KR102140582B1 - 다축 구조의 반사계 구동장치 - Google Patents

다축 구조의 반사계 구동장치 Download PDF

Info

Publication number
KR102140582B1
KR102140582B1 KR1020170054807A KR20170054807A KR102140582B1 KR 102140582 B1 KR102140582 B1 KR 102140582B1 KR 1020170054807 A KR1020170054807 A KR 1020170054807A KR 20170054807 A KR20170054807 A KR 20170054807A KR 102140582 B1 KR102140582 B1 KR 102140582B1
Authority
KR
South Korea
Prior art keywords
magnet
driving
reflectometer
support frame
frame
Prior art date
Application number
KR1020170054807A
Other languages
English (en)
Other versions
KR20180120894A (ko
Inventor
이경용
손명균
손정민
박철순
Original Assignee
자화전자(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 자화전자(주) filed Critical 자화전자(주)
Priority to KR1020170054807A priority Critical patent/KR102140582B1/ko
Priority to EP17896844.2A priority patent/EP3584624B1/en
Priority to CN201790001256.1U priority patent/CN209590407U/zh
Priority to PCT/KR2017/010171 priority patent/WO2018151388A1/ko
Publication of KR20180120894A publication Critical patent/KR20180120894A/ko
Application granted granted Critical
Publication of KR102140582B1 publication Critical patent/KR102140582B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • G02B26/085Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting means being moved or deformed by electromagnetic means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • G02B27/646Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • G02B7/182Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors
    • G02B7/198Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors with means for adjusting the mirror relative to its support

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Studio Devices (AREA)
  • Adjustment Of Camera Lenses (AREA)

Abstract

본 발명에 의한 다축 구조의 반사계 구동장치는 제1홈부레일이 형성되고 제1구동마그네트가 구비된 지지프레임; 상기 지지프레임에 설치되며 광을 렌즈로 반사시키는 반사계; 상기 제1홈부레일과 대응되는 제1가이드레일 및 제2홈부레일이 형성되며 제2구동마그네트가 구비된 미들프레임; 상기 제2홈부레일과 대응되는 제2가이드레일이 형성되는 베이스프레임; 상기 제1구동마그네트에 전자기력을 발생시켜 상기 지지프레임을 상기 미들프레임을 기준으로 광축과 수직한 제1방향으로 이동시키는 제1코일; 및 상기 제2구동마그네트에 전자기력을 발생시켜 상기 미들프레임을 상기 베이스프레임을 기준으로 상기 제1방향과 수직한 제2방향으로 이동시키는 제2코일을 포함하는 것을 특징으로 한다.

Description

다축 구조의 반사계 구동장치{APPARATUS FOR DRIVING OPTICAL-REFLECTOR WITH MULTI-AXIAL STRUCTURE}
본 발명은 반사계 구동장치에 관한 것으로서, 더욱 구체적으로는 빛의 경로를 변경시키는 반사계를 다축 방향으로 구동시켜 손떨림 보정을 구현하는 다축 구조의 반사계 구동장치에 관한 것이다.
하드웨어 기술의 발전, 사용자 환경 등의 변화에 따라 스마트폰 등의 휴대 단말(모바일 단말)에는 통신을 위한 기본적인 기능 이외에 다양하고 복합적인 기능이 통합적으로 구현되고 있다.
그 대표적인 예로 오토포커스(AF, Auto Focus), 손떨림 보정(OIS, Optical Image Stabilization) 등의 기능이 구현된 카메라 모듈을 들 수 있으며 근래에는 인증이나 보안 등을 위한 음성 인식, 지문 인식, 홍채 인식 기능 등도 휴대 단말에 탑재되고 있고, 최근에는 초점 거리를 다양하게 가변적으로 조정할 수 있도록 복수 개 렌즈 그룹이 집합되어 있는 줌렌즈의 장착도 시도되고 있다.
줌렌즈의 경우, 일반 렌즈와는 달리 광이 유입되는 방향인 광축 방향으로 복수 개 렌즈 또는 렌즈군들이 배열되는 구조를 가지고 있으므로 일반 렌즈보다 광축 길이 방향으로 그 길이가 길다는 특성을 가진다. 줌렌즈를 통과한 피사체의 광(Light)은 다른 렌즈와 같이 CCD(Charged-coupled Device), CMOS(Complementary Metal-oxide Semiconductor)와 같은 촬상소자로 유입된 후 후속 프로세싱을 통하여 이미지 데이터로 생성된다.
줌 렌즈가 다른 일반 렌즈와 같이 휴대 단말의 메인 기판에서 입설(立設)되는 방향 즉, 메인 기판에서 수직한 방향으로 설치되는 경우 휴대 단말에는 줌 렌즈의 높이(광축 방향 길이)만큼의 공간이 확보되어야 하므로 휴대 단말이 지향하는 장치 소형화와 경량화의 본질적 특성에 최적화되기 어렵다는 문제가 있다.
종래 이러한 문제를 해결하기 위하여 렌즈의 각도, 크기, 이격된 간격, 초점 거리 등을 조정하여 광학계 자체의 크기를 축소시키는 방법이 있으나, 이러한 방법은 줌 렌즈 내지 줌렌즈 배럴의 크기를 물리적으로 줄이는 방법이므로 본질적인 한계가 있음은 물론, 줌 렌즈의 본질적인 특성을 저하시킬 수 있다는 문제점을 가진다.
또한, 종래 일반적으로 적용되는 손떨림 보정(OIS) 방법은 광축 방향(Z축)과 수직한 평면상의 두 방향(X축, Y축 방향)으로 렌즈 또는 렌즈모듈 자체를 보정 이동시키는 방법인데, 이 방법을 줌렌즈에 그대로 적용하는 경우 줌렌즈의 형상, 구조, 기능 등의 특성에 의하여 공간 활용도가 낮고, 장치의 부피를 증가시키며 구동의 정밀성을 확보하기 어려운 문제점이 있다고 할 수 있다.
이러한 문제점을 해결하기 위해, 반사계를 축 결합시키고 반사계를 일정 방향으로 회전시킴으로써 렌즈 또는 촬상소자(CCD, CMOS 등)를 기준으로 촬상 이미지의 흔들림이 보정되도록 하는 방법도 시도되고 있다.
그러나 이 방법의 경우 반사계 또는 반사계가 결합되어 있는 지지체 자체의 하중이 특정 방향으로 작용함은 물론, 이 하중에 의한 힘이 반사계가 회전 이동한 거리에 따라 차등적인 크기로 작용하게 되어 반사계를 이동시키기 위한 구동전원의 크기와 반사계의 움직임이 함수적으로 비례하지 않아 반사계가 구동전원의 크기와 대비하여 선형적으로 이동하지 않게 되므로 손떨림 보정의 정밀 제어가 어렵다는 문제점을 가지고 있다.
아울러, 반사계가 선형적으로 이동하지 않는 경우 홀센서를 이용하여 반사계 즉, 반사계에 장착된 마그네트의 움직임을 센싱(sensing)할 때, 마그네트에서 발생된 자기장의 변화가 선형적으로 변화되지 않음은 물론, 그 변화량이 작게 되어 반사계의 움직임을 정밀하게 센싱하기 어렵다는 문제점도 고려되어야 한다.
또한, 이동체의 각 방향 구동을 위한 마그네트를 동종(同種)으로 사용하는 경우 각 마그네트 또는 각 구동코일의 자기장이 상호 영향을 미쳐 각 방향별 정밀 구동에 문제가 발생될 수 있다.
본 발명은 상기와 같은 배경에서 상술된 문제점을 해결하기 위하여 창안된 것으로서, 각 축방향 구동력이 작용하는 마그네트 구조를 이종화(異種化)하고 반사계를 물리적으로 지지하는 볼과 반사계의 회전 이동을 가이드하는 구조를 복합적으로 적용하여 손떨림을 위한 모든 방향으로 반사계가 정밀하게 구동될 수 있도록 하는 반사계 구동장치를 제공하는데 그 목적이 있다.
본 발명의 다른 목적 및 장점들은 아래의 설명에 의하여 이해될 수 있으며, 본 발명의 실시예에 의하여 보다 분명하게 알게 될 것이다. 또한, 본 발명의 목적 및 장점들은 특허청구범위에 나타난 구성과 그 구성의 조합에 의하여 실현될 수 있다.
상기 목적을 달성하기 위한 본 발명의 다축 구조의 반사계 구동장치는 제1홈부레일이 형성되고 제1구동마그네트가 구비된 지지프레임; 상기 지지프레임에 설치되며 광을 렌즈로 반사시키는 반사계; 상기 제1홈부레일과 대응되는 제1가이드레일 및 제2홈부레일이 형성되며 제2구동마그네트가 구비된 미들프레임; 상기 제2홈부레일과 대응되는 제2가이드레일이 형성되는 베이스프레임; 상기 제1구동마그네트에 전자기력을 발생시켜 상기 지지프레임을 상기 미들프레임을 기준으로 광축과 수직한 제1방향으로 이동시키는 제1코일; 및 상기 제2구동마그네트에 전자기력을 발생시켜 상기 미들프레임을 상기 베이스프레임을 기준으로 상기 제1방향과 수직한 제2방향으로 이동시키는 제2코일을 포함하여 구성될 수 있다.
또한, 본 발명의 상기 제1 또는 제2 구동마그네트 중 하나는 단일 극으로 이루어지고, 나머지 하나는 2극 이상으로 이루어지도록 구성될 수 있다.
나아가 본 발명은 상기 지지프레임 상에 상기 제1구동마그네트와 이격되게 위치되는 서브마그네트; 및 상기 서브마그네트에 대응하게 위치된 홀센서를 더 포함할 수 있으며, 이 경우 본 발명의 상기 제1구동마그네트는 상기 제1코일과 대면하는 면이 단일 극으로 이루어지며, 상기 서브마그네트는 상기 홀센서와 대면하는 면이 2극 이상으로 이루어지도록 구성될 수 있다.
실시형태에 따라서 본 발명은 상기 미들프레임 상에 상기 제2구동마그네트와 이격되게 위치되는 서브마그네트; 및 상기 서브마그네트에 대응하게 위치된 홀센서를 더 포함할 수 있으며 이 경우 본 발명의 상기 제2구동마그네트는 상기 제2코일과 대면하는 면이 단일 극으로 이루어지며, 상기 서브마그네트는 상기 홀센서와 대면하는 면이 2극 이상으로 이루어지도록 구성될 수 있다.
바람직하게, 상기 본 발명의 제1구동마그네트는 상기 지지프레임의 가운데 부분을 기준으로 대칭되는 좌측 및 우측 위치에 각각 구비될 수 있다.
나아가, 본 발명은 상기 제1홈부레일과 상기 제1가이드레일 사이에 배치되는 제1볼; 및 상기 제2홈부레일과 상기 제2가이드레일 사이에 배치되는 제2볼을 더 포함할 수 있다.
또한, 상기 본 발명의 미들프레임은 상기 제1구동마그네트와 대면하는 방향에 요크를 더 구비하고, 상기 베이스프레임은 상기 제2구동마그네트와 대면하는 방향에 요크를 더 구비할 수 있다.
더욱이, 상기 본 발명의 미들프레임은 내측에 상기 제1가이드레일이 형성되고 외측면에 상기 제2홈부레일이 형성될 수 있으며, 상기 제1가이드레일과 상기 제2홈부레일은 서로 수직을 이루는 방향으로 형성되는 것이 바람직하다.
또한, 상기 본 발명의 제1홈부레일은 라운드진 형상을 가지며, 상기 지지프레임은 상기 제1홈부레일 또는 제1가이드레일에 대응되는 경로를 따라 회전 이동하도록 구성될 수 있으며, 상기 본 발명의 제2홈부레일은 라운드진 형상을 가지며 상기 미들프레임은 상기 제2홈부레일 또는 제2가이드레일에 대응되는 경로를 따라 회전 이동하도록 구성될 수 있다.
본 발명의 일 실시예에 의할 때, 손떨림 보정을 위한 모든 방향의 구동이 렌즈로 빛을 유입시키는 반사계에서 구현되므로 상대적으로 큰 크기를 가지는 줌렌즈 내지 줌렌즈 캐리어 측에 손떨림 보정을 위한 구조를 결합시키지 않아도 되어 장치 자체의 크기를 최소화시킬 수 있음은 물론, 장치의 공간 활용도를 더욱 향상시킬 수 있다.
본 발명의 바람직한 실시예에 의할 때, 빛의 경로를 변경시키는 반사계의 회전 이동이 라운딩 형상의 가이딩 구조 및 볼에 의한 점접촉 구조에 의하여 물리적으로 지지되고 가이딩되도록 함으로써, 반사계의 물리적 회전 이동을 더욱 유연하게 구현할 수 있음은 물론, 반사계의 이동과 반사계를 이동시키기 위한 구동 전력을 함수적으로 비례하게 구현할 수 있어 손떨림 보정의 구동 정밀성을 향상시킬 수 있고, 구동을 위한 전력을 최소화시킬 수 있다.
본 발명은 반사계를 회전 이동시키고 지지하는 구조들을 유기적으로 결합시킴으로써 X축 및 Y축 방향의 OIS를 독립적으로 구현할 수 있어 어떠한 방향의 손떨림에도 적응적으로 반응하여 손떨림을 보정할 수 있는 효과를 제공할 수 있다.
또한, 본 발명의 다른 일 실시예에 의할 때, 구동마그네트들의 극성 배치를 서로 상이하게 구성하여 구동마그네트들 사이에 발생하는 상호 자기력을 최소화시킴으로써 X축 및 Y축 방향의 OIS 구동을 더 독립적이고 정확하게 구현할 수 있다.
더 나아가, 본 발명의 바람직한 다른 실시예에 의할 때, 센싱용 마그네트로 양극 착자 마그네트를 사용하여 센서가 감지하는 자기력 구간을 확장함으로써 OIS 구동을 더욱 정밀하게 구현할 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 후술되는 발명의 상세한 설명과 함께 본 발명의 기술 사상을 더욱 효과적으로 이해시키는 역할을 하는 것이므로, 본 발명은 이러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 본 발명의 구동장치가 적용된 액추에이터의 전체적인 모습을 도시한 도면,
도 2는 본 발명의 일 실시예에 의한 구동장치의 상세 구성을 도시한 분해 결합도,
도 3은 도 2에 도시된 지지프레임과 미들프레임의 결합 관계를 도시한 도면,
도 4는 도 2에 도시된 미들프레임과 베이스 프레임의 결합 관계를 도시한 도면,
도 5는 홀센서가 마그네트의 자기력을 감지하는 원리를 마그네트의 극성 배치에 따라 도시한 도면,
도 6은 본 발명의 구동 마그네트에 대한 다양한 실시예를 도시한 도면,
도 7은 미들프레임을 기준으로 반사계(지지프레임)가 이동함으로써 구현되는 본 발명의 X축 방향 OIS의 작동 관계를 도시한 도면,
도 8은 베이스프레임을 기준으로 반사계(미들프레임)가 이동함으로써 구현되는 본 발명의 Y축 방향 OIS의 작동 관계를 도시한 도면이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
따라서 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
도 1은 본 발명에 의한 다축 구조의 반사계 구동장치(100)(이하 ‘구동장치’라 지칭한다)가 적용된 액추에이터(1000)의 전체적인 모습을 도시한 도면이다.
도 1에 도시된 액추에이터(1000)는 광축과 수직한 두 개의 축 방향 모두로 반사계(110)를 이동시켜 OIS를 구현하는 본 발명의 구동장치(100) 및 이 구동장치(100)와 연결되고 줌렌즈(11) 등이 탑재되며 실시형태에 따라 줌렌즈(11)를 대상으로 AF를 구현하는 렌즈구동모듈(12)을 포함할 수 있다.
본 발명에 의한 구동장치(100)는 단독의 장치로도 구현될 수 있음은 물론, 도 1에 도시된 바와 같이 액추에이터(1000)의 일 구성으로서 렌즈구동모듈(12)의 상부 등에 결합되는 형태로 구현될 수 있다.
렌즈(11)는 단일의 렌즈는 물론, 복수 개의 렌즈 내지 렌즈군 또는 프리즘, 미러 등과 같은 광학 부재가 내부에 포함될 수 있는 줌렌즈일 수 있으며, 렌즈(11)가 줌렌즈 또는 줌렌즈 배럴로 이루어지는 경우 수직 길이 방향(Z축 방향)으로 연장된 형상을 이룰 수 있다.
본 발명은 피사체 등의 광(light)이 바로 렌즈(11)로 유입되지 않고 본 발명의 구동장치(100)에 구비되는 반사계(도 2의 110)를 통하여 빛의 경로가 변경(굴절, 반사 등)된 후 렌즈(11)로 유입되도록 구성된다.
도 1에서, 외계에서 들어오는 빛의 경로가 Z1이며, 이 빛(Z1)이 반사계(110)에 의하여 굴절 내지 반사되어 렌즈(11)로 들어가는 빛의 경로가 Z이다. 이하 설명에서 Z를 광축 내지 광축 방향이라고 지칭한다.
또한, 도면에는 도시하지 않았으나 광축 방향을 기준으로 렌즈(11) 아래쪽으로는 빛 신호를 전기 신호로 변환시키는 CCD, CMOS 등과 같은 촬상소자가 구비될 수 있으며, 특정 대역의 빛 신호를 차단하거나 투과시키는 필터가 함께 구비될 수도 있다.
이하 설명되는 바와 같이 본 발명은, 렌즈 자체를 광축(Z)와 수직한 두 방향 즉, X축 방향(제1방향) 및 Y축 방향(제2방향)으로 이동시키는 종래의 OIS 방법을 지양하고 빛의 경로를 변경시키는 반사계(110)에서 제1방향 및 제2방향에 대한 OIS를 구현하는 기술에 해당한다.
도 2는 본 발명의 일 실시예에 의한 구동장치(100)의 상세 구성을 도시한 분해 결합도이다. 도 2에 도시된 바와 같이 본 발명의 구동장치(100)는 반사계(110), 지지프레임(120), 미들프레임(130), 베이스프레임(140), 제1구동마그네트(200), 제1가이드레일(170-1), 제1요크(180), 회로기판(10), 제1코일(150-1, 150-3), 제2코일(150-2) 및 케이스(15)를 포함하여 구성될 수 있다.
우선, 도 2를 참조하여 본 발명의 구동장치(100)에 대한 전반적인 구성과 결합 관계를 설명하고 본 발명의 구동장치(100)의 상세 구성 및 각 방향으로의 OIS 구동 관계 등은 후술하도록 한다.
도 2에 도시된 바와 같이 외계 피사체의 빛은 Z1경로를 거쳐 케이스(15)에 형성된 개방구를 통하여 본 발명의 구동장치(100) 내부로 유입되며, 내부로 유입된 빛은 본 발명의 반사계(110)에 의하여 경로가 변경(굴절 내지 반사 등)(Z 경로)되어 렌즈(11) 측으로 유입된다.
빛의 경로를 변경시키는 반사계(110)는 미러(mirror) 또는 프리즘(prism) 중 선택된 하나 또는 이들의 조합일 수 있으며 외계에서 유입되는 빛을 광축 방향으로 변경시킬 수 있는 다양한 부재로 구현될 수 있다. 상기 미러 또는 프리즘은 광학적 성능을 향상시키기 위하여 유리(glass) 재질로 구현하는 것이 바람직하다.
도 2에 도시된 바와 같이 본 발명의 구동장치(100)는 반사계(110)에 의하여 빛의 경로를 굴절시켜 렌즈(11) 측으로 빛이 유입되도록 구성할 수 있어, 렌즈(11) 자체를 휴대 단말의 두께 방향으로 설치하지 않고 길이 방향으로 설치할 수 있어 휴대 단말의 두께를 증가시키지 않아 휴대 단말의 소형화 내지 슬림화 등에 최적화될 수 있다.
본 발명의 반사계(110)는 도 2에 도시된 예를 기준으로 구동장치(100)에서 빛이 유입되는 케이스(15)의 개방구 방향 즉, Y축 방향 전면을 향하는 방향에 설치된다.
이하 설명에서, 렌즈(11)의 수직축 방향 즉, 렌즈(11)로 빛이 들어가는 경로에 대응되는 축을 광축(Z축)으로 정의하며, 이 광축(Z축)과 수직한 평면상의 두 축을 X축과 Y축으로 정의한다.
반사계(110)는 도 2 등에 도시된 바와 같이 반사계(110)를 물리적으로 지지하는 지지프레임(120)에 설치된다. 본 발명의 지지프레임(120)은 제1구동마그네트(200)가 장착되며, X축 방향으로의 회전 이동을 가이딩하는 제1홈부레일(160-1)이 형성된다. 이들에 대한 구성은 후속하여 상세히 설명하도록 한다.
이와 같이 반사계(110)를 물리적으로 지지하는 본 발명의 지지프레임(120)은 반사계(110)가 설치된 상태에서 도 2에 도시된 바와 같이 미들프레임(130)에 의해 물리적으로 지지되도록 설치된다.
본 발명의 지지프레임(120)은 상기 미들프레임(130)을 기준으로 광축과 수직을 이루는 두 방향 중 하나의 방향인 X축 방향으로 이동 내지 회전 이동이 가능하도록 설치되며, 지지프레임(120)이 이동 내지 회전 이동됨에 따라 지지프레임(120)에 설치된 반사계(110) 또한, 그 물리적 이동을 함께 하게 된다.
한편, 본 발명의 미들프레임(130)은 베이스프레임(140)을 기준으로 광축과 수직을 이루는 두 방향 중 상기 지지프레임(120)이 미들프레임(130)을 기준으로 회전하는 방향(X축 방향)과 수직을 이루는 방향인 Y축 방향으로 이동 내지 회전 이동하도록 구성된다.
미들프레임(130)의 회전 이동을 구동시키기 위하여 제2구동마그네트(210)(도 4 참조)가 미들프레임(130)에 구비되고 이 제2구동마그네트(210)에 전자기력을 발생시키는 제2코일(150-2)은 도 2에 예시된 바와 같이 베이스프레임(140)의 측면에서 결합되는 회로기판(10) 상에 배치된다.
본 발명의 제1코일(150-1, 150-3)은 지지프레임(120)을 미들프레임(130)을 기준으로 X축 방향으로 이동시키는 구동력을 제공하는 구성으로서, 지지프레임(120)에 구동력을 제공하는 구성은 다양한 적용례가 가능하나 소비전력, 저소음, 공간 활용 등을 고려하여 도면에 예시된 바와 같이 전자기력을 구동력으로 사용하는 코일로 구현되는 것이 바람직하다.
이와 같이 제1코일(150-1, 150-3)이 지지프레임(120)을 X축 방향으로 이동시키는 구동원이 되는 경우 본 발명의 지지프레임(120)에는 제1코일(150-1, 150-3)이 발생시키는 전자기력을 받는 제1구동마그네트(200)가 구비된다.
지지프레임(120)의 X축 방향 이동을 더욱 효과적으로 구현하기 위하여 도면 등에 예시된 바와 같이 제1구동마그네트(200)는 지지프레임(120)의 양측에 각각 구비될 수 있고 이와 대응되도록 제1코일(150-1, 150-3) 또한, 각 지지프레임(120)과 대면하도록 복수 개로 구비될 수 있으며, 실시형태에 따라서 제1구동마그네트(200) 및 제1코일(150-1, 150-3)은 일면에만 구비될 수도 있다.
대응되는 관점에서 제2코일(150-2) 또한, 미들프레임(130)을 베이스프레임(140)을 기준으로 Y축 방향으로 이동시키는 구동력을 제공하는 구성으로서, 이 경우 본 발명의 미들프레임(130)에는 제2코일(150-2)이 발생시키는 전자기력을 받는 제2구동마그네트(210)가 구비된다.
앞서 설명된 바와 같이, 지지프레임(120)을 X축 방향으로 이동 내지 회전 이동하도록 구성하기 위하여 지지프레임(120)에는 제1구동마그네트(200)가 설치되며, 이 제1구동마그네트(200)에 전자기력을 발생시키는 제1코일(150-1, 150-3)은 도 2에 도시된 바와 같이 베이스프레임(140)에 결합되는 회로기판(10) 상에 배치될 수 있다.
도 2에 도시된 본 발명의 구조를 통하여 외계에서 유입된 빛을 렌즈 측으로 변경시키는 반사계(110)는 제1구동마그네트(200)와 제1코일(150-1, 150-3)이 발생시키는 전자기력에 의하여 지지프레임(120)이 X축 방향으로 회전 이동함에 따라 X축 방향으로 회전이동하게 된다.
또한, 본 발명의 반사계(110)는 제2구동마그네트(210)와 제2코일(150-2)이 발생시키는 전자기력에 의하여 미들프레임(130)이 Y축 방향으로 회전 이동함에 따라 미들프레임(130)에 탑재된 지지프레임(120)이 동일한 방향으로 회전 이동하게 되고 그에 따라 Y축 방향으로 회전 이동하게 된다.
본 발명의 지지프레임(120)은 미들프레임(130)을 기준으로 독립적인 회전 이동이 가능한 구조를 가지므로 미들프레임(130)이 베이스프레임(140)을 기준으로 Y축 방향으로 회전 이동하더라도 제1코일(150-1, 150-3)에 전자기력이 발생되면 본 발명의 지지프레임(120)은 X축 방향으로 독립된 회전 이동을 할 수 있다.
이하에서는 도 3을 참조하여 미들프레임(130)을 기준으로 본 발명의 지지프레임(120)이 이동 내지 회전 이동하는 동작 관계 등을 상세히 기술하도록 한다.
앞서 설명된 바와 같이 본 발명의 지지프레임(120)은 미들프레임(130)을 기준으로 X축 방향으로 이동 내지 회전 이동하도록 구성되는데, 이를 위하여 지지프레임(120)에는 도 3에 도시된 바와 같이 미들프레임(130)을 기준으로 자신의 X축 방향 회전 이동이 가이딩되도록 유도하는 제1홈부레일(160-1)이 구비된다.
손떨림 보정은 손떨림에 의하여 발생된 움직임을 보상하는 방향으로 촬상소자 측으로 유입되는 피사체의 빛을 이동시킴으로써 구현되므로 광축(Z축) 방향으로 유입되는 피사체의 빛이 촬상 소자를 기준으로 이동되도록 하기 위하여 반사계(110) 즉, 반사계(110)가 결합되는 지지프레임(120)의 이동은 회전 이동이 되도록 구성하는 것이 바람직하다.
이를 위하여 상기 지지프레임(120)에 형성되는 제1홈부레일(160-1)은 도면에 도시된 바와 같이 라운드진 형태로서 X축 길이 방향으로 연장된 형상을 가지며 회전이동에 따른 최적화된 곡률을 가지도록 구성하는 것이 바람직하다.
상기 지지프레임(120)을 수용하며 상기 지지프레임(120)이 회전 이동하는 것을 물리적으로 지지하는 본 발명의 미들프레임(130)은 도면에 도시된 바와 같이 상기 지지프레임(120)의 제1홈부레일(160-1)과 대응되는 위치에 제1홈부레일(160-1)과 대응되는 형상 즉, 라운드진 형태로서 길이 방향으로 연장된 형상을 가지는 제1가이드레일(170-1)이 형성된다.
본 발명의 지지프레임(120)은 이와 같이 라운드진 형상을 가지는 제1홈부레일(160-1) 또는 이에 상응하는 형상을 가지는 제1가이드레일(170-1)에 대응되는 경로를 따라 회전이동하게 된다.
실시형태에 따라서 미들프레임(130) 구조를 지지프레임(120)의 상부에 배치하거나 수직으로 절곡된 프레임 구조로 구현하는 경우 상기 제1홈부레일(160-1)은 지지프레임(120)의 상부에 구비될 수 있다.
지지프레임(120)의 흔들림이나 유격 등이 최소화될 수 있도록 본 발명의 상기 제1홈부레일(160-1)과 제1가이드레일(170-1)은 각각 나란한 방향으로 2열로 배치되는 것이 더욱 바람직하며 하나의 단면은 V자 형상으로, 다른 하나의 단면은 U자 등의 형상이 되도록 구성할 수 있다.
도 3에 도시된 바와 같이 상기 제1홈부레일(160-1)과 제1가이드레일(170-1) 사이에는 복수 개의 제1볼(240-1)이 배치되는데, 이와 같은 제1볼(240-1)의 배치를 통하여 본 발명의 지지프레임(120)과 미들프레임(130)은 일정 간격이 이격된 상태를 유지할 수 있고 볼에 의한 점접촉(point-contact)에 의하여 최소화된 마찰력으로 본 발명의 지지프레임(120)이 미들프레임(130)을 기준으로 X축 방향으로 회전 이동할 수 있다.
실시형태에 따라 제1볼(240-1)은 지지프레임(120)과 미들프레임(130) 사이의 이격 거리를 적절한 만큼 줄이기 위하여 도 3에 예시된 바와 같이 제1홈부레일(160-1) 또는 제1가이드레일(170-1)에 일정 부분이 수용되는 형태로 구비될 수 있다.
본 발명의 지지프레임(120)에는 제1구동마그네트(200)가 구비되는데, 제1구동마그네트(200)는 회로기판(10)에 배치되는 제1코일(150-1, 150-3)과의 관계에서 전자기력을 받게 되고, 이 전자기력을 구동력으로 하여 본 발명의 지지프레임(120)이 미들프레임(130)을 기준으로 회전 이동하게 된다.
회로기판(10)에는 홀효과(hall effect)를 이용하여 제1구동마그네트(200)(제1구동마그네트(200)가 구비된 지지프레임(120)에 탑재된 반사계(110))의 위치를 감지하는 홀센서(250-1)(도 2 참조)가 구비될 수 있는데, 이 홀센서(250-1)가 제1구동마그네트(200)의 위치를 감지하면 구동드라이버(미도시)는 제1구동마그네트(200)의 위치에 대응되는 적절한 크기와 방향의 전원이 제1코일(150-1, 150-3)로 인가되도록 피드백 제어한다. 후술되는 바와 같이 제2구동마그네트(210)의 위치를 감지하는 홀센서(250-2)( 도 2 참조) 또한, 이와 같다.
이러한 방법을 통하여 반사계(110)의 정확한 위치와 그에 따른 전원 인가를 상호 피드백 제어함으로써 제1방향(X축 방향)의 손떨림 보정 기능이 정밀하게 구현될 수 있다. 구동드라이버(미도시)는 홀센서(250-1, 250-2)와 독립된 형태로 구현될 수 있으나 홀센서(250-1, 250-2)와 함께 하나의 칩 내지 모듈의 형태로 구현될 수도 있다.
이하에서는 설명과 이해의 편의를 위해 홀센서를 홀센서가 인식하는 객체에 따라 제1홀센서(250-1)와 제2홀센서(250-2)로 구분하여 기술하도록 한다. 즉, 제1구동마그네트(200) 또는 후술되는 바와 같이 지지프레임(120)에 구비될 수 있는 위치 센싱용 서브마그네트(220)의 위치를 감지하는 홀센서를 제1홀센서(250-1)로 지칭하며, 제2구동마그네트(210) 또는 후술되는 바와 같이 미들프레임(130)에 구비될 수 있는 위치 센싱용 서브마그네트(230)의 위치를 감지하는 홀센서를 제2홀센서(250-2)로 지칭한다.
한편, 본 발명의 미들프레임(130)에는 상기 제1구동마그네트(200)와 대면하는 위치에 자성을 가지는 금속 재질 등의 제1요크(180)가 구비될 수 있다. 이 제1요크(180)는 지지프레임(120)에 구비된 제1구동마그네트(200)와 인력을 발생시켜 지지프레임(120)을 미들프레임(130) 방향으로 당기게 되므로 이 인력에 의하여 지지프레임(120)은 제1볼(240-1)과 지속적으로 점접촉(point-contact)하게 되고 또한, 지지프레임(120)이 외부로 이탈되는 것이 효과적으로 방지될 수 있다.
지지프레임(120)의 수평 방향의 평형(도 3 기준)이 지속되도록 하고 제1코일(150-1, 150-3)과 제1구동마그네트(200)에 의한 손떨림 보정 구동력이 더욱 정밀하게 구현될 수 있도록 도 3에 도시된 바와 같이 제1구동마그네트(200)는 지지프레임(120)의 좌측 및 우측 각각에 구비되되, 지지프레임(120)의 가운데 부분을 기준으로 서로 대칭되는 위치에 구비되는 것이 바람직하다.
또한, X축 방향 손떨림 보정 구동이 종료되는 경우 더욱 신속하고 정확하게 지지프레임(120) 즉, 반사계(110)가 미들프레임(130)을 기준으로 정위치로 복귀할 수 있도록 앞서 설명된 제1요크(180)를 상기 좌측 및 우측 각각의 제1구동마그네트(200)와 각각 대면하게 배치하는 것이 바람직하다.
도 4는 본 발명의 일 실시예에 의한 미들프레임(130), 베이스프레임(140) 및 관련 구성을 도시한 도면으로서, 이하에서는 도 4를 참조하여 본 발명의 미들프레임(130)이 베이스프레임(140)을 기준으로 Y축 방향으로 회전 이동하는 본 발명의 구조를 상세히 설명하도록 한다.
본 발명의 미들프레임(130)은 상술된 바와 같이 지지프레임(120)의 X축 방향 회전 이동을 물리적으로 지지하는 객체이며, 이와 동시에 베이스프레임(140)을 기준으로 할 때에는 Y축 방향으로 직접 회전 이동하는 회전체로서도 기능한다.
도 4에 도시된 바와 같이, 본 발명의 미들프레임(130)은 제2코일(150-2)로부터 발생된 전자기력을 받는 제2구동마그네트(210)가 구비되며, 미들프레임(130) 자체의 Y축 방향 회전 이동이 가이딩되도록 미들프레임(130)에는 제2홈부레일(160-2)이 형성된다.
본 발명의 베이스프레임(140)은 미들프레임(130)을 수용하며, 미들프레임(130)이 Y축 방향으로 회전 이동하는 것을 물리적으로 지지하는데, 미들프레임(130)의 회전 이동이 효과적으로 가이딩되도록 베이스프레임(140)에는 상기 제2홈부레일(160-2)과 대응되는 형상의 제2가이드레일(170-2)이 구비된다.
본 발명의 상기 제2코일(150-2)은 미들프레임(130)이 베이스프레임(140)을 기준으로 제1방향(X축 방향)과 수직한 제2방향(Y축 방향)으로 이동하도록 제2구동마그네트(210)에 전자기력을 발생시키고, 이 전자기력에 의하여 본 발명의 미들프레임(130)은 베이스프레임(140)을 기준으로 제2방향(Y축 방향)으로 이동 또는 회전 이동한다.
앞서 설명된 바와 같이 미들프레임(130)에 구비되는 제2홈부레일(160-2)과 베이스프레임(140)에 구비되는 제2가이드레일(170-2)은 상호 대응되는 형상 즉, Z축 길이 방향으로 연장된 형상을 가지며 미들프레임(130)의 회전 이동이 효과적으로 지지되도록 라운드진 형상 내지 최적화되고 상호 대응되는 곡률을 가지도록 구성된다.
이와 같은 제2홈부레일(160-2)과 제2가이드레일(170-2)의 구조에 의하여 본 발명의 미들프레임(130)은 상기 제2홈부레일(160-2) 또는 제2가이드레일(170-2)에 대응되는 경로를 따라 회전이동하게 된다.
본 발명의 미들프레임(130)이 Y축 방향으로 회전 이동하는 것이 더욱 유연하고 정밀하게 구현될 수 있도록 상기 제2홈부레일(160-2)과 제2가이드레일(170-2) 사이에는 복수 개의 제2볼(240-2)이 배치된다.
이 제2볼(240-2)에 의하여 본 발명의 미들프레임(130)은 최소화된 마찰력으로 이동하며 베이스프레임(140)과의 적절한 이격 거리를 유지할 수 있게 된다.
앞서 기술된 제1요크(180)와 같이, 미들프레임(130)이 베이스프레임(140)에서 이탈하지 않고 제2볼(240-2)과의 점접촉이 효과적으로 유지될 수 있도록 미들프레임(130)의 제2구동마그네트(210)를 베이스프레임(140) 방향으로 당기는 제2요크(190)가 구비되는 것이 바람직하다.
미들프레임(130)이 지지프레임(120)의 회전 이동을 지지함과 동시에 자신이 베이스프레임(140)을 기준으로 회전 이동하는 것이 독립적으로 구현되도록 하기 위하여 도 4 등에 도시된 바와 같이 제2구동마그네트(210)는 미들프레임(130)에서 제1가이드레일(170-1)이 구비된 면과 다른 면에 구비되는 것이 바람직하다.
대응되는 관점에서, 미들프레임(130)이 베이스프레임(140)을 기준으로 회전 이동하는 것을 가이딩하는 제2홈부레일(160-2)도 상기 제1가이드레일(170-1)이 구비된 면과 다른 면에 구비되는 것이 바람직하다. 즉, 첨부된 도면에 예시된 바와 같이 제1가이드레일(170-1)은 미들프레임(130)의 내측에 형성되도록 하고, 상기 제2홈부레일(160-2)는 제1가이드레일(170-1)이 구비되지 않는 영역인 외측면에 형성되도록 하는 것이 바람직하다.
또한, 지지프레임(120)의 X축 방향 이동과 미들프레임(130)의 Y축 방향 이동이 독립적으로 구현될 수 있도록 지지프레임(120)에 구비되는 제1홈부레일(160-1)과 미들프레임(130)에 구비되는 제2홈부레일(160-2)은 서로 수직을 이루는 방향으로 형성되는 것이 바람직하다.
한편, 미들프레임(130)의 Y축 방향 위치를 감지하기 위하여 제2구동마그네트(210)의 위치를 센싱하는 제2홀센서(250-2)가 회로기판(10)에 구비될 수 있다.
이 제2홀센서(250-2)는 제2구동마그네트(210)의 위치 즉, 제2구동마그네트(210)가 구비된 미들프레임(130)의 위치 내지 반사계(110)의 위치를 감지한다.
회전 이동하는 이동체의 가운데 부분보다는 끝단 부분의 높이(위치) 변화가 상대적으로 크므로 실시형태에 따라서 상기 제2홀센서(250-2)가 미들프레임(130) 즉, 미들프레임(130)에 구비된 반사계(110)의 위치를 더욱 효과적으로 감지하기 위하여 미들프레임(130)의 끝부분의 위치를 감지하도록 구성하는 것이 바람직하다.
이를 위하여 미들프레임(130)의 끝부분 즉, 상기 제2구동마그네트(210)와 이격된 위치에 서브마그네트(230)를 구비시키고, 제2홀센서(250-2)가 이 서브마그네트(230)의 위치를 감지하도록 구성하는 것이 바람직하다.
이하에서는 설명과 이해의 편의를 위해 서브마그네트를 서브마그네트가 구비되는 객체에 따라 제1서브마그네트(220)와 제2서브마그네트(230)로 구분하여 기술하도록 한다. 즉, 지지프레임(120)에 구비되는 서브마그네트를 제1서브마그네트(220)로 지칭하며, 미들프레임(130)에 구비되는 서브마그네트를 제2서브마그네트(230)로 지칭한다.
앞서 설명된 바와 같이 본 발명의 반사계(110)는 입사되는 광을 광축(Z축) 방향으로 반사시키며, 본 발명의 베이스프레임(140)은 이 반사계(110)가 광축에 수직한 2축 방향(X축 및 Y축)으로 이동 가능하도록 반사계(110)를 지지한다.
앞서 기술된 바와 같이 본 발명의 지지프레임(120)은 반사계(110)를 지지하며 상기 베이스프레임(140) 상에 일축 방향으로 이동 가능하게 장착되며, 본 발명의 미들프레임(130)은 상기 베이스프레임(140)과 지지프레임(120) 사이에 위치되어 상기 반사계(110)를 상기 지지프레임(120)의 이동 방향과 수직한 방향으로 이동 가능하도록 지지한다.
본 발명은 반사계(110)가 결합되는 지지프레임(120)과 베이스프레임(140) 사이에 미들프레임(130)을 배치한 구조를 통하여 지지프레임(120)과 미들프레임(130)이 서로 수직한 방향으로 각각 독립적으로 이동할 수 있도록 하고 이를 통하여 반사계(110)가 광축과 수직한 X축 및 Y축 방향으로 회전하도록 구성하여 손떨림 보정을 구현한다.
이하에서는 도 6을 참조하여 본 발명의 다양한 실시예에 의한 구동마그네트(제1구동마그네트(200), 제2구동마그네트(210)), 센싱용 마그네트(제1서브마그네트(220), 제2서브마그네트(230)) 및 홀센서(제1홀센서(250-1), 제2홀센서(250-2))의 구성을 상세히 기술하도록 한다. 그에 앞서 도 5을 참조하여 홀센서가 마그네트의 위치를 감지하는 원리를 마그네트의 극성 배치에 따라 간략히 살펴보도록 한다.
도 5의 (a)는 홀센서가 센싱하는 마그네트로 단극 착자 마그네트를 사용하는 경우 홀센서가 감지하는 자기력 범위를 도시한 그래프이며, 도 5의 (b)는 홀센서가 센싱하는 마그네트로 양극 착자 마그네트를 사용하는 경우 홀센서가 감지하는 자기력 범위를 도시한 그래프이다.
이하 설명에서는, 홀센서에 노출되는 마그네트의 자극 즉, 홀센서와 대면하는 마그네트의 자극면이 하나의 극(N극 또는 S극 중 하나)으로 이루어지는 경우를 단극 착자 마그네트로 지칭하며, 홀센서에 노출되는 마그네트의 자극면 즉, 홀센서와 대면하는 마그네트의 자극면이 복수 개 극으로 이루어지는 경우를 다극 착자 마그네트로 지칭한다.
즉, 다극 착자 마그네트는 N극과 S극 모두가 홀센서와 대면하도록 배치되는 마그네트를 의미하며, 실시형태에 따라 2개 이상의 N극, 2개 이상의 S극 모두가 홀센서와 대면하도록 배치되는 마그네트를 포함한다.
후술되는 바와 같이 마그네트에 전자기력을 발생시키는 코일을 기준으로 하는 경우, 상기 코일과 대면하는 면이 단일 극으로 이루어지는 마그네트는 상술된 단극 착자 마그네트에 해당하며, 상기 코일과 대면하는 면이 복수 개 극으로 이루어지는 마그네트는 상술된 다극 착자 마그네트에 해당한다.
도 5의 (a) 및 도 5의 (b)에서 Pr은 마그네트의 이동이 없는 초기 위치(default)에서 홀센서와 마그네트 사이의 거리를 의미한다. 통상적으로 마그네트와 홀센서사이의 거리가 가장 가까울 때를 초기위치로 설정하게 되는데, 단극 착자 마그네트의 경우 초기 위치에서 가장 큰 자기력을 감지하게 되고, 2극(다극) 착자 마그네트의 경우 자기력 발향에 의하여 초기 위치에서 “0”의 자기력을 감지하게 된다.
마그네트가 구비된 이동체가 초기 위치(Pr)를 기준으로 양의 방향(P2) 또는 음의 방향(P1)으로 이동하는 경우 홀센서가 인식하는 자기력의 변화량은 △G(|G2-G1|)가 된다. 이 경우 도 5(a)에 도시된 바와 같이 단극 착자 마그네트를 홀센서가 감지하는 경우 홀센서가 감지하는 자기력의 변화량은 △Ga가 되고, 도 5(b)에 도시된 바와 같이 2극(다극) 착자 마그네트를 홀센서가 감지하는 경우 홀센서가 감지하는 자기력의 변화량은 △Gb가 된다.
이와 같이 홀센서가 다극 착자된 마그네트로부터 자기력의 변화를 감지하는 경우 도면에 도시된 바와 같이 동일 거리로 마그네트가 이동(|P1-P2|)하더라도 단극의 경우에 대비하여 훨씬 큰 자기력의 변화량(Ga<Gb)이 감지될 수 있게 된다.
또한, 홀센서가 다극 착자된 마그네트로부터 자기력의 변화를 감지하는 경우 자기력 “0”을 기준으로 양의 자기력과 음의 자기력을 동시에 감지할 수도 있게 된다.
이와 같이 홀센서가 센싱하는 마그네트를 2극(다극) 착자 마그네트로 구현하는 경우 홀센서가 감지하는 자기력 구간이 더 확대되고, 더 확대된 구간을 자기력 센싱에 이용할 수 있어 홀센서의 분해능이 높아지며, 자기력의 방향성(양의 방향 및 음의 방향)을 위치 감지에 효과적으로 반영할 수 있어 OIS 구동을 더욱 정밀하게 구현할 수 있다.
도 6에 도시된 본 발명은 상술된 바와 같이 다극 착자 마그네트를 더욱 효과적으로 활용하고 구동마그네트 사이에서 발생될 수 있는 자기장 간섭력을 최소화할 수 있는 실시예에 해당한다.
앞서 설명된 바와 같이 본 발명의 지지프레임(120)에는 X축 방향 회전 이동에 대한 구동력을 발생시키기 위해 제1구동마그네트(200)가 구비되고, 미들프레임(130)에는 Y축 방향 회전 이동에 대한 구동력을 발생시키기 위해 제2구동마그네트(210)가 구비된다.
후술되는 바와 같이 각 구동마그네트가 상호 간에 미치는 영향을 감소시켜 각 축 방향 이동이 더욱 독립적으로 이루어지도록 하기 위하여 제1구동마그네트(200) 또는 제2구동마그네트(210) 중 하나는 단일 극으로 이루어지고, 나머지 하나는 2극 이상으로 이루어지는 것이 바람직하다.
마그네트에 전자기력을 발생시키는 코일을 기준으로 설명하면, 상기 제1구동마그네트(200) 또는 제2구동마그네트(210) 중 하나는 자신과 대응하는 코일과 대면하는 면이 단일 극으로 이루어지며, 나머지 하나는 자신과 대응하는 코일과 대면하는 면이 2극 이상으로 이루어지는 것이 바람직하다.
구체적으로 일 실시형태로 도 6의 (a)에 도시된 바와 같이 제1구동마그네트(200)는 제1코일(150-1, 150-3)과 대면하는 면이 단일 극으로 이루어지도록 구성하고 제2구동마그네트(210)는 제2코일(150-2)과 대면하는 면이 2극 이상으로 이루어지도록 구성할 수 있다.
이 경우, 제1홀센서(250-1)가 지지프레임(120)에 구비된 제1구동마그네트(200)의 위치를 감지하도록 구성할 수도 있으나, 앞서 기술된 바와 같이 단극 착자(단일 극)의 경우 위치 감지의 효율성이 낮으므로 도 6(a)에 도시된 바와 같이 지지프레임(120)에 제1홀센서(250-1)와 대면하는 면이 2극 이상으로 이루어지는 제1서브마그네트(220)가 제1구동마그네트(200)와 이격되어 구비되도록 하고 제1홀센서(250-1)가 이 제1서브마그네트(220)의 위치를 감지하도록 구성하는 것이 바람직하다.
대응되는 관점에서, 미들프레임(130)에도 위치 감지만을 위한 센싱용 마그네트를 추가적으로 구비시킬 수 있으나, 제2구동마그네트(210) 자체가 다극(2극)으로 구현되므로 제2홀센서(250-2)가 이 제2구동마그네트(210) 자체의 위치를 감지하도록 구성할 수 있다.
단 이 경우에도 끝단의 이동 범위가 더 크다는 것을 충분히 활용하기 위하여 2극 이상으로 이루어지는 센싱용 마그네트(제2서브 마그네트(250-2))가 미들프레임(130)의 끝단에 제2구동마그네트(210)와 이격되어 구비되도록 하고 제2홀센서(250-2)가 이 제2서브 마그네트(250-2)의 위치를 감지하도록 구성할 수도 있음은 물론이다.
실시형태에 따라 상술된 경우와는 반대로, 도 6의 (b)에 도시된 바와 같이 제1구동마그네트(200)는 제1코일(150-1, 150-3 중 하나 이상)과 대면하는 면이 2극 이상으로 이루어지게 구성하고 제2구동마그네트(210)는 제2코일(150-2)과 대면하는 면이 단일 극으로 이루어지도록 구성할 수도 있다.
이 경우, 제2홀센서(250-2)가 미들프레임(130)에 구비된 제2구동마그네트(210)의 위치를 감지하도록 구성할 수도 있으나, 앞서 기술된 바와 같이 단극 착자(단일 극)의 경우 위치 감지의 효율성이 낮으므로 도 6(b)에 도시된 바와 같이 미들프레임(130)의 끝단에 제2홀센서(250-2)와 대면하는 면이 2극 이상으로 이루어지는 제2서브마그네트(230)를 제2구동마그네트(210)와 이격시켜 구비하고 제2홀센서(250-2)가 이 제2서브마그네트(230)의 위치를 감지하도록 구성하는 것이 바람직하다.
대응되는 관점에서, 지지프레임(120)에도 위치 감지만을 위한 센싱용 마그네트를 추가적으로 구비시킬 수 있으나, 제1구동마그네트(200) 자체가 다극(2극)으로 구현되므로 제1홀센서(250-1)가 이 제1구동마그네트(200) 자체의 위치를 감지하도록 구성할 수 있다.
단 이 경우에도 끝단의 이동 범위가 더 크다는 것을 충분히 활용하기 위하여 2극 이상으로 이루어지는 센싱용 마그네트(제1서브 마그네트(250-1))가 지지프레임(120)의 끝단에 제1구동마그네트(200)와 이격되어 구비되도록 하고 제1홀센서(250-1)가 이 제1서브 마그네트(250-1)의 위치를 감지하도록 구성할 수도 있음은 물론이다.
이와 같이 복수 개의 구동마그네트를 서로 다른 극성 배치가 되도록 구성하는 경우, 구동마그네트가 동종의 극성 배치를 가지는 경우와 대조할 때, 구동마그네트 각각이 발생시키는 자기장이 타 구동마그네트에 미치는 영향을 감소시킬 수 있어 각 구동마그네트에 의한 각 방향 이동 내지 회전 이동에 대한 제어를 더욱 독립적이고 정확하게 구현할 수 있다.
더 나아가, 복수 개의 구동마그네트를 서로 다른 극성 배치가 되도록 구성함과 동시에 단극 착자 형태의 구동마그네트가 구비된 이동체에 2극 이상으로 이루어지는 센싱용 마그네트를 추가적으로 구비시킴으로써 이동 내지 회전 이동에 대한 제어를 더욱 독립적이고 정확하게 구현함과 동시에 홀센서의 정확한 위치 감지를 통하여 OIS 구동을 더욱 정밀하게 구현할 수 있다.
도 7은 지지프레임(120)의 회전 이동에 의해 구현되는 본 발명의 X축 방향 OIS의 작동 관계를 도시한 도면이며, 도 8은 미들프레임(130)의 회전 이동에 의해 구현되는 본 발명의 Y축 방향 OIS의 작동 관계를 도시한 도면이다.
우선 도 7을 참조하여 본 발명의 반사계(110) 즉, 반사계(110)가 설치된 지지프레임(120)이 회전 이동함에 따라 X축 방향의 손떨림 보정이 구현되는 과정을 설명한다.
앞서 설명된 바와 같이 제1코일(150-1, 150-3)에 적절한 크기와 방향의 전원이 인가되면 제1구동마그네트(200)가 전자기력을 받게 되고 이를 통하여 제1구동마그네트(200)가 설치된 지지프레임(120)이 이동하게 된다. 지지프레임(120)은 제1홈부레일(160-1) 또는 제1가이드레일(170-1)의 형상에 의하여 가이딩되어 이동하게 되므로 지지프레임(120)의 이동은 회전 이동이 된다.
도 7의 가운데 도면은 손떨림 보정이 이루어지지 않은 기준 위치의 반사계(110), 지지프레임(120) 및 미들프레임(130)이 도시되어 있다.
외계의 빛은 Z1 경로로 유입된 후 도 7의 가운데 도면에 도시된 바와 같이 본 발명의 반사계(110)에 의하여 그 경로가 변경되어 광축방향(Z축 방향)으로 렌즈(210)에 유입된다.
손떨림 등에 의한 외부의 X축 방향 흔들림이 전달되면, 본 발명의 구동드라이버(미도시)는 반사계(110)의 위치(구체적으로 지지프레임(120)에 장착된 제1구동마그네트(200) 또는 제1서브마그네트(220))를 센싱하는 제1홀센서(250-1)에 의한 피드백 제어를 통하여 X축 방향 위치를 보정하기 위한 적절한 크기와 방향의 전원이 제1코일(150-1, 150-3)에 인가되도록 제어한다.
이와 같은 피드백 제어를 통하여 제1코일(150-1, 150-3)과 제1구동마그네트(200) 사이에 전자기력이 발생되면 발생된 전자기력을 구동력으로 하여 지지프레임(120) 즉, 지지프레임(120)에 장착된 반사계(110)가 회전이동하게 되어 손떨림에 의한 움직임이 보정된다.
도 7의 좌측 그림과 같이 제1코일(150-1, 150-3)에서 발생된 전자기력이 반사계(110)가 장착된 지지프레임(120)을 시계 방향으로 회전시키게 되면 유입된 빛은 반사계(110)의 회전 이동에 의하여 왼쪽으로 변이(d1)를 발생시키므로 렌즈 또는 CCD 등의 촬상소자의 관점에서는 X축 방향의 보정(도 7기준 X축의 좌측방향) 이동이 이루어진다.
대응되는 관점에서, 도 7의 우측 그림과 같이 제1코일(150-1, 150-3)에서 발생된 전자기력이 반사계(110)를 반시계 방향으로 회전시키게 되면 유입된 빛은 오른쪽으로 변이(d2)를 발생시키므로 렌즈 또는 CCD 등의 촬상소자의 관점에서는 X축 방향의 보정 이동(도 7기준 X축의 우측 방향)이 이루어진다.
이와 같이 본 발명은 반사계(110)를 회전이동시킴으로써 특정 방향으로의 손떨림 보정을 구현하는 것이며 나아가 반사계(110)의 회전이동이 곡률을 가지는 제1홈부레일(160-1)과 제1가이드레일(170-1) 및 제1볼(240-1)에 의하여 물리적으로 지지되면서 가이딩되도록 구성되므로 구동 제어를 더욱 정밀하게 할 수 있음은 물론, 최소화된 전원으로도 구동이 가능하게 된다.
도 8은 베이스프레임(140)을 기준으로 미들프레임(130)이 회전 이동함으로써 미들프레임(130)에 수용된 지지프레임(120)이 회전이동하고 이 지지프레임(120)에 장착된 반사계(110)가 회전 이동함으로써 Y축 방향 손떨림 보정이 이루어지는 작동 관계를 도시하고 있다.
도 8의 가운데 도면은 Y축 방향 손떨림 보정이 이루어지지 않는 기준 상태를 도시하고 있다.
도 8의 좌측 그림과 같이 제2코일(150-2)에서 발생된 전자기력이 미들프레임(130)을 시계 방향으로 회전시키게 되면 이에 따라 반사계(110)도 동일한 방향으로 회전이동하게 되므로 유입된 빛은 왼쪽으로 변이(d1)를 발생시키므로 렌즈 또는 CCD 등의 촬상소자의 관점에서는 Y축 방향의 보정(도 8기준 좌측방향) 이동이 이루어진다.
대응되는 관점에서 도 8의 우측 그림과 같이 제2코일(150-2)에서 발생된 전자기력이 미들프레임(130)을 반시계 방향으로 회전시키게 되면 유입된 빛은 오른쪽으로 변이(d2)를 발생시키므로 렌즈 또는 CCD 등의 촬상소자의 관점에서는 Y축 방향의 보정 이동(도 8기준 우측 방향)이 이루어진다.
이상에서 지지프레임(120)이 X축 방향으로 회전 이동하고 미들프레임(130)이 Y축 방향으로 회전 이동하는 예를 기준으로 본 발명의 실시예가 설명되었으나, 실시형태에 따라서 서로 수직한 방향으로 이동한다면 지지프레임(120)을 Y축 방향으로 회전 이동시키고, 미들프레임(130)이 X축 방향으로 회전 이동시키는 형태도 충분히 가능함은 물론이다.
이상에서 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.
상술된 본 발명의 설명에 있어 제1, 제2, 서브 등과 같은 수식어는 상호 간의 구성요소를 상대적으로 구분하기 위하여 사용되는 도구적 개념의 용어일 뿐이므로, 특정의 순서, 우선순위 등을 나타내기 위하여 사용되는 용어가 아니라고 해석되어야 한다.
본 발명의 설명과 그에 대한 실시예의 도시를 위하여 첨부된 도면 등은 본 발명에 의한 기술 내용을 강조 내지 부각하기 위하여 다소 과장된 형태로 도시될 수 있으나, 앞서 기술된 내용과 도면에 도시된 사항 등을 고려하여 본 기술분야의 통상의 기술자 수준에서 다양한 형태의 변형 적용 예가 가능할 수 있음은 자명하다고 해석되어야 한다.
100 : 반사계 구동장치
110 : 반사계 120 : 지지프레임
130 : 미들프레임 140 : 베이스프레임
150-1, 150-3 : 제1코일 150-2 : 제2코일
160-1 : 제1홈부레일 160-2 : 제2홈부레일
170-1 : 제1가이드레일 170-2 : 제2가이드레일
180 : 제1요크 190 : 제2요크
200 : 제1구동마그네트 210 : 제2구동마그네트
220 : 제1서브마그네트 230 : 제2서브마그네트
240-1 : 제1볼 240-2 : 제2볼
250-1 : 제1홀센서 250-2 : 제2홀센서

Claims (12)

  1. 제1홈부레일이 형성되고 제1구동마그네트가 구비된 지지프레임;
    상기 지지프레임에 설치되며 광을 렌즈로 반사시키는 반사계;
    상기 제1홈부레일과 대응되는 제1가이드레일 및 제2홈부레일이 형성되며 제2구동마그네트가 구비된 미들프레임;
    상기 제2홈부레일과 대응되는 제2가이드레일이 형성되는 베이스프레임;
    상기 제1구동마그네트에 전자기력을 발생시켜 상기 지지프레임을 상기 미들프레임을 기준으로 광축과 수직한 제1방향으로 이동시키는 제1코일; 및
    상기 제2구동마그네트에 전자기력을 발생시켜 상기 미들프레임을 상기 베이스프레임을 기준으로 상기 제1방향과 수직한 제2방향으로 이동시키는 제2코일을 포함하는 것을 특징으로 하는 다축 구조의 반사계 구동장치.
  2. 제 1항에 있어서,
    상기 제1 또는 제2 구동마그네트 중 하나는 단일 극으로 이루어지고, 나머지 하나는 2극 이상으로 이루어지는 것을 특징으로 하는 다축 구조의 반사계 구동장치.
  3. 제 2항에 있어서,
    상기 지지프레임 상에 상기 제1구동마그네트와 이격되게 위치되는 서브마그네트; 및
    상기 서브마그네트에 대응하게 위치된 홀센서를 더 포함하고,
    상기 제1구동마그네트는 상기 제1코일과 대면하는 면이 단일 극으로 이루어지며, 상기 서브마그네트는 상기 홀센서와 대면하는 면이 2극 이상으로 이루어지는 것을 특징으로 하는 다축 구조의 반사계 구동장치.
  4. 제 2항에 있어서,
    상기 미들프레임 상에 상기 제2구동마그네트와 이격되게 위치되는 서브마그네트; 및
    상기 서브마그네트에 대응하게 위치된 홀센서를 더 포함하고,
    상기 제2구동마그네트는 상기 제2코일과 대면하는 면이 단일 극으로 이루어지며, 상기 서브마그네트는 상기 홀센서와 대면하는 면이 2극 이상으로 이루어지는 것을 특징으로 하는 다축 구조의 반사계 구동장치.
  5. 제 1항에 있어서, 상기 제1구동마그네트는,
    상기 지지프레임의 가운데 부분을 기준으로 대칭되는 좌측 및 우측 위치에 각각 구비되는 것을 특징으로 하는 다축 구조의 반사계 구동장치.
  6. 제 1항에 있어서,
    상기 제1홈부레일과 상기 제1가이드레일 사이에 배치되는 제1볼; 및
    상기 제2홈부레일과 상기 제2가이드레일 사이에 배치되는 제2볼을 더 포함하는 것을 특징으로 하는 다축 구조의 반사계 구동장치.
  7. 제 1항에 있어서, 상기 미들프레임은,
    상기 제1구동마그네트와 대면하는 방향에 요크를 더 구비하는 것을 특징으로 하는 다축 구조의 반사계 구동장치.
  8. 제 1항에 있어서, 상기 베이스프레임은,
    상기 제2구동마그네트와 대면하는 방향에 요크를 더 구비하는 것을 특징으로 하는 다축 구조의 반사계 구동장치.
  9. 제 1항에 있어서, 상기 미들프레임은,
    내측에 상기 제1가이드레일이 형성되고 외측면에 상기 제2홈부레일이 형성되는 것을 특징으로 하는 다축 구조의 반사계 구동장치.
  10. 제 9항에 있어서, 상기 제1가이드레일과 상기 제2홈부레일은,
    서로 수직을 이루는 방향으로 형성되는 것을 특징으로 하는 다축 구조의 반사계 구동장치.
  11. 제 1항에 있어서, 상기 제1홈부레일은,
    라운드진 형상을 가지며,
    상기 지지프레임은 상기 제1홈부레일 또는 제1가이드레일에 대응되는 경로를 따라 회전이동하는 것을 특징으로 하는 다축 구조의 반사계 구동장치.
  12. 제 1항에 있어서, 상기 제2홈부레일은,
    라운드진 형상을 가지며,
    상기 미들프레임은 상기 제2홈부레일 또는 제2가이드레일에 대응되는 경로를 따라 회전이동하는 것을 특징으로 하는 다축 구조의 반사계 구동장치.
KR1020170054807A 2017-02-20 2017-04-28 다축 구조의 반사계 구동장치 KR102140582B1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020170054807A KR102140582B1 (ko) 2017-04-28 2017-04-28 다축 구조의 반사계 구동장치
EP17896844.2A EP3584624B1 (en) 2017-02-20 2017-09-18 Reflection system driving device having multi-axis structure
CN201790001256.1U CN209590407U (zh) 2017-02-20 2017-09-18 具有多轴结构的反射***驱动装置
PCT/KR2017/010171 WO2018151388A1 (ko) 2017-02-20 2017-09-18 다축 구조의 반사계 구동장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170054807A KR102140582B1 (ko) 2017-04-28 2017-04-28 다축 구조의 반사계 구동장치

Publications (2)

Publication Number Publication Date
KR20180120894A KR20180120894A (ko) 2018-11-07
KR102140582B1 true KR102140582B1 (ko) 2020-08-03

Family

ID=64362949

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170054807A KR102140582B1 (ko) 2017-02-20 2017-04-28 다축 구조의 반사계 구동장치

Country Status (1)

Country Link
KR (1) KR102140582B1 (ko)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105359006B (zh) 2013-07-04 2018-06-22 核心光电有限公司 小型长焦透镜套件
CN108718376B (zh) 2013-08-01 2020-08-14 核心光电有限公司 具有自动聚焦的纤薄多孔径成像***及其使用方法
US9392188B2 (en) 2014-08-10 2016-07-12 Corephotonics Ltd. Zoom dual-aperture camera with folded lens
KR102143309B1 (ko) 2015-08-13 2020-08-11 코어포토닉스 리미티드 비디오 지원 및 스위칭/비스위칭 동적 제어 기능이 있는 듀얼-애퍼처 줌 카메라
KR102063411B1 (ko) 2016-05-30 2020-01-07 코어포토닉스 리미티드 회전식 볼-가이드 음성 코일 모터
KR102226315B1 (ko) 2016-07-07 2021-03-12 코어포토닉스 리미티드 폴디드 옵틱용 선형 볼 가이드 음성 코일 모터
CN110140076B (zh) 2017-11-23 2021-05-21 核心光电有限公司 紧凑型折叠式摄影机结构
US10976567B2 (en) 2018-02-05 2021-04-13 Corephotonics Ltd. Reduced height penalty for folded camera
EP4109174A1 (en) 2018-04-23 2022-12-28 Corephotonics Ltd. An optical-path folding-element with an extended two degree of freedom rotation range
US11635596B2 (en) 2018-08-22 2023-04-25 Corephotonics Ltd. Two-state zoom folded camera
KR102184925B1 (ko) * 2018-11-15 2020-12-01 자화전자(주) 광학계 구동장치, 광학계 위치제어장치 및 위치제어방법
KR20210044646A (ko) * 2019-10-15 2021-04-23 엘지이노텍 주식회사 프리즘 구동 장치
EP4045959A4 (en) * 2019-12-03 2022-12-21 Corephotonics Ltd. ACTUATORS FOR EXTENDED ROTATION WITH TWO DEGREE OF FREEDOM
CN115943337A (zh) * 2020-03-11 2023-04-07 迈科威特株式会社 光路改变单元和包含该光路改变单元的透镜组件
CN117518313A (zh) 2020-05-30 2024-02-06 核心光电有限公司 用于获得超微距图像的***
US11637977B2 (en) 2020-07-15 2023-04-25 Corephotonics Ltd. Image sensors and sensing methods to obtain time-of-flight and phase detection information
KR102194457B1 (ko) * 2020-09-02 2020-12-23 자화전자(주) 광학계 구동장치 및 광학계 위치제어장치
KR20220036584A (ko) * 2020-09-16 2022-03-23 엘지이노텍 주식회사 카메라 장치 및 광학기기
KR20220090055A (ko) * 2020-12-22 2022-06-29 엘지이노텍 주식회사 카메라 액추에이터 및 이를 포함하는 카메라 모듈
CN112817204A (zh) * 2020-12-30 2021-05-18 深圳市火乐科技发展有限公司 投影设备及其光学矫正装置
KR102533577B1 (ko) * 2021-01-21 2023-05-17 자화전자(주) 반사계 액추에이터
EP4204885A4 (en) 2021-06-08 2024-03-06 Corephotonics Ltd SYSTEMS AND CAMERAS FOR TILTING A FOCAL PLANE OF A SUPER MACRO-IMAGE

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160269602A1 (en) 2014-04-04 2016-09-15 Qualcomm Incorporated Auto-focus in low-profile folded optics multi-camera system
KR101742500B1 (ko) 2016-11-04 2017-06-02 주식회사 나무가 휴대폰 듀얼카메라 및 이를 이용한 휴대폰 듀얼카메라의 조립공정

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5896197A (en) * 1992-01-08 1999-04-20 Nicolet Instrument Corporation Interferometer having glass graphite bearing
US9285566B2 (en) * 2013-08-08 2016-03-15 Apple Inc. Mirror tilt actuation

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160269602A1 (en) 2014-04-04 2016-09-15 Qualcomm Incorporated Auto-focus in low-profile folded optics multi-camera system
KR101742500B1 (ko) 2016-11-04 2017-06-02 주식회사 나무가 휴대폰 듀얼카메라 및 이를 이용한 휴대폰 듀얼카메라의 조립공정

Also Published As

Publication number Publication date
KR20180120894A (ko) 2018-11-07

Similar Documents

Publication Publication Date Title
KR102140582B1 (ko) 다축 구조의 반사계 구동장치
KR102166942B1 (ko) 다축 구조의 ois용 반사계 구동장치
KR102400386B1 (ko) 줌렌즈용 구동장치
KR102423363B1 (ko) 줌 카메라용 액추에이터
KR102090625B1 (ko) 자동초점 조절장치 및 이를 포함하는 카메라 모듈
EP3584624B1 (en) Reflection system driving device having multi-axis structure
KR101862228B1 (ko) Ois를 위한 반사계 구동장치
US11824417B2 (en) Actuator with multipolar magnet structure
CN111190279B (zh) 用于操作光学反射器的设备以及控制其位置的设备和方法
KR20200012421A (ko) 모듈 결합형 카메라용 액추에이터
KR20190095986A (ko) 메모리 유닛이 구비된 광학계 구동장치
KR20180015966A (ko) 줌렌즈용 액추에이터
KR102423689B1 (ko) 메모리 유닛이 구비된 광학계 구동장치
KR102533577B1 (ko) 반사계 액추에이터
KR102384219B1 (ko) 다극 마그네트 구조가 장착된 액추에이터
KR20200035522A (ko) 렌즈 구동장치
KR20190134144A (ko) 각도 조절용 액추에이터
KR101945710B1 (ko) Ois를 위한 반사계 구동장치
KR20220023194A (ko) 카메라 액추에이터 및 이를 포함하는 카메라 모듈
KR102565566B1 (ko) 이원구조의 줌 구동 액추에이터
KR20200060201A (ko) 카메라 모듈
KR20230026717A (ko) 연속줌 액추에이터
KR20220157047A (ko) 연속 줌 액추에이터
KR20210156424A (ko) 반사계 액추에이터 및 카메라 모듈

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant