074036A (ja) 半導体発光装置およびその製作方法
US8835963B2 (en) Light converting and emitting device with minimal edge recombination
KR20120026343A (ko) 발광소자 패키지
US11367810B2 (en) Light-altering particle arrangements for light-emitting devices
US11876154B2 (en) Light emitting diode device and method for manufacturing the same
US20070096120A1 (en) Lateral current GaN flip chip LED with shaped transparent substrate
KR102550033B1 (ko) 반도체 소자 및 이를 포함하는 반도체 패키지
KR101723540B1 (ko) 발광 소자 및 이를 갖는 발광 소자 패키지
TWI613838B (zh) 發光元件
KR20050045167A (ko) 고휘도 발광 다이오드 소자
US20220173283A1 (en) Light-emitting device and planar light source
KR20170125587A (ko) 반도체 소자 패키지
KR20210027943A (ko) 반도체 소자
TW202413843A (zh) 具有單一透鏡結構的固態發光構件
TWI639249B (zh) 發光元件
KR20200143851A (ko) 반도체 소자 패키지
KR20210024831A (ko) 반도체 소자

Legal Events

Date Code Title Description
AMND Amendment
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant