KR102133794B1 - 세포 소기관 내 글루타치온 측정용 실시간 형광 이미징 센서 및 이의 제조 방법 - Google Patents

세포 소기관 내 글루타치온 측정용 실시간 형광 이미징 센서 및 이의 제조 방법 Download PDF

Info

Publication number
KR102133794B1
KR102133794B1 KR1020170107429A KR20170107429A KR102133794B1 KR 102133794 B1 KR102133794 B1 KR 102133794B1 KR 1020170107429 A KR1020170107429 A KR 1020170107429A KR 20170107429 A KR20170107429 A KR 20170107429A KR 102133794 B1 KR102133794 B1 KR 102133794B1
Authority
KR
South Korea
Prior art keywords
living cells
measuring
thiol
antioxidant capacity
fluorescence intensity
Prior art date
Application number
KR1020170107429A
Other languages
English (en)
Other versions
KR20190021943A (ko
Inventor
강흔수
김혜미
송지은
김명진
최기항
Original Assignee
주식회사 셀투인
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 셀투인 filed Critical 주식회사 셀투인
Priority to KR1020170107429A priority Critical patent/KR102133794B1/ko
Priority to CA3072434A priority patent/CA3072434A1/en
Priority to PCT/KR2018/009743 priority patent/WO2019039888A1/ko
Priority to CN201880054675.0A priority patent/CN111032660B/zh
Priority to US16/640,717 priority patent/US11472825B2/en
Priority to JP2020511502A priority patent/JP7169004B2/ja
Priority to EP18848372.1A priority patent/EP3674305A4/en
Priority to AU2018320601A priority patent/AU2018320601B2/en
Publication of KR20190021943A publication Critical patent/KR20190021943A/ko
Application granted granted Critical
Publication of KR102133794B1 publication Critical patent/KR102133794B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6561Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom containing systems of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring or ring system, with or without other non-condensed hetero rings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5076Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving cell organelles, e.g. Golgi complex, endoplasmic reticulum
    • G01N33/5079Mitochondria
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/001Preparation for luminescence or biological staining
    • A61K49/0013Luminescence
    • A61K49/0017Fluorescence in vivo
    • A61K49/0019Fluorescence in vivo characterised by the fluorescent group, e.g. oligomeric, polymeric or dendritic molecules
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/12Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains three hetero rings
    • C07D491/14Ortho-condensed systems
    • C07D491/147Ortho-condensed systems the condensed system containing one ring with oxygen as ring hetero atom and two rings with nitrogen as ring hetero atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6408Fluorescence; Phosphorescence with measurement of decay time, time resolved fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • G01N21/6458Fluorescence microscopy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/4833Physical analysis of biological material of solid biological material, e.g. tissue samples, cell cultures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/502Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5076Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving cell organelles, e.g. Golgi complex, endoplasmic reticulum
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/52Use of compounds or compositions for colorimetric, spectrophotometric or fluorometric investigation, e.g. use of reagent paper and including single- and multilayer analytical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/531Production of immunochemical test materials
    • G01N33/532Production of labelled immunochemicals
    • G01N33/533Production of labelled immunochemicals with fluorescent label
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1022Heterocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1033Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6417Spectrofluorimetric devices
    • G01N2021/6421Measuring at two or more wavelengths
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value
    • G01N2500/04Screening involving studying the effect of compounds C directly on molecule A (e.g. C are potential ligands for a receptor A, or potential substrates for an enzyme A)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/70Mechanisms involved in disease identification
    • G01N2800/7004Stress
    • G01N2800/7009Oxidative stress

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Urology & Nephrology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Toxicology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

본 발명은 세포 소기관 내 글루타치온 측정용 실시간 형광 이미징 센서 및 이의 제조 방법에 관한 것이다. 보다 상세하게는, 본 발명은 세포 소기관 내 글루타치온 측정용 측정용 신규 화합물, 신규 화합물의 제조 방법, 상기 신규 화합물을 포함하는 세포 소기관 내 글루타치온 측정용 실시간 이미징 센서, 이의 제조 방법 및 상기 이미징 센서를 이용한 세포 소기관 내 글루타치온 측정 방법에 관한 것이다.
본 발명에 따른 화합물을 포함하는 조성물을 사용하여 생세포(living cell), 특히 줄기 세포 내 소기관인 미토콘드리아 또는 골지체의 항산화능을 측정할 수 있고, 세포 소기관의 항산화능 측정 결과에 의해 고활성의 줄기 세포를 선별할 수 있다.

Description

세포 소기관 내 글루타치온 측정용 실시간 형광 이미징 센서 및 이의 제조 방법{Real-time fluorescence imaging sensor for estimating the glutathione in cellular organelle and manufacturing method thereof}
본 발명은 세포 소기관 내 글루타치온 측정용 실시간 형광 이미징 센서 및 이의 제조 방법에 관한 것이다. 보다 상세하게는, 본 발명은 세포 소기관 내 글루타치온 측정용 측정용 신규 화합물, 신규 화합물의 제조 방법, 상기 신규 화합물을 포함하는 세포 소기관 내 글루타치온 측정용 실시간 이미징 센서, 이의 제조 방법 및 상기 이미징 센서를 이용한 세포 소기관 내 글루타치온 측정 방법에 관한 것이다.
인체는 항산화계의 작용을 통해 활성 산소종을 적절히 제거하여 항상성을 유지하나, ROS 생성과 항산화계 작용 사이의 균형이 깨지면 산화적 스트레스(oxidative stress)가 증가하고, 이는 노화를 비롯하여 퇴행성 관절염, 백내장, 알쯔하이머 등의 노화 관련 퇴행성 질환, 각종 암, 섬유화 질환을 비롯하여 최근에는 당뇨병, 비만, 심혈관 질환 등의 대사성 증후군의 발병에 중요한 공통 원인 인자로 주목받고 있다. 상기 ROS는 불안정하고 반응성이 높아 생체 분자를 산화시켜 생화학적, 생리적 손상을 유발시키고 이는 노화의 주요 기전 중 하나이다. 따라서 인체의 산화도뿐 아니라 항산화도나 항산화 능력은 생체 나이 계측에 주요한 바이오 마커가 될 수 있다.
한편, 중간엽 줄기 세포(mesenchymal stem cells)는 골수, 제대혈, 태반(또는 태반 조직세포), 지방(또는 지방조직 세포) 등의 다양한 성체 세포로부터 유래하는 다분화성의 성질을 갖는 줄기 세포이다. 예를 들어, 골수(bone marrow)로부터 유래된 중간엽 줄기 세포는 지방조직, 뼈/연골 조직, 근육조직으로 분화될 수 있는 다분화성에 의해 세포치료제로서의 개발을 위해 다양한 연구가 진행되고 있다.
하지만, 세포 치료제의 주요 성분인 줄기세포는 분리 후 배양 과정에서 다분화능, 조직 재생능을 상실하고 노화되기 쉬우며, 치료적 유효량에 해당하는 대량의 세포를 수득하기 위해 여러 계대를 거치는 동안 이러한 위험성은 더욱 커진다. 또한, 조직으로부터 얻어지는 줄기세포는 매우 적은 양이고, 이를 이용 시에는 대량의 세포가 필요하므로 줄기세포의 수를 증식시키는 배양이 수행된다. 최근에는, 줄기세포의 품질과 관련하여 줄기세포의 항산화 활성을 측정하여 이에 따라 품질을 관리하는 방법으로서, 세포 내 항산화 활성을 측정하는 방법이 개시되고 있다(특허문헌 1, 특허문헌 2, 비특허문헌 1).
하지만, 줄기세포의 항산화 활성 측정을 통해 높은 활성을 갖춘 고품질의 줄기세포 선별 방법에 대한 연구는 부족한 실정이다. 따라서, 희소가치가 높은 세포 치료제 자원인 줄기세포의 사용 효율성을 높이기 위해, 고활성의 줄기세포를 선별에 필요한 항산화능 측정용 조성물의 개발이 필요한 실정이다.
또한, 상기와 같이 줄기세포를 포함하는 세포의 항산화능 측정에 있어서 생체 시료에서 티올을 함유하는 물질의 검출 및 식별은 매우 중요하다. 이에 따라, 세포를 파쇄하지 않고 생세포(living cell)에서의 티올을 효과적으로 검출하는 형광 방법들이 개발되고 있으나, 세포 내 다양한 소스의 티올 측정에 의한 항산화능 측정 물질이 필요한 실정이다.
국내등록특허 10-1575846호 국내공개특허 2004-0030701호
Hongyan Liu et al., Cytotherapy, 14(2); 162-172, 2012.
본 발명자들은 본 발명에 따른 MitoFreSH-트레이서(Mitochondria Fluorescent Real-time SH group-Tracer) 또는 GolgiFreSH-트레이서(Golgi Fluorescent Real-time SH group-Tracer)를 사용하여 미토콘드리아 또는 골지체 내의 티올의 양에 따라 형광세기가 연속적이고 비율계량적이며 가역적으로 증감한다는 것을 규명하고, 살아있는 세포 내 미토콘드리아 또는 골지체에서의 티올의 양을 실시간으로 정량 또는 정성적으로 검출하는데 현저한 민감성을 갖는 바이오 센서로서 유용하게 이용될 수 있다는 것을 확인함으로써 본 발명을 완성하였다.
따라서, 본 발명의 목적은 화학식 III 내지 V로 표시되는 MitoFreSH-트레이서(Mitochondria Fluorescent Real-time SH group-Tracer) 또는 화학식 VII 내지 X로 표시되는 GolgiFreSH-트레이서(Golgi Fluorescent Real-time SH group-Tracer)를 제공하는데 있다.
본 발명의 다른 목적은 MitoFreSH-트레이서(Mitochondria Fluorescent Real-time SH group-Tracer)를 포함하는 미토콘드리아의 티올 검출용 조성물 또는 GolgiFreSH-트레이서(Golgi Apparatus Fluorescent Real-time SH group-Tracer)를 포함하는 골지체에서의 티올 검출용 조성물을 제공하는 데 있다.
본 발명의 또 다른 목적은 MitoFreSH-트레이서 또는 GolgiFreSH-트레이서를 이용한 생세포 내 미토콘드리아 또는 골지체의 티올 증가제 또는 억제제 스크리닝 방법을 제공하는 데 있다.
본 발명의 목적 및 이점은 하기의 발명의 상세한 설명 및 청구범위에 의해 보다 명확하게 된다.
그러나, 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당 업계에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
이하, 본원에 기재된 다양한 구체예가 도면을 참조로 기재된다. 하기 설명에서, 본 발명의 완전한 이해를 위해서, 다양한 특이적 상세사항, 예컨대, 특이적 형태, 조성물 및 공정 등이 기재되어 있다. 그러나, 특정의 구체예는 이들 특이적 상세 사항 중 하나 이상 없이, 또는 다른 공지된 방법 및 형태와 함께 실행될 수 있다. 다른 예에서, 공지된 공정 및 제조 기술은 본 발명을 불필요하게 모호하게 하지 않게 하기 위해서, 특정의 상세사항으로 기재되지 않는다. "한 가지 구체예" 또는 "구체예"에 대한 본 명세서 전체를 통한 참조는 구체예와 결부되어 기재된 특별한 특징, 형태, 조성 또는 특성이 본 발명의 하나 이상의 구체예에 포함됨을 의미한다. 따라서, 본 명세서 전체에 걸친 다양한 위치에서 표현된 "한 가지 구체예에서" 또는 "구체예"의 상황은 반드시 본 발명의 동일한 구체예를 나타내지는 않는다. 추가로, 특별한 특징, 형태, 조성, 또는 특성은 하나 이상의 구체예에서 어떠한 적합한 방법으로 조합될 수 있다.
본 명세서 내 특별한 정의가 없으면 본 명세서에 사용된 모든 과학적 및 기술적인 용어는 본 발명이 속하는 기술분야에서 당 업자에 의하여 통상적으로 이해되는 것과 동일한 의미를 가진다.
본 명세서에서, 용어 "비율계량적(ratiometric)"은 산출량이 투입량(input)에 직접적으로 비례하는 것을 의미한다. 구체적으로, 본 발명의 일 구현예에서, "비율계량적"은 본 발명의 조성물이 티올 투입량에 따라 직접적으로 비례해서 형광세기 또는 형광세기의 비율이 증가 또는 감소하는 것을 의미한다.
본 명세서에서, 용어 "검출"은 시료 속에서 화학종이나 생물학적 물질의 존재 유무나 그 양을 측정하는 것을 의미한다.
본 명세서에서, 용어 "가역적(reversible)"은 화학반응에서 반응물과 생성물의 혼합물이 평형상태의 혼합물을 생성하는 것이 가능한 상태를 의미한다. 보다 구체적으로는, 본 명세서에서 화학식 I로 표시되는 화합물과 티올의 반응이 평형상태를 이루어, 티올의 양에 따라 정반응 또는 역반응하여 가역적으로 반응이 진행될 수 있다는 것을 의미한다.
본 명세서에서, 용어 "티올(thiol)"은 탄소와 결합된 설프히드릴기를 포함하는 유기 화합물을 의미하고, 설프히드릴기 또는 티올기는 혼용되어 사용된다.
본 발명의 일 양태에 따르면, 본 발명은 하기 화학식 I로 표시되는 화합물 또는 이의 염을 포함하는 미토콘드리아에서의 티올 검출용 조성물을 제공한다:
화학식 I
Figure 112017082143516-pat00001
상기 화학식 I에서 R1은 하나 이상의 N을 포함하는 3-7원 고리인 헤테로사이클로알킬이고, 상기 헤테로사이클로알킬은 R2 치환기가 결합되어 있으며; 상기 R2는 -(C(=O)NH)-(CH2)m-PPh3 +Cl-(상기 m은 1-4의 정수임), -(CH2)n-PPh3 +Cl-(상기 n은 1-6의 정수임), 또는 -(C(=O)-(CH2)p-R3(상기 p는 1-4의 정수임)이고; 상기 R3은 -C(NHC(=O)-R4)이며, 상기 R4는 다음 화학식 Ⅱ로 표시되는 치환기임:
화학식 Ⅱ
Figure 112017082143516-pat00002
상기 화학식 Ⅱ에서 상기 x는 1-4의 정수임.
본 발명자들은 세포 내 미토콘드리아에서 티올의 양을 실시간으로 정량 또는 정성적으로 검출하는데 현저한 민감성을 갖는 바이오 센서를 개발하기 위해 예의 연구 노력하였다. 그 결과, 상기 화학식 I로 표시되는 본 발명의 MitoFreSH-트레이서(Mitochondria Fluorescent Real-time SH group-Tracer)가 세포 내 미토콘드리아에서의 티올의 양에 따라 형광세기가 연속적이고 비율계량적이며 가역적으로 증감한다는 것을 규명하고, 세포 내 미토콘드리아에서 티올의 양을 실시간으로 정량 또는 정성적으로 검출하는데 현저한 민감성을 갖는 바이오 센서로서 유용하게 이용될 수 있다는 것을 입증하였다.
본 명세서에서, 용어 "MitoFreSH-트레이서(Mitochondria Fluorescent Real-time SH group-Tracer)"는 시아노아크릴아마이드 친전자체(cyanoacrylamide electrophile)를 갖는 쿠마린(coumarin) 유도체로서 화학식 I로 표시되는 화합물을 의미하고, 본 발명에서의 미토콘드리아 내 티올 검출용 형광물질로서 사용된다.
본 발명의 일 구현예에 있어서, 본 발명의 미토콘드리아는 생세포(living cell) 내에 포함된 것이다. 본 발명의 조성물은 미토콘드리아 내 티올 수준을 측정하는데 있어서, 세포로부터 분리된 미토콘드리아에 국한되지 않고, 세포 내에 포함된 상태의 미토콘드리아 내 티올 수준을 측정할 수 있는 특징이 있다. 특히 살아있는 세포 내 미토콘드리아에서의 티올 수준을 특이적으로 검출할 수 있다.
본 발명의 일 구현예에 있어서, 본 발명의 R1은 1 또는 2개의 N을 포함하는 6원고리 헤테로사이클로알킬이다. 본 발명에서 "6원고리 헤테로사이클로알킬"에 포함된 용어 "6원고리"는 바이사이클릭 화합물(bicyclic compound) 또는 스피로 화합물(Spiro compound)과 같이 복수개의 고리가 접합된 고리화합물 형태가 아닌 모노사이클릭 화합물로서의 하나의 6각고리 형태를 의미하고, "헤테로사이클로알킬"은 비-방향족성 고리형 알킬로서, 고리 내에 포함된 탄소 원자 중 적어도 하나가 헤테로원자, 예컨대 질소, 산소 또는 황에 의해 치환되어 있는 것을 의미한다. 본 구현예에서, R1은 6원고리 헤테로사이클로알킬로서 1개 또는 2개의 질소를 고리 내에 포함된 헤테로원자로서 포함한다.
본 발명의 일 구현예에 있어서, 본 발명의 화학식 I로 표시되는 화합물은 다음 화학식 Ⅲ 내지 Ⅴ로 표시되는 화합물 중 어느 하나 이상이다:
화학식 Ⅲ
Figure 112017082143516-pat00003
화학식 Ⅳ
Figure 112017082143516-pat00004
화학식 Ⅴ
Figure 112017082143516-pat00005

본 발명의 상기 화학식 III 내지 V로 표시되는 화합물은 생세포 내 미토콘드리아에서 티올의 양이 증가함에 따라 MitoFreSH-트레이서에 결합하는 티올의 양이 증가하므로, 프리 상태의 화합물이 나타내는 550-680 nm의 형광세기는 감소하고, 티올이 결합되어 있는 화합물이 나타내는 430-550 nm의 형광세기는 증가한다. 상기 티올의 양에 따른 형광세기는 비율계량적이고 가역적으로 증감한다.
본 발명의 다른 일 양태에 따르면, 본 발명은 하기 화학식 VI으로 표시되는 화합물 또는 이의 염을 포함하는 골지체에서의 티올 검출용 조성물을 제공한다:
화학식 VI
Figure 112017082143516-pat00006
상기 화학식 VI에서 R4는 (CH2)p-(OCH2CH2O)q-(CH2)r, 또는-(CH2CH2)s-인 화합물(상기 p,q,r,s는 1-5의 정수임)이다. 보다 상세하게는, 상기 화학식 VI에서 R4는 (OCH2CH2O)-, -(CH2CH2)-, 및 -(CH2(0CH2CH2)2OCH2)- 중의 어느 하나이다.
본 발명자들은 세포 내 골지체에서 티올의 양을 실시간으로 정량 또는 정성적으로 검출하는데 현저한 민감성을 갖는 바이오 센서를 개발하기 위해 예의 연구 노력하였다. 그 결과, 상기 화학식 VI으로 표시되는 본 발명의 GolgiFreSH-트레이서(Golgi Fluorescent Real-time SH group-Tracer)가 세포 내 골지체에서의 티올의 양에 따라 형광세기가 연속적이고 비율계량적이며 가역적으로 증감한다는 것을 규명하고, 세포 내 골지체에서 티올의 양을 실시간으로 정량 또는 정성적으로 검출하는데 현저한 민감성을 갖는 바이오 센서로서 유용하게 이용될 수 있다는 것을 입증하였다.
본 명세서에서, 용어 "GolgiFreSH-트레이서(Golgi Fluorescent Real-time SH group-Tracer)"는 시아노아크릴아마이드 친전자체(cyanoacrylamide electrophile)를 갖는 쿠마린(coumarin) 유도체로서 화학식 VI으로 표시되는 화합물을 의미하고, 본 발명에서의 골지체 내 티올 검출용 형광물질로서 사용된다.
본 발명의 상기 화학식 VⅠ로 표시되는 화합물은 생세포 내 골지체에서 티올의 양이 증가함에 따라 MitoFreSH-트레이서에 결합하는 티올의 양이 증가하므로, 프리 상태의 화합물이 나타내는 550-680 nm의 형광세기는 감소하고, 티올이 결 합되어 있는 화합물이 나타내는 430-550 nm의 형광세기는 증가한다. 상기 티올의 양에 따른 형광세기는 비율계량적이고 가역적으로 증감한다.
본 발명의 일 구현예에 있어서, 본 발명의 화학식 VI으로 표시되는 화합물은 다음 화학식 VII 내지 IX로 표시되는 화합물 중 어느 하나 이상이다:
[화학식 VII]
Figure 112017082143516-pat00007
[화학식 VIII]
Figure 112017082143516-pat00008

[화학식 IX]
Figure 112017082143516-pat00009
본 발명에 따른 화합물을 포함하는 조성물을 사용하여, 줄기세포를 포함하는 모든 세포의 세포 내 소기관인 미토콘드리아 또는 골지체의 항산화능을 측정하여 항산화능에 관련된 세포 활성을 정확하게 측정할 수 있고 고활성의 세포 분류가 가능하다. 본 발명의 조성물을 사용한 세포의 활성 측정은 항산화능 측정을 포함하지만, 이에 한정되는 것은 아니다.
본 발명의 일 구현예에서, 화학식 I 또는 VI으로 표시되는 화합물; 이의 라세미체, 광학이성질체, 부분입체이성질체, 광학이성질체의 혼합물, 또는 부분입체이성질체의 혼합물; 이의 약학적으로 허용 가능한 염을 유효성분으로 포함하는 세포 내 소기관의 항산화능 측정용 조성물을 제공하였다.
본 발명의 일 구현예에 따르면, 상기 화학식 I 또는 VI으로 표시되는 화합물은 프리(free) 상태, 즉 티올기가 결합되지 않은 상태에서 550-680 nm에서 최대방출파장을 나타내고 티올과 결합된 상태에서 430-550 nm에서 최대방출파장을 나타낸다. 본 발명의 다른 구현예에 따르면, 본 발명의 화학식 Ⅰ 또는 VI으로 표시되는 화합물은 프리 상태에서 550-650, 550-620, 550-600, 570-590 또는 580 nm에서 최대방출파장을 나타낸다.
본 발명의 다른 구현예에 따르면, 본 발명의 화학식 I 또는 VI으로 표시되는 화합물은 티올과 결합된 상태에서 450-550, 470-550, 470-530, 490-530, 500-520 또는 510 nm에서 최대방출파장을 나타낸다.
본 발명의 일 구현예에 따르면, 본 발명의 화학식 I 또는 VI으로 표시되는 화합물은 미토콘드리아에서 티올이 증가함에 따라 방출파장의 형광세기가 연속적이고 가역적으로 증감한다. 보다 구체적인 구현예에 따르면, 상기 방출파장의 형광세기는 430 nm 내지 680 nm의 범위에서 증감한다.
본 발명의 일 구현예에 따르면, 본 발명의 화학식 I 또는 VI으로 표시되는 화합물은 미토콘드리아에서 티올이 증가함에 따라 550-680 nm에서의 형광세기가 감소하고 430-550 nm에서의 형광세기는 증가한다.
본 발명의 일 구현예 에 따르면, 본 발명의 티올의 검출은 430-550 nm에서의 형광세기 및 550-680 nm에서의 형광세기의 비율(ratio)을 수득하여 (obtaining) 실시한다.
본 발명의 일 구현예에 따르면, 본 발명의 비율은 상기 430-550 nm에서의 형광세기 및 550-680 nm에서의 형광세기의 관계(relationship)이다.
본 발명의 일 구현예에 따르면, 본 발명의 관계는 상기 430-550 nm에서의 형광세기 및 550-680 nm에서의 형광세기의 수학적 비율관계이고, 상기 수학적 비율관계는 생세포에서 티올의 양에 따라 비율계량적(ratiometrically)으로 가역적으로 증감하여 세포 소기관에서의 티올 양을 실시간으로 나타낸다.
본 발명의 일 구현예에 따르면, 본 발명의 검출은 상기 세포 소기관인 미토콘드리아, 골지체 또는 핵 내의 티올의 정성 또는 정량적 검출이다.
본 발명의 일 구현예에 따르면, 본 발명의 검출은 실시간 정량적 검출이다.
본 발명의 일 구현예에 따르면, 본 발명의 미토콘드리아, 골지체 또는 핵에서의 티올 검출은 세포의 산화적 스트레스 또는 산화도를 나타낸다.
본 발명의 일 구현예에 따르면, 본 발명의 미토콘드리아, 골지체 또는 핵에서의 티올 검출은 세포의 노화도를 나타낸다.
본 발명의 일 구현예에 따르면, 본 발명의 티올은 글루타치온(glutathione, GSH), 호모시스테인(homocysteine, Hcy), 시스테인(cysteine, Cys) 또는 단백질의 시스테인 잔기에 있는 티올을 모두 포함하나, 이에 한정되는 것은 아니다.
본 발명의 일 구현예에 따르면, 본 발명은 본 발명의 조성물을 포함하는 산화 스트레스 유발 질환 진단 키트를 제공한다. 본 명세서의 용어 "산화 스트레스 유발 질환"은 산화 스트레스에 의하여 발생하는 질환을 의미하며, "활성 산호종(ROS) 연관 질환"과 동일한 의미로 사용된다.
본 발명의 일 구현예에 따르면, 본 발명의 산화 스트레스 유발 질환은 노화, 퇴행성 관절염, 백내장, 알쯔하이머병, 암, 섬유화 질환, 당뇨병, 비만, 허혈, 허혈성 재관류 손상, 염증, 전신성 홍반 루푸스, 심근경색, 혈전성 뇌졸증, 출혈성 뇌졸증, 출혈, 척수 외상, 다운증후군, 크론병, 류마티스 관절염, 포도막염, 폐기종, 위궤양, 산소 중독, 종양 또는 방사선증이다.
본 발명에 따른 화합물을 포함하는 조성물을 사용하여 생세포(living cell), 특히 줄기 세포 내 소기관인 미토콘드리아 또는 골지체의 항산화능을 측정할 수 있고, 세포 소기관의 항산화능 측정 결과에 의해 고활성의 줄기 세포를 선별할 수 있다.
도 1은 MitoFreSH-트레이서의 구조를 나타낸 것이다.
도 2는 MitoFreSH-트레이서가 글루타치온의 환원형과 가역적이고 빠르게 반응한다는 실험결과를 나타내는 것으로(a.u.는 임의 단위, Ex는 최대 여기 파장, Em은 최대 방출 파장을 각각 나타낸다), 도 2a는 MitoFreSH-트레이서의 가역반응을 나타내는 도이며, 도 2b는MitoFreSH-트레이서를 20분 동안 다양한 농도의 글루타치온([GSH]0 = 0-100 mM)으로 평형을 맞춘 후 그 반응을 측정한 결과를 나타낸 도이며, 도 2b에서 상단(upper)은 MitoFreSH-트레이서의 가역반응을 UV 가시광선 흡수 스펙트럼에 의하여 측정한 결과를 나타낸 도이며, 도 2b에서 하단(lower)은430 nm(도 2b 하단 좌측) 및 520 nm(도 2b 하단 우측)에서 여기(excitation)에 의하여 발생된 MitoFreSH-트레이서의 형광 방출 스펙트럼을 510nm(F510) 및580nm(F580)에서 각각 모니터링하여 그래프(도 2c)로 나타낸 도이며, 도 2d는 F510 및 F580로 나누어서 계산하고 증가된 농도의 글루타치온에 맞춘 방출 비율을 나타낸 결과이다.
도 3은 HeLa 세포에서 MTT 분석을 통해 다양한 농도의 MitoFreSH-트레이서 처리에 따른 24 시간 후 세포 생존도 양상을 분석한 결과이다.
도 4는 MitoFreSH-트레이서로 생세포의 미토콘드리아 내 글루타치온 수준을 이미징화할 수 있음을 나타내는 결과로서, 도 4a는 MitoFreSH-트레이서로 로딩된 세포의 공초점 현미경 형광 이미지를 나타낸 결과이고(F510 = Ex403-Em525/25; F580 = Ex488-Em595/25; 크기막대 = 10 im), 도 4b는MitoFreSH-트레이서로 로딩된 세포의 현미경 관찰을 개시한 지 3분 후에 0.5 mM 디아마이드(DiAmide, DA)를 세포 배양액에 처리한 후 그 공초점 현미경 형광 이미지를 나타낸 결과이며(F510 = Ex403-Em525/25; F580 = Ex488-Em595/25; 크기막대 = 10 im),
도 4c는 세 개 각각의 세포의 형광비(도 4a, 화살촉)를 측정한 결과를 나타낸 도이다.
도 5는 MitoFreSH-트레이서로 미토콘드리아에서 발생한 활성산소에 의해 감소하는 생세포의 미토콘드리아 내 글루타치온 수준을 이미징화할 수 있음을 나타내는 결과로서, 도 5a는 안티마이신 A를 세포 배양액에 24시간 처리후 MitoFreSH-트레이서로 로딩한 세포를 공초점 현미경으로 관찰한 형광 이미지를 나타낸 결과이고(F510 = Ex403-Em525/25; F580 = Ex488-Em595/25; 크기막대 = 10 im), 도 5b는 각각의 세포의 형광비를 측정한 결과를 나타낸 것이다.
도 6은 GolgiFreSH-트레이서의 구조를 나타낸 것이다.
도 7는 HeLa 세포에서 GolgiFreSH-트레이서가 골지체 내에 분포하는지를 분석한 결과이다(F510 = Ex403-Em525/25; F580 = Ex488-Em595/25; 크기막대 = 10 im).
도 8은 GolgiFreSH-트레이서가 생세포의 골지체 내 글루타치온 수준을 이미징화할 수 있음을 나타내는 결과로서, 도 8a는 GolgiFreSH-트레이서를 세포에 로딩한 후 그 공초점 현미경 형광 이미지를 나타낸 결과이고(F510 = Ex403-Em525/25; BODIPY TR C5-ceramide, Golgi apparatus dye; 크기막대 = 10 im), 도 8b는 도 8a 이미지에서 형광비를 측정한 결과를 나타낸 것이다.
도 9는 GolgiFreSH-트레이서로 생세포 내 골지체의 글루타치온 수준을 수치화할 수 있음을 나타내는 결과이다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로서, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당 업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
제조예 1. 미토콘드리아 항산화능 측정용 화합물의 합성
세포 소기관인 미토콘드리아의 항산화능 측정에 사용하는 화합물(MitoFreSH-PPh3, MitoFreSH-Piperazine 및 MitoFreSH-Cl)의 제조 방법은 하기와 같다.
1-1. MitoFreSH-PPh 3 (화학식 III) 제조 방법
Figure 112017082143516-pat00010

화합물 1
Figure 112017082143516-pat00011
(2-브로모에틸)아민 하이드로브로마이드{(2-bromoethyl)amine hydrobromide, 8.6 g, 42 mmol}과 트리페닐포스핀(triphenylphosphine, 10 g, 38 mmol)을 CH3CN 50 mL에 녹인 용액을 가열하여 18시간 환류시킨 뒤 상온으로 냉각시켰다. 감압증류하여 용매를 제거하고 남은 혼합물을 증류수에 녹인 후 K2CO3 포화수용액을 첨가하여 pH값을 11로 조절하였다. 이 혼합물을 CHCl3로 추출한 용액을 Na2SO4를 첨가하여 건조한 후, 이를 여과하여 얻은 용액을 감압증류하여 용매를 제거하였다. 남은 고체를 Et2O로 씻은 후 감압건조하여 화합물 1을 수득하였다(10 g, 68%).
1H NMR (400 MHz, CDCl3): a (ppm) = 7.66-7.87 (m, 15H), 4.01-4.08 (m, 2H), 3.15-3.21 (m, 2H), 2.67 (s, 2H). 31P NMR (121 MHz, CDCl3): a (ppm) = 24.60.
화합물 2
Figure 112017082143516-pat00012
1-(tert-부톡시카보닉)-4-피페리딘카르복실산{1-(tert-butoxycarbonyl)-4-piperidinecarboxylic acid (0.15g, 0.65 mmol)}, 옥시마{oxyma (0.10 g, 0.71 mmol)}, N,N-디이소프로필에틸아민{N,N-diisopropylethylamine(DIEA; 0.33 mL, 1.9 mmol)}, 1-에틸-3-(3-디메틸아미노프로필)-카르보디이미드{1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDCI; 0.12 g, 0.71 mmol)} 그리고 화합물 1 (0.21 g, 0.54 mmol)을 N,N-디메틸포름아마이드(N,N-dimethylformamide, DMF) 3 mL에 녹인 용액을 상온에서 11시간 교반하였다. 감압증류하여 용매를 제거하고 남은 혼합물을 SiO2 관크로마토그래피(MeOH/CH2Cl2 6/94)로 정제하여 노란색 고체 형태의 화합물 2를 수득하였다(0.21 g, 63%).
1H NMR (400 MHz, CDCl3): a (ppm) = 8.90-8.93 (t, J = 5.7 Hz, 1H), 7.69-7.85 (m, 15H), 4.07 (br s, 2H), 3.69-3.80 (m, 4H), 2.73 (br s, 2H), 2.34-2.42 (m, 1H), 1.75-1.78 (d, J = 11.6 Hz, 1H), 1.51-1.55 (m, 1H), 1.44 (s, 9H).
화합물 3
Figure 112017082143516-pat00013
화합물 2 (0.14 g, 0.23 mmol)를 염산/다이옥산(HCl/dioxane) 4 M 용액에 녹인 후 상온에서 1시간 교반하였다. 감압증류하여 용매를 제거하고 남은 화합물을 정제과정을 거치지 않고 다음 반응에 사용하였다.
1H NMR (400 MHz, CDCl3): a(ppm) = 9.66 (br s, 1H), 9.17 (br s, 1H), 9.00 (br s, 2H), 7.73-7.85 (m, 15H), 3.74-3.79 (m, 2H), 3.63-3.67 (m, 2H), 3.38 (br s, 2H), 2.96 (br s, 2H), 2.49 (br s, 1H), 2.28 (br s, 2H), 2.06 (br s, 2H).
위의 화합물과 시아노아세트산(cyanoacetic acid, 21 mg, 0.25 mmol), oxyma (35 mg, 0.25 mmol), DIEA (0.15 mL, 0.83 mmol), EDCI (47 mg, 0.25 mmol)을 DMF 1 mL에 녹인 용액을 상온에서 14시간 교반하였다. 감압증류하여 용매를 제거하고 남은 혼합물을 관크로마토그래피(MeOH/CH2Cl2 8/92)로 정제하여 노란색 고체 형태의 화합물 3을 수득하였다(49 mg, 45%).
1H NMR (400 MHz, CDCl3): a(ppm) = 9.47-9.49 (t, J = 5.8 Hz, 1H), 7.70-7.86 (m, 15H), 4.43-4.56 (d, J = 13.3 Hz, 1H), 3.66-3.82 (m, 4H), 3.51 (s, 2H), 3.16- 3.23 (m, 1H), 2.71-2.78 (m, 1H), 2.54-2.62 (m, 1H), 1.94-1.97 (d, J = 14.4 Hz, 1H), 1.82-1.85 (d, J = 11.2 Hz, 1H), 1.64-1.75 (m, 1H), 1.52-1.62 (m, 1H), 1.43- 1.47 (m, 1H).
MitoFreSH-PPh 3 (화학식 III)
Figure 112017082143516-pat00014
10-옥소-2,3,5,6-테트라히드로-1H,4H,10H-11-옥사-3a-아자벤조[de]안트라센-9-카르보알데히드{10-oxo-2,3,5,6-tetrahydro-1H,4H,10H-11-oxa-3a-azabenzo
[de]anthracene-9-carbaldehyde (36 mg, 0.13 mmol)}, 화합물 3 (70 mg, 0.13 mmol) 그리고 피페리딘(piperidine, 13 iL, 0.13 mmol)을 2-프로판올 1 mL에 녹인 용액을 60°C에서 1시간 가열한 후 상온으로 냉각하였다. 감압증류하여 용매를 제거하고 남은 혼합물을 SiO2 관크로마토그래피(MeOH/CH2Cl2 5/95)로 정제하여 붉은색 고체 형태의 화합물(MitoFreSH-PPh3)를 수득하였다(36 mg, 36%).
1H NMR (400 MHz, CDCl3): a (ppm) = 9.44 (br s, 1H), 9.36 (br s, 1H), 8.63 (s, 1H), 7.89 (s, 1H), 7.71-7.84 (m, 15H), 7.50 (s, 1H), 6.99 (s, 1H), 6.84 (s, 1H), 3.62-3.88 (m, 4H), 3.32-3.38 (m, 4H), 2.84-2.88 (m, 2H), 2.75-2.78 (m, 2H), 2.53-2.60 (m, 1H), 1.96-2.04 (m, 4H), 1.88-1.95 (m, 4H), 1.62-1.71 (m, 4H).
1-2. MitoFreSH-Piperazine(화학식 IV) 합성
Figure 112017082143516-pat00015
화합물 4
Figure 112017082143516-pat00016
터트-부틸 피페라진-1-카르복시산염{tert-butyl piperazine-1-carboxylate (1.0 g, 5.3 mmol)}과 시아노아세트산(cyanoacetic acid, 0.54 g, 1.2 eq.)를 DMF 10 mL에 녹인 용액에 DIEA (3.28 mL, 3.5 eq.)와 EDCI (1.56 g, 1.5 eq.)를 첨가하였다. 상온에서 12시간 교반한 후 감압증류하여 용매를 제거하였다. 남은 혼합물을 SiO2 관크로마토그래피로 정제하여 흰색 고체 형태의 화합물 4를 수득하였다(1.13 g, 84%).
1H NMR (400 MHz, CDCl3): a (ppm) = 3.603.64 (m, 2H), 3.503.55 (m, 2H), 3.51 (s, 2H), 3.433.48 (m, 4H), 1.47 (s, 9H); HRMS (m/z): [M+H]+ 254.1496.
화합물 5
Figure 112017082143516-pat00017
화합물 4 (0.30 g, 1.2 mmol)을 염산/다이옥산(HCl / dioxane) 4 M 용액 5 mL에 녹인 후 상온에서 1시간 교반하였다. 감압증류하여 용매를 제거하고 남은 화합물 5를 정제과정을 거치지 않고 다음 반응에 사용하였다.
1H NMR (400 MHz, DMSO-d6): a (ppm) = 9.54 (br s, 2H), 4.12 (s, 2H), 3.673.70 (m, 2H), 3.583.61 (m, 2H), 3.043.12 (m, 4H).
화합물 6
Figure 112017082143516-pat00018
화합물 5 (0.15 mmol)와 (4-브로모부틸)트리페닐포스포니움 브로마이드{(4-bromobutyl)triphenylphosphonium bromide (0.15 g, 0.30 mmol)를 아세토나이트릴(CH3CN) 1 mL에 녹인 용액에 탄산수소나트륨(NaHCO3, 64 mg, 0.7545 mmol)를 첨가하였다. 50°C에서 20시간 교반한 후 감압증류하여 용매를 제거하였다. 남은 혼합물을 SiO2 관크로마토그래피(MeOH/CH2Cl2 15/85)로 정제하여 흰색 고체 형태의 화합물 6을 수득하였다(71 mg, 71%).
1H NMR (400 MHz, CDCl3): a (ppm) = 7.69-7.88 (m, 15H), 3.78-3.86 (m, 2H), 3.71 (s, 2H), 3.51-3.53 (t, J = 4.7 Hz, 2H), 3.47-3.49 (t, J = 4.7 Hz, 2H), 2.54- 2.56 (t, J = 4.1 Hz, 2H), 2.46-2.49 (t, J = 6.5 Hz, 2H), 2.38-2.40 (t, J = 5.1 Hz, 2H), 1.85-1.91 (m, 2H), 1.66-1.74 (m, 2H).
MitoFreSH-Piperazine(화학식 IV)
Figure 112017082143516-pat00019
10-옥소-2,3,5,6-테트라히드로-1H,4H,10H-11-옥사-3a-아자벤조[de]안트라센-9-카르보알데히드{10-oxo-2,3,5,6-tetrahydro-1H,4H,10H-11-oxa-3a-azabenzo[de]anthracene-9-carbaldehyde (35 mg, 0.13 mmol), 화합물 6 (64 mg, 0.12 mmol) 그리고 피페리딘(piperidine, 12 iL, 0.12 mmol)을2-프로판올 1 mL에 녹인 용액을 60°C에서 1시간 교반한 후 상온으로 냉각하였다. 감압증류하여 용매를 제거하고 남은 혼합물을 SiO2 관크로마토그래피(MeOH/CH2Cl2 6/94)로 정제하여 붉은색 고체 형태의 화합물 MitoFreSH-Piperazine을 수득하였다(61 mg, 66%).
1H NMR (400 MHz, CDCl3): a(ppm) = 8.61 (s, 1H), 7.69-7.91 (m, 15H), 7.45 (s, 1H), 7.00 (s, 1H), 6.86 (s, 1H), 3.56 (br s, 4H), 3.35-3.39 (q, J = 5.9 Hz, 4H), 2.84-2.88 (t, J = 6.5 Hz, 2H), 2.75-2.78 (t, J = 6.3 Hz, 2H), 2.41-2.49 (m, 4H), 1.84-2.04 (m, 12H).
1-3. MitoFreSH-Cl(화학식 V) 합성
Figure 112017082143516-pat00020

화합물 7
5-벤질 N-(터트-부톡시카르보닐)-L-글루탐산염{5-benzyl N-(tert-butoxycarbonyl)-L-glutamate (0.10 g, 0.29mmol)}, 1-하이드록시벤조트리아졸(1-hydroxybenzotriazole, HOBt, 80 mg, 2.0 eq.) 그리고 DIEA (0.18 mL, 3.5 eq.)를 DMF 1 mL에 녹인 용액에 EDCI (0.11 g, 2.0 eq.)와 화합물 1 (0.13 g, 1.2 eq.)을 첨가하였다. 상온에서 16시간 교반한 용액을 에틸아세트산염(EtOAc)로 희석한 후 시트르산(citric acid) 0.5 M 수용액과 탄산수소나트륨(NaHCO3) 포화수용액, 염화나트륨(NaCl) 포화수용액으로 세척하였다. 유기층을 분리한 후 황산나트륨(Na2SO4)를 첨가하여 건조한 후, 이를 여과하여 얻은 용액을 감압증류하여 용매를 제거하였다. 남은 혼합물을 SiO2 관크로마토그래피로 정제하여 흰색 고체 형태의 화합물 4를 얻었다(0.16 g, 76%). 1HNMR(400 MHz, CDCl3):δ(ppm)=9.49(brs, 1H), 7.687.83(m, 15H), 7.277.35(m, 5H), 5.87(d, J=9.2 Hz, 1H), 5.08(s, 2H), 4.184.23(m, 1H), 3.613.87(m, 4H), 2.432.47(m, 2H), 2.122.22(m, 1H), 1.942.01(m,1H), 1.43(s, 9H); 13CNMR(100 MHz, CDCl3):δ(ppm)=172.8, 172.7, 155.2, 135.8, 135.3(d, 4JCP=3.0 Hz), 133.4(d, 3JCP=10.4 Hz), 130.5(d, 2JCP=12.7 Hz), 128.4, 128.1, 128.0, 117.4(d, 1JCP=85.9 Hz), 79.2, 66.1, 53.9, 33.3, 30.4, 28.4, 28.3, 22.2(d, 1JCP=49.7 Hz); 31P NMR(121 MHz, CDCl3):δ(ppm)=22.1; HRMS(m/z):[M]+625.2826.
화합물 8
화합물 7 (1.2 g, 1.7 mmol)을 메탄올(CH3OH) 5 mL와 증류수 5 mL에 녹인 용액에 10% Pd-C (0.12 g)을 첨가한 후 H2 기체(1 atm)를 채운 반응용기에서 12시간 교반한다. 셀라이트(Celite)를 이용하여 여과한 용액을 감압 증류하여 용매를 제거하고 남은 화합물 8(1.04 g, 99%)를 정제과정을 거치지 않고 다음 반응에 사용한다. 1HNMR(400MHz,CDCl3):δ(ppm)=8.95(br s, 1H), 7.707.82 (m, 15H), 5.97 (br s, 1H), 4.16 (br s, 1H), 3.603.90 (m, 4H), 2.352.45 (m, 2H), 1.952.05 (m, 2H), 1.37 (s, 9H); 31PNMR(121MHz,CDCl3):δ(ppm)=22.1.
화합물 9
화합물 8 (0.15 g, 0.24 mmol), 화합물 5 (49 mg, 1.05 eq.) 그리고 DIEA (0.15 mL, 3.5 eq.)를 DMF 2 mL에 녹인 용액에 HOBt (3 mg, 0.1 eq.)와 EDCI (95 mg, 2.0 eq.)를 첨가한다. 상온에서 4시간 교반한 후 감압 증류하여 용매를 제거하고 남은 혼합물을 SiO2관크로마토그래피로 정제하여 노란색 고체 형태의 화합물 9를 얻는다(0.14 g, 78%). 1HNMR(400MHz,CDCl3):δ(ppm)=(주이형태체) 9.46 (br s 1H), 7.727.84 (m, 15H), 5.79 (d, J = 7.8 Hz, 1H), 4.154.21 (m, 1H), 3.473.79 (m, 14H), 2.502.60 (m, 2H), 2.122.15 (m, 1H), 2.00-2.04 (m, 1H), 1.42 (s, 9H); 13CNMR(100MHz,CDCl3):δ(ppm)=(*주이형태체; **부이형태체) 172.8**, 172.7*, 171.2**, 171.0*, 161.1, 155.2, 135.3, 133.4 (d, 3JCP=10.3 Hz), 130.5(d,2JCP=12.7 Hz), 117.4(d,1JCP=85.8 Hz), 114.5, 79.2, 54.0. 46.3*, 45.8**, 45.3*, 44.7**, 42.2**, 41.9*, 41.2**, 40.8*, 33.3, 30.0**, 29.5*, 29.2*, 28.9**, 28.3, 25.4, 22.2(d, 1JCP=49.8 Hz); 31P NMR(121 MHz, CDCl3): δ(ppm)=22.1; HRMS(m/z):[M]+ 670.3157.
화합물 10
화합물 9(0.23 g, 0.31 mmol)를 염산/다이옥산(HCl / dioxane) 4 M 용액 3 mL에 녹인 후 상온에서 1시간 교반하였다. 감압증류하여 용매를 제거하고 남은 화합물 10을 정제과정을 거치지 않고 다음 반응에 사용하였다. 1H NMR(400 MHz, DMSO-d 6): δ(ppm)=9.44(d, J=6.1 Hz, 1H), 8.49(brs, 3H), 7.767.94(m, 15H), 4.094.11(m,1H),3.803.84(m,2H),3.333.50(m,12H),2.502.55(m,2H),1.941.98(m, 2H); 31P NMR(121 MHz, DMSO-d 6):δ(ppm)=22.4.
화합물 11
화합물 10 (0.10 g, 0.15 mmol)과 3-(클로로메틸)벤조일 염화물{3-(chloromethyl)benzoyl chloride (25 μL, 1.05 eq.)}를 CH2Cl2 1 mL에 녹인 용액에 DIEA (58 μL, 2.0 eq.)를 첨가하였다. 상온에서 1시간 교반한 후 감압증류하여 용매를 제거하고 남은 혼합물을 SiO2 관크로마토그래피로 정제하여 흰색 고체 형태의 화합물 11을 얻었다(0.10 g, 85%). 1H NMR(400 MHz, CDCl3):δ(ppm)=(주이형태체) 9.65 (br s, 1H), 8.33 (d, J = 8.3 Hz, 1H), 8.13 (s, 1H), 8.05 (d, J = 7.8 Hz, 1H), 7.697.82 (m, 15H), 7.52 (d, J = 7.9 Hz, 1H), 7.427.46 (m, 1H), 4.744.79 (m, 1H), 4.65 (s, 2H), 3.353.74 (m, 14H), 2.532.60 (m, 2H), 2.252.30 (m, 2H); 13C NMR(100 MHz, CDCl3):δ(ppm)=(*주이형태체; **부이형태체) 173.1**, 173.0*, 171.3*, 171.2**, 166.4, 160.9, 137.7, 135.5, 134.1, 133.5 (d, 3JCP=10.3 Hz), 131.7, 130.6(d, 2JCP=12.7 Hz), 128.9, 128.3*, 128.2**, 127.8*, 127.7**, 117.5(d, 1JCP=85.9 Hz), 114.5, 54.2, 46.3*, 45.9, 45.8**, 45.3*, 44.8**, 42.1**, 42.0*, 41.3**, 41.0*, 30.2**, 29.7*, 28.3*, 28.0**, 25.3, 22.3(d, 1JCP=49.8 Hz); 31P NMR(121 MHz, CDCl3):δ(ppm)=22.2; HRMS(m/z):[M]+ 722.2662.
MitoFreSH-Cl(화학식 V)
화합물 11 (0.12 g, 0.16 mmol)과 10-옥소-2,3,5,6-테트라히드로-1H,4H,10H-11-옥소-3a-아자벤조[de]-안트라센-9-카르보알데히드{10-oxo-2,3,5,6-tetrahydro-1H,4H,10H-11-oxa-3a-azabenzo[de]-anthracene-9-carbaldehyde(46 mg, 1.1 eq.)}를 DMF 1 m에 녹인 용액에 클로로트리메틸실란(chlorotrimethylsilane, 60 μL, 3.0 eq.)을 첨가한 후 130oC에서 5시간 교반하였다. 상온으로 냉각 후 감압증류하여 용매를 제거하고 남은 혼합물을 SiO2 관크로마토그래피로 정제하여 붉은색 고체 형태의 화합물 MitoFreSH-Cl을 얻었다(79 mg, 50%). 1H NMR(400 MHz, CDCl3):δ(ppm)=(주이성질체) 9.58 (br s, 1H), 8.63 (s, 1H), 8.40 (d, J = 7.4 Hz, 1H), 7.728.21 (m, 18H), 7.51 (d, J = 7.0 Hz, 1H), 7.427.45 (m, 1H), 7.00 (s, 1H), 4.744.80 (m, 1H), 4.60 (s, 2H), 3.583.73 (m, 12H), 3.333.38 (m, 4H), 2.832.87 (m, 2H), 2.722.78 (m, 2H), 2.552.58 (m, 2H), 2.27-2.31 (m, 2H), 1.972.04 (m, 4H); 13C NMR(100 MHz, CDCl3):δ(ppm)=(주이성질체) 172.9, 171.1, 166.2, 163.9, 161.3, 152.5, 149.0, 145.9, 142.8, 137.6, 135.4, 134.0, 133.4 (d, 3JCP=10.3 Hz), 131.6, 130.6(d, 2JCP=12.7 Hz), 128.8, 128.2, 127.7, 127.5, 119.9, 117.4(d, 1JCP=85.9 Hz), 117.1, 109.7, 108.2, 106.0, 100.4, 54.2, 50.4, 49.9, 45.9, 45.1(br), 41.2(br), 33.4, 29.9, 28.0, 27.2, 22.2(d, 1JCP=50.0 Hz), 20.9, 19.9, 19.8; 31P NMR(121 MHz, CDCl3):δ(ppm)=22.2; HRMS(m/z):[M]+ 973.3616.
제조예 2. 골지체 항산화능 측정용 화합물 합성
세포 소기관인 골지체의 항산화능 측정에 사용하는 화합물(GolgiFreSH-트레이서; GolgiFreSH-A/B/C)의 제조 방법은 하기와 같다.
Figure 112020043415216-pat00053
상기에서 R4에 따른 GolgiFreSH-A/B/C 의 구분은 하기 표 1과 같다.
R4 화합물
A 화학식 VII (GolgiFreSH-트레이서 1)
B 화학식 VIII (GolgiFreSH-트레이서 2)
C 화학식 IX (GolgiFreSH-트레이서3)
GolgiFreSH-트레이서 1 내지 3의 구조는 하기와 같다.
[GolgiFreSH-트레이서 1, 화학식 VII]
Figure 112017082143516-pat00022

[GolgiFreSH-트레이서 2, 화학식 VIII]
Figure 112017082143516-pat00023
[GolgiFreSH-트레이서 3, 화학식 IX]
Figure 112017082143516-pat00024

화합물 2
Figure 112020043415216-pat00054
화합물 1과 시아노아세트산(cyanoacetic acid, 1.2 당량), 1-히드록시벤조트리아졸(1-hydroxybenzotriazol, HOBt; 1.5 당량), N,N-디이소프로필에틸아민{N,N-diisopropylethylamine (DIEA; 2.0 당량)}, 1-에틸-3-(3-디메틸아미노프로필)-카르보디이미드{1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDCI; 2.5 당량)}을 N,N-디메틸포름아마이드{N,N-dimethylformamide (DMF)}에 녹인 용액을 상온에서 15~20시간 교반하였다. 감압증류하여 용매를 제거하고 남은 혼합물을 에틸아세트산염(EtOAc)로 희석한 후 염화나트륨(NaCl) 포화수용액으로 세척하였다. 유기층을 분리한 후 황산나트륨(Na2SO4)를 첨가하여 건조한 후, 이를 여과하여 얻은 용액을 감압증류하여 용매를 제거하였다. 남은 혼합물을 SiO2 관크로마토그래피로 정제하여 화합물 2를 수득하였다.
화합물 2A 1H NMR (500 MHz, CDCl3): a (ppm) = 6.73 (br, 1H), 4.96 (br, 1H), 3.57-3.69 (m, 8H), 3.51 (m, 2H), 3.41 (s, 2H), 3.34 (m, 2H), 1.45 (s, 9H).
화합물 2B 1H NMR (500 MHz, DMSO-d6): a (ppm) = 8.19 (t, J = 5.2 Hz, 1H), 6.79 (t, J = 5.6 Hz, 1H), 3.59 (s, 2H), 3.04 (m, 2H), 2.88 (m, 2H), 1.37 (s, 9H), 1.33-1.39 (m, 4H), 1.22-1.24 (m, 4H).
화합물 2C 1H NMR (500 MHz, CDCl3): a (ppm) = 7.18 (br, 1H), 4.90 (br, 1H), 3.62-3.69 (m, 8H), 3.60 (m, 2H), 3.53 (t, J = 6.0 Hz, 2H), 3.45 (m, 2H), 3.37 (s, 2H), 3.22 (m, 2H), 1.82 (m, 2H), 1.76 (m, 2H), 1.44 (s, 9H).
화합물 3
Figure 112020043415216-pat00055
10-옥소-2,3,5,6-테트라히드로-1H,4H,10H-11-옥사-3a-아자벤조[de]안트라센-9-카르보알데히드(10-oxo-2,3,5,6-tetrahydro-1H,4H,10H-11-oxa-3a-azabenzo[de]anthracene-9-carbaldehyde)와 화합물 2 (1.0 당량) 그리고 피페리딘(piperidine, 1.0 당량)을 2-프로판올에 녹인 용액을 60°C에서 2~4시간 가열한 후 상온으로 냉각시켰다. 감압증류하여 용매를 제거하고 남은 혼합물을 SiO2 관크로마토그래피로 정제하여 화합물 3을 수득하였다.
화합물 3A 1H NMR (500 MHz, CDCl3): a(ppm) = 8.62 (s, 1H), 8.55 (s, 1H), 7.00 (s, 1H), 6.67 (br, 1H), 5.08 (br, 1H), 3.62-3.65 (m, 5H), 3.57 (t, J = 5.2 Hz, 2H), 3.34-3.39 (m, 6H), 2.87 (t, J = 6.5 Hz, 2H), 2.76 (t, J = 6.2 Hz, 2H), 1.96-2.00 (m, 4H), 1.44 (s, 9H).
화합물 3B 1H NMR (500 MHz, CDCl3): a(ppm) = 8.60 (s, 1H), 8.56 (s, 1H), 7.00 (s, 1H), 6.22 (br, 1H), 4.53 (br, 1H), 3.35-3.40 (m, 6H), 3.11 (m, 2H), 2.87 (t, J = 6.2 Hz, 2H), 2.76 (t, J = 6.1 Hz, 2H), 1.96-2.00 (m, 4H), 1.44 (s, 9H), 1.44-1.50 (m, 4H), 1.35-1.38 (m, 4H).
화합물 3C 1H NMR (500 MHz, CDCl3): a(ppm) = 8.60 (s, 1H), 8.53 (s, 1H), 6.99 (s, 1H), 6.97 (br, 1H), 5.01 (br, 1H), 3.72 (m, 2H), 3.63-3.67(m, 6H), 3.59 (m, 2H), 3.52-3.56 (m, 4H), 3.35-3.39 (m, 4H), 3.22 (m, 2H), 2.87 (t, J = 6.4 Hz, 2H), 2.76 (t, J = 6.2 Hz, 2H), 1.96-2.00 (m, 4H), 1.88 (m, 2H), 1.75 (m, 2H), 1.43 (s, 9H).
GogiFreSH
Figure 112017082143516-pat00027
화합물 3을 트리플루오로아세트산 / 디크롤로메탄{trifluoroacetic acid (TFA) / dichloromethane (1 / 1)} 용액에 녹인 후 상온에서 1~2시간 교반하였다. 감압증류하여 용매를 제거한 후 남은 화합물과 인도메타신(indomethacin, 1.1 당량), HOBt (2.5 당량), DIEA (3.0 당량), EDCI (2.5 당량)을 DMF에 녹인 용액을 상온에서 7~8시간 교반하였다. 감압증류하여 용매를 제거하고 남은 혼합물을 EtOAc로 희석한 후 NaCl 포화수용액으로 세척하였다. 유기층을 분리한 후 Na2SO4를 첨가하여 건조한 후, 이를 여과하여 얻은 용액을 감압증류하여 용매를 제거하였다. 남은 혼합물을 SiO2 관크로마토그래피로 정제하여 GolgiFreSH를 수득하였다.
GolgiFreSH -A(화학식 VII) 1H NMR (500 MHz, CDCl3): a(ppm) = 8.52 (s, 1H), 8.49 (s, 1H), 7.64 (d, J = 8.6 Hz, 2H), 7.46 (d, J = 8.6 Hz, 2H), 6.93 (d, J = 2.3 Hz, 1H), 6.89 (s, 1H), 6.80 (d, J = 9.1 Hz, 1H), 6.61-6.63 (m, 2H), 6.39 (t, J = 5.6 Hz, 1H), 3.80 (s, 3H), 3.65 (s, 2H), 3.48-3.55 (m, 10H), 3.44 (m, 2H), 3.35-3.39 (m, 4H), 2.86 (t, J = 6.2 Hz, 2H), 2.72 (t, J = 6.5 Hz, 2H), 2.40 (s, 3H), 1.95-1.99 (m, 4H).
GolgiFreSH -B(화학식 VIII) 1H NMR (500 MHz, CDCl3): a (ppm) = 8.57 (s, 1H), 8.50 (s, 1H), 7.66 (m, 2H), 7.48 (m, 2H), 6.98 (s, 1H), 6.90 (d, J = 2.4 Hz, 1H), 6.87 (d, J = 9.1 Hz, 1H), 6.69 (dd, 3J = 9.1 Hz, 4J = 2.4 Hz, 1H), 6.23 (t, J = 5.7 Hz, 1H), 5.78 (t, J = 5.8 Hz, 1H), 3.82 (s, 3H), 3.65 (s, 2H), 3.28-3.39 (m, 6H), 3.20 (m, 2H), 2.86 (t, J = 6.4 Hz, 2H), 2.76 (t, J = 6.2 Hz, 2H), 2.39 (s, 3H), 1.95-2.00 (m, 4H), 1.50 (m, 2H), 1.42 (m, 2H), 1.22-1.31 (m, 4H); HRMS (m/z): [M+Na]+ 769.2772.
GolgiFreSH -C(화학식 IX ) 1H NMR (500 MHz, CDCl3): a (ppm) = 8.55 (s, 1H), 8.48 (s, 1H), 7.67 (d, J = 8.0 Hz, 2H), 7.47 (d, J = 8.0 Hz, 2H), 6.98 (t, J = 4.9 Hz, 1H), 6.96 (s, 1H), 6.92 (s, 1H), 6.87 (d, J = 9.0 Hz, 1H), 6.66 (d, J = 9.0 Hz, 1H), 6.34 (t, J = 4.9 Hz, 1H), 3.81 (s, 3H), 3.57-3.63 (m, 8H), 3.42-3.51 (m, 8H), 3.31-3.38 (m, 6H), 2.85 (t, J = 6.2 Hz, 2H), 2.75 (t, J = 5.9 Hz, 2H), 2.37 (s, 3H), 1.95-1.99 (m, 4H), 1.84 (m, 2H), 1.71 (m, 2H); HRMS (m/z): [M+Na]+ 900.3390.
실시예 1. 실험 재료 및 실험 방법
1.1 시약
디아마이드(diamide), 안티마이신 A (Antimycin A)를 각각 Sigma-Aldrich로부터 구입하였다. BODIPY TR C5-ceramide를 Thermo Fisher Scientific로부터 구입하였다.
1-2. FreSH - tracer ( Fluorescent Real - time SH group - Tracer ) 화합물의 티올 화합물과의 in vitro 반응
글루타치온 화합물(0-100 mM)과 FreSH-트레이서 화합물 V(10 iM)이 혼합된 완충용액(인산염 10 mM, NaCl 150 mM, pH 7.4, H2O:DMSO = 98:2)을 제조하고, 이 용액의 시간에 따른 UV 가시광선 흡수 스펙트럼과 형광 방출 스펙트럼 변화를 각각 신코 S-3100와 Hitachi F-7000 분광광도계로 측정하였다(도 2 참조).
1-3. 티올 화합물의 Kd 값 측정
In vitro 반응을 통해 글루타치온 (0-100 mM)과FreSH-트레이서 파생화합물 사이의 화학평형을 형성한 후, 430 nm 파장의 빛으로 여기시켰을 때 방출되는 형광 방출 스펙트럼을 측정하였다. 최대 방출 파장(580 nm)에서의 형광세기와 티올 화합물 농도 간의 상관관계를 비선형 회귀분석하여 티올 화합물과 FreSH-트레이서 사이의 화학평형상수(Kd)가 1-5 mM을 계산하였다.
1-4. 세포 독성 시험(MTT assay)
HeLa 세포 (5 x 103 cells/well)를 96 well dish에18 시간 동안 배양한 후, 디메틸설폭시화물(Dimethyl sulfoxide, DMSO), MitoFreSHtracer(화학식 III 내지 V) 또는 GolgiFreSHtracer(화학식 VII 내지 IX)을24 시간 동안 처리하였다. PBS로 세척 후 메틸티아졸릴디페닐-테트라졸리움 브롬화물(MTT, Methylthiazolyldiphenyl-tetrazolium bromide) 용액 (500 ig/배양액 mL)에서3-4시간 배양하였다. MTT 용액 제거 후 DMSO로 포르마잔 크리스탈(formazan crystal)을 녹인 후 570 nm에서 흡광도를 측정하였다. LD50(50% Lethal Dose, 반치사량)는Graphpad 5.0 소프트웨어를 이용하여 계산하였다(도 3 참조).
1-5. 살아있는 세포의 이미징(real-time cell imaging)
HeLa 세포를 10% 열-불활성화 소태아혈청(FBS, Hyclone), 100 U/ml의 페니실린, 100 ig/ml의 스트렙토마이신 황산염 및2 mM 글루타민을 포함하고 페놀레드가 없는 DMEM에서 배양하였다. HeLa 세포를 35 mm 커버글라스 바닥 디쉬(SPL Lifesciences)에 분주한 후 37 °C, 5% CO2 조건에서 표시된 시간 동안 배양하였다. 형광현미경 분석 전에 10 iM의FreSH-트레이서 파생화합물을 포함하는 2 mL의 배양 배지를 이용하여 HeLa 세포를 0.5 ~ 1.5 시간 동안 배양하였다. PBS로 두 번 세척한 후, 세포의 실시간 이미지를 Nikon A1 레이저 스캐닝 공초점 현미경을 이용하여 획득하였다. CFI 플랜 아포크로마트 60X(Plan apochromat 60X) 및1.40 개구수(numerical aperture, NA) 대물렌즈를 갖춘 Nikon ECLIPSE Ti 역상 현미경에 장착된 챔버 안에서 37°C 및 5% CO2 조건으로 세포를 배양하며 이미징 실험을 진행하였다. FreSH-트레이서 파생화합물을 403 nm 및 488 nm 레이저선으로 여기시켰고 각각 500-550 nm 및 570-620 nm 밴드 간격의 필터를 통하여 형광을 검출하였다. NIS-Elements AR 소프트웨어를 이용하여 실험데이터의 분석과 형광 비율을 이미지화하였다(도 4 및 도 5).
1-6. 고속 대량 세포 이미지 분석
HeLa 세포를 10% 열-불활성화 소태아혈청(FBS, Hyclone), 100 U/ml의 페니실린, 100 ig/ml의 스트렙토마이신 황산염 및2 mM 글루타민을 포함하고 페놀레드가 없는 DMEM에서 배양하였다. HeLa 세포를 Greiner 96 well 디쉬(Sigma-Aldrich)에 분주한 후 37 °C, 5% CO2 조건에서 표시된 시간 동안 배양하였다. 형광 현미경 분석 전에 10 iM의 GolgiFreSH-트레이서를 포함하는 배양 배지를 이용하여 HeLa 세포를 0.5 ~ 1.5 시간 동안 배양하였다. Hank's Balanced Salt Solution으로 두 번 씻은 후, 세포의 실시간 이미지를 Operetta High-Content Imaging System(PerkinElmer)을 이용하여 얻었다. 현미경에 장착된 챔버 안에서 37°C 및 5% CO2 조건으로 세포를 배양하며 이미징 실험을 진행하였다. GolgiFreSH-트레이서를 410-430 nm 및490-510 nm LED로 여기시켰고 각각 460-540 nm 및 560-630 nm 밴드 간격의 필터를 통하여 형광을 검출하였다. BODIPY TR C5ceramide는560-580 nm LED로 여기시켰고, 590-640 nm 밴드 간격의 필터를 통하여 형광을 검출하였다. Harmony 소프트웨어를 이용하여 실험데이터의 분석을 실시하였다(도 4, 도 5 및 도 8 참조).
실시예 2. 세포 소기관 미토콘드리아의 항산화능 측정
2-1. MitoFreSH-트레이서(tracer)의 비율계량적이고 가역적으로 GSH와 빠르게 반응하는 특성 관찰
MitoFreSH-트레이서에 글루타치온의 농도를 증가시키면서 첨가한 경우, 자외선 및 가시광선에 대한 흡광도가 emax = 430 nm에서 증가하고 emax = 520 nm에서는 감소하였고(도 2b), 형광 방출 세기는 약 510 nm(F510, eex = 430nm; eem = 510 nm)에서 증가하였고 약 580 nm(F580, eex = 520 nm; eem = 580 nm)에서 감소하였다(Kd = 1.3 mM; 도 2b, 도 2c). 본 발명자들은 MitoFreSH 트레이서의 F510과 F580의 형광방출세기 비(F510/F580)가 넓은 GSH 농도 범위에서 비례적으로 변한다는 사실을 확인하였다(도 2d). 이것은 상기 센서가 비율계량적 센서로서 이용될 수 있다는 것을 의미한다. 형광비로부터 수득된 회귀 곡선은 세포내 존재하는 글루타치온 농도보다 넓은 범위(0-20 mM)에서 선형성(R2 = 0.9836)을 나타내었다(도 2d, insert).
상기 데이터는 MitoFreSH-트레이서가 세포내 글루타치온 양을 모니터링하기 위한 최적의 센서 특성을 갖고 있다는 것을 제시한다.
2-2. MitoFreSH -트레이서의 비율계량적 분석에 의한 살아있는 세포에서 미토콘드리아 글루타치온 수준 변화의 가시화
본 발명자들은 살아있는 세포의 미토콘드리아에서 글루타치온 수준의 변화를 연구하는 데에 있어서 MitoFreSH-트레이서의 적용 가능성을 연구하였다. 본 발명자들은 최소 24시간 동안 독성이 없는 10 iM MitoFreSH-트레이서를 첨가한 배지에서 HeLa 세포를 배양하면서 공초점 현미경 분석을 통해 측정된 형광비를 가색상(false color) 이미지로서 전형적인 미토콘드리아 염색 패턴을 보이는 것을 확인할 수 있었다(도 4a). 센서가 미토콘드라 내 글루타치온의 산화 환원 조건의 변화에 반응하는지를 규명하기 위하여, 본 발명자들은 세포 내 글루타치온을 산화시키기 위하여 센서가 로딩된 생세포에 0.5 mM 디아마이드(DA, Diamide)를 처리하였다. 배양 배지에 디아마이드를 첨가하면 생세포에서 즉각적인 센서 반응이 유도됨을 확인하였다(도 4b 및 4c). 살아있는 세포 이미지로부터 계산된 해당 센서의 형광비는 디아마이드 처리에 의하여 감소되었다(도 4b 및 4c).
이후, 본 발명자들은 미토콘드리아에서 활성산소가 생성되는 조건에서 MitoFreSH-트레이서의 형광변화를 조사하였다. 미토콘드리아에서 전자전달계를 방해하여 활성산소 생성을 증가시키는 안티마이신 A를 75 분동안 처리하였을 경우 MitoFreSH-트레이서의 형광변화비가 안티미아신 A 농도 의존적으로 감소함을 확인하였다 (도 5a 및 5b).
따라서, 본 발명자들은 상기 실험 결과들로 MitoFreSH-트레이서가 생세포의 미토콘드리아 내 GSH 양의 변화를 실시간 모니터링하는데 이용될 수 있다는 것을 입증하였다.
실시예 3. 세포 소기관 골지체의 항산화능 측정
3-1. GolgiFreSH-트레이서의 비율계량적 분석에 의한 살아있는 세포에서 글루타치온 수준 분석
본 발명자들은 살아있는 세포의 골지체에서 글루타치온 수준의 변화를 연구하는 데에 있어서 GolgiFreSH-트레이서가 세포내에서 유지되고 적용 가능한지 여부를 연구하였다. GolgiFreSH-트레이서를 세포 배양액에 첨가후 세포내 형광세기와 형광비의 변화를 관찰하였다. GolgiFreSH-트레이서와 골치체 마커인 BODIPY TR C5-ceramide를 로딩한 HeLa 세포에서 고속 대량 세포 이미지 분석을 통해 측정된 형광위치를 확인하여 GolgiFreSH-트레이서의 F510이 BODIPY TR C5-ceramide 형광과 대부분 겹치게 나타나는 것을 확인하여 GolgiFreSH-트레이서가 골지체 내 위치함을 관찰할 수 있었다(도 7). 센서가 세포내 글루타치온의 산화 환원 조건의 변화에 반응하는지를 규명하기 위하여, 본 발명자들은 센서가 로딩된 생세포에 1 mM 디아마이드를 처리하여 세포 내 글루타치온을 산화시켰다. 배양 배지에 디아마이드를 첨가하면 생세포에서 센서 반응이 유도됨을 확인하였다(도 8a). 살아있는 세포 이미지로부터 계산된 해당 센서의 형광비는 디아마이드 처리에 의하여 감소되었다(도 8b). 다음으로 다양한 농도의 디아마이드를 처리하여 분석한 결과 GolgiFreSH-트레이서 형광비가 디아마이드 농도의존적으로 감소하는 것을 확인할 수 있었다(도 9). 따라서, 본 발명자들은 상기 실험 결과들로 GolgiFreSH-트레이서가 생세포의 골지체 내 글루타치온 양의 변화를 실시간 모니터링하는데 이용될 수 있다는 것을 입증하였다.
본 발명에 따른 화합물 또는 조성물을 사용하여, 살아있는 세포(living cell) 내 소기관인 미토콘드리아 및 골지체의 항산화능을 측정할 수 있다. 이를 줄기세포에 적용하여, 줄기세포에서의 항산화능 측정 결과에 따라 고활성의 줄기 세포를 선별하여 세포 치료제의 효율성을 증대시킬 수 있다.
본 명세서에서 인용한 모든 참조 문헌, 기사, 공보 및 특허 및 특허 출원이 온전히 본 명세서에 참조로 병합되어 있다. 따라서, 하기 청구의 범위의 진의 및 범주는 상기한 바람직한 실시 형태의 설명에 제한되어서는 안 된다.

Claims (30)

  1. 하기 화학식 V 또는 VI으로 표시되는 화합물 또는 이의 약학적으로 허용 가능한 염:
    [화학식 V]
    Figure 112020043415216-pat00056

    [화학식 VI]
    Figure 112020043415216-pat00057

    상기 화학식 VI에서,
    상기 R4는 -(CH2)p-(OCH2CH2O)q-(CH2)r-, 또는 -(CH2CH2)s-이고,
    상기 p 및 r은 각각 독립적으로 0-5의 정수이고,
    q 및 s는 각각 독립적으로 1-5의 정수이다.
  2. 삭제
  3. 삭제
  4. 삭제
  5. 제 1항에 있어서,
    상기 R4는 -(OCH2CH2O)-, -(CH2CH2)- 및 -(CH2(OCH2CH2)2OCH2)- 중의 어느 하나이고, 상기 화학식 VI으로 표시되는 화합물은 하기 화학식 VII 내지 화학식 IX 중 어느 하나로 표시되는 것인, 화합물 또는 이의 약학적으로 허용 가능한 염:
    [화학식 VII]
    Figure 112020043415216-pat00034

    [화학식 VIII]

    Figure 112020043415216-pat00035

    [화학식 IX]
    Figure 112020043415216-pat00036

  6. 제 1항에 있어서,
    상기 화합물은 프리(free) 상태에서 550-680 nm에서 최대방출파장을 나타내고 티올과 결합된 상태에서 430-550 nm에서 최대방출파장을 나타내는 것인, 화합물 또는 이의 약학적으로 허용 가능한 염.
  7. 제 1항에 있어서,
    상기 화합물의 방출파장의 형광세기는 430 nm 내지 680 nm의 범위에서 증감하는 것인, 화합물 또는 이의 약학적으로 허용 가능한 염.
  8. 제 1항, 제 5항 내지 제 7항 중 어느 한 항에 따른 화합물 또는 이의 약학적으로 허용 가능한 염을 유효성분으로 포함하는 생세포(living cell)에서의 항산화능 측정용 조성물.
  9. 제 8항에 있어서,
    상기 항산화능 측정은 생세포에서의 티올 수준 측정인 것인, 생세포에서의 항산화능 측정용 조성물.
  10. 제 9항에 있어서,
    상기 티올 수준 측정은 세포 소기관에서의 티올 수준 측정인, 생세포에서의 항산화능 측정용 조성물.
  11. 제 10항에 있어서,
    상기 세포 소기관은 미토콘드리아 또는 골지체인,
    생세포에서의 항산화능 측정용 조성물.
  12. 제 11항에 있어서,
    상기 미토콘드리아에서의 항산화능 측정은 화학식 V를 사용하는 것인,
    생세포에서의 항산화능 측정용 조성물.
  13. 제 11항에 있어서,
    상기 골지체에서의 항산화능 측정은 화학식 VI 내지 IX 중 어느 하나의 화합물을 사용하는 것인,
    생세포에서의 항산화능 측정용 조성물.
  14. 제 10항에 있어서,
    상기 티올 수준 측정에서 티올이 증가함에 따라 550-680 nm에서의 형광세기가 감소하고 430-550 nm에서의 형광세기는 증가하는 것인,
    생세포에서의 항산화능 측정용 조성물.
  15. 제 14항에 있어서,
    상기 티올 수준 측정은 430-550 nm에서의 형광세기 및 550-680 nm에서의 형광세기의 비율(ratio)을 수득하여(obtaining) 실시하는 것인,
    생세포에서의 항산화능 측정용 조성물.
  16. 제 15항에 있어서,
    상기 비율은 상기 430-550 nm에서의 형광세기 및 550-680 nm에서의 형광세기의 관계(relationship)인,
    생세포에서의 항산화능 측정용 조성물.
  17. 제 16항에 있어서,
    상기 관계는 상기 430-550 nm에서의 형광세기 및 550-680 nm에서의 형광세기의 수학적 비율관계이고 상기 수학적 비율관계는 미토콘드리아에서 티올의 양에 따라 비율계량적(ratiometrically)으로 가역적으로 증감하여 세포 내 소기관에서의 티올 양을 실시간으로 나타내는 것인,
    생세포에서의 항산화능 측정용 조성물.
  18. 제 10항에 있어서,
    상기 티올 수준 측정은 상기 세포 소기관 내 티올의 정성 또는 정량적 검출인 것인,
    생세포에서의 항산화능 측정용 조성물.
  19. 제 10항에 있어서,
    상기 티올 수준 측정은 실시간 정량적 측정인 것인,
    생세포에서의 항산화능 측정용 조성물.
  20. 제 10항에 있어서,
    상기 티올 수준 측정은 세포의 산화적 스트레스 또는 산화도를 나타내는 것인,
    생세포에서의 항산화능 측정용 조성물.
  21. 제 10항에 있어서,
    상기 티올 수준 측정은 세포의 노화도를 나타내는 것인,
    생세포에서의 항산화능 측정용 조성물.
  22. 제 10항에 있어서,
    상기 티올은 글루타치온(glutathione, GSH), 호모 시스테인(homocysteine, Hcy), 시스테인(cysteine, Cys) 또는 단백질의 시스테인 잔기에 있는 티올인,
    생세포에서의 항산화능 측정용 조성물.
  23. 다음의 단계를 포함하는 생세포 내 티올 증가제 또는 억제제 스크리닝 방법:
    (a) 제 8항에 따른 조성물 및 후보물질을 동시에 또는 순서에 상관없이 순차적으로 생세포에 투여하는 단계;
    (b) 430-550 nm에서의 형광세기 및 550-680 nm에서의 형광세기의 비율(ratio)을 수득하여 표준데이터와 비교하는 단계;
    (c) 상기 시험물질을 티올 증가제 또는 억제제로 결정하는 단계: 및
    (d) 430-550 nm에서의 형광세기에 대한 550-680 nm에서의 형광세기의 비율이 감소하는 경우 티올 증가제로 결정하고, 형광세기의 비율이 증가하는 경우 티올 억제제로 결정하는 단계.
  24. 제 23항에 있어서,
    상기 형광 비율 측정은 세포 소기관인 미토콘드리아 또는 골지체에 대하여 측정하는 것인, 생세포 내 티올 증가제 또는 억제제 스크리닝 방법.
  25. 제 1항, 제 5항 내지 제 7항 중 어느 한 항에 따른 화합물 또는 이의 염을 포함하는 산화 스트레스 유발 질환 진단 키트.
  26. 다음의 단계를 포함하는 생세포에서의 항산화능 측정 방법:
    (a) 생세포에서의 430-550nm에서의 형광세기 및 550-680nm에서의 형광세기의 비율(ratio)을 실시간으로 측정하는 단계;
    (b) 제 8항에 따른 조성물을 생세포에 투여하는 단계;
    (c) 산화제를 단계 (b)의 세포에 투여하는 단계; 및
    (d) 상기 형광세기의 비율 값의 변화를 관찰하는 단계.
  27. 제 26항에 있어서,
    상기 항산화능 측정 방법은 상기 단계 (d) 이후 상기 형광세기의 비율 값이 상기 산화제를 투여하지 않은 생세포의 형광세기 비율 값 또는 상기 산화제를 투여하기 전의 형광세기 비율 값으로 회복하는 시간을 측정하는 단계를 추가적으로 포함하고, 상기 시간이 짧을수록 항산화능이 높은 것으로 판단하는 것인, 생세포에서의 항산화능 측정 방법.
  28. 제 26항에 있어서,
    상기 항산화능 측정 방법은 상기 단계 (d) 이후 상기 산화제를 투여하지 않은 생세포의 형광세기 비율 값과 상기 산화제를 투여한 생세포의 형광세기 비율 값의 차이의 산화제 투여 시점부터 상기 산화제를 투여하기 전의 형광세기 비율 값으로 회복하는 시점까지의 적분값을 측정하는 단계를 추가적으로 포함하고, 상기 적분값이 작을수록 항산화능이 높은 것으로 판단하는,
    생세포에서의 항산화능 측정 방법.
  29. 제 26항에 있어서,
    상기 항산화능 측정 방법은 상기 단계 (d) 이후 상기 산화제를 투여한 생세포의 형광세기 비율 값이 감소하기 시작하는 상기 산화제의 최소 농도를 적정하는 단계를 추가적으로 포함하고, 상기 최소 농도가 높을수록 항산화능이 높은 것으로 판단하는,
    생세포에서의 항산화능 측정 방법.
  30. 제 26항에 있어서,
    상기 측정 방법은 생세포 내 소기관인 미토콘드리아 또는 골지체에 대하여 측정하는 것인,
    생세포에서의 항산화능 측정 방법.
KR1020170107429A 2017-08-24 2017-08-24 세포 소기관 내 글루타치온 측정용 실시간 형광 이미징 센서 및 이의 제조 방법 KR102133794B1 (ko)

Priority Applications (8)

Application Number Priority Date Filing Date Title
KR1020170107429A KR102133794B1 (ko) 2017-08-24 2017-08-24 세포 소기관 내 글루타치온 측정용 실시간 형광 이미징 센서 및 이의 제조 방법
CA3072434A CA3072434A1 (en) 2017-08-24 2018-08-23 Real-time fluorescence imaging sensor for measuring glutathione in organelle and preparation method therefor
PCT/KR2018/009743 WO2019039888A1 (ko) 2017-08-24 2018-08-23 세포 소기관 내 글루타치온 측정용 실시간 형광 이미징 센서 및 이의 제조 방법
CN201880054675.0A CN111032660B (zh) 2017-08-24 2018-08-23 用于测量细胞器中谷胱甘肽的实时荧光成像传感器及其制备方法
US16/640,717 US11472825B2 (en) 2017-08-24 2018-08-23 Real-time fluorescence imaging sensor for measuring glutathione in organelle and preparation method therefor
JP2020511502A JP7169004B2 (ja) 2017-08-24 2018-08-23 細胞小器官内のグルタチオン測定用リアルタイム蛍光イメージングセンサおよびその製造方法
EP18848372.1A EP3674305A4 (en) 2017-08-24 2018-08-23 REAL-TIME FLUORESCENT IMAGING SENSOR FOR MEASURING GLUTATHIONE IN AN ORGANAL AND METHOD FOR MANUFACTURING IT
AU2018320601A AU2018320601B2 (en) 2017-08-24 2018-08-23 Real-time fluorescence imaging sensor for measuring glutathione in organelle and preparation method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170107429A KR102133794B1 (ko) 2017-08-24 2017-08-24 세포 소기관 내 글루타치온 측정용 실시간 형광 이미징 센서 및 이의 제조 방법

Publications (2)

Publication Number Publication Date
KR20190021943A KR20190021943A (ko) 2019-03-06
KR102133794B1 true KR102133794B1 (ko) 2020-07-15

Family

ID=65440109

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170107429A KR102133794B1 (ko) 2017-08-24 2017-08-24 세포 소기관 내 글루타치온 측정용 실시간 형광 이미징 센서 및 이의 제조 방법

Country Status (8)

Country Link
US (1) US11472825B2 (ko)
EP (1) EP3674305A4 (ko)
JP (1) JP7169004B2 (ko)
KR (1) KR102133794B1 (ko)
CN (1) CN111032660B (ko)
AU (1) AU2018320601B2 (ko)
CA (1) CA3072434A1 (ko)
WO (1) WO2019039888A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109879884B (zh) * 2019-03-12 2021-03-02 济南大学 一种检测粘度的荧光探针及其制备方法和应用
KR102407791B1 (ko) * 2019-08-23 2022-06-10 가톨릭대학교 산학협력단 조혈모세포의 줄기세포성 측정용 조성물 및 이를 이용한 방법
KR102347906B1 (ko) * 2019-12-30 2022-01-06 주식회사 셀투인 소포체 내 글루타치온 측정용 실시간 형광 이미징 센서 및 이를 이용하는 방법
CN113945552A (zh) * 2021-10-20 2022-01-18 延边大学 一种活细胞线粒体中还原型谷胱甘肽的浓度测定方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5847162A (en) * 1996-06-27 1998-12-08 The Perkin Elmer Corporation 4, 7-Dichlororhodamine dyes
JP3955914B2 (ja) 2002-04-26 2007-08-08 敏一 吉川 生体レドックス均衡度の測定による抗酸化能の評価方法
US8110578B2 (en) * 2008-10-27 2012-02-07 Signal Pharmaceuticals, Llc Pyrazino[2,3-b]pyrazine mTOR kinase inhibitors for oncology indications and diseases associated with the mTOR/PI3K/Akt pathway
CN103820104B (zh) * 2014-02-28 2016-05-04 大连理工大学 一类以尼罗蓝为母体的近红外荧光探针、其制法及应用
KR101575846B1 (ko) 2014-06-26 2015-12-11 경남대학교 산학협력단 항산화능 측정 방법 및 항산화능 측정용 미세 유체 장치
US10215757B2 (en) * 2014-11-19 2019-02-26 Cell2In, Inc. Real-time imaging sensor for measuring cellular thiol level
US10105455B2 (en) * 2015-07-11 2018-10-23 Vanderbilt University Fluorocoxib A loading into ROS-responsive nanoparticles

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
‘폐섬유증 치료기술 개발 수렴형 융합 중개연구센터’, 최종보고서, 서울대학교 산학협력단 (2014) 1부.*
CAS REGISTRY #: 374544-06-6 (2001.12.07) 1부.*

Also Published As

Publication number Publication date
KR20190021943A (ko) 2019-03-06
JP2020531541A (ja) 2020-11-05
JP7169004B2 (ja) 2022-11-10
AU2018320601B2 (en) 2022-09-01
US20200354388A1 (en) 2020-11-12
WO2019039888A1 (ko) 2019-02-28
US11472825B2 (en) 2022-10-18
CA3072434A1 (en) 2019-02-28
AU2018320601A1 (en) 2020-03-05
EP3674305A1 (en) 2020-07-01
CN111032660B (zh) 2022-09-02
CN111032660A (zh) 2020-04-17
EP3674305A4 (en) 2021-06-02

Similar Documents

Publication Publication Date Title
KR102133794B1 (ko) 세포 소기관 내 글루타치온 측정용 실시간 형광 이미징 센서 및 이의 제조 방법
Shen et al. A rhodamine B-based lysosomal pH probe
Ye et al. A dual-channel responsive near-infrared fluorescent probe for multicolour imaging of cysteine in living cells
Yu et al. A colorimetric and near-infrared fluorescent probe for biothiols and its application in living cells
Zhang et al. A ratiometric lysosomal pH probe based on the coumarin–rhodamine FRET system
Ma et al. A NIR fluorescent chemodosimeter for imaging endogenous hydrogen polysulfides via the CSE enzymatic pathway
Tang et al. A long-wavelength-emitting fluorescent turn-on probe for imaging hydrogen sulfide in living cells
WO2017078623A9 (en) Background-free fluorescent probes for live cell imaging
Feng et al. A highly selective and sensitive fluorescent probe for thiols based on a benzothiazole derivative
Yang et al. A sensitive fluorescent probe based on coumarin for detection of cysteine in living cells
US10383956B2 (en) Fluorescent probe for detecting dipeptidyl peptidase IV
Yuan et al. A novel highly selective near-infrared and naked-eye fluorescence probe for imaging peroxynitrite
US20160116455A1 (en) Fluorescent probe sensing tyrosine kinase and use thereof
WO2014088512A1 (en) Ratiometric fluorescent dye for the detection of glutathione in cell and tissue
CN109705095B (zh) 一种含三氮唑环的稠环对苯醌类cdc25蛋白磷酸酶抑制剂及其制备方法和应用
JP2018145126A (ja) カルボキシペプチダーゼ活性検出用蛍光プローブ
KR101757729B1 (ko) 시스테인 또는 호모시스테인을 선택적으로 감지하기 위한 니트로벤조티아디아졸 구조 기반의 프로브
KR102347906B1 (ko) 소포체 내 글루타치온 측정용 실시간 형광 이미징 센서 및 이를 이용하는 방법
KR101908442B1 (ko) 서로 다른 스토크스 이동을 기반으로 하는 이광자 형광 프로브 및 이를 이용한 간 조직 내 칼슘 이온의 영상화 방법
JP2016193897A (ja) pH依存性蛍光化合物
JP2018025399A (ja) ハイドロポリスルフィド検出用蛍光プローブ
KR102324334B1 (ko) 황화수소 검출용 형광 프로브 및 이의 제조방법
KR102128381B1 (ko) 다황화수소 검출용 이광자 형광 프로브 및 이를 이용한 생체 내 다황화수소의 정량적 영상화 방법
TWI535710B (zh) 以苯并噁-1,3-二唑骨架爲主的化合物及偵測一待測品中是否存有生物硫醇的方法
RU2717308C1 (ru) Флуоресцентный сенсор для детектирования лизосом in vitro

Legal Events

Date Code Title Description
N231 Notification of change of applicant
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant