KR102130936B1 - Process Of Producing Antiviral Alginic Acid Complex Fiber And The Product Thereby - Google Patents

Process Of Producing Antiviral Alginic Acid Complex Fiber And The Product Thereby Download PDF

Info

Publication number
KR102130936B1
KR102130936B1 KR1020200026313A KR20200026313A KR102130936B1 KR 102130936 B1 KR102130936 B1 KR 102130936B1 KR 1020200026313 A KR1020200026313 A KR 1020200026313A KR 20200026313 A KR20200026313 A KR 20200026313A KR 102130936 B1 KR102130936 B1 KR 102130936B1
Authority
KR
South Korea
Prior art keywords
weight
fiber
alginic acid
antiviral
copper
Prior art date
Application number
KR1020200026313A
Other languages
Korean (ko)
Inventor
이현호
김원근
Original Assignee
주식회사 파이버엔텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 파이버엔텍 filed Critical 주식회사 파이버엔텍
Priority to KR1020200026313A priority Critical patent/KR102130936B1/en
Application granted granted Critical
Publication of KR102130936B1 publication Critical patent/KR102130936B1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • D01F1/103Agents inhibiting growth of microorganisms
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D13/00Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches
    • A41D13/05Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches protecting only a particular body part
    • A41D13/11Protective face masks, e.g. for surgical use, or for use in foul atmospheres
    • A41D13/1192Protective face masks, e.g. for surgical use, or for use in foul atmospheres with antimicrobial agent
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B18/00Breathing masks or helmets, e.g. affording protection against chemical agents or for use at high altitudes or incorporating a pump or compressor for reducing the inhalation effort
    • A62B18/02Masks
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D1/00Treatment of filament-forming or like material
    • D01D1/10Filtering or de-aerating the spinning solution or melt
    • D01D1/103De-aerating
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D1/00Treatment of filament-forming or like material
    • D01D1/10Filtering or de-aerating the spinning solution or melt
    • D01D1/106Filtering
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D10/00Physical treatment of artificial filaments or the like during manufacture, i.e. during a continuous production process before the filaments have been collected
    • D01D10/06Washing or drying
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/06Wet spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/18Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from other substances
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/04Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of alginates
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4382Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
    • D04H1/43825Composite fibres
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/13Physical properties anti-allergenic or anti-bacterial

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Pulmonology (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Artificial Filaments (AREA)

Abstract

The present invention relates to a technology for producing alginic acid complex fibers through ionic bonding using a spinning solution of metal ions and alginic acid fiber polymers having polymer electrolyte properties. The present invention provides antiviral alginic acid complex fibers having an inactivating effect against a wide range of viruses including influenza and coronavirus.

Description

항바이러스성 알긴산 복합섬유의 제조방법 및 항바이러스성 알긴산 복합섬유{Process Of Producing Antiviral Alginic Acid Complex Fiber And The Product Thereby}Process for Producing Antiviral Alginic Acid Composite Fibers and Antiviral Alginic Acid Complex Fiber And The Product Thereby}

본 발명은 고분자 전해질 특성을 갖는 알긴산 섬유고분자와 금속이온의 방사원액을 이용하여 이온결합을 통한 알긴산 복합섬유 제조기술에 관한 것이다.The present invention relates to an alginate composite fiber manufacturing technology through ion bonding by using a spinning solution of alginate fiber polymer and metal ion having polymer electrolyte characteristics.

최근 코로나바이러스 메르스, 신종플루에 의한 인명피해와 함께 조류독감, 구제역등에 의한 가금류 피해가 주기적으로 반복되고 있으며 변종바이러스의 출현에 따른 기존 항바이러스제 치료효과의 한계가 노출될 것으로 우려됨에 따라 전염성 바이러스에 대한 보호책이 적극적으로 대두되고 있다.Infectious virus, as the recent damage to poultry caused by bird flu and foot and mouth disease along with coronavirus MERS and H1N1 flu is repeated periodically, and it is feared that the limitations of the existing antiviral treatment effects will be exposed due to the emergence of variant viruses. Protection measures against are actively emerging.

바이러스는 박테리아와 같은 미생물과는 근본적으로 다른 유기체로서 유,무성 생식을 통한 자기복제 증식이 아닌 숙주에 기생하여 숙주세포의 유전정보를 이용한 증식만이 가능한 특징을 가지고 있다. 지구상 모든 생명체의 진화사는 바이러스와의 공존 및 투쟁의 역사라 할 만큼 숙주 대 바이러스의 공격과 방어 메커니즘은 수십억 년을 걸쳐 지속되어 오고 있다.Viruses are organisms that are fundamentally different from microorganisms such as bacteria. They are parasitic in the host, not self-replicating proliferation through sexual and asexual reproduction. The evolutionary history of all life forms on Earth is a history of coexistence and struggle with viruses, and the host-to-virus attack and defense mechanisms have continued for billions of years.

과학발전에 따라 몇 가지 바이러스치료제가 개발되었으나 아직도 근본적으로 광범위한 바이러스에 대응하는 치료제는 개발되지 못하고 있다. 따라서 전염성 바이러스에 효과적으로 대응하는 방법은 바이러스의 전파를 차단하여 예방하는 방법이 최선이라고 할 수 있다.With the development of science, several virus treatments have been developed, but there are still fundamentally few treatments for a wide range of viruses. Therefore, it can be said that the best way to effectively respond to an infectious virus is to block and prevent the transmission of the virus.

바이러스의 전파 감염은 대표적 전염성 바이러스인 코로나, 인플루엔자바이러스 등의 경우 감염자로부터 방출된 바이러스를 포함하는 비말(재채기등의 침방울)에 접촉하는 경우 뿐 아니라 감염자가 접촉한 의복,수건,마스크 등에 접촉(간접접촉)함으로써도 발생한다. 대표적인 경우가 마스크로서 이를 장시간 착용함으로서 필터부직포 부분에 바이러스가 농축되고 마스크를 탈착하면서 손에 바이러스가 전이되며, 이 손을 통해 지속적으로 의복,수건 등에 전파되어 타인에게 전염을 발생 시킨다.The spread of the virus is not only the case of contact with droplets (sniffs such as sneezing) that contain the virus released from the infectious viruses such as corona, influenza virus, etc., but also contact with clothing, towels, masks, etc. Contact). A typical case is wearing a mask as a mask for a long time, and the virus is concentrated on the non-woven fabric part and the virus is transferred to the hand as the mask is detached. Through this hand, it is continuously spread to clothes, towels, etc., causing infection to others.

이러한 섬유류 제품을 통한 바이러스의 전염을 방지하기 위해 최근 많은 연구가 진행되어 오고 있으며 각종 기술이 제공되고 있다. 대표적인 기술로는 항바이러스특성을 갖는 물질을 섬유재료 표면에 코팅하는 방식과 재료에 직접 혼합하여 섬유를 제조하는 방식이 있으며, 바이러스 불활성화 효과를 갖는 물질로는 다가의 금속 또는 금속산화물 및 기타 바이러스 불활성화 효과가 있다고 알려진 합성 또는 천연 추출 물질이 있다. In order to prevent the transmission of viruses through such textile products, many studies have been conducted in recent years and various technologies have been provided. Typical technologies include a method of coating a material having antiviral properties on the surface of a fiber material and a method of directly mixing the material with a material to produce a fiber. As a material having a virus inactivation effect, polyvalent metals or metal oxides and other viruses There are synthetic or natural extracts known to have an inactivating effect.

일반적으로 개발이 많이 이루어지고 있는 금속 또는 금속산화물 항바이러스 섬유에 있어서 금속종은 Cu, CuO, Al, Al2O3, Mg, MgO, Ag, Ag2O 등이 있으며, Cu가 가장 효과적인 것으로 알려져 있다. 특히, 구리는 코로나 바이러스 인플루엔자 바이러스등 다양한 형태의 바이러스에 가장 효과적인 물질로서 바이러스와 접촉시 바이러스의 대사작용에 장애를 유발하여 궁극적으로 캡시드와 같은 보호막을 깨뜨려 그안의 유전정보가 외부로 유출됨으로써 바이러스를 불활성화 하는 것으로 알려져있다.In general, metal or metal oxide antiviral fibers that are being developed a lot are metal species such as Cu, CuO, Al, Al 2 O 3 , Mg, MgO, Ag, Ag 2 O, and Cu is known to be the most effective. have. In particular, copper is the most effective substance for various types of viruses, such as corona virus, influenza virus, and when it comes into contact with the virus, it causes a disorder in the metabolism of the virus and ultimately breaks a protective film such as a capsid, thereby leaking the virus inside. It is known to inactivate.

최근 논문에 따르면 스테인레스 표면에 노출된 인플루엔자A형 바이러스는 24시간후에도 상당량 생존해 있는 반면 구리표면에 노출된 경우에는 6시간만에 스테인레스 표면에 비하여 1/1000로 줄어든다는 연구가 보고되고 있다(Environmental microbiology, 73(8), 2748-2750). 또한 코로나바이러스에 대한 연구에서도 구리표면에 접촉한 경우 불과 20여분만에 완전히 불활성화 된다는 연구가 보고된 바 있다(mbio.asm.org Nov 10, 2015).According to a recent paper, studies showing that the influenza A virus exposed to the stainless surface survives a considerable amount even after 24 hours, whereas when exposed to the copper surface, it is reported to decrease to 1/1000 compared to the stainless surface after 6 hours (Environmental). microbiology, 73(8), 2748-2750). In addition, studies on coronavirus have been reported to be completely inactivated in just 20 minutes when it comes into contact with the copper surface (mbio.asm.org Nov 10, 2015).

이러한 금속 또는 금속산화물을 섬유재료에 결합시키기 위한 종래기술로서는 금속성분을 분말화하여 결합제중에 현탁시킨 후 결합제-금속혼합물을 섬유재료에 적용하여 금속이 아닌 결합제를 섬유재료에 결합시키는 방법, 또는 금속을 분말화한 후 접착제를 섬유재료에 바른 후 위 금속분말을 접착제위에 살포하는 방식이 있다. 그러나 이 두가지 방법은 결합제나 접착제가 금속성분을 완전히 감싸(캡슐화) 바이러스, 미생물등과 접촉이 제한되어 효과를 충분히 나타내지 못하며 접착제 성분등으로 인한 섬유제품의 태(handle)를 저하시켜 제품용도에 제한이 있는 단점이 있다.As a conventional technique for bonding such a metal or metal oxide to a fiber material, a metal component is powdered and suspended in a binder, and then a binder-metal mixture is applied to the fiber material to bond a non-metal binder to the fiber material, or metal After powdering, there is a method of applying the adhesive to the fiber material and then spraying the metal powder on the adhesive. However, these two methods do not sufficiently exhibit the effect of the binder or adhesive completely encapsulating the metal component (encapsulation) and contact with viruses, microorganisms, etc., and are limited in product use by lowering the handle of the textile product due to the adhesive component. There are disadvantages.

또 다른 방법으로는 나일론 및 폴리에스터 섬유재료에 플라스틱을 피복하기 위한 표준 전해질 피복공정을 사용하여 금속으로 피복하는 방법과 금속미분말을 나일론, 폴리에스터등의 중합체를 방사할 때 직접 혼입하는 방식등이 있다. 그러나 첫 번째 방법은 촉매 귀금속 핵화 부위를 섬유재료상에 침전시켜 섬유표면을 활성화 시키는 단계 및 활성화된 섬유표면에 근접하여 금속양이온의 환원단계의 다소 복잡한 공정이 요구되는 단점이 있으며 두 번째 방법은 비교적 간단한 방법이나 방사구금이 막히지 않도록 금속을 미분말화하여야 하며 투입되는 금속의 양에도 한계가 있다 또한 위 방법 모두 합성섬유 소재에 적합한 방법으로서, 천연섬유 소재적용에는 한계가 있다.Other methods include the method of coating with metal using standard electrolytic coating process for coating plastic on nylon and polyester fiber materials, and the method of directly incorporating metal fine powder when spinning polymers such as nylon and polyester. have. However, the first method has a disadvantage in that the catalyst noble metal nucleation site is precipitated on the fiber material to activate the fiber surface and the process of reducing metal cations in close proximity to the activated fiber surface requires a somewhat complicated process, and the second method is relatively simple. To prevent clogging of the method or spinneret, the metal must be finely powdered, and there is a limit to the amount of metal to be injected. Also, all of the above methods are suitable for synthetic fiber materials, and there are limits to the application of natural fiber materials.

대한민국등록특허제10-1733927호(2017년05월08일 공고)Korea Registered Patent No. 10-1733927 (announced May 8, 2017) 대한민국등록특허제10-1736080호(2017년05월16일 공고)Republic of Korea Registered Patent No. 10-1736080 (announced on May 16, 2017)

따라서 본 발명에서는 바이러스 불활성화에 효과적으로 알려져 있는 구리이온을 알긴산섬유 제조시 방사원액에 도입하여 소디움알지네이트 고분자용액중 소디움이온과 일부 치환되어 알긴산고분자내에 구리이온 입자들이 담지됨과 동시에 구리이온들이 섬유의 내외부에 균일하게 분포될 수 있도록 하고, 섬유가 제조된 이후 구리입자의 물리적 마찰에 의한 탈락 가능성을 현저히 줄여 바이러스의 불활성화 효과를 지속시킬 수 있는 인체 친화적 섬유의 제조방법을 제공하고자 한다.Therefore, in the present invention, copper ions, which are effectively known for virus inactivation, are introduced into the spinning dope during the production of alginic acid fibers, which are partially substituted with sodium ions in the sodium alginate polymer solution, while copper ion particles are supported in the alginate polymer, and copper ions are inside and outside the fiber. It is intended to provide a method for manufacturing a human-friendly fiber that can be uniformly distributed in the fiber and significantly reduce the possibility of dropping due to physical friction of copper particles after the fiber is produced, thereby maintaining the virus inactivation effect.

그러므로 본 발명에 의하면, 소디움알지네이트 고분자 5~10중량%, 황산구리분말 1~3중량% 및 잔부로서 증류수를 혼합하여 40~60℃ 에서 교반하여 황산구리-알지네이트 방사원액을 제조한 후,Therefore, according to the present invention, after the sodium alginate polymer 5 to 10% by weight, 1 to 3% by weight of copper sulfate powder and the remainder was mixed with distilled water and stirred at 40 to 60 ℃ to prepare a copper sulfate-alginate spinning dope,

기포 제거를 위해 감압탈포하고 필터링한 후 기어펌프를 통해 정량 토출하여 염화칼슘을 함유한 응고액하에서 응고한 후, 수세조, 유제조를 차례로 거친 후 건조하여 권취하는 것을 특징으로 하는 항바이러스성 알긴산 복합섬유의 제조방법이 제공된다.Antiviral alginic acid complex characterized by defoaming under reduced pressure for filtering and filtering, and then discharged through a gear pump to solidify under a coagulating solution containing calcium chloride, followed by a washing tank and an oil tank followed by drying and winding. A method of making a fiber is provided.

이하 본 발명을 보다 상세히 설명하기로 한다.Hereinafter, the present invention will be described in more detail.

본 발명은 황산구리용액의 구리이온과 음이온성 고분자인 소디움알지네이트 고분자가 혼합된 방사원액으로 복합섬유를 방사함으로써 SARS, MERS, CVD19(신종코로나바이러스)등 코로나 바이러스류 및 사람인플루엔자 바이러스(H1N1형), 조류독감바이러스(H5N1형), CDV 바이러스등의 광범위한 바이러스를 효과적으로 불활성화 시키는 복합섬유를 제공함과 동시에 이를 이용한 공기정화 필터 부직포, 환자보호용 섬유제품, 마스크, 위생보호용품, 건강기능성 섬유제품등을 제공하는 것이다. The present invention is a corona virus such as SARS, MERS, CVD19 (a new type of coronavirus) and a human influenza virus (H1N1 type), by spinning a composite fiber with a spinning solution containing a mixture of copper ions of copper sulfate solution and sodium alginate polymer, an anionic polymer, It provides a composite fiber that effectively inactivates a wide range of viruses such as avian influenza virus (H5N1 type), CDV virus, etc., and at the same time provides an air-purifying filter non-woven fabric, textile products for protection of patients, masks, hygiene protection products, and health functional textile products. Is to do.

본 발명의 항바이러스성 알긴산 복합섬유는 황산구리-알지네이트 방사원액을 염화칼슘을 함유한 응고액하에서 습식방사하여 얻는 것으로서 그 구체적인 제조방법은 다음과 같다.The antiviral alginate composite fiber of the present invention is obtained by wet spinning a copper sulfate-alginate spinning dope under a coagulating solution containing calcium chloride, and the specific production method is as follows.

상기 황산구리-알지네이트 방사원액은 소디움알지네이트 고분자 5~10중량%, 황산구리 분말 1~3중량% 및 잔부로서 증류수를 혼합하여 40~60℃에서 교반하여 제조한다. The copper sulfate-alginate spinning dope is prepared by mixing 5-10% by weight of sodium alginate polymer, 1-3% by weight of copper sulfate powder, and distilled water as the remainder and stirring at 40-60°C.

Cu2 +이온은 일반적으로 항균성 측면에서 은이온에 비해 효과가 떨어지나 항바이러스성에 있어서는 탁월한 효과가 있는 것으로 밝혀져 있다(Applied and environmental microbiology, Apr. 2007, p. 2748-2750).Cu 2 + ions are generally been found that an excellent effect on the effectiveness In the tteoleojina antiviral than the ions in the antimicrobial activity side (Applied and environmental microbiology, Apr. 2007 , p. 2748-2750).

본 발명에서는 이러한 구리이온을 가지는 염인 황산구리를 소디움알지네이트 고분자와 혼합하여 황산구리-알지네이트 방사원액을 준비한다. 상기 황산구리는 수용액상으로 쉽게 용해되어 구리이온을 형성하고 이는 소디움알지네이트 고분자용액중 소디움이온과 일부 치환되어 알긴산고분자내에 구리이온 입자들이 담지됨과 동시에 구리이온들이 섬유의 내외부에 균일하게 분포될 수 있도록 하는 장점이 있다. 또한, 상기 구리이온과 소디움알지네이트 고분자의 결합은 단순한 물리적 결합이 아닌 까닭에 섬유가 제조된 이후 구리입자의 물리적 마찰에 의한 탈락 가능성이 현저히 줄어듦으로써 바이러스의 불활성화 효과 지속성 측면에서도 우수한 장점을 갖는다. In the present invention, copper sulfate, a salt having copper ions, is mixed with a sodium alginate polymer to prepare a copper sulfate-alginate spinning dope. The copper sulfate is easily dissolved in an aqueous solution to form copper ions, which are partially substituted with sodium ions in the sodium alginate polymer solution, while copper ion particles are supported in the alginate polymer. There is an advantage that copper ions can be uniformly distributed inside and outside the fiber. In addition, since the combination of the copper ions and the sodium alginate polymer is not a simple physical bond, since the possibility of dropping due to physical friction of the copper particles is significantly reduced after the fiber is produced, it has an excellent advantage in terms of persistence of the virus inactivation effect.

본 발명에서 항바이러스 복합섬유의 기재로 사용되는 알긴산은 해양생물의 하나인 갈조류에서 추출한 것으로 분자 속에 우론산의 카르복시기(COOH-)가 있으므로 산의 성질을 나타내는데, 보통은 나트륨염 형태인 소디움알지네이트(알긴산나트륨)로 사용되며 염화칼슘용액의 응고욕으로 방사하여 쉽게 섬유화 될 수 있는 것으로 알려져 있다(Encyclopedia of textile finishing, H. K. Rouette , Springer, 2000).Alginic acid used as the base material of the antiviral composite fiber in the present invention is extracted from brown algae, which is one of marine organisms, and has a carboxylic group of uronic acid (COOH-) in the molecule, so it shows the properties of the acid, usually sodium alginate in the form of sodium salt ( Sodium alginate) and is known to be easily fiberized by spinning with a coagulation bath of calcium chloride solution ( Encyclopedia of textile finishing, HK Rouette , Springer, 2000 ).

이는 인체에 무독성이며 가공하기가 쉽고, 물에 용해되어 고점성을 나타내므로 식품, 의약품, 섬유 공업에서 사용되고 있으며, 금속염과 가교결합을 형성하여 겔을 유도하게 되므로 이를 이용하여 최근에는 창상피복재(Wound dressing)로 키틴, 키토산 등과 함께 천연 고분자 물질로 관심을 받고 있다. 알긴산의 화학구조를 보면 하기 그림의 알긴산 고분자 구조 이성질체와 같이 만루론산(M) 단위의 블록, 글루론산(G) 단위의 블록 및 그 중간의 MG 단위의 블록이 1,4-글리코시드로 구성된 직쇄의 공중합체로 물리 화학적 특성은 M/G 비율과 분자들의 배열상태, 분자량의 차이에 의하여 점도, 용해도, 이온교환능 등의 물성에 영향을 받는 것으로 알려져 있다. 본 발명에서 소디움알지네이트 고분자는 만우론산과 글루론산의 비(M/G 비)가 0.6 ~ 1.2인 소디움알지네이트 고분자인 것이 구리이온 담지에 적합하다.It is non-toxic to human body and easy to process, and is used in the food, pharmaceutical, and textile industries because it dissolves in water and exhibits high viscosity. It forms cross-links with metal salts to induce gels. Dressing) has attracted attention as a natural polymer material along with chitin and chitosan. Looking at the chemical structure of alginic acid, the block of manuronic acid (M) unit, the block of gluronic acid (G) unit, and the block of MG unit in the middle are straight chains composed of 1,4-glycosidic acid, as shown in the alginate polymer structural isomer in the figure below. The physical and chemical properties of the copolymer are known to be influenced by physical properties such as viscosity, solubility, and ion exchange capacity due to the difference in the M/G ratio, the arrangement state of the molecules, and the molecular weight. In the present invention, the sodium alginate polymer is a sodium alginate polymer having a ratio of manuronic acid to gluronic acid (M/G ratio) of 0.6 to 1.2, and is suitable for supporting copper ions.

Figure 112020022410229-pat00001
Figure 112020022410229-pat00001

상기 그림에서 알긴산의 카르복실기를 소디움염(-COO-Na+)형태로 제조한 것을 소디움 알지네이트라 하며 서방성 약물전달(Drug dilivery system) carrier로서 사용되고 있으며 단백질, 효소등의 담체(carrier)등으로 사용되고 있으며, 이 소디움 알지네이트의 음이온인 카브록실기와 양이온인 구리이온이 이온결합을 통해 결합되기 쉬운 것이다. 이 때 소디움 알지네이트의 분자량은 200,000~300,000 중량평균 분자량이 바람직하며, 다분산 지수는 2.5미만이 바람직하다.In the above figure, the carboxyl group of alginic acid prepared in the form of sodium salt (-COO - Na + ) is called sodium alginate and is used as a carrier for a drug dilivery system and used as a carrier for proteins, enzymes, etc. In this case, the carboxyl group, an anion of sodium alginate, and the copper ion, a cation, are easily bonded through ionic bonding. At this time, the molecular weight of sodium alginate is preferably 200,000 to 300,000 weight average molecular weight, and the polydispersity index is preferably less than 2.5.

본 발명에서는 이렇게 방사원액에 황산구리를 1~3중량% 혼합한 황산구리-알지네이트 방사원액을 사용하는 것이 특징인데, 방사원액에 구리이온을 가지는 황산구리를 혼합하면 항바이러스 효과를 나타낼 수 있는 구리의 함량(12000ppm=1.2%)을 정량화 할 수 있는 장점이 있다. 종래의 방법과 같이 응고욕에서나 응고욕이후의 공정에 구리를 투입할 시에는 구리성분 유출에 따른 함량 조절이 어려운 단점이 있다. 다만, 함량이 1중량%미만시에는 항바이러스 효과의 저하가 발생되며, 함량이 3중량%초과하여 지나게 높을 경우에는 구리이온과 소디움이온의 과다치환에 따른 겔화 현상이 과도하게 발생하여 방사용액의 흐름성이 저하되고 방사작업성이 저하된다.The present invention is characterized in that a copper sulfate-alginate spinning dope solution in which 1 to 3% by weight of copper sulfate is mixed with the spinning dope is mixed with copper sulfate having copper ions in the spinning dope. 12000ppm=1.2%). As in the conventional method, when copper is added to the coagulation bath or to a process after the coagulation bath, it is difficult to control the content due to the outflow of copper components. However, when the content is less than 1% by weight, the antiviral effect is lowered, and when the content is too high, exceeding 3% by weight, gelation phenomenon due to excessive substitution of copper ions and sodium ions occurs excessively, and Flowability decreases and spinning workability decreases.

방사원액에 나노금속상태의 구리입자를 12000ppm정도 혼합하는 방법도 고려해볼수는 있겠으나, 이 경우 방사원액중에서 구리입자가 가라앉아 균일한 방사원액 제조가 어려우며 이는 섬유방사시에 노즐막힘과 사절등을 유발하여 섬유제조가 사실상 불가능하다.You can also consider mixing 12,000ppm of nano-metallic copper particles in the spinning dope, but in this case, the copper particles sink in the spinning dope, making it difficult to produce a uniform spinning dope. It is virtually impossible to produce fiber.

이렇게 준비된 황산구리-알지네이트 방사용액을 방사 저장조에 투입한 후 0.5torr 로 감압하여 용액내에 잔존하는 기포를 탈포한 후, 공기압을 가하여 기어펌프로 정량하여 방사용액을 방사노즐에 형성된 구멍을 통해 정량 토출하여 염화칼슘을 함유한 응고액하에서 나트륨-칼슘 이온교환 반응에 의해 응고시켜 섬유화하게 된다. 방사원액의 점도는 50,000∼200,000cps, 농도는 5∼15 wt%, 바람직하게는 8∼10wt %가 좋다. The copper sulfate-alginate spinning solution prepared in this way was put into a spinning reservoir, depressurized to 0.5 torr, degassed the remaining bubbles in the solution, and then applied with air pressure to quantify the spinning solution through a hole formed in the spinning nozzle. Under the coagulation solution containing calcium chloride, it is coagulated by sodium-calcium ion exchange reaction to form fibers. The viscosity of the spinning stock solution is 50,000 to 200,000 cps, the concentration is 5 to 15 wt%, preferably 8 to 10 wt%.

소디움알지네이트를 응고시키는 응고액의 조성은 염화칼슘 5~10중량%, 에탄올 30~70중량% 및 잔부로서 증류수로 이루어지는 것이 바람직한데, 염화칼슘만을 함유하는 응고욕에서도 섬유화가 이루어지나, 응고욕에 에탄올을 30~70중량% 혼합하여 응고속도를 빠르게 가져감과 동시에 섬유내의 구리이온의 유출을 최소화 할 수 있어 바람직하다.The composition of the coagulating solution for coagulating sodium alginate is preferably composed of 5 to 10% by weight of calcium chloride, 30 to 70% by weight of ethanol, and distilled water as the balance. Fiber is formed in the coagulation bath containing only calcium chloride, but ethanol is used in the coagulation bath. Mixing 30 to 70% by weight is desirable because it can quickly bring the solidification rate and minimize the outflow of copper ions into the fiber.

이후, 섬유고분자 내부의 분자사슬 배향을 통한 물성향상을 위해 온수(40℃∼70℃ )에서 연신비 1.1∼3.0 비율로 섬유다발을 당겨준 후, 세척, 유연제 처리 건조 후 권취한다. 최종 수득되는 섬유 중량 대비 구리함량은 6000~12000ppm(섬유중량 대비)가 되는 것이 바람직하다.Thereafter, the fiber bundle is pulled at a draw ratio of 1.1 to 3.0 in hot water (40°C to 70°C) to improve the properties through molecular chain alignment inside the fiber polymer, washed, and softener treated and then wound up. It is preferable that the copper content compared to the final obtained fiber weight is 6000 to 12000 ppm (relative to the fiber weight).

경우에 따라 방사후 환원공정을 행할 수도 있으나, 환원공정을 하지 않고 항바이러스성 복합섬유내외부에 Cu2 +이온을 그대로 존재시킴으로써 바이러스표면(인지질성분)과 정전기적 인력을 극대화하여 바이러스 불활성화를 극대화할 수 있는 장점이 있다. In some cases, but may be a room after the reduction process, and by as the presence of Cu 2 + ions in the anti-viral conjugate fiber and out without a reduction process to maximize virus surface (phospholipid components) and the electrostatic attraction maximize virus inactivation There is an advantage to do.

이렇게 제조된 항바이러스성 복합섬유를 5~50중량%, 저융점 폴리에스터 섬유또는 바이콤포넌트 섬유(폴리에틸렌/폴리프로필렌)를 50~95% 혼합하여 열융착한 부직포를 제공할 수 있으며, 상기 부직포를 사용한 마스크를 제공할 수 있다.5 to 50% by weight of the antiviral composite fiber thus prepared, 50 to 95% of low-melting polyester fiber or bicomponent fiber (polyethylene/polypropylene) can be mixed to provide a heat-sealed nonwoven fabric. Used masks can be provided.

그러므로 본 발명에 의하면, 바이러스 불활성화에 효과적으로 알려져 있는 구리이온을 알긴산섬유 제조시 방사원액에 도입하여 소디움알지네이트 고분자용액중 소디움이온과 일부 치환되어 알긴산고분자내에 구리이온 입자들이 담지됨과 동시에 구리이온들이 섬유의 내외부에 균일하게 분포될 수 있도록 하고, 섬유가 제조된 이후 구리입자의 물리적 마찰에 의한 탈락 가능성을 현저히 줄여 바이러스의 불활성화 효과를 지속시킬 수 있는 항바이러스성 알긴산 복합섬유를 제공하여 기존 합성섬유 소재 대비 우수한 인체 친화성, 생분해성, 항균성 등을 갖춤으로서 기능성 의류소재, 공기정화 필터용 부직포, 병원용품, 위생용 소재등에 광범위 하게 적용할 수 있다. Therefore, according to the present invention, copper ions, which are effectively known for virus inactivation, are introduced into the spinning dope during the production of alginate fibers, and are partially substituted with sodium ions in the sodium alginate polymer solution, while copper ion particles are supported in the alginate polymer. Provides an antiviral alginic acid composite fiber that enables copper ions to be uniformly distributed inside and outside the fiber and significantly reduces the possibility of copper particles dropping off after the fiber is produced, thereby maintaining the virus inactivation effect. Therefore, it has excellent human-friendliness, biodegradability, and antibacterial properties compared to existing synthetic fiber materials, so it can be widely applied to functional clothing materials, non-woven fabrics for air purification filters, hospital products, and hygiene materials.

도 1은 본 발명의 실시예 1의 항바이러스성 알긴산 복합섬유의 단면현미경사진이다.1 is a cross-sectional micrograph of the antiviral alginate composite fiber of Example 1 of the present invention.

다음의 실시예에서는 본 발명의 항바이러스성 알긴산 복합섬유 및 이를 사용한 부직포를 제조하는 비한정적인 예시를 하고 있다.In the following examples, non-limiting examples of preparing the antiviral alginic acid composite fiber of the present invention and the nonwoven fabric using the same are given.

[실시예 1][Example 1]

분자량 200,000 다분산지수 2.5인 소디움알지네이트 고분자 10중량%, 황산구리 분말 1.5중량% 및 잔부로서 증류수를 혼합하여 40~60℃에서 교반하여 황산구리-알지네이트 방사원액을 제조한 후, 기포 제거를 위해 감압탈포하고 필터링한 후 기어펌프를 통해 정량 토출하여 염화칼슘을 10중량% 함유한 응고액중에서 응고한 후, 수세조, 유제조를 차례로 거친 후 건조하여 권취하였다. 최종 수득된 알긴산-구리섬유의 구리 함량은 약 6,000ppm이었다. A sodium alginate polymer having a molecular weight of 200,000 polydispersity index 2.5, 10% by weight, 1.5% by weight of copper sulfate powder, and distilled water as the remainder were mixed and stirred at 40 to 60°C to prepare a copper sulfate-alginate spinning solution, followed by degassing under reduced pressure to remove air bubbles. After filtering, it was discharged quantitatively through a gear pump, coagulated in a coagulating liquid containing 10% by weight of calcium chloride, and then washed through a water washing tank and an oil tank, and then dried and wound up. The copper content of the finally obtained alginate-copper fiber was about 6,000 ppm.

[실시예 2][Example 2]

상기 실시예 1에서 응고액조성을 염화칼슘 8중량%, 에탄올 50중량% 및 잔부로서 증류수로 하는 것을 제외하고는 실시예 1과 동일하게 복합섬유를 제조하였다. 최종 수득된 알긴산-구리섬유의 구리 함량은 약 12,000ppm이었다. In Example 1, the composite fiber was prepared in the same manner as in Example 1, except that the composition of the coagulating liquid was 8% by weight of calcium chloride, 50% by weight of ethanol, and distilled water as the remainder. The copper content of the finally obtained alginate-copper fiber was about 12,000 ppm.

[비교예 1][Comparative Example 1]

분자량 200,000 다분산지수 2.5인 소디움알지네이트 고분자 10중량%, 나노구리입자 1.2중량% 및 잔부로서 증류수를 혼합하여 40~60℃에서 교반하여 구리-알지네이트 방사원액을 제조한 후, 기포 제거를 위해 감압탈포하고 필터링한 후 기어펌프를 통해 정량 토출하여 염화칼슘을 10중량% 함유한 응고액하에서 응고한 후, 수세조, 유제조를 차례로 거친 후 건조하여 권취하였다. A sodium alginate polymer having a molecular weight of 200,000 polydispersity index of 2.5, 10% by weight, 1.2% by weight of nanocopper particles, and distilled water as the remainder were mixed and stirred at 40-60°C to prepare a copper-alginate spinning dope, and then degassed under reduced pressure to remove air bubbles. After filtering and filtering, the mixture was discharged through a gear pump and coagulated under a coagulating liquid containing 10% by weight of calcium chloride, followed by a washing tank and an oil tank followed by drying and then winding up.

[비교예 2][Comparative Example 2]

분자량 200,000 다분산지수 2.5인 소디움알지네이트 고분자 10중량% 및 잔부로서 증류수를 혼합하여 40~60℃에서 교반하여 알지네이트 방사원액을 제조한 후, 기포 제거를 위해 감압탈포하고 필터링한 후 기어펌프를 통해 정량 토출하여 염화칼슘 10중량% , 황산구리 2중량% 및 잔부로서 증류로 이루어진 응고액중에서 응고한 후, 수세조, 유제조를 차례로 거친 후 건조하여 권취하였다. Sodium alginate polymer having a molecular weight of 200,000 polydispersity index of 2.5, 10% by weight, and distilled water as the remainder are mixed and stirred at 40 to 60°C to prepare an alginate spinning solution, degassed under reduced pressure to remove air bubbles, filtered and quantified through a gear pump After discharging, 10% by weight of calcium chloride, 2% by weight of copper sulfate and the remainder were coagulated in a coagulating liquid composed of distillation, followed by washing with a water tank and drying, followed by drying and then winding up.

[비교예 3][Comparative Example 3]

상기 실시예 1에서 방사원액조성을 소디움알지네이트 고분자 10중량%, 황산구리 분말 5중량% 하는 것을 제외하고는 실시예 1과 동일하게 복합섬유를 제조하였다. Composite fibers were prepared in the same manner as in Example 1, except that the spinning solution composition in Example 1 was 10% by weight of sodium alginate polymer and 5% by weight of copper sulfate powder.

이렇게 제조한 구리-알긴산 섬유의 섬유내 구리함량을 ICP로 분석한 결과는 표1과 같다. 또한, 제조된 섬유의 바이러스의 불활성화 효과는 EID50(Egg Infective dose50)법을 이용하여 다음과 같이 측정하였다. 제조된 섬유(sample fibrous materials), 음성 대조군(blank sample)과 양성 대조군 50ml tube에 10mg/ml로 측정하여 넣고 AIV 45ml의 바이러스 액을 혼합한 후, 25℃ 진탕 혼합 배양기에서 22시간 동안 배양하였다. 배양된 시료 중 5ml를 새로운 tube로 옮긴 후 3,000 rpm 30분간 원심하였다. 상층액을 수확한 후 상층액을 10진 희석하여 준비된 SPF 종란에 0.1ml씩 접종한 후 37℃ 부란기에서 배양하였다. 2일간 관찰 후 chilling하여 요막강액을 수확하여 혈구응집 반응을 실시하였다. 혈구응집반응 (HA, Hemagglutination assay)은 다음과 같다. PBS에서 1/2 단계 희석된 바이러스를 96 well micro plate에 50 μl 씩 분주하고, 1% 닭적혈구를 동량 분주한다. RT에서 40분간 방치한후 결과를 판독하여 HAU (Hemagglutination Unit) 역가를 확인하였다. Table 1 shows the results of analyzing the copper content in the fibers of the copper-alginate fibers thus prepared by ICP. In addition, the virus inactivation effect of the prepared fiber was measured as follows using the EID 50 (Egg Infective dose 50 ) method. The prepared fibers (sample fibrous materials), negative control (blank sample) and positive control were measured at 10 mg/ml in a 50 ml tube, mixed with 45 ml of AIV virus solution, and incubated for 22 hours in a 25°C shake mixing incubator. 5 ml of the cultured sample was transferred to a new tube and centrifuged at 3,000 rpm for 30 minutes. After harvesting the supernatant, 10 ml of the supernatant was diluted and inoculated with 0.1 ml of the prepared SPF eggs, followed by incubation in a 37°C incubator. After observation for 2 days, chilling was performed to harvest allantoic fluid to perform a hemagglutination reaction. Hemagglutination assay (HA) is as follows. The virus diluted in 1/2 step in PBS is dispensed in 50 μl increments in a 96 well micro plate, and an equal amount of 1% chicken red blood cells is dispensed. After standing at RT for 40 minutes, the result was read to confirm the HAU (Hemagglutination Unit) titer.

섬유의 바이러스 불활성화 효능은 LogEID50 값을 다음과 같은 식을 이용하여 계산하였다The virus inactivation efficacy of the fiber was calculated using the following equation for the LogEID 50 value:

Figure 112020022410229-pat00002
Figure 112020022410229-pat00002

또한 황색포도상 구균에 대한 정균감소율 (KSK0693)을 비교 측정하여 표 2에 나타내었다 .In addition, the Staphylococcus aureus reduction rate (KSK0693) for Staphylococcus aureus was measured and shown in Table 2.

또한 일반적으로 많이 사용하는 호흡기 마스크용 원단인 열융착 부직포(써멀본딩법)에 사용하기 위해서는 얇은 웹(평량 40gsm이하)을 만드는 공정이 필수적이며 강도 및 균제도를 위해서는 비교적 높은 수준의 섬유 물성이 요구되는 바 실시예 및 비교예의 섬유 물성(강신도)을 측정하여 표 3에 나타내었다.In addition, the process of making a thin web (40 gsm or less in basis weight) is essential for use in a heat-sealed non-woven fabric (thermal bonding method), which is a commonly used respiratory mask fabric, and relatively high levels of fiber properties are required for strength and leveling. The fiber properties (elongation) of the bar examples and comparative examples were measured and are shown in Table 3.

구 분division 구리함량(ppm)Copper content (ppm) 실시예 1Example 1 6,000 6,000 실시예 2Example 2 12,00012,000 비교예 1Comparative Example 1 섬유형성불가Impossible to form fibers 비교예 2Comparative Example 2 10,00010,000 비교예 3Comparative Example 3 섬유형성불가Impossible to form fibers

구 분 division 바이러스 불활성화율(%) Virus inactivation rate (%) 정균감소율(%) Sterility reduction rate (%) 실시예 1Example 1 9090 8080 실시예 2Example 2 99.999.9 9090 비교예 1Comparative Example 1 섬유형성불가Impossible to form fibers -- 비교예 2Comparative Example 2 9292 8585 비교예 3Comparative Example 3 섬유형성불가Impossible to form fibers --

구 분 division 강도(g/d)Strength (g/d) 신도(%) Elongation (%) 실시예 1Example 1 1.81.8 1010 실시예 2Example 2 2.02.0 1212 비교예 1Comparative Example 1 섬유형성불가Impossible to form fibers -- 비교예 2Comparative Example 2 0.80.8 44 비교예 3Comparative Example 3 섬유형성불가Impossible to form fibers --

비교예 1의 경우에는 구리금속입자가 용액중 침전되어 방사중 노즐이 막혀 섬유방사가 불가능하였다. 비교예 2의 경우에는 응고욕중 황산구리의 구리이온이 염화칼슘용액중 칼슘이온의 소디움알긴산 응고반응을 저해하여 최종 얻어진 섬유의 강도가 0.8g/d, 신도 4%로 나타나 물성이 매우 취약하였다. 비교예 3의 경우 도프내 황산구리의 함량이 지나치게 많아 구리이온에 의한 소디움알긴산의 겔화 현상이 지나치게 발생하여 용액의 흐름성이 없어지는 까닭에 방사가 불가능하였다. In the case of Comparative Example 1, the copper metal particles were precipitated in solution and clogging the nozzle during spinning prevented fiber spinning. In Comparative Example 2, copper ions of copper sulfate in the coagulation bath inhibited the sodium alginate coagulation reaction of calcium ions in the calcium chloride solution, resulting in a fiber strength of 0.8 g/d and an elongation of 4%, resulting in very weak physical properties. In the case of Comparative Example 3, since the content of copper sulfate in the dope was too large, the gelation phenomenon of sodium alginate by copper ions occurred excessively, so that the flowability of the solution disappeared, so that spinning was impossible.

Claims (6)

소디움알지네이트 고분자 5~10중량%, 황산구리분말 1~3중량% 및 잔부로서 증류수를 혼합하여 40~60℃에서 교반하여 황산구리-알지네이트 방사원액을 제조한 후, 기포 제거를 위해 감압탈포하고 필터링한 후 기어펌프를 통해 정량 토출하여 염화칼슘을 함유한 응고액하에서 응고한 후, 수세조, 유제조를 차례로 거친 후 건조하여 권취하는 것을 특징으로 하는 항바이러스성 알긴산 복합섬유의 제조방법.After 5-10% by weight of sodium alginate polymer, 1-3% by weight of copper sulfate powder and distilled water as the remainder were mixed and stirred at 40-60°C to prepare a copper sulfate-alginate spinning solution, defoaming and filtering under reduced pressure to remove air bubbles A method for producing an antiviral alginic acid composite fiber, characterized in that it is coagulated under a coagulating liquid containing calcium chloride by quantitative discharging through a gear pump, followed by a washing tank and an oil tank followed by drying and winding. 제 1항에 있어서,
상기 응고액은 염화칼슘 5~10중량%, 에탄올 30~70중량% 및 잔부로서 증류수로 이루어지는 응고액인 것을 특징으로 하는 항바이러스성 알긴산 복합섬유의 제조방법.
According to claim 1,
The coagulating solution is a method for producing an antiviral alginic acid composite fiber, characterized in that it is a coagulating solution composed of distilled water as 5 to 10% by weight of calcium chloride, 30 to 70% by weight of ethanol and the remainder.
삭제delete 제 1항 또는 제 2항에 의해 제조되고 구리입자가 섬유에 6,000~12,000ppm함유된 항바이러스성 알긴산 복합섬유.An antiviral alginic acid composite fiber prepared by claim 1 or 2, wherein the copper particles contain 6,000 to 12,000 ppm in the fiber. 제 4항 기재의 항바이러스성 알긴산 복합섬유를 5~50중량% 함유하는 부직포.Non-woven fabric containing 5-50% by weight of the antiviral alginate composite fiber of claim 4. 제 5항 기재의 부직포를 사용한 마스크.Mask using the nonwoven fabric of claim 5.
KR1020200026313A 2020-03-03 2020-03-03 Process Of Producing Antiviral Alginic Acid Complex Fiber And The Product Thereby KR102130936B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200026313A KR102130936B1 (en) 2020-03-03 2020-03-03 Process Of Producing Antiviral Alginic Acid Complex Fiber And The Product Thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200026313A KR102130936B1 (en) 2020-03-03 2020-03-03 Process Of Producing Antiviral Alginic Acid Complex Fiber And The Product Thereby

Publications (1)

Publication Number Publication Date
KR102130936B1 true KR102130936B1 (en) 2020-07-06

Family

ID=71571512

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200026313A KR102130936B1 (en) 2020-03-03 2020-03-03 Process Of Producing Antiviral Alginic Acid Complex Fiber And The Product Thereby

Country Status (1)

Country Link
KR (1) KR102130936B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102285753B1 (en) * 2020-09-18 2021-08-05 (주)엘에스케이화인텍스 anti-coronavirus cell phone case and fabric used therein
KR20220013839A (en) 2020-07-27 2022-02-04 주식회사 메디파이버 Air Conditioning Device
IT202100007805A1 (en) * 2021-03-30 2022-09-30 Craniomed Group S R L COPPER FOR USE IN THE PREVENTION AND TREATMENT OF DISEASE CAUSED BY CORONAVIRUS.
KR102522736B1 (en) * 2022-07-12 2023-04-18 공현배 Underwater non-segregation type semi-fast set cement mortar composition and method for reparing and reinforcing concrete structure using the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61289886A (en) * 1985-06-19 1986-12-19 Agency Of Ind Science & Technol Production of fiber of alginic acid containing active protein and paper made of said fiber
JPH03220317A (en) * 1990-01-23 1991-09-27 Agency Of Ind Science & Technol Water-soluble align yarn and production thereof
KR101125253B1 (en) * 2011-10-28 2012-03-21 주식회사 지클로 Skin-core fiber comprising anionic polymer salt and cellulose, and method for manufacturing the same
KR101733927B1 (en) 2016-08-12 2017-05-08 성균관대학교산학협력단 Fiber having high strength and high conductivity and mehtod of fabricatinig thereof
KR101736080B1 (en) 2016-05-23 2017-05-16 주식회사 파이버엔텍 Process Of Producing Electroconductive Bicomponent Fiber
WO2017110922A1 (en) * 2015-12-25 2017-06-29 Spiber株式会社 Method for producing polymer aggregate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61289886A (en) * 1985-06-19 1986-12-19 Agency Of Ind Science & Technol Production of fiber of alginic acid containing active protein and paper made of said fiber
JPH03220317A (en) * 1990-01-23 1991-09-27 Agency Of Ind Science & Technol Water-soluble align yarn and production thereof
KR101125253B1 (en) * 2011-10-28 2012-03-21 주식회사 지클로 Skin-core fiber comprising anionic polymer salt and cellulose, and method for manufacturing the same
WO2017110922A1 (en) * 2015-12-25 2017-06-29 Spiber株式会社 Method for producing polymer aggregate
KR101736080B1 (en) 2016-05-23 2017-05-16 주식회사 파이버엔텍 Process Of Producing Electroconductive Bicomponent Fiber
KR101733927B1 (en) 2016-08-12 2017-05-08 성균관대학교산학협력단 Fiber having high strength and high conductivity and mehtod of fabricatinig thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220013839A (en) 2020-07-27 2022-02-04 주식회사 메디파이버 Air Conditioning Device
KR102431139B1 (en) * 2020-07-27 2022-08-11 주식회사 지와이씨가양 Air Conditioning Device
KR102285753B1 (en) * 2020-09-18 2021-08-05 (주)엘에스케이화인텍스 anti-coronavirus cell phone case and fabric used therein
WO2022060068A1 (en) * 2020-09-18 2022-03-24 (주)엘에스케이화인텍스 Anti-coronavirus mobile phone case, and fabrics used therefor
IT202100007805A1 (en) * 2021-03-30 2022-09-30 Craniomed Group S R L COPPER FOR USE IN THE PREVENTION AND TREATMENT OF DISEASE CAUSED BY CORONAVIRUS.
KR102522736B1 (en) * 2022-07-12 2023-04-18 공현배 Underwater non-segregation type semi-fast set cement mortar composition and method for reparing and reinforcing concrete structure using the same

Similar Documents

Publication Publication Date Title
KR102130936B1 (en) Process Of Producing Antiviral Alginic Acid Complex Fiber And The Product Thereby
CN102453968B (en) Containing antibiotic fiber, the fabric and wound dressing and preparation method thereof of nano metal
Mallakpour et al. Recent breakthroughs of antibacterial and antiviral protective polymeric materials during COVID-19 pandemic and after pandemic: Coating, packaging, and textile applications
CN109833667B (en) A kind of filter material of the particle containing NaCl and the preparation method and application thereof
CN102669179B (en) Antibacterial antiviral treating agent, preparation method and application thereof
CN103170004A (en) Argentiferous antibacterial fiber, fabric, wound dressing and preparation method thereof
CN101716362B (en) Bactericidal disinfectant material containing chlorine dioxide, and application thereof
TWI392780B (en) Wet melt with a mold, antibacterial and deodorant function of cellulose non-woven system
CN104940980B (en) A kind of alginate dressing containing compound silver-colored zinc antiseptic and preparation method thereof
US8598053B2 (en) Materials incorporating antimicrobial polymers
CN105586652A (en) Preparation method of regenerated cellulose fiber with antibacterial and mosquito repellent functions
CN103074703A (en) Antibacterial silver-containing fiber wound dressing and preparation method thereof
WO2022062618A1 (en) Air filter net, production method therefor, and use thereof
CN103159972A (en) Preparation method for chitosan and cellulose antibiosis application film of biotin coupling nano silver
Aguda et al. Recent advances in functionalization of nanotextiles: A strategy to combat harmful microorganisms and emerging pathogens in the 21st century
CN111636213A (en) Preparation method of polytetrafluoroethylene mask fiber surface layer
Goldade et al. Antimicrobial fibers for textile clothing and medicine: current state
KR102413878B1 (en) Mask
CN105887242A (en) Preparation method of chitosan copper fibers
CN114073921A (en) Composite microsphere and preparation method and application thereof
CN111841149A (en) Filter material for self-antibacterial disinfecting mask and manufacturing method thereof
KR102445210B1 (en) Method of producing water-soluble chitosan fiber and method of producing chitosan non-woven fabric by using the same
RU2523312C2 (en) Method of obtaining antimicrobial copper-containing cellulose material
KR102431139B1 (en) Air Conditioning Device
Velusamy et al. Recent advances in the development of antimicrobial nanotextiles for prevention of infectious diseases transmission in healthcare workers

Legal Events

Date Code Title Description
GRNT Written decision to grant