KR102132847B1 - 타우 응집체에 높은 선택성을 가지는 화합물, 이를 포함하는 타우 표적 프로브, 및 이의 제조 방법 - Google Patents

타우 응집체에 높은 선택성을 가지는 화합물, 이를 포함하는 타우 표적 프로브, 및 이의 제조 방법 Download PDF

Info

Publication number
KR102132847B1
KR102132847B1 KR1020190162945A KR20190162945A KR102132847B1 KR 102132847 B1 KR102132847 B1 KR 102132847B1 KR 1020190162945 A KR1020190162945 A KR 1020190162945A KR 20190162945 A KR20190162945 A KR 20190162945A KR 102132847 B1 KR102132847 B1 KR 102132847B1
Authority
KR
South Korea
Prior art keywords
formula
compound
tau
preparing
pharmaceutically acceptable
Prior art date
Application number
KR1020190162945A
Other languages
English (en)
Other versions
KR20190139189A (ko
Inventor
김동진
강용구
금교창
김윤경
류훈
임성수
김도희
이동수
이윤상
최유리
이지훈
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Priority to KR1020190162945A priority Critical patent/KR102132847B1/ko
Publication of KR20190139189A publication Critical patent/KR20190139189A/ko
Application granted granted Critical
Publication of KR102132847B1 publication Critical patent/KR102132847B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/60Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings condensed with carbocyclic rings or ring systems
    • C07D277/62Benzothiazoles
    • C07D277/64Benzothiazoles with only hydrocarbon or substituted hydrocarbon radicals attached in position 2
    • C07D277/66Benzothiazoles with only hydrocarbon or substituted hydrocarbon radicals attached in position 2 with aromatic rings or ring systems directly attached in position 2
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/425Thiazoles
    • A61K31/428Thiazoles condensed with carbocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Abstract

본 발명은 타우 응집체에 우수한 결합력을 나타내어 치매를 포함한 퇴행성 뇌질환의 조기 진단과, 이의 예방 및 치료에 유용한 하기 화학식 1로 표시되는 화합물, 이의 제조 방법 및 이를 포함하는 약학적 조성물에 관한 것이다.

Description

타우 응집체에 높은 선택성을 가지는 화합물, 이를 포함하는 타우 표적 프로브, 및 이의 제조 방법{Compounds with high selectivity to tau aggregates, tau-targeting probe comprising the same, and preparation method thereof}
본 발명은 타우 응집체에 높은 선택성을 가지는 화합물, 이를 포함하는 타우 표적 프로브, 및 이의 제조 방법에 관한 것이다.
만성 신경 퇴행성 장애이면서 노인 인구 중 치매의 가장 흔한 원인이기도 한 알츠하이머병(Alzheimer's disease, AD)은 기억력 상실, 실행 기능 손상, 행동 증상 및 자가 관리 능력의 상실과 같은 진행성 인지기능 장애를 특징으로 한다. 증상은 다양할 수 있으며, 다른 신경퇴행성 질환과 징후과 증상이 중첩된다. 결과적으로, 부검에 의해 판단될 때 임상 진단의 정확도는 상당히 다양하다.
아밀로이드 양전자 방출 단층 촬영(PET) 조영제와 같은 AD 진단을 위한 관련 생체 표지자에 대한 최근의 진보에도 불구하고 AD의 최종 진단은 인간 뇌 시료의 사후 조직학적 분석으로만 가능하다. AD 뇌의 사후 연구는 이 질병의 두 가지 병적인 특징을 밝혀냈다: (1) Aβ 펩타이드로 구성된 세포 외 노인성 반점(extracellular senile plaques, SPs), 및 (2) 과인산화된 타우 단백질의 쌍을 이루는 나선형 필라멘트(PHFs)로 구성된 세포 내 신경원섬유 매듭(intracellular neurofibrillary tangles, NFTs).
AD 병리의 증거는 뇌척수액(CSF) 샘플 및 뇌 영상으로부터 얻을 수 있다. 후자의 기술은 비 침습적이며 인지장애의 징후가 나타나기 전에 AD 발생 위험이 있는 환자를 확인하는 데 사용될 수 있다. 특히, PET는 생체 내 및 in-situ 비 침습적 시각화, 특성화 및 분자 수준에서의 생리학적 과정의 정량화를 가능하게 하는 민감한 이미징 기술이며 매우 강력한 진단 도구가 되었다.
Aβ-플라크의 생체 내 이미징을 위한 여러 가지 PET 프로브가 개발되었는데, 그 중 4가지 대표적인 예, 즉 화합물 1 ([11C] PiB), 화합물 2 ([18F] 플루트메타몰, flutemetamol), 화합물 3a ([18F] 플로베타피르, florbetapir) 및 화합물 3b ([18F] 플로베타벤, florbetaben)를 도 1에 나타내었다. 후자의 3개는 규제 기관에 의해 상업적 용도로 승인되었다. 그러나, 아밀로이드 플라크의 밀도는 AD에서 신경 퇴행 또는 인지 손상의 수준과는 상관관계가 없다.
아밀로이드 병리와는 달리, NFTs의 밀도와 신피질 퍼짐은 AD 환자의 진행성 신경 세포 변성 및 인지 저하와 매우 잘 연관되며, 따라서 NFT의 PET 이미징은 AD의 바람직한 바이오 마커가 될 수 있게 한다. 사실, 최근에 발표된 PET 이미징 연구에서 아밀로이드 PET와 타우 PET를 비교한 결과, 타우 PET 신호는 Aβ 영상에 비해 인지 능력 및 질병의 심각성과 높은 상관관계가 있다고 보고되었다. Aβ 영상이 질병 위험에 대한 초기 표지를 제공하는 반면, 뇌 아밀로이드 축척은 질병의 심각성과 상관관계가 없다. NFT 영상은 아마도 인지 증상의 발병 이전에 신경 퇴행을 조기 발견할 뿐만 아니라 질병 진행을 예측할 수 있다. NFT 영상은 타우 응집체 축적과 정상적인 노화에서 AD에 이르는 진행 시간, 인지 및 뇌의 구조변형 간의 관계를 묘사하는 데 도움이 될 수 있다. 타우 응집체 이미징은 타우 응집에 따른 질병의 조절을 연구하는 데 도움이 될 수 있다.
알츠하이머 질환에 관여하는 것 이외에 타우 응집성은 tangle-only dementia(TD), 호은성의 입자 질병(AGD), 진행성 핵상성 마비(PSP), 대뇌 피질기저 퇴행(CBD), 픽병(Pick 's disease), 및 17 번 염색체(FTDP-17)에 연결된 전 측두엽 성 치매 및 파킨슨증을 포함하는 "타우 병증"으로 알려진 다른 신경 퇴행성 질환의 특징이다. 그러므로, 타우 응집체 이미징은 이러한 병리의 진단 및 연구에도 유용할 수 있으며, 현재 개발된 타우 PET 리간드들은 알츠하이머병을 제외한 다른 타우 병증의 초기 연구에서도 중요하게 사용될 가능성이 있다.
NFT의 생체 내 정량화를 위한 소분자 PET 이미징 방사성 추적자(tracer)의 개발은 수많은 학계 및 산업 그룹에 의해 추진되어 왔다. 최근에 우리는 이러한 노력뿐만 아니라 적절한 타우 PET 리간드의 발견에 내재된 여러 가지 과제를 검토했다. 최근에 발견된 몇몇의 NFT에 대한 높은 결합력과 Aβ-플라크에 대한 선택성이 조기 임상 연구에서 선택되고 평가되었다(도 2). 도호쿠 대학은 18F로 표지된 "THK 화합물" 시리즈를 발표했다. 그 중 화합물 4([18F] THK-5117) 및 화합물 5([18F] THK-5351)가 광범위하게 평가되고 있다. 현재 Avid/Lilly 지멘스 그룹은 이전에 [18F] T807로 알려진 2개의 18F-표지 화합물인 화합물 6([18F] AV-1451, 이전에 [18F] T807로 알려짐) 및 화합물 7([18F] AV-[18F] T808)을 보고하였다. 치바의 국립 방사선 과학 연구소(NIRS)는 화합물 8 ([11C] PBB3)도 또한 인간 피험자에서 평가된 11종의 표지 PBB(C labeled phenylbutadienylbenzothiazole) 화합물 시리즈를 발표하였다. 아주 최근에 Merck & Co는 현재 임상 평가중인 새로운 타우 PET tracer 9([18F] MK-6240)의 발견을 보고했다. 마지막으로 Hoffmann-La Roche는 Johns Hopkins University 의과 대학과 공동으로 세 가지 잠재적인 타우 추적자 [11C] RO6931643, [11C] RO6924963 및 [18F] RO6958948으로 시험 관내 및 생체 내 결과를 보고하였다.
모든 방사능 추적자에서, 화합물 6은 AD 환자에서 가장 광범위하게 연구되어 왔다. 그러나, 비록 화합물 6이 Aβ에 비해 타우에 대해 매우 선택적이지만, 최근의 보고에 따르면, 이는 광범위하고 친화도가 높은 표적 결합을 보여주고 있다. 따라서 초기 AD 환자의 신호 대 바탕비는 최적이 아닐 수도 있다. 또한, 화합물 6은 80 내지 100분의 긴 스캐닝 시간을 필요로 하는 인간의 뇌로부터의 다소 느린 제거를 보인다고 보고되었으며, 따라서 대뇌 피질에서 6에 대한 시간-SUVR 곡선은 경증인지 손상(MCI) 또는 AD 대상자에 대해 100분 이내에 평탄하지 않을 수 있다. 이러한 한계로 인해 보다 민감하고 선택적인 타우 PET 추적자가 필요한 실정이다.
1. Khachaturian, Z. S. Diagnosis of Alzheimer's disease. Arch. Neurol. 1985, 42, 1097-1105 2. Citron, M. Alzheimer's disease: strategies for disease modification. Nat. Rev. Drug Discovery 2010, 9, 387-398 3. Nelson, P. T. et al., Correlation of Alzheimer disease neuropathologic changes with cognitive status: a review of the literature. J. Neuropathol. Exp. Neurol. 2012, 71, 362-381 4. Delacourte, A. Diagnosis of Alzheimer's disease. Ann. Biol. Clin. 1998, 56, 133-142
따라서, 본 발명의 목적은 타우 응집체에 대해 우수한 선택성을 보이는 화합물 또는 약학적으로 허용 가능한 이들의 염, 및 이의 제조 방법을 제공하는 것이다.
본 발명의 다른 목적은 상기 화합물을 유효 성분으로서 함유하는 치매의 조기 진단, 예방 또는 치료용 약학 조성물을 제공하는 것이다.
본 발명의 또 다른 목적은 상기 화합물을 유효 성분으로 함유하는 타우 응집체 형성 저해제를 제공하는 것이다.
위와 같은 과제를 달성하기 위하여, 본 발명은 하기 화학식의 화합물 또는 약학적으로 허용 가능한 이들의 염을 제공한다.
[화학식 1]
Figure 112019127084028-pat00001
또한, 본 발명은 하기 화학식 2의 구조를 갖는, 본 발명의 여러 구현예에 따른 화합물 또는 약학적으로 허용 가능한 이들의 염의 제조용 전구체를 제공한다.
[화학식 2]
Figure 112019127084028-pat00002
또한, 본 발명은 본 발명의 여러 구현예에 따른 화합물 또는 약학적으로 허용 가능한 이들의 염을 유효성분으로 포함하는, 퇴행성 뇌질환의 진단, 예방 또는 치료용 약학 조성물을 제공한다.
또한, 본 발명은 본 발명의 여러 구현예에 따른 화합물 또는 약학적으로 허용 가능한 이들의 염의 제조방법을 제공한다.
본 발명의 여러 구현예에 따라, 타우 응집체에 높은 선택성을 보이는 화학식 1의 화합물 또는 약학적으로 허용 가능한 이들의 염이 제공되었다. 본 발명에 따른 화합물은 베타 아밀로이드 대비 타우 응집체에 높은 선택성을 보이므로, 치매를 비롯한 타우 응집체와 관련된 질병의 조기 진단, 예방 또는 치료에 유용하게 사용될 수 있다.
도 1은 임상에서 사용되는 대표적인 Aβ PET 프로브의 구조를 보여준다.
도 2는 임상 연구에서 평가된 대표적인 타우 PET 추적자 화합물의 구조를 보여준다.
도 3은 타우 표지 물질 6종의 형광 스펙트럼 프로파일을 보여준다.
도 4는 정상 생쥐 대비 타우(MAPT-P301L) 생쥐에서의 타우 선택성을 검증한 결과이다(해마 CA3).
도 5는 타우 표지 화합물의 아밀로이드 플라그 대비 타우 선택성을 검증한 결과이다.
이하에서, 본 발명의 여러 측면 및 다양한 구현예에 대해 더욱 구체적으로 살펴보도록 한다.
본 발명의 일 측면에 따르면, 하기 화학식의 화합물 또는 약학적으로 허용 가능한 이들의 염이 개시된다.
[화학식 1]
Figure 112019127084028-pat00003
상기 R1-은 H-이거나 F-R1'-이고,
상기 -R1'-은 -(CH2)L1(CHOH)L2(CH2)L3-, -(CH2)m1O(CH2)m2-, -(CH2)m1O(CH2)m2O(CH2)m3- 및 -(CH2)n1- 중에서 선택되며,
상기 L1은 1 또는 2이고, 상기 L2는 0 또는 1이고, 상기 L3은 1 또는 2이며,
상기 m1은 2 또는 3이고, 상기 m2는 2 또는 3이고, 상기 m3은 2 또는 3이며,
상기 n1은 2 내지 5의 정수이고,
상기 Ar1
Figure 112019127084028-pat00004
또는
Figure 112019127084028-pat00005
이고,
상기 Ar2
Figure 112019127084028-pat00006
,
Figure 112019127084028-pat00007
,
Figure 112019127084028-pat00008
,
Figure 112019127084028-pat00009
Figure 112019127084028-pat00010
중에서 선택되며,
상기 R2는 H, CH3, CH2CH3, CH2CH2CH3 중에서 선택되고,
상기 -R3은 -CH3, CH2CH3, CH2CH2CH3 중에서 선택되거나, 또는 -R3'-F이며,
상기 -R3'-은 -(CH2)p1O(CH2)p2--, -(CH2)p1O(CH2)p2O(CH2)p3-, -(CH2)p1O(CH2)p2O(CH2)p3O(CH2)p4- 및 -(CH2)q1- 중에서 선택되고,
상기 p1은 2 또는 3이고, 상기 p2는 2 또는 3이고, 상기 p3은 2 또는 3이며, 상기 p4는 2 또는 3이며,
상기 q1은 2 내지 5의 정수이다.
일 구현예에 있어서, 상기 화학식 1의 화합물은 하기 화학식 1a의 구조를 갖는다.
[화학식 1a]
Figure 112019127084028-pat00011
상기 R1, 상기 Ar1, 상기 Ar2, 상기 R2, 및 상기 R3은 위에서 정의한 바와 같다.
다른 구현예에 있어서, 상기 -R1'-은 -(CH2)(CHOH)CH2-, -(CH2)2O(CH2)2O(CH2)2- 및 -(CH2)3- 중에서 선택되며, 상기 R2는 H이고, 상기 -R3은 -CH3 또는 -R3'-F이며, 상기 -R3'-은 -CH2O(CH2)3OCH2-, -(CH2)2O(CH2)2O(CH2)2- 및 -(CH2)3- 중에서 선택된다.
다른 구현예에 있어서, 상기 화학식 1의 화합물은 하기 화학식 1b 내지 1g 중 어느 하나의 구조를 갖는다.
[화학식 1b]
Figure 112019127084028-pat00012
[화학식 1c]
Figure 112019127084028-pat00013
[화학식 1d]
Figure 112019127084028-pat00014
[화학식 1e]
Figure 112019127084028-pat00015
[화학식 1f]
Figure 112019127084028-pat00016
[화학식 1g]
Figure 112019127084028-pat00017
상기 Ar1 및 상기 Ar2는 제1항에 정의한 바와 같다.
또 다른 구현예에 있어서, 상기 화학식 1의 화합물은 하기 화학식 1h 내지 1t 중에 어느 하나의 구조를 갖는다.
[화학식 1h]
Figure 112019127084028-pat00018
[화학식 1i]
Figure 112019127084028-pat00019
[화학식 1j]
Figure 112019127084028-pat00020
[화학식 1k]
Figure 112019127084028-pat00021
[화학식 1l]
Figure 112019127084028-pat00022
[화학식 1m]
Figure 112019127084028-pat00023
[화학식 1o]
Figure 112019127084028-pat00024
[화학식 1p]
Figure 112019127084028-pat00025
[화학식 1q]
Figure 112019127084028-pat00026
[화학식 1r]
Figure 112019127084028-pat00027
[화학식 1s]
Figure 112019127084028-pat00028
[화학식 1t]
Figure 112019127084028-pat00029
.
또 다른 구현예에 있어서, 본 발명의 여러 구현예에 따른 화합물 또는 약학적으로 허용 가능한 이들의 염에 포함된 상기 F는 19F이거나 또는 18F이다.
통상적으로 18F 표지 화합물은 토실레이트, 메실레이트 등과 같은 이탈기를 포함하는 전구체를 테트라하이드로퓨란(THF), 아세토니트릴, 디메틸설폭사이드(DMSO), 디메틸포름아미드(DMF) 등의 유기 용매 속에서 K18F, Na18F, Cs18F 등의 [F-18]플루오라이드/크립토픽스(kryptofix) 또는 테트라뷰틸암모늄염/탄산칼륨 착물과 반응시키고 생성되는 중간체를 HCl 또는 NaOH로 탈보호시키고, HPLC로 분리 정제함으로써 합성할 수 있다.
본 발명의 다른 측면은 하기 화학식의 구조를 갖는, 본 발명의 여러 구현예에 따른 화합물 제조용 전구체에 관한 것이다.
[화학식 2]
Figure 112019127084028-pat00030
상기 R1-은 MEM-이거나 TsO-R1'- 또는 MsO-R1'-이고,
상기 -R1'-은 -(CH2)(CHOH)CH2-, -(CH2)2O(CH2)2O(CH2)2- 및 -(CH2)3- 중에서 선택되며,
상기 Ar1
Figure 112019127084028-pat00031
또는
Figure 112019127084028-pat00032
이고,
상기 Ar2
Figure 112019127084028-pat00033
,
Figure 112019127084028-pat00034
,
Figure 112019127084028-pat00035
,
Figure 112019127084028-pat00036
Figure 112019127084028-pat00037
중에서 선택되며,
상기 R2는 Boc이고,
상기 -R3은 -CH3이거나 -R3'-OTs 또는 -R3'-OMs이며,
상기 -R3'-은 -CH2O(CH2)3OCH2-, -(CH2)2O(CH2)2O(CH2)2- 및 -(CH2)3- 중에서 선택되고,
상기 MEM은 2-메톡시에톡시메틸기를 의미하고,
상기 TsO은 토실레이트기, 즉 p-톨루엔술포네이트를 의미하며,
상기 MsO은 메실레이트기, 즉 메탄술포네이트를 의미하며,
상기 Boc 보호기는 tert-부틸옥시카르보닐 보호기를 의미하며,
상기 THP는 테트라하이드로파이라닐(tetrahydropyranyl)을 의미한다.
본 발명의 또 다른 측면은 본 발명의 여러 구현예에 따른 화합물 또는 약학적으로 허용 가능한 이들의 염을 유효성분으로 포함하는, 퇴행성 뇌질환의 진단, 예방 또는 치료용 약학 조성물에 관한 것이다.
본 발명의 또 다른 측면은 본 발명의 여러 구현예에 따른 화합물 또는 약학적으로 허용 가능한 이들의 염을 유효성분으로 포함하는 약학 조성물을 인간 또는 동물에 투여하는 단계를 포함하는, 퇴행성 뇌질환의 진단, 예방 또는 치료용도 또는 방법에 관한 것이다.
본 발명의 또 다른 측면은 본 발명의 여러 구현예에 따른 화합물 또는 약학적으로 허용 가능한 이들의 염의 퇴행성 뇌질환의 진단, 예방 또는 치료용도에 관한 것이다.
본 발명의 또 다른 측면은 하기 단계를 포함하는 하기 화학식 1a 화합물 제조방법에 관한 것이다.
[화학식 1a
Figure 112019127084028-pat00038
(A) 하기 화학식 3의 화합물과 하기 화학식 4의 화합물을 반응시켜 하기 화학식 5의 화합물을 제조하는 단계,
[화학식 3]
Figure 112019127084028-pat00039
[화학식 4]
OHC-Ar2-NHPr2
[화학식 5]
Figure 112019127084028-pat00040
(B) 상기 화학식 5의 화합물과 하기 화학식 6의 화합물을 반응시켜 하기 화학식 7의 화합물을 제조하는 단계,
[화학식 6]
Pr3-R1'-Pr3
[화학식 7]
Figure 112019127084028-pat00041
(C) 상기 화학식 7의 화합물을 하기 화학식 8의 화합물과 반응시켜 하기 화학식 9의 화합물을 제조하는 단계,
[화학식 8]
Z-F
[화학식 9]
Figure 112019127084028-pat00042
(D) 상기 화학식 9의 화합물에 대해 탈보호 반응을 수행하여 상기 화학식 1a의 화합물을 제조하는 단계.
상기 화학식에서, 상기 Pr1은 MEM이고,
상기 Ar1
Figure 112019127084028-pat00043
또는
Figure 112019127084028-pat00044
이고,
상기 Ar2
Figure 112019127084028-pat00045
,
Figure 112019127084028-pat00046
,
Figure 112019127084028-pat00047
,
Figure 112019127084028-pat00048
Figure 112019127084028-pat00049
중에서 선택되며,
상기 R4는 에틸이고,
상기 Pr2는 Boc이며,
상기 -R3'-은 -CH2O(CH2)3OCH2-, -(CH2)2O(CH2)2O(CH2)2- 및 -(CH2)3- 중에서 선택되고,
상기 Pr3는 TsO 또는 MsO이며,
상기 Z는 TBA, Na+, K+, Cs+중에서 선택되고,
상기 R1은 H이며,
상기 R2는 H이고,
상기 -R3은 -R3'-F이다.
여기서, 상기 MEM은 2-메톡시에톡시메틸기를 의미하고, 상기 TsO은 토실레이트기를 의미하며, 상기 MsO은 메실레이트기를 의미하며, 상기 Boc 보호기는 tert-부틸옥시카르보닐 보호기를 의미하며, 상기 THP는 테트라하이드로파이라닐(tetrahydropyranyl)을 의미하고, 상기 TBA는 tetra-n-부틸암모늄을 의미한다.
일 구현예에 있어서, 상기 (A) 단계는 NaHMDS 존재 하에서 수행될 수 있고, THF 용매에서 수행될 수 있다.
다른 구현예에 있어서, 상기 (B) 단계는 NaH 존재 하에서 수행될 수 있고, DMF 용매에서 수행될 수 있다.
또 다른 구현예에 있어서, 상기 (C) 단계는 THF 용매에서 수행될 수 있다.
또 다른 구현예에 있어서, 상기 (D) 단계는 MeOH 용매에서 HCl을 이용하여 수행될 수 있다.
본 발명의 또 다른 측면은 하기 단계를 포함하는 하기 화학식 1a의 화합물 제조방법에 관한 것이다.
[화학식 1a]
Figure 112019127084028-pat00050
(A) 하기 화학식 3의 화합물과 하기 화학식 11의 화합물을 반응시켜 하기 화학식 12의 화합물을 제조하는 단계,
[화학식 3]
Figure 112019127084028-pat00051
[화학식 11]
OHC-Ar2-N(CH3)Pr2
[화학식 12]
Figure 112019127084028-pat00052
(B) 상기 화학식 12의 화합물에 대해 탈보호 반응을 수행하여 상기 화학식 1a의 화합물을 제조하는 단계.
상기 화학식에서, 상기 Pr1은 MEM이고,
상기 Ar1
Figure 112019127084028-pat00053
또는
Figure 112019127084028-pat00054
이고,
상기 Ar2
Figure 112019127084028-pat00055
,
Figure 112019127084028-pat00056
,
Figure 112019127084028-pat00057
,
Figure 112019127084028-pat00058
Figure 112019127084028-pat00059
중에서 선택되며,
상기 R4는 에틸이고,
상기 Pr2는 Boc이며,
상기 R1은 H이고,
상기 R2는 H이며,
상기 R3은 CH3이다.
이때, 상기 MEM은 2-메톡시에톡시메틸기를 의미하고, 상기 Boc 보호기는 tert-부틸옥시카르보닐 보호기를 의미한다.
일 구현예에 있어서, 상기 (A) 단계는 NaHMDS 존재 하에서 수행될 수 있고, THF 용매에서 수행될 수 있다.
다른 구현예에 있어서, 상기 (B) 단계는 MeOH 용매에서 HCl을 이용하여 수행될 수 있다.
이하에서 실시예 등을 통해 본 발명을 더욱 상세히 설명하고자 하며, 다만 이하에 실시예 등에 의해 본 발명의 범위와 내용이 축소되거나 제한되어 해석될 수 없다. 또한, 이하의 실시예를 포함한 본 발명의 개시 내용에 기초한다면, 구체적으로 실험 결과가 제시되지 않은 본 발명을 통상의 기술자가 용이하게 실시할 수 있음은 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연하다.
또한 이하에서 제시되는 실험 결과는 상기 실시예 및 비교예의 대표적인 실험 결과만을 기재한 것이며, 아래에서 명시적으로 제시하지 않은 본 발명의 여러 구현예의 각각의 효과는 해당 부분에서 구체적으로 기재하도록 한다.
실시예
일반적 방법
용융점은 Opti 용융 융점 장치(Stanford Research System, Inc.)를 사용하여 개방형 모세관에서 결정되었고 보정하지 않았다. NMR 스펙트럼은 TMS를 내부 표준으로 사용하여 400 또는 300 MHz (1H) 및 100 MHz (13C)에서 측정하였다. 화학적 이동(δ)은 테트라메틸실란(TMS)으로부터 백만분율(ppm)로 보고하였다. 고해상도 질량 스펙트럼은 LTQ Orbitrap(Thermo Electron Corporation)에서 수행하였다. 분석용 HPLC는 SunFireTM C18 colulmn(4.6 x 150 mm, 5 μm) 칼럼이 장착된 Waters E2695 시스템을 사용하여 수행하였다. HPLC 데이터는 하기의 방법을 사용하여 기록하였다: H2O/MeCN, 17 분에 90/10 → 0/100, + 3 분 등용량, 1.0 mL/분의 유속, λ = 254, 280 nm. 반응을 분석 박층 크로마토그래피(TLC) 플레이트(Merck, Cat # 1.05715)로 모니터링하고 254 nm의 빛으로 분석하였다. 반응물을 실리카겔(Merck, Cat # 1.07734 & 1.09385)을 사용하는 컬럼 크로마토그래피로 정제하였다. 모든 화학 물질과 용매는 시약 등급이며 더 이상의 정제 과정없이 상업적 원료로 사용하였다. 보고된 수율은 정제된 제품에 대한 것이고 최적화되지 않았다. 화합물을 TLC, 1H 및 13C NMR, HR-MS 및 원소 분석으로 확인하였다. 분석 결과는 이론값의 ㅁ 0.40% 이내이다. TLC, NMR 및 분석 데이터는 생성물의 순도가 95% 이상임을 확인하였다.
제조예 및 실시예
2-amino-5-methoxybenzenethiol (2)
Figure 112019127084028-pat00060
물(100 mL)에 6-메톡시벤조[d]티아졸-2-아민(9 g, 50 mmol) 및 KOH(28 g, 500 mmol)의 혼합물을 110 ℃에서 밤새 교반하였다. 여과에 의해 스크랩을 제거한 후, 여과액을 아세트산 (수 중 30%)으로 중화시키고, 침전물을 여과로 수집하여 화합물 2를 담황색 고체로서 수득하였다.
R f = 0.81 (MC/MeOH 10/1); 1H NMR (400 MHz, CDCl3) δ 6.83 (d, J = 2.96 Hz, 1ArH), 6.81 (d, J = 2.96 Hz, 1ArH), 6.72 (brs, NH 2 ), 6.70 (s, ArH), 4.09 (brs, SH), 3.63 (s, OCH 3 ); MP: 81.6-82.8 oC.
2-(4-(bromomethyl)phenyl)-6-methoxybenzo[d]thiazole (3)
Figure 112019127084028-pat00061
트리메틸실릴 폴리포스페이트(19 mL)에 2-아미노티오페놀 2(2.6 g, 16.75 mmol) 및 4- 브로모메틸벤조산(3.6 g, 16.75 mmol)을 완전히 혼합한 다음, 110 ℃에서 3 시간 동안 질소 분위기하에 가열하였다. 반응 혼합물을 60 ℃로 냉각시키고 물(10 mL)을 첨가한 후 디클로로메탄으로 추출하였다. 합쳐진 유기 추출물을 염수로 세척하고, Na2SO4로 건조시키고, 용매를 감압하에 제거하여 갈색 고체를 수득하고, 이를 칼럼크로마토그래피(1 : 4 EA / 헥산)로 정제하여 3을 무색 고체로서 수득하였다.
R f = 0.74 (n-hexane/EtOAc 2/1); 1H NMR (400 MHz, CDCl3) δ 8.02 (s, ArH), 8.00 (s, ArH), 7.94 (d, J = 8.96 Hz, ArH), 7.50 (s, ArH), 7.48 (s, ArH), 7.34 (d, J = 8.24 Hz, ArH), 7.10 (dd, J = 8.96, 2.52 Hz, ArH), 4.53 (s, CH 2 ), 3.89 (s, OCH 3 )
2-(4-(bromomethyl)phenyl)benzo[ d ]thiazol-6-ol (4)
Figure 112019127084028-pat00062
0 ℃에서 건조된 디클로로메탄(20 mL)에 3(230 mg, 0.69 mmol)의 현탁된 현탁액에 1 M BBr3의 디클로로메탄(3.45 mL, 3.45 mmol)을 적가하고, 반응 혼합물을 실온에서 6 시간 동안 교반하였다. 혼합물을 MeOH의 적가 첨가에 의해 급냉시키고, 반응 혼합물을 암모니아 용액에 붓고, 수성상을 분리하고, 1N HCl의 첨가에 의해 중화시키고 EA로 추출 하였다. 합쳐진 유기 추출물을 건조시키고 용매를 감압하에 제거하여 조 생성물을 수득하고, 이를 칼럼크로마토그래피에 의해 정제하여 화합물 4를 백색 고체로서 수득하였다.
R f = 0.54 (n-hexane/EtOAc 2/1); 1H NMR (400 MHz, CDCl3) δ 8.05 (s, ArH), 8.03 (s, ArH), 7.95 (d, J = 8.8 Hz, ArH), 7.54 (s, ArH), 7.52 (s, ArH), 7.35 (d, J = 2.48 Hz, ArH), 7.03 (dd, J = 8.8, 2.52 Hz, ArH), 4.56 (s, CH 2 )
2-(4-(bromomethyl)phenyl)-6-((2-methoxyethoxy)methoxy)benzo[ d ]thiazole (5)
Figure 112019127084028-pat00063
상온에서 디클로로메탄(20 mL)에 화합물 4(160 mg, 0.5 mmol)의 교반 된 용액에 Hunig's base(0.13 mL, 0.75 mmol)를 첨가하고, 혼합물을 30 분 동안 교반하였다. 혼합물에 MEM 클로라이드(0.063 mL, 0.55 mmol)를 실온에서 첨가하고 6 시간 동안 교반하였다. 물을 첨가 한 후 DCM 트리튬으로 추출하고, 용매를 감압 하에서 제거하여 황색 고체를 수득하고, 이를 칼럼크로마토그래피(8 : 1 헥산/EA)로 정제하여 표제 화합물 5를 백색 고체로서 수득하였다.
R f = 0.48 (n-hexane/EtOAc 2/1); 1H NMR (400 MHz, CDCl3) δ 7.95 (s, ArH), 7.86 (d, J =8.92 Hz, ArH), 7.51 (d, J =2.32 Hz, ArH), 7.41 (s, ArH), 7.39 (s, ArH), 7.11 (dd, J = 8.92, 2.36 Hz, ArH), 5.25 (s, OCH 2 O), 4.53 (s, CH 2 ), 3.78 (t, J = 4.44 Hz, OCH 2 ), 3.50 (t, J = 4.72 Hz, OCH 2 ), 3.30 (s, OCH 3 )
diethyl (4-(6-((2-methoxyethoxy)methoxy)benzo[ d ]thiazol-2-yl)benzyl)phosphonate (6)
Figure 112019127084028-pat00064
5(150 mg, 0.37 mmol) 및 트리에틸 포스파이트(5 mL, 과량)의 혼합물을 160 ℃에서 3 시간 동안 가열하였다. 과량의 트리에틸 포스파이트를 진공 증류로 제거하였다. 생성된 고체를 칼럼크로마토그래피(EA)로 정제하여 밝은 황색 고체로서 화합물 6을 수득하였다.
R f = 0.42 (EA); 1H NMR (400 MHz, CDCl3) δ 8.03 (s, ArH), 8.01 (s, ArH), 7.96 (d, J = 8.88 Hz, ArH), 7.63 (d, J = 2.32 Hz, ArH), 7.45 (d, J = 2.24 Hz, ArH), 7.43 (d, J = 2.24 Hz, ArH), 7.21 (dd, J = 8.88, 2.40 Hz, ArH), 5.37 (s, OCH 2 O), 4.10-4.03 (m, 2OCH 2 CH3), 3.89 (t, J = 4.48 Hz, OCH 2 ), 3.61 (t, J = 3.08 Hz, OCH 2 ), 3.41 (s, OCH 3 ), 3.24 (d, J = 22 Hz, ArCH 2 P), 1.29 (t, J = 7.04 Hz, 2CH2CH 3 )
tert -butyl (E) -(4-(4-(6-((2-methoxyethoxy)methoxy)benzo[ d ]thiazol-2-yl)styryl)phenyl)carbamate (7a)
Figure 112019127084028-pat00065
무수 THF에 용해된 포스포네이트 6(1 당량)의 용액에, THF(1.1 당량) 중 1M NaHMDS를 0 ℃에서 첨가하였다. 반응 혼합물을 0 ℃에서 1 시간 동안 교반한 후, 이를 THF에 용해된 알데하이드(1.1 당량)의 용액으로 처리하였다. 생성된 용액을 실온으로 가온시키고 3 시간 동안 교반하였다. 용매를 감압하에 제거하고 생성된 액체를 EA 및 물로 추출하였다. 합쳐진 유기 층을 염수로 세척하고 MgSO4 상에서 건조시켰다. 조 생성물을 칼럼 크로마토 그래피 (2 : 1 헥산/EA)로 정제하여 표제 화합물 7a를 밝은 황색 고체로서 수득하였다.
R f = 0.26 (n-hexane/EtOAc 2/1); 1H NMR (400 MHz, CDCl3) δ 7.96 (s, ArH), 7.95 (s, ArH), 7.87 (d, J = 8.88 Hz, ArH), 7.53 (m, 3ArH), 7.42 (s, ArH), 7.40 (s, ArH), 7.32 (s, ArH), 7.30 (s, ArH), 7.13 (d, J = 2.4 Hz, ArH), 7.10 (d, J = 14.08 Hz, ArCH=CH), 6.97 (d, J = 16.28 Hz, ArCH=CH), 6.47 (s, NHBoc), 5.28 (s, OCH 2 O), 3.81 (t, J = 4.48 Hz, OCH 2 ), 3.52 (t, J = 4.68 Hz, OCH 2 ), 3.32 (s, OCH 3 ), 1.46 (s, 3CCH 3 )
tert- butyl ( E) -(5-(4-(6-((2-methoxyethoxy)methoxy)benzo[ d ]thiazol-2-yl)styryl)pyridin-2-yl)carbamate (7b)
Figure 112019127084028-pat00066
R f = 0.52 (n-hexane/EtOAc 2/1); 1H NMR (400 MHz, CDCl3) δ 8.36 (s, ArH), 8.06 (s, ArH), 8.04 (s, ArH), 7.98-7.94 (m, 2ArH), 7.89 (m, ArH), 7.62-7.59 (m, 3ArH), 7.19 (m, CH=CH), 7.10 (d, CH=CH, ArH), 5.35 (s, OCH 2 O), 3.88 (t, CH 2 O), 3.59 (t, J = 4.68 Hz, CH 2 O), 3.39 (s, OCH 3 ), 1.54 (s, 3CCH 3 )
tert -butyl ( E )-(6-(4-(6-((2-methoxyethoxy)methoxy)benzo[ d ]thiazol-2-yl)styryl)naphthalen-2-yl)carbamate (7c)
Figure 112019127084028-pat00067
R f = 0.46 (n-hexane/EtOAc 2/1); 1H NMR (400 MHz, CDCl3) δ 8.00-7.94 (m, 2ArH), 7.92 (d, J = 8.88 Hz, 2ArH), 7.72 (s, ArH), 7.70-7.64 (m, 2ArH, CH=CH), 7.57 (s, ArH), 7.55-7.53 (m, 2ArH), 7.31-7.27 (m, 2 ArH), 7.18-7.15 (m, ArH, CH=CH), 6.83 (s, NH), 5.31 (s, OCH 2 O), 3.86 (t, OCH 2 ), 3.58 (t, OCH 2 ), 3.38 (s, OCH 3 ), 1.55 (s, 3CCH 3 )
tert- butyl ( E )-(4'-(4-(6-((2-methoxyethoxy)methoxy)benzo[ d ]thiazol-2-yl)styryl)-[1,1'-biphenyl]-4-yl)carbamate (7d)
Figure 112019127084028-pat00068
R f = 0.32 (n-hexane/EtOAc 2/1); 1H NMR (400 MHz, CDCl3) δ 8.06 (s, ArH), 8.04 (s, ArH), 7.97-7.94 (m, ArH), 7.66-7.56 (m, 9ArH, CH=CH), 7.44 (d, J = 8.52 Hz, 2ArH), 7.23-7.18 (m, CH=CH, ArH), 5.35 (s, CH 2 O), 3.88 (t, J = 4.44 Hz, OCH 2 O), 3.59 (t, J = 4.76 Hz, ArH), 3.39 (s, OCH 3 ), 1.54 (s, 3CCH 3 )
( E )-5-(4-(4-(6-((2-methoxyethoxy)methoxy)benzo[ d ]thiazol-2-yl)styryl)phenyl)-2,2-dimethyl-4-oxo-3,8,11-trioxa-5-azatridecan-13-yl 4-methylbenzenesulfonate (8a, 전구체 1)
Figure 112019127084028-pat00069
무수 DMF(2 mL) 중 화합물 7a (105 mg, 0.197 mmol)의 용액에 질소 대기하에 0 ℃에서 1 시간 동안 NaH(6 mg, 0.256 mmol)를 첨가하였다. 그 후 건조 DMF 중의 디토실 레이트화합물(181 mg, 0.394 mmol)를 첨가하고 실온에서 3 시간 동안 교반하였다. 이를 물에 부은 후, 반응 혼합물을 에틸 아세테이트로 추출하고, MgSO4로 건조시키고, 여과하고 진공하에 농축시켰다. 잔류물을 컬럼크로마토그래피(2 : 1 헥산/EA)로 정제하여 화합물 8a를 황색 고체로서 수득하였다.
R f = 0.09 (n-hexane/EtOAc 2/1); 1H NMR (300 MHz, CDCl3) δ 7.97 (s, ArH), 7.95 (s, ArH), 7.87 (d, J = 8.88 Hz, ArH), 7.72 (s, ArH), 7.69 (s, ArH), 7.55-7.52 (m, 3ArH), 7.43 (s, ArH), 7.40 (s, ArH), 7.24 (s, ArH), 7.22 (s, ArH), 7.16 (s, ArH), 7.13-7.09 (m, ArCH=CH), 7.09 (s, ArH), 7.05 (s, ArH), 5.27 (s, OCH 2 O), 4.06 (t, J = 4.68 Hz, OCH 2 ), 3.80 (t, J = 4.77 Hz, NCH 2 ), 3.73 (t, J = 6.00 Hz, OCH 2 ), 3.59-3.50 (m, 3OCH 2 ), 3.45 (s, OCH 3 ), 3.31 (s, OCH 3 ), 2.34 (s, ArCH 3 ), 1.37 (s, 3CCH 3 ); MS (ESI+, m/z): 819 (M+H)+
( E )-5-(5-(4-(6-((2-methoxyethoxy)methoxy)benzo[ d ]thiazol-2-yl)styryl)pyridin-2-yl)-2,2-dimethyl-4-oxo-3,8,11-trioxa-5-azatridecan-13-yl 4-methylbenzenesulfonate (8b, 전구체 4)
Figure 112019127084028-pat00070
R f = 0.29 (n-hexane/EtOAc 1/1); 1H NMR (400 MHz, CDCl3) δ 8.45 (d, J = 2.12 Hz, ArH), 8.06 (s, ArH), 8.04 (s, ArH), 7.95 (d, J = 8.88 Hz, ArH), 7.85-7.82 (dd, J = 8.76, 2.32 Hz, CH=CH), 7.79 (s, ArH), 7.77 (s, ArH), 7.67-7.61 (m, 4 ArH), 7.33 (s, ArH), 7.31 (s, ArH), 7.21-7.19 (dd, J = 8.92, 2.40 Hz, CH=CH), 7.14 (d, J = 1.44 Hz, ArH), 5.35 (s, OCH 2 O), 4.17 (t, J = 6.32 Hz, OCH 2 ), 4.12 (t, J = 4.76 Hz, NCH 2 ), 3.88 (t, J = 4.52 Hz, OCH 2 ), 3.69 (t, J = 6.20 Hz, OCH 2 ), 3.63-3.58 (m, 2OCH 2 ), 3.53-3.49 (m, 2OCH 2 ), 3.39 (s, OCH 3 ), 2.42 (s, ArCH 3 ), 1.52 (s, 3CCH 3 ); MS (ESI+, m/z): 820 (M+H)+
( E )-5-(6-(4-(6-((2-methoxyethoxy)methoxy)benzo[ d ]thiazol-2-yl)styryl)naphthalen-2-yl)-2,2-dimethyl-4-oxo-3,8,11-trioxa-5-azatridecan-13-yl 4-methylbenzenesulfonate (8c)
Figure 112019127084028-pat00071
R f = 0.15 (n-hexane/EtOAc 1/1); 1H NMR (400 MHz, CDCl3) δ 8.07 (s, ArH), 8.05 (s, ArH), 7.86 (s, ArH), 7.77 (t, J = 8.04 Hz, 3 ArH), 7.66 (d, J = 8.32 Hz, 2ArH), 7.62 (d, J = 2.32 Hz, CH=CH), 7.38 (t, J = 3.80 Hz, ArH), 7.33 (d, J = 7.88 Hz, 4ArH), 7.27 (d, J = 8.04 Hz, 2ArH), 7.18 (dd, J = 8.88, 2.36 Hz, CH=CH), 5.35 (s, OCH 2 O), 4.14 (t, J = 4.68 Hz, OCH 2 ), 4.10 (t, J = 4.92 Hz, NCH 2 ), 3.91-3.87 (m, 2OCH 2 ), 3.66-3.62 (m, 2OCH 2 ), 3.61-3.57 (m, 2OCH 2 ), 3.39 (s, OCH 3 ), 2.44 (s, ArCH 3 ), 1.45 (s, 3CCH 3 ); MS (ESI+, m/z): 869 (M+H)+
( E )-5-(4'-(4-(6-((2-methoxyethoxy)methoxy)benzo[ d ]thiazol-2-yl)styryl)-[1,1'-biphenyl]-4-yl)-2,2-dimethyl-4-oxo-3,8,11-trioxa-5-azatridecan-13-yl 4-methylbenzenesulfonate (8d)
Figure 112019127084028-pat00072
R f = 0.25 (n-hexane/EtOAc 2/1); 1H NMR (400 MHz, CDCl3) δ 8.04 (s, ArH), 8.02 (s, ArH), 7.94 (d, J = 8.88 Hz, ArH), 7.77 (m, 2ArH), 7.62-7.53 (m, 6ArH), 7.34-7.26 (m, 3ArH, CH=CH), 7.21-7.18 (m, CH-CH, ArH), 5.33 (s, OCH 2 O), 4.17-4.12 (t, J = 4.96 Hz, OCH 2 ), 3.88-3.81 (m, NCH 2 , OCH 2 ), 3.72-3.56 (m, 5OCH 2 ), 3.38 (s, OCH 3 ), 2.44 (s, ArCH 3 ), 1.46 (s, 3CCH 3 ); MS (ESI+, m/z): 895 (M+H)+
tert -butyl ( E )-(2-(2-(2-fluoroethoxy)ethoxy)ethyl)(4-(4-(6-((2-methoxyethoxy)methoxy)benzo[ d ]thiazol-2-yl)styryl)phenyl)carbamate (9a)
Figure 112019127084028-pat00073
0 ℃의 질소 대기 하에 무수 CH3CN(5 mL) 중의 8a (23 mg, 0.028 mmol)의 용액에 THF (0.04 mL, 0.04 mmol) 중의 무수 1M TBAF를 첨가하였다. 용액을 90 ℃에서 10 분 동안 교반하였다. 용매를 제거한 후, 잔류물을 컬럼크로마토그래피로 정제하여 9a를 황색 고체로서 수득하였다.
R f = 0.36 (n-hexane/EtOAc 1/1); 1H NMR (300 MHz, CDCl3) δ 7.98 (s, ArH), 7.96 (s, ArH), 7.88 (d, J = 8.91 Hz, ArH), 7.55-7.52 (m, 3ArH), 7.44 (s, ArH), 7.41 (s, ArH), 7.22 (s, ArH), 7.14 (d, J = 2.34 Hz, CH=CH), 7.11 (d, J = 2.46 Hz, CH=CH), 7.05 (s, ArH), 7.00 (s, ArH), 5.28 (s, OCH 2O), 4.56 (t, J = 3.96 Hz, CH 2F), 4.41 (t, J = 4.02 Hz, CH 2F), 3.81 (t, J = 4.35 Hz, OCH 2), 3.78-3.68 (m, NCH 2 ), 3.61-3.50 (m, 5OCH 2), 3.32 (s, OCH 3 ), 1.38 (s, 3CCH 3 ); MS (ESI+, m/z): 667 (M+H)+
tert -butyl ( E )-(2-(2-(2-fluoroethoxy)ethoxy)ethyl)(5-(4-(6-((2-methoxyethoxy)methoxy)benzo[ d ]thiazol-2-yl)styryl)pyridin-2-yl)carbamate (9b)
Figure 112019127084028-pat00074
R f = 0.29 (n-hexane/EtOAc 1/1); 1H NMR (400 MHz, CDCl3) δ 8.46 (d, J = 1.88 Hz, ArH), 8.06 (s, ArH), 8.04 (s, ArH), 7.95 (d, J = 8.88 Hz, ArH), 7.82 (dd, J = 8.72, 2.20 Hz, ArH), 7.67 (d, J = 8.64 Hz, ArH), 7.68-7.61 (m, 2ArH, CH=CH), 7.19 (dd, J = 8.88, 2.32 Hz, CH=CH), 7.13 (d, J = 3.28 Hz, ArH), 5.35 (s, OCH 2 ), 4.60 (t, J = 4.08 Hz, CH 2F), 4.47 (t, J = 4.08 Hz, CH 2F), 4.20 (t, J = 6.28 Hz, OCH 2 ), 3.88 (t, J = 4.48 Hz, OCH 2 ), 3.73 (m, CH 2O, OCH 2 ), 3.65-3.58 (m, CH 2O, 3OCH 2 ), 3.39 (s, OCH 3 ), 1.53 (s, 3CCH 3 ); MS (ESI+, m/z): 668 (M+H)+
tert -butyl ( E )-(2-(2-(2-fluoroethoxy)ethoxy)ethyl)(6-(4-(6-((2-methoxyethoxy)methoxy)benzo[ d ]thiazol-2-yl)styryl)naphthalen-2-yl)carbamate (9c)
Figure 112019127084028-pat00075
R f = 0.23 (n-hexane/EtOAc 2/1); 1H NMR (400 MHz, CDCl3) δ 8.07 (s, ArH), 8.05 (s, ArH), 7.96 (d, J = 8.88 Hz, ArH), 7.86 (s, ArH), 7.77 (t, J = 7.84 Hz, 2ArH), 7.70 (s, ArH), 7.65 (d, J = 8.24 Hz, 2ArH), 7.61 (d, J = 2.20 Hz, CH=CH), 7.42-7.38 (m, 2ArH), 7.35 (s, ArH), 7.27 (s, ArH), 7.18 (dd, J = 8.92, 2.28 Hz, CH=CH), 5.35 (s, OCH 2 O), 4.57 (t, J = 4.08 Hz, FCH 2), 4.45 (t, J = 4.04 Hz, FCH 2), 3.92 (t, J = 5.84 Hz, OCH 2 ), 3.88 (t, J = 4.40 Hz, NCH 2 ), 3.73-3.66 (m, 2OCH 2 ), 3.66-3.58 (m, 3OCH 2 ), 3.39 (s, OCH 3 ), 1.45 (s, 3CCH 3 ); MS (ESI+, m/z): 717 (M+H)+
tert -butyl ( E )-(2-(2-(2-fluoroethoxy)ethoxy)ethyl)(4'-(4-(6-((2-methoxyethoxy)methoxy)benzo[ d ]thiazol-2-yl)styryl)-[1,1'-biphenyl]-4-yl)carbamate (9d)
Figure 112019127084028-pat00076
R f = 0.17 (n-hexane/EtOAc 2/1); 1H NMR (400 MHz, CDCl3) δ 8.04 (d, J = 8.88 Hz, 2ArH), 7.94 (d, J = 8.88 Hz, ArH), 7.65-7.57 (m, 9ArH), 7.37-7.23 (m, ArH, CH=CH), 7.23-7.18 (m, CH=CH, 2ArH), 5.37 (s, OCH 2 O), 4.60 (t, J = 3.96 Hz, CH 2F), 4.44 (t, J = 4.02 Hz, CH 2F), 3.89-3.82 (m, 2OCH 2 ), 3.76 (m, NCH 2 ), 3.69-3.57 (m, 5OCH 2 ), 3.39 (s, OCH 3 ), 1.48 (s, 3CCH 3 ); MS (ESI+, m/z): 743 (M+H)+
( E )-2-(4-(4-((2-(2-(2-fluoroethoxy)ethoxy)ethyl)amino)styryl)phenyl)benzo[ d ]thiazol-6-ol (10a, 콜드화합물1)
Figure 112019127084028-pat00077
MeOH(2 mL) 중의 화합물 9a (10 mg, 0.015 mmol)의 교반된 용액에 진한 HCl (1 mL)을 첨가하고 90 ℃에서 10 분 동안 교반하였다. 용매를 제거한 후, EA로 희석하고 NH4OH로 중화시켰다. 합한 용액을 EA 및 물로 추출하고, 유기층을 칼럼크로마토그래피(1 : 1 헥산/EA)로 정제하여 목적 화합물 10a를 황색 고체로서 수득하였다.
R f = 0.30 (n-hexane/EtOAc 1/1); 1H NMR (300 MHz, DMSO-d6) δ 10.04 (brs, OH), 7.97 (s, ArH), 7.94 (s, ArH), 7.83 (d, J = 8.79 Hz, ArH), 7.67 (s, ArH), 7.64 (s, ArH), 7.46-7.37 (m, 3ArH), 7.23 (d, J = 16.14 Hz, ArH), 7.06-6.97 (m, CH=CH), 6.64 (s, ArH), 6.61 (s, ArH), 5.93 (brt, NH), 4.60 (t, J = 4.02 Hz, CH 2F), 4.44 (t, J = 3.96 Hz, CH 2F), 3.71 (m, CH 2N), 3.62-3.57 (m, 4CH 2 O), 3.25 (m, NHCH 2); MS (ESI+, m/z): 479 (M+H)+
( E )-2-(4-(2-(6-((2-(2-(2-fluoroethoxy)ethoxy)ethyl)amino)pyridin-3-yl)vinyl)phenyl)benzo[ d ]thiazol-6-ol (10b, 콜드화합물4)
Figure 112019127084028-pat00078
1H NMR (300 MHz, DMSO-d6) δ 9.90 (s, OH), 7.98-7.91 (m, 2ArH), 7.83 (d, J = 8.79 Hz, ArH), 7.67 (s, ArH), 7.64 (s, ArH), 7.50-7.40 (m, 2ArH), 7.26-7.23 (m, ArH), 7.01-6.97 (m, CH=CH), 6.87 (s, ArH), 6.50 (d, J = 3.51 Hz, C H=CH), 5.93 (brt, NH), 4.60 (t, J = 4.02 Hz, CH 2F), 4.43 (t, J = 3.96 Hz, CH 2F), 3.57 (m, CH 2N), 3.62-3.57 (m, 4CH 2 O), 3.27 (m, NHCH 2); MS (ESI+, m/z): 480 (M+H)+
( E )-2-(4-(2-(6-((2-(2-(2-fluoroethoxy)ethoxy)ethyl)amino)naphthalen-2-yl)vinyl)phenyl)benzo[ d ]thiazol-6-ol (10c)
Figure 112019127084028-pat00079
R f = 0.21 (n-hexane/EtOAc 2/1); 1H NMR (400 MHz, CDCl3) δ 8.05 (s, ArH), 8.03 (s, ArH), 7.93 (d, J = 8.88 Hz, ArH), 7.85 (s, ArH), 7.77 (t, J = 7.84 Hz, 2ArH), 7.70 (s, ArH), 7.65 (d, J = 8.24 Hz, 2ArH), 7.61 (d, J = 2.20 Hz, CH=CH), 7.40-7.35 (m, 2ArH), 7.33 (s, ArH), 7.27 (s, ArH), 7.18 (dd, J = 8.92, 2.28 Hz, CH=CH), 4.57 (t, J = 4.08 Hz, FCH 2), 4.45 (t, J = 4.04 Hz, FCH 2), 3.92 (t, J = 5.84 Hz, OCH 2 ), 3.88 (t, J = 4.40 Hz, NCH 2 ), 3.73-3.66 (m, OCH 2 ), 3.66-3.58 (m, 2OCH 2 ), 1.45 (s, 3CCH 3 ); MS (ESI+, m/z): 529 (M+H)+
( E )-2-(4-(2-(4'-((2-(2-(2-fluoroethoxy)ethoxy)ethyl)amino)-[1,1'-biphenyl]-4-yl)vinyl)phenyl)benzo[ d ]thiazol-6-ol (10d)
Figure 112019127084028-pat00080
R f = 0.15 (n-hexane/EtOAc 2/1); 1H NMR (400 MHz, CDCl3) δ 8.03 (d, J = 8.88 Hz, 2ArH), 7.92 (d, J = 8.88 Hz, ArH), 7.65-7.55 (m, 9ArH), 7.37-7.21 (m, ArH, CH=CH), 7.20-7.15 (m, CH=CH, 2ArH), 4.60 (t, J = 3.96 Hz, CH 2F), 4.44 (t, J = 4.02 Hz, CH 2F), 3.89-3.82 (m, 2OCH 2 ), 3.76 (m, NCH 2 ), 3.64-3.59 (m, 3OCH 2 ), 1.48 (s, 3CCH 3 ); MS (ESI+, m/z): 555(M+H)+
( E )-3-((tert-butoxycarbonyl)(4-(4-(6-((2-methoxyethoxy)methoxy)benzo[ d ]thiazol-2-yl)styryl)phenyl)amino)propyl 4-methylbenzenesulfonate (11a, 전구체 2)
Figure 112019127084028-pat00081
R f = 0.22 (n-hexane/EtOAc 2/1); 1H NMR (400 MHz, CDCl3) δ 7.99 (s, ArH), 7.97 (s, ArH), 7.93 (d, J = 8.92 Hz, ArH), 7.68 (s, ArH), 7.66 (s, ArH), 7.55-7.51 (m, 3ArH), 7.42 (s, ArH), 7.40 (s, ArH), 7.28 (s, ArH), 7.24 (s, ArH), 7.15-7.13 (m, CH=CH), 7.09-7.05 (m, 3ArH), 5.27 (s, OCH 2 O), 4.00 (t, OCH 2 ), 3.80 (NCH 2 ), 3.63 (t, OCH 2 ), 3.51 (t, OCH 2 ), 2.37 (s, ArCH 3 ), 1.86 (m, CH2CH 2 CH2), 1.35 (s, 3CCH 3 ); MS (ESI+, m/z): 745 (M+H)+
( E )-3-(( tert -butoxycarbonyl)(5-(4-(6-((2-methoxyethoxy)methoxy)benzo[ d ]thiazol-2-yl)styryl)pyridin-2-yl)amino)propyl 4-methylbenzenesulfonate (11b, 전구체 5)
Figure 112019127084028-pat00082
R f = 0.31 (n-hexane/EtOAc 1/2); 1H NMR (400 MHz, CDCl3) δ 8.08 (s, ArH), 7.96 (m, 3ArH), 7.76-7.51 (m, 4ArH), 7.47 (m, 2ArH), 7.37 (s, ArH), 7.15-7.10 (m, ArH, CH=CH), 7.06 (s, ArH), 5.27 (s, OCH 2 O), 4.00 (t, OCH 2 ), 3.89 (NCH 2 ), 3.63 (t, OCH 2 ), 3.51 (t, OCH 2 ), 2.37 (s, ArCH 3 ), 1.86 (m, CH2CH 2 CH2), 1.35 (s, 3CCH 3 ); MS (ESI+, m/z): 746 (M+H)+
tert -butyl ( E )-(3-fluoropropyl)(4-(4-(6-((2-methoxyethoxy)methoxy)benzo[ d ]thiazol-2-yl)styryl)phenyl)carbamate (12a)
Figure 112019127084028-pat00083
R f = 0.41 (n-hexane/EtOAc 2/1); 1H NMR (400 MHz, CDCl3) δ 7.98 (s, ArH), 7.96 (s, ArH), 7.55-7.51 (m, 3ArH), 7.45 (s, ArH), 7.43 (s, ArH), 7.15-7.10 (m, ArH, CH=CH), 7.06 (s, ArH), 5.28 (s, OCH 2 O), 4.49 (t, J = 5.72 Hz, CH 2F), 4.37 (t, J = 5.72 Hz, CH 2F), 3.81 (t, J = 4.28 Hz, OCH 2 ), 3.74 (t, OCH 2), 3.52 (t, OCH 2), 3.32 (s, OCH3), 1.96-1.88 (m, CH2CH 2 CH2), 1.38 (s, 3CCH 3 ); MS (ESI+, m/z): 593 (M+H)+
tert -butyl ( E )-(3-fluoropropyl)(5-(4-(6-((2-methoxyethoxy)methoxy)benzo[ d ]thiazol-2-yl)styryl)pyridin-2-yl)carbamate (12b)
Figure 112019127084028-pat00084
R f = 0.34 (n-hexane/EtOAc 1/2); 1H NMR (400 MHz, CDCl3) δ 8.08 (s, ArH), 7.96 (s, ArH), 7.76-7.51 (m, 2ArH), 7.47 (s, ArH), 7.37 (s, ArH), 7.15-7.10 (m, ArH, CH=CH), 7.06 (s, ArH), 5.28 (s, OCH 2 O), 4.49 (t, J = 5.72 Hz, CH 2F), 4.37 (t, J = 5.72 Hz, CH 2F), 3.81 (t, J = 4.28 Hz, OCH 2 ), 3.77 (t, OCH 2), 3.54 (t, OCH 2), 3.34 (s, OCH3), 2.00-1.89 (m, CH2CH 2 CH2), 1.38 (s, 3CCH 3 ); MS (ESI+, m/z): 594 (M+H)+
( E )-2-(4-(4-((3-fluoropropyl)amino)styryl)phenyl)benzo[ d ]thiazol-6-ol (13a, 콜드화합물2)
Figure 112019127084028-pat00085
R f = 0.32 (n-hexane/EtOAc 2/1); 1H NMR (300 MHz, DMSO-d6) δ 9.92 (brs, OH), 7.97 (s, ArH), 7.94 (s, ArH), 7.83 (d, J = 8.82 Hz, ArH), 7.67 (s, ArH), 7.64 (s, ArH), 7.41-7.38 (m, 3ArH), 7.26-7.21 (d, J = 16.17 Hz, ArH)), 7.01-6.96(m, CH=CH), 6.61 (s, ArH), 6.59 (s, ArH), 6.01 (brt, NH), 4.64 (t, CH 2F), 4.48 (t, CH 2F), 3.17 (t, NHCH 2 ), 1.97-1.88 (m, CH2CH 2 CH2); MS (ESI+, m/z): 405 (M+H)+
( E )-2-(4-(2-(6-((3-fluoropropyl)amino)pyridin-3-yl)vinyl)phenyl)benzo[ d ]thiazol-6-ol (13b, 콜드화합물5)
Figure 112019127084028-pat00086
R f = 0.21 (n-hexane/EtOAc 1/2); 1H NMR (300 MHz, DMSO-d6) δ 9.93 (brs, OH), 8.05-7.82 (m, 3ArH), 7.45 (s, ArH), 7.64 (s, ArH), 7.41-7.38 (m, 3ArH), 7.26-7.21 (d, J = 16.17 Hz, ArH)), 7.01-6.96(m, CH=CH), 6.61 (s, CH=CH), 6.55 (s, ArH), 4.65 (t, CH 2F), 4.44 (t, CH 2F), 3.17 (t, NHCH 2 ), 1.99-1.88 (m, CH2CH 2 CH2); MS (ESI+, m/z): 406 (M+H)+
tert -butyl ( E )-(4-(4-(6-((2-methoxyethoxy)methoxy)benzo[ d ]thiazol-2-yl)styryl)phenyl)(methyl)carbamate (14a)
Figure 112019127084028-pat00087
1H NMR (400 MHz, CDCl3) δ 8.48 (d, J = 2.00 Hz, ArH), 8.05 (s, ArH), 8.03 (s, ArH), 7.95 (d, J = 8.92, ArH), 7.85-7.82 (m, 2ArH), 7.74 (d, J = 8.72 Hz, ArH), 7.60 (s, ArH), 7.60 (s, ArH), 7.36 (m, CH=CH), 7.18-7.09 (m, 2ArH, CH=CH), 3.90 (s, OCH 3 ), 3.42 (s, NCH 3 ), 1.53 (s, 3CCH 3 )
tert -butyl (E) -(5-(4-(6-((2-methoxyethoxy)methoxy)benzo[ d ]thiazol-2-yl)styryl)pyridin-2-yl)(methyl)carbamate (14b)
Figure 112019127084028-pat00088
1H NMR (400 MHz, CDCl3) δ 8.47 (d, J = 2.00 Hz, ArH), 8.05 (s, ArH), 8.03 (s, ArH), 7.95 (d, J = 8.92, ArH), 7.85-7.82 (m, ArH), 7.74 (d, J = 8.72 Hz, ArH), 7.63 (s, ArH), 7.60 (s, ArH), 7.36 (m, CH=CH), 7.18-7.09 (m, 2ArH, CH=CH), 3.90 (s, OCH 3 ), 3.43 (s, NCH 3 ), 1.55 (s, 3CCH 3 )
( E )-2-(4-(4-(methylamino)styryl)phenyl)benzo[ d ]thiazol-6-ol (15a)
Figure 112019127084028-pat00089
1H NMR (400 MHz, DMSO-d6) δ 9.85(s, OH), 7.95 (d, J = 8.4 Hz, 2 ArH), 7.82 (d, J = 8.5 Hz, ArH), 7.65 (d, J = 8.5 Hz, 2ArH), 7.40 (d, J = 2.1 Hz, CH=CH), 7.32 (d, J = 8.3 Hz, 2ArH), 7.21 (d, J = 16.3 Hz, ArH), 6.97 (dd, J = 2.1 Hz, CH=CH), 6.96 (d, J = 16.4 Hz, ArH), 6.55 (d, J = 8.4 Hz, 2ArH), 6.01 (m, NH), 2.70 (d, J = 5.0 Hz, CH 3 )
( E )-2-(4-(2-(6-(methylamino)pyridin-3-yl)vinyl)phenyl)benzo[ d ]thiazol-6-ol (15b)
Figure 112019127084028-pat00090
1H NMR (400 MHz, DMSO-d6) δ 9.91(s, OH), 8.05 (s, ArH), 8.15 (s, ArH), 8.00-7.94 (m, 3ArH), 7.92-7.67 (m, 2ArH), 7.42-7.09 (m, 2ArH, CH=CH), 7.00 (m, CH=CH), 2.86 (d, J = 4.20 Hz, NCH 3 )
Diethyl 4-(5-(2,3-dihydroxypropoxy)benzo[d]thiazol-2-yl)benzylphosphonate (17)
Figure 112019127084028-pat00091
Ethanol 중의 diethyl 4-(5-hydroxybenzo[d]thiazol-2-yl)benzylphosphonate (16, 300 mg, 0.795 mmol)의 용액에 Triethylamine (0.011 mL, 0.079 mmol)과 glycidol (0.053 mL, 0.795 mmol)을 첨가하였다. 용액을 90 ℃에서 교반하였다. 용매를 제거한 후, 잔류물을 컬럼 크로마토그래피로 정제하여 diethyl 4-(5-(2,3-dihydroxypropoxy)benzo[d]thiazol-2-yl)benzylphosphonate (17)를 수득하였다.
1H NMR (400 MHz, CDCl3) δ 7.98 (d, J = 7.9 Hz, 2H), 7.92 (d, J = 9.1 Hz, 1H), 7.43 (d, J = 2.3 Hz, 1H), 7.41 (d, J = 2.3 Hz, 1H), 7.35 (d, J = 2.4 Hz, 1H), 7.08 (dd, J = 9.0, 2.4 Hz, 1H), 4.18 - 4.09 (m, 4H), 4.04 (p, J = 7.1 Hz, 5H), 3.21 (d, J = 22.0 Hz, 2H), 1.27 (t, J = 7.1 Hz, 6H); MS (ESI+, m/z): 452 (M+H)+
3-((2-(4-((diethoxyphosphoryl)methyl)phenyl)benzo[d]thiazol-5-yl)oxy)-2-hydroxypropyl 4-methylbenzenesulfonate (18)
Figure 112019127084028-pat00092
DCM (20 mL) 중 화합물 17 (320 mg, 0.709 mmol)의 용액에 질소 대기 하에 0 ℃에서 Triethylamine (0.148 mL, 1.063 mmol), 4-methylbenzene-1-sulfonyl chloride (149 mg, 0.780 mmol), DMAP (8.66 mg, 0.071 mmol)를 첨가하였다. 그 후 실온에서 3 시간 동안 교반하였다. 이를 물에 부은 후, 반응 혼합물을 DCM으로 추출하고, MgSO4로 건조시키고, 여과하고 진공 하에 농축시켰다. 잔류물을 컬럼크로마토그래피로 정제하여 화합물 (18)을 수득하였다.
1H NMR (400 MHz, CDCl3) δ 8.00 (d, J = 7.8 Hz, 2H), 7.92 (d, J = 8.9 Hz, 1H), 7.80 (d, J = 8.3 Hz, 2H), 7.44 (d, J = 2.3 Hz, 1H), 7.42 (d, J = 2.3 Hz, 1H), 7.31 (d, J = 8.3 Hz, 2H), 7.29 (d, J = 2.6 Hz, 1H), 7.00 (dd, J = 8.9, 2.5 Hz, 1H), 4.25 (td, J = 11.2, 3.9 Hz, 4H), 4.06 (dd, J = 13.5, 5.8 Hz, 5H), 3.22 (d, J = 22.0 Hz, 2H), 2.40 (s, 3H), 1.27 (t, J = 7.0 Hz, 6H); MS (ESI+, m/z): 606 (M+H)+
3-((2-(4-((diethoxyphosphoryl)methyl)phenyl)benzo[d]thiazol-5-yl)oxy)-2-((tetrahydro-2H-pyran-2-yl)oxy)propyl 4-methylbenzenesulfonate (19)
Figure 112019127084028-pat00093
DCM (20 mL) 중 화합물 18 (110 mg, 0.182 mmol)의 용액에 질소 대기 하에 3,4-dihydro-2H-pyran (0.166 mL, 1.816 mmol)과 4-methylbenzenesulfonic acid, water salt (51.8 mg, 0.272 mmol)을 순서대로 첨가하였다. 그 후 실온에서 5 분 동안 교반하였다. 이 후, 용액에 triethylamine (0.051 mL, 0.363 mmol)을 첨가하고 추가로 5 분간 교반하였다. 진공 하에 농축시키고 잔류물을 컬럼크로마토그래피로 정제하여 화합물 19를 수득하였다.
1H NMR (400 MHz, CDCl3) δ 8.00 (d, J = 8.1 Hz, 2H), 7.91 (d, J = 9.0 Hz, 1H), 7.78 (d, J = 6.2 Hz, 1H), 7.76 (d, J = 6.1 Hz, 1H), 7.44 (d, J = 1.8 Hz, 1H), 7.42 (d, J = 2.0 Hz, 1H), 7.29 - 7.24 (m, 3H), 6.99 - 6.94 (m, 1H), 4.84 - 4.71 (m, 1H), 4.38 - 4.15 (m, 4H), 4.09 - 4.00 (m, 4H), 3.94 - 3.77 (m, 2H), 3.56 - 3.44 (m, 1H), 3.22 (d, J = 22.0 Hz, 2H), 2.38 (s, 3H), 1.82 - 1.63 (m, 2H), 1.57 - 1.38 (m, 4H), 1.27 (t, J = 7.0 Hz, 6H); MS (ESI+, m/z): 690 (M+H)+
(E)-3-((2-(4-(4-((tert-butoxycarbonyl)(methyl)amino)styryl)phenyl)benzo[d]thiazol-6-yl)oxy)-2-((tetrahydro-2H-pyran-2-yl)oxy)propyl 4-methylbenzenesulfonate (20, 전구체 3)
Figure 112019127084028-pat00094
무수 THF에 용해된 화합물 19 (1 당량)의 용액에, THF(1.1 당량) 중 1M NaHMDS를 0 ℃에서 첨가하였다. 반응 혼합물을 0 ℃에서 1 시간 동안 교반한 후, 이를 THF에 용해된 알데하이드(1.1 당량)의 용액으로 처리하였다. 생성된 용액을 실온으로 가온시키고 3 시간 동안 교반하였다. 용매를 감압 하에 제거하고 생성된 액체를 EA 및 물로 추출하였다. 합쳐진 유기 층을 염수로 세척하고 MgSO4 상에서 건조시켰다. 조 생성물을 칼럼 크로마토그래피로 정제하여 화합물 20을 수득하였다.
1H NMR (400 MHz, CDCl3) δ 8.04 (d, J = 7.5 Hz, 2H), 7.91 (d, J = 8.8 Hz, 1H), 7.79 (d, J = 6.1 Hz, 1H), 7.77 (d, J = 6.0 Hz, 1H), 7.62 (d, J = 8.3 Hz, 2H), 7.50 (d, J = 8.6 Hz, 2H), 7.32 - 7.23 (m, 5H), 7.20 (d, J = 16.2 Hz, 1H), 7.10 (d, J = 16.3 Hz, 1H), 6.99 - 6.94 (m, 1H), 4.85 - 4.71 (m, 1H), 4.39 - 4.00 (m, 4H), 3.95 - 3.72 (m, 2H), 3.56 - 3.44 (m, 1H), 3.29 (s, 3H), 2.38 (s, 3H), 1.85 - 1.64 (m, 2H), 1.48 (s, 9H), 1.45 - 1.12 (m, 4H); MS (ESI+, m/z): 771 (M+H)+
(E)-3-((2-(4-(2-(6-((tert-butoxycarbonyl)(methyl)amino)pyridin-3-yl)vinyl)phenyl)benzo[d]thiazol-6-yl)oxy)-2-((tetrahydro-2H-pyran-2-yl)oxy)propyl 4-methylbenzenesulfonate (21, 전구체 6)
Figure 112019127084028-pat00095
1H NMR (400 MHz, CDCl3) δ 8.48 (d, J = 2.2 Hz, 1H), 8.05 (d, J = 7.5 Hz, 2H), 7.92 (d, J = 8.9 Hz, 1H), 7.84 (dd, J = 8.8, 2.4 Hz, 1H), 7.77 (dt, J = 15.2, 7.6 Hz, 4H), 7.62 (d, J = 8.3 Hz, 2H), 7.28 (dd, J = 7.7, 2.5 Hz, 2H), 7.14 (d, J = 6.2 Hz, 2H), 7.00 - 6.93 (m, 1H), 4.87 - 4.68 (m, 1H), 4.39 - 4.08 (m, 4H), 3.85 (ddd, J = 17.2, 16.4, 9.6 Hz, 2H), 3.60 - 3.46 (m, 1H), 3.44 (s, 3H), 2.38 (s, 3H), 1.83 - 1.62 (m, 6H), 1.55 (s, 9H); MS (ESI+, m/z): 772 (M+H)+
(E)-1-fluoro-3-((2-(4-(4-(methylamino)styryl)phenyl)benzo[d]thiazol-6-yl)oxy)propan-2-ol (22, 콜드화합물 3)
Figure 112019127084028-pat00096
0 ℃의 질소 대기 하에 무수 THF (2 mL) 중의 화합물 20 (10 mg, 0.013 mmol)의 용액에 THF (0.026 mL, 0.026 mmol) 중의 무수 1M TBAF를 첨가하였다. 용액을 90 ℃에서 10 분 동안 교반하였다. 용매를 제거한 후, MeOH(2 mL) 와 진한 HCl (1 mL)을 첨가하고 90 ℃에서 10 분 동안 교반하였다. 용매를 제거한 후, EA로 희석하고 NH4OH로 중화시켰다. 합한 용액을 EA 및 물로 추출하고, 유기층을 칼럼크로마토그래피로 정제하여 목적 화합물 22를 수득하였다.
1H NMR (400 MHz, DMSO) δ 7.99 (d, J = 8.4 Hz, 2H), 7.93 (d, J = 8.9 Hz, 1H), 7.74 (d, J = 2.5 Hz, 1H), 7.67 (d, J = 8.4 Hz, 2H), 7.41 (d, J = 8.7 Hz, 2H), 7.25 (d, J = 16.4 Hz, 1H), 7.15 (dd, J = 8.9, 2.5 Hz, 1H), 7.00 (d, J = 16.4 Hz, 1H), 6.57 (d, J = 8.6 Hz, 2H), 4.58 (ddd, J = 14.4, 9.9, 5.2 Hz, 2H), 4.47 (ddd, J = 13.1, 9.5, 4.1 Hz, 2H), 4.15 - 4.08 (m, 1H), 2.72 (s, 3H); MS (ESI+, m/z): 435 (M+H)+
(E)-1-fluoro-3-((2-(4-(2-(6-(methylamino)pyridin-3-yl)vinyl)phenyl)benzo[d]thiazol-6-yl)oxy)propan-2-ol (23, 콜드화합물 6)
Figure 112019127084028-pat00097
1H NMR (400 MHz, DMSO) δ 8.12 (br s, 2H), 8.05 (d, J = 8.4 Hz, 2H), 7.94 (d, J = 8.9 Hz, 2H), 7.76 (d, J = 2.5 Hz, 1H), 7.71 (d, J = 8.5 Hz, 2H), 7.34 (d, J = 16.7 Hz, 1H), 7.21 (d, J = 16.4 Hz, 1H), 7.17 (dd, J = 8.9, 2.6 Hz, 1H), 4.58 (ddd, J = 14.4, 9.9, 5.2 Hz, 2H), 4.47 (ddd, J = 13.1, 9.5, 4.1 Hz, 2H), 4.15 - 4.08 (m, 1H), 2.91 (s, 3H); MS (ESI+, m/z): 436 (M+H)+
18 F 표지 화합물 제조
( E )-2-(4-(2-(6-((2-(2-(2-[ 18 F]fluoroethoxy)ethoxy)ethyl)amino)pyridin-3-yl)vinyl)phenyl)benzo[ d ]thiazol-6-ol (27, 핫화합물 4)의 제조
THF (0.5 mL)에 화합물 8b (전구체 4) (1 mg, 1.2 μmol)를 녹이고 [F-18]TBAF (tetrabutylammoniumfluoride (50 mCi)와 반응시켰다. 중간체를 1 M HCl과 반응시켜 탈보호시키고 HPLC (C18 semi Prep. HPLC column, water : EtOH = 80% : 20% (0분) ~ water : EtOH = 0% : 100% (20분))로 분리 정제하여 화합물 27 (핫화합물 4)을 10%(E.O.B)의 표지 효율로 90분 이내에 얻었다.
Figure 112019127084028-pat00098
핫화합물 1 내지 3, 5 및 6의 제조
동일한 방법으로 화합물 8a (전구체 1)에서 화합물 24 (핫화합물 1)을 제조하였고, 화합물 11a (전구체 2)에서 화합물 25 (핫화합물 2)를 제조하였으며, 화합물 20 (전구체 3)에서 화합물 26 (핫화합물 3)를 제조하였고, 화합물 27 (전구체 4)에서 화합물 24 (핫화합물 4)를 제조하였으며, 화합물 21 (전구체 6)에서 화합물 29 (핫화합물 6)를 제조하여, 각각 수득하였다.
(1) 핫화합물 1
Figure 112019127084028-pat00099
(2) 핫화합물 2
Figure 112019127084028-pat00100
(3) 핫화합물 3
Figure 112019127084028-pat00101
(4) 핫화합물 5
Figure 112019127084028-pat00102
(5) 핫화합물 6
Figure 112019127084028-pat00103
시험예
시험 대상 화합물
하기 화합물 6종에 대해서 아래와 같은 시험을 수행하였다.
(1) 콜드화합물 1
Figure 112019127084028-pat00104
(2) 콜드화합물 2
Figure 112019127084028-pat00105
(3) 콜드화합물 3
Figure 112019127084028-pat00106
(4) 콜드화합물 4
Figure 112019127084028-pat00107
(5) 콜드화합물 5
Figure 112019127084028-pat00108
(6) 콜드화합물 6
Figure 112019127084028-pat00109
타우 및 아밀로이드 응집체에 대한 선택성 분석을 위한 in vitro 스크리닝
(a) 타우/아밀로이드 응집 유도
아밀로이드 응집유도를 위해, 합성된 Abeta40 펩타이드를 0.5 mg/mL의 농도로 PBS 버퍼에 녹여 37 ℃, 200 rpm shaking 조건에서 7일간 응집을 유도하였다. 타우 단백질의 응집 유도를 위해서는, E.coli에서 분리 정제된 Tau-K18 단백질 (0.5mg/mL in PBS)의 농도로 Heparin(0.1mg/mL), DTT (100 μM)와 함께 37 ℃, 200 rpm shaking 조건에서 7일간 응집을 유도하였다.
(b) 타우 및 아밀로이드 응집 유도체에 대한 표지능 측정
병리학적 환경에서만 타우 및 아밀로이드의 응집 현상이 나타나므로, 새로 합성된 화합물이 타우 응집 단백질을 표지할 수 있는지 확인하기 위하여 합성물과 응집되지 않은 타우 단백질(preaggregate)과 응집된 타우 단백질(aggregates)의 반응성을 비교 분석하였다.
신규 합성된 화합물들의 타우 응집 단백질에 대한 표지능을 확인하기 위하여 PBS에 희석된 10 μM의 표지물질 25 μL를 PBS에 희석된 0.25 mg/mL의 타우 및 아밀로이드 pre-aggregate 및 aggregate 25 μL와 각각 30분 incubation 후 형광스펙트럼 반응을 분광광도계를 이용하여 측정하였다(ThS/ PBB3 Ex: 430 nm, Em: 480-610) (compound1-6; Ex: 400 nm, Em: 450-600).
(c) Bovine Serum Albumin를 이용한 non-specific binding 측정
화합물의 serum에 대한 non-specific binding을 배제하기 위하여, BSA 간의 반응성을 in vitro 어세이를 통해서 실험하였다. 10 μM의 합성물질 25 μL을 0.25 mg/mL의 BSA 25 μL에 30분 incubation 후 형광 스펙트럼 반응을 분광 광도계를 이용하여 측정하였다(ThS/ PBB3 Ex: 430 nm, Em: 480-610) (compound1-6; Ex: 400 nm, Em: 450-600). BSA 반응은 영상제로 환자에게 적용될 때 혈액 내 기타 다른 단백질과의 비선택적 결합을 확인하기 위함이다.
(d) 실험에 대한 대조군으로는 ThS와 함께 기존에 타우 선택적 표지자로 발표된 PBB3 (Neuron, 79(6), 1094-1108)을 사용하였다.
In vitro 스크리닝 결과, Cold 4번 및 Cold 5번이 아밀로이드 응집체 대비 타우 응집체에 높은 선택성을 갖는 것을 확인하였다. Cold 4번은 2.1배의 선택성을 띠었으며, Cold 5번은 2.6배의 선택성을 보였다. Thioflavine S와 PBB3는 높은 BSA 반응성을 보였던 반면, 선별된 화합물은 BSA에 대한 반응성이 상대적으로 매우 낮은 것을 확인하였다.
하기 표 1은 화합물 1-6의 타우/아밀로이드 표지능을 비교한 결과이다.
Figure 112019127084028-pat00110
Cold 6종의 형질전환 생쥐 뇌조직 염색 결과
(a) 타우 형질 전환 생쥐 모델(MAPT P301L)
타우 형질 전환 생쥐 모델은 타우 내 P301L 돌연변이를 가짐으로써 나이가 듦에 따라 타우 응집 현상을 보인다. 8.5개월령의 MAPTA 형질 전환 생쥐에서 얻은 뇌조직을 이용하여 실험을 진행하였다.
(b) 아밀로이드 형질 전환 생쥐 모델(APP/PS1)
아밀로이드 생쥐 모델은 APP/PSEN1 유전자를 발현함으로써 나이가 듦에 따라 아밀로이드 응집 현상을 보인다. 아밀로이드 플라그를 형성한다고 알려진 10개월령의 APP/PSEN 생쥐를 이용하여 실험을 진행하였다.
(c) 뇌조직 적출
2% 에버틴을 이용하여 생쥐를 과마취시킨 후, 생리 식염수를 이용하여 심장관류를 통한 perfusion을 진행하였다. perfusion 후, 4% PFA를 이용하여 조직을 고정하고 뇌를 적출하였다. 적출한 뇌는 PFA에 추가 고정한 후 cryosection 샘플 제작을 위해 30% sucrose 용액에 보관하였다. 이후, OCT compound를 이용하여 cryosection 몰드를 제작하고 cryotome을 이용하여 뇌조직 절편을 확보하였다.
(d) 뇌조직 염색
DMSO 녹인 10 mM의 화합물을 생리 식염수에 10 μM로 희석한 후, 뇌조직 절편을 overnight로 약 12 시간 동안 염색하고 형광 이미지를 확인하였다(Ex: 460-490 nm, Em: 500-550). Nuclei counterstain을 위해 Hoechst (10 μM)을 이용하여 뇌조직을 염색하였다(Ex: 360-400 nm, Em: 410-480).
(e) 형광 이미징
자동화 이미징 장비(Operetta)을 이용하여 10X 대물렌즈를 이용해 형광 이미지를 획득하였으며, 자동 stitch 기능을 이용하여 전체 brain mapping을 완료하였 다.
아밀로이드 플라그에 대한 친밀도 확인
타우 탱글 친화도를 확인하기에 앞서 아밀로이드 플라그에 대한 친화도를 먼저 확인하였다. 이 실험에서는 아밀로이드 플라그를 생성하는 APP/PS1 생쥐 모델의 절편을 이용하였다. 10개월령의 APP/PS1생쥐의 뇌조직 절편을 overnight로 약 12 시간 동안 염색한 후형광 이미지를 확인하였다.
그 결과, PBB3와 ThS에 의해서 아밀로이드 플라그가 관찰되었으며, 시험 화합물 중에서는 Cold 4와 Cold 6이 다른 화합물에 비해 아밀로이드 플라그에 대한 친화도가 낮음이 관찰되었다.
타우 탱글 친화도 확인
타우 탱글 친화도를 확인하기에 앞서, 사용하려는 타우 형질 전환 생쥐 모델이 타우 병증을 발현하는지를 확인하기 위하여 타우 탱글 항체인 AT8을 이용하여 확인하였다.
8.5개월령의 타우 형질전환생쥐 모델과 10개월령의 wild type의 뇌조직 절편을 overnight로 약 12 시간 동안 염색한 후 형광 이미지를 확인하였다. 타우 병증이 일어나지 않는 wild type에서는 PBB3, ThS를 비롯한 6개의 시험화합물에서 아무런 형광 반응이 관찰되지 않았다. 하지만 형질 전환 생쥐 모델에서는 Cold 1, 4, 5, 6를 이용하여 염색하였을 때, 타우 탱글 항체로 확인된 뇌 영역에서 형광 반응이 관찰되었다.
따라서, 아밀로이드 친화도 실험과 함께 고려해보았을 때, Cold 4와 Cold 5가 아밀로이드에 대한 친화도는 낮은 반면 타우 탱글에 대한 친화도가 높은 것으로 확인되었다. Cold 4와 Cold 5를 기반으로, 타우 선택성이 높은 타우 표적 프로브를 도출할 수 있을 것으로 기대된다.

Claims (10)

  1. 하기 화학식의 화합물 또는 약학적으로 허용 가능한 이들의 염:
    [화학식 1a]
    Figure 112020064638845-pat00173

    상기 R1-은 H-이거나 F-R1'-이고,
    상기 -R1'-은 -(CH2)L1(CHOH)L2(CH2)L3-, -(CH2)m1O(CH2)m2-, -(CH2)m1O(CH2)m2O(CH2)m3- 중에서 선택되며,
    상기 L1은 1 또는 2이고, 상기 L2는 1이고, 상기 L3은 1 또는 2이며,
    상기 m1은 2 또는 3이고, 상기 m2는 2 또는 3이고, 상기 m3은 2 또는 3이며,
    상기 Ar1
    Figure 112020064638845-pat00174
    또는
    Figure 112020064638845-pat00175
    이고,
    상기 Ar2
    Figure 112020064638845-pat00176
    Figure 112020064638845-pat00177
    중에서 선택되며,
    상기 R2는 H, CH3, CH2CH3, CH2CH2CH3 중에서 선택되고,
    상기 -R3은 -CH3, CH2CH3, CH2CH2CH3 중에서 선택되거나, 또는 -R3'-F이며,
    상기 R1-은 H-인 동시에 상기 -R3은 -CH3, CH2CH3, CH2CH2CH3 중에서 선택된 어느 하나는 아니고,
    상기 -R3'-은 -(CH2)p1O(CH2)p2--, -(CH2)p1O(CH2)p2O(CH2)p3-, -(CH2)p1O(CH2)p2O(CH2)p3O(CH2)p4- 및 -(CH2)q1- 중에서 선택되고,
    상기 p1은 2 또는 3이고, 상기 p2는 2 또는 3이고, 상기 p3은 2 또는 3이며, 상기 p4는 2 또는 3이며,
    상기 q1은 2 내지 5의 정수이다.
  2. 삭제
  3. 제1항에 있어서, 상기 -R1'-은 -(CH2)(CHOH)CH2-, 및 -(CH2)2O(CH2)2O(CH2)2- 중에서 선택되며,
    상기 R2는 H이고,
    상기 -R3은 -CH3 또는 -R3'-F이며,
    상기 -R3'-은 -(CH2)2O(CH2)2O(CH2)2- 및 -(CH2)3- 중에서 선택되는 것을 특징으로 하는, 화합물 또는 약학적으로 허용 가능한 이들의 염:
  4. 제3항에 있어서, 상기 화학식 1a의 화합물은 하기 화학식들 중 어느 하나의 구조를 갖는 것을 특징으로 하는, 화합물 또는 약학적으로 허용 가능한 이들의 염:
    [화학식 1c]
    Figure 112020064638845-pat00178

    [화학식 1d]
    Figure 112020064638845-pat00179

    [화학식 1e]
    Figure 112020064638845-pat00180

    [화학식 1f]
    Figure 112020064638845-pat00181
  5. 제1항에 있어서, 상기 화학식 1a의 화합물은 하기 화학식들 중에 어느 하나의 구조를 갖는 것을 특징으로 하는, 화합물 또는 약학적으로 허용 가능한 이들의 염:
    [화학식 1p]
    Figure 112020064638845-pat00182

    [화학식 1q]
    Figure 112020064638845-pat00183

    [화학식 1r]
    Figure 112020064638845-pat00184

    [화학식 1s]
    Figure 112020064638845-pat00185
  6. 제1항, 제3항 내지 제5항 중 어느 한 항에 있어서, 상기 F는 19F이거나 또는 18F인 것을 특징으로 하는 화합물 또는 약학적으로 허용 가능한 이들의 염.
  7. 하기 화학식의 구조를 갖는, 제1항, 제3항 내지 제5항 중 어느 한 항에 따른 화학식 1의 화합물 제조용 전구체:
    [화학식 2]
    Figure 112020064638845-pat00186

    상기 R1-은 MEM-이거나 TsO-R1'- 또는 MsO-R1'-이고,
    상기 -R1'-은 -(CH2)L1(CHOH)L2(CH2)L3-, -(CH2)m1O(CH2)m2-, -(CH2)m1O(CH2)m2O(CH2)m3- 중에서 선택되며,
    상기 L1은 1 또는 2이고, 상기 L2는 1이고, 상기 L3은 1 또는 2이며,
    상기 m1은 2 또는 3이고, 상기 m2는 2 또는 3이고, 상기 m3은 2 또는 3이며,

    상기 Ar1
    Figure 112020064638845-pat00187
    또는
    Figure 112020064638845-pat00188
    이고,
    상기 Ar2
    Figure 112020064638845-pat00189
    Figure 112020064638845-pat00190
    중에서 선택되며,
    상기 R2는 Boc이고,
    상기 -R3은 -CH3이거나 -R3'-OTs 또는 -R3'-OMs이며,
    상기 -R3'-은 -(CH2)2O(CH2)2O(CH2)2- 및 -(CH2)3- 중에서 선택되고,
    상기 MEM은 2-메톡시에톡시메틸기를 의미하고,
    상기 TsO은 토실레이트기를 의미하며,
    상기 MsO은 메실레이트기를 의미하며,
    상기 Boc 보호기는 tert-부틸옥시카르보닐 보호기를 의미한다.
  8. 제1항, 제3항 내지 제5항 중 어느 한 항에 따른 화합물 또는 약학적으로 허용 가능한 이들의 염을 유효성분으로 포함하는, 퇴행성 뇌질환의 진단, 예방 또는 치료용 약학 조성물.
  9. 하기 단계를 포함하는 하기 화학식 1a의 화합물 제조방법:
    [화학식 1a]
    Figure 112020064638845-pat00191

    (A) 하기 화학식 3의 화합물과 하기 화학식 4의 화합물을 반응시켜 하기 화학식 5의 화합물을 제조하는 단계,
    [화학식 3]
    Figure 112020064638845-pat00192

    [화학식 4]
    OHC-Ar2-NHPr2
    [화학식 5]
    Figure 112020064638845-pat00193

    (B) 상기 화학식 5의 화합물과 하기 화학식 6의 화합물을 반응시켜 하기 화학식 7의 화합물을 제조하는 단계,
    [화학식 6]
    Pr3-R1'-Pr3
    [화학식 7]
    Figure 112020064638845-pat00194

    (C) 상기 화학식 7의 화합물을 하기 화학식 8의 화합물과 반응시켜 하기 화학식 9의 화합물을 제조하는 단계,
    [화학식 8]
    Z-F
    [화학식 9]
    Figure 112020064638845-pat00195

    (D) 상기 화학식 9의 화합물에 대해 탈보호 반응을 수행하여 상기 화학식 1a의 화합물을 제조하는 단계,
    상기 화학식에서, 상기 Pr1은 MEM이고,
    상기 Ar1
    Figure 112020064638845-pat00196
    또는
    Figure 112020064638845-pat00197
    이고,
    상기 Ar2
    Figure 112020064638845-pat00198
    Figure 112020064638845-pat00199
    중에서 선택되며,
    상기 R4는 에틸이고,
    상기 Pr2는 Boc이며,
    상기 -R3'-은 -(CH2)2O(CH2)2O(CH2)2- 및 -(CH2)3- 중에서 선택되고,
    상기 Pr3은 TsO 또는 MsO이며,
    상기 Z는 TBA, Na+, K+, Cs+ 중에서 선택되고,
    상기 R1은 H이며,
    상기 R2는 H이고,
    상기 -R3은 -R3'-F이며,
    상기 MEM은 2-메톡시에톡시메틸기를 의미하고,
    상기 TsO은 토실레이트기를 의미하며,
    상기 MsO은 메실레이트기를 의미하고,
    상기 Boc 보호기는 tert-부틸옥시카르보닐 보호기를 의미하며,
    상기 TBA는 tetra-n-부틸암모늄을 의미한다.
  10. 하기 단계를 포함하는 하기 화학식 1a의 화합물 제조방법:
    [화학식 1a]
    Figure 112020064638845-pat00200

    (A) 하기 화학식 3의 화합물과 하기 화학식 11의 화합물을 반응시켜 하기 화학식 12의 화합물을 제조하는 단계,
    [화학식 3]
    Figure 112020064638845-pat00201

    [화학식 11]
    OHC-Ar2-N(CH3)Pr2
    [화학식 12]
    Figure 112020064638845-pat00202

    (B) 상기 화학식 12의 화합물에 대해 탈보호 반응을 수행하여 상기 화학식 1a의 화합물을 제조하는 단계,
    상기 화학식에서, 상기 Pr1은 MEM이고,
    상기 Ar1
    Figure 112020064638845-pat00203
    또는
    Figure 112020064638845-pat00204
    이고,
    상기 Ar2
    Figure 112020064638845-pat00205
    Figure 112020064638845-pat00206
    중에서 선택되며,
    상기 R4는 에틸이고,
    상기 Pr2는 Boc이며,
    상기 R1은 H이고,
    상기 R2는 H이며
    상기 R3은 CH3이고,
    상기 MEM은 2-메톡시에톡시메틸기를 의미하고,
    상기 Boc 보호기는 tert-부틸옥시카르보닐 보호기를 의미한다.
KR1020190162945A 2019-12-09 2019-12-09 타우 응집체에 높은 선택성을 가지는 화합물, 이를 포함하는 타우 표적 프로브, 및 이의 제조 방법 KR102132847B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020190162945A KR102132847B1 (ko) 2019-12-09 2019-12-09 타우 응집체에 높은 선택성을 가지는 화합물, 이를 포함하는 타우 표적 프로브, 및 이의 제조 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020190162945A KR102132847B1 (ko) 2019-12-09 2019-12-09 타우 응집체에 높은 선택성을 가지는 화합물, 이를 포함하는 타우 표적 프로브, 및 이의 제조 방법

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020180009112A Division KR20190090448A (ko) 2018-01-25 2018-01-25 타우 응집체에 높은 선택성을 가지는 화합물, 이를 포함하는 타우 표적 프로브, 및 이의 제조 방법

Publications (2)

Publication Number Publication Date
KR20190139189A KR20190139189A (ko) 2019-12-17
KR102132847B1 true KR102132847B1 (ko) 2020-07-13

Family

ID=69056555

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020190162945A KR102132847B1 (ko) 2019-12-09 2019-12-09 타우 응집체에 높은 선택성을 가지는 화합물, 이를 포함하는 타우 표적 프로브, 및 이의 제조 방법

Country Status (1)

Country Link
KR (1) KR102132847B1 (ko)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK2338059T3 (en) * 2008-09-23 2015-06-15 Wista Lab Ltd Ligands for aggregated tau molecules

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Bioorganic & Medicinal Chemistry Letters, 18, pp. 1534-1537(2008) 1부.*

Also Published As

Publication number Publication date
KR20190139189A (ko) 2019-12-17

Similar Documents

Publication Publication Date Title
JP5667058B2 (ja) 凝集したタウ分子に対するリガンド
Boländer et al. Bis (arylvinyl) pyrazines,-pyrimidines, and-pyridazines as imaging agents for tau fibrils and β-amyloid plaques in Alzheimer’s disease models
KR102053484B1 (ko) 뇌 안에 축적된 타우 단백질을 이미징하기 위한 신규한 화합물
JP6194416B2 (ja) タウ−petリガンドとしてのジアザカルバゾール誘導体
EP1971584A2 (en) Isotopically-labeled benzothiazole compounds as imaging agents for amyloidogenic proteins
US10300155B2 (en) Alpha-synuclein ligands
RU2671506C2 (ru) Имидазо[1,2-а]пиридин-7-амины в качестве средств визуализации
KR20190031312A (ko) 타우 단백질 응집체를 이미징하기 위한 화합물
KR102132847B1 (ko) 타우 응집체에 높은 선택성을 가지는 화합물, 이를 포함하는 타우 표적 프로브, 및 이의 제조 방법
EA028426B1 (ru) СОЕДИНЕНИЯ И ИХ ПРИМЕНЕНИЕ ДЛЯ ПОЛУЧЕНИЯ tau-ВИЗУАЛИЗИРУЮЩИХ АГЕНТОВ И tau-ВИЗУАЛИЗИРУЮЩИХ СОСТАВОВ
KR20190090448A (ko) 타우 응집체에 높은 선택성을 가지는 화합물, 이를 포함하는 타우 표적 프로브, 및 이의 제조 방법
US20210255203A1 (en) Novel compounds useful as near-infrared fluorescent probes selectively binding to tau aggregates and method of preparing the same
CN108290883B (zh) 用于tau成像的氮杂环丁烷衍生物
JP2007106755A (ja) アミロイドイメージング用プローブ
JP7008299B2 (ja) 神経難病の画像診断薬及び体外診断薬
JP7059270B2 (ja) タウタンパク質凝集体を画像化するための化合物
WO2019025595A1 (en) SELECTIVE LIGANDS FOR TAU AGGREGATES
KR102215255B1 (ko) 타우 응집체에 선택적으로 결합하는 형광 탐침자로서 유효한 신규 화합물 및 이의 제조 방법
US11306089B2 (en) Gamma-carboline compounds for the detection of Tau aggregates

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant