KR102101242B1 - Organic semiconductor material for solution process and organic semiconductor device - Google Patents

Organic semiconductor material for solution process and organic semiconductor device Download PDF

Info

Publication number
KR102101242B1
KR102101242B1 KR1020157022803A KR20157022803A KR102101242B1 KR 102101242 B1 KR102101242 B1 KR 102101242B1 KR 1020157022803 A KR1020157022803 A KR 1020157022803A KR 20157022803 A KR20157022803 A KR 20157022803A KR 102101242 B1 KR102101242 B1 KR 102101242B1
Authority
KR
South Korea
Prior art keywords
dntt
organic semiconductor
compound
semiconductor material
solution process
Prior art date
Application number
KR1020157022803A
Other languages
Korean (ko)
Other versions
KR20150108918A (en
Inventor
카즈오 타키미야
Original Assignee
니폰 가야꾸 가부시끼가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 니폰 가야꾸 가부시끼가이샤 filed Critical 니폰 가야꾸 가부시끼가이샤
Publication of KR20150108918A publication Critical patent/KR20150108918A/en
Application granted granted Critical
Publication of KR102101242B1 publication Critical patent/KR102101242B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • H01L51/0074
    • H01L51/0558
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/484Insulated gate field-effect transistors [IGFETs] characterised by the channel regions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Thin Film Transistor (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

용액 프로세스용 유기 반도체 재료는 식 1로 표시된다. 식 1에 있어서, Y1 및 Y2는 각각 독립적으로 칼코겐 원자이고, R1 및 R2는 하나는 분기쇄 알킬기이고, 다른 하나는 수소이다.

Figure 112015081295948-pct00020
The organic semiconductor material for the solution process is represented by Equation 1. In Formula 1, Y 1 and Y 2 are each independently a chalcogen atom, R 1 and R 2 are one branched alkyl group, and the other is hydrogen.
Figure 112015081295948-pct00020

Description

용액 프로세스용 유기 반도체 재료 및 유기 반도체 디바이스{ORGANIC SEMICONDUCTOR MATERIAL FOR SOLUTION PROCESS AND ORGANIC SEMICONDUCTOR DEVICE}Organic semiconductor material and organic semiconductor device for solution process {ORGANIC SEMICONDUCTOR MATERIAL FOR SOLUTION PROCESS AND ORGANIC SEMICONDUCTOR DEVICE}

본 발명은, 용액 프로세스용 유기 반도체 재료 및 유기 반도체 디바이스에 관한 것이다. The present invention relates to an organic semiconductor material for a solution process and an organic semiconductor device.

최근, 유기 FET 디바이스, 유기 EL 디바이스 등의 유기 반도체를 사용한 박막 디바이스가 주목받고 있고, 실용화되어 있다. 유기 반도체 재료로서, 다양한 화합물이 연구, 개발되고 있고, 예를 들면, Dinaphtho ThienoThiophene(이하, DNTT)은 우수한 전하 이동도를 나타내기 때문에, 유기 반도체 재료 특성을 나타내는 재료로서 주목받고 있다(특허문헌 1, 2). In recent years, thin film devices using organic semiconductors such as organic FET devices and organic EL devices have been attracting attention and have been put into practical use. As an organic semiconductor material, various compounds have been researched and developed, and, for example, Dinaphtho ThienoThiophene (hereinafter, DNTT) exhibits excellent charge mobility, and thus has attracted attention as a material exhibiting organic semiconductor material properties (Patent Document 1). , 2).

국제공개 제2008/050726호International Publication No. 2008/050726 국제공개 제2010/098372호International Publication No. 2010/098372

특허문헌 1 및 2에 개시되어 있는 DNTT 유도체는, 유기 용매에 대한 용해성이 결핍하다. 이 때문에, 도포법 등의 용액 프로세스에 의한 유기 반도체층의 제조를 할 수 없는 과제가 있었다. The DNTT derivatives disclosed in Patent Documents 1 and 2 lack solubility in organic solvents. For this reason, there has been a problem that the organic semiconductor layer cannot be produced by a solution process such as a coating method.

본 발명은 상기 과제를 해결하기 위한 것으로서, 유기 용매에 대한 가용성이 우수하고, 도포법 등의 용액 프로세스에 의한 유기 반도체층의 제조에 이용 가능한 용액 프로세스용 유기 반도체 재료 및 유기 반도체 디바이스를 제공하는 것을 목적으로 한다. The present invention is to solve the above problems, to provide an organic semiconductor material and an organic semiconductor device for a solution process that is excellent in solubility in an organic solvent and can be used for the production of an organic semiconductor layer by a solution process such as a coating method. The purpose.

본 발명의 제1의 관점에 따른 용액 프로세스용 유기 반도체 재료는, 식 1로 표시되는 화합물을 포함하는 것을 특징으로 한다. The organic semiconductor material for solution processing according to the first aspect of the present invention is characterized by containing a compound represented by Formula 1.

Figure 112015081295948-pct00001
Figure 112015081295948-pct00001

(식 1에 있어서, Y1 및 Y2는 각각 독립적으로 칼코겐 원자이고, R1 및 R2는 하나는 분기쇄 알킬기이고, 다른 하나는 수소이다.) (In Formula 1, Y 1 and Y 2 are each independently a chalcogen atom, R 1 and R 2 are one branched alkyl group, and the other is hydrogen.)

또한, 상기 분기쇄 알킬기의 주쇄가 C3 이상인 것이 바람직하다. Moreover, it is preferable that the main chain of the said branched-chain alkyl group is C3 or more.

또한, 상기 분기쇄 알킬기의 주쇄가 C6 이상인 것이 바람직하다. Moreover, it is preferable that the main chain of the said branched-chain alkyl group is C6 or more.

또한, 상기 분기쇄 알킬기의 측쇄가 C2 이상인 것이 바람직하다. Moreover, it is preferable that the side chain of the said branched chain alkyl group is C2 or more.

또한, 상기 분기쇄 알킬기의 측쇄가 주쇄의 2번 위치 이상의 탄소에 결합되어 있는 것이 바람직하다. Further, it is preferable that the side chain of the branched chain alkyl group is bonded to carbon at position 2 or higher in the main chain.

또한, 상기 분기쇄 알킬기의 측쇄가 주쇄의 3번 위치 이상의 탄소에 결합되어 있는 것이 바람직하다. Further, it is preferable that the side chain of the branched chain alkyl group is bonded to carbon at position 3 or higher in the main chain.

또한, 상기 Y1 및 Y2가 유황 원자 또는 셀렌 원자인 것이 바람직하다. Further, it is preferable that Y 1 and Y 2 are sulfur atoms or selenium atoms.

본 발명의 제2의 관점에 따른 유기 반도체 디바이스는, 본 발명의 제1의 관점에 따른 용액 프로세스용 유기 반도체 재료를 포함하는 것을 특징으로 한다. The organic semiconductor device according to the second aspect of the present invention is characterized by including the organic semiconductor material for a solution process according to the first aspect of the present invention.

본 발명에 따른 용액 프로세스용 유기 반도체 재료는, 유기 용매에 대한 가용성이 우수하다. 이 때문에, 도포법 등의 용액 프로세스에 의한 유기 반도체층의 제조가 가능하다. The organic semiconductor material for solution process according to the present invention is excellent in solubility in an organic solvent. For this reason, it is possible to manufacture the organic semiconductor layer by a solution process such as a coating method.

도 1은 2,9-EH-DNTT 박막의 흡수 스펙트럼(도 1(A)), 광전자 스펙트럼(도 1(B)), 면외 XRD(도 1(C))를 나타내는 그래프이다.
도 2는 2-2-EH-DNTT 박막의 흡수 스펙트럼(도 2(A)), 광전자 스펙트럼(도 2(B)), 면외 XRD(도 2(C))를 나타내는 그래프이다.
도 3은 2-2-EH-DNTT 트랜지스터 소자의 전달 특성(도 3(A)), 출력 특성(도 3(B))을 나타내는 그래프이다.
도 4는 ODTS 처리 소자의 전달 특성(도 4(A)), 출력 특성(도 4(B))을 나타내는 그래프이다.
1 is a graph showing absorption spectra (FIG. 1 (A)), photoelectron spectrum (FIG. 1 (B)), and out-of-plane XRD (FIG. 1 (C)) of a 2,9-EH-DNTT thin film.
2 is a graph showing the absorption spectrum (FIG. 2 (A)), photoelectron spectrum (FIG. 2 (B)), and out-of-plane XRD (FIG. 2 (C)) of the 2-2-EH-DNTT thin film.
3 is a graph showing transfer characteristics (FIG. 3 (A)) and output characteristics (FIG. 3 (B)) of a 2-2-EH-DNTT transistor device.
4 is a graph showing transfer characteristics (FIG. 4 (A)) and output characteristics (FIG. 4 (B)) of the ODTS processing element.

(용액 프로세스용 유기 반도체 재료) (Organic semiconductor materials for solution processing)

본 실시형태에 따른 용액 프로세스용 유기 반도체 재료는, 식 1로 표시되는 화합물을 포함한다. The organic semiconductor material for solution processing according to the present embodiment includes a compound represented by Formula 1.

Figure 112015081295948-pct00002
Figure 112015081295948-pct00002

식 1에 있어서, Y1 및 Y2는 각각 독립적으로 칼코겐 원자(산소, 유황, 셀렌, 텔루륨)이다. Y1 및 Y2는, 유황 원자, 셀렌 원자인 것이 바람직하다. 또한, Y1 및 Y2는 동일한 것이 바람직하다. In Formula 1, Y 1 and Y 2 are each independently a chalcogen atom (oxygen, sulfur, selenium, tellurium). Y 1 and Y 2 are preferably sulfur atoms and selenium atoms. Moreover, it is preferable that Y 1 and Y 2 are the same.

또한, 식 1에 있어서, R1 및 R2 중의 하나는 분기쇄 알킬기이고, 다른 하나는 수소이다. 분기쇄 알킬기의 주쇄는 C3 이상인 것이 바람직하고, C6 이상인 것이 더욱 바람직하다. 또한, 분기쇄 알킬기의 측쇄는 C1 이상이고, C2 이상인 것이 더욱 바람직하다. 또한, 측쇄는 주쇄의 2번 위치 이상의 탄소에 결합되어 있는 것이 바람직하고, 주쇄의 3번 위치 이상의 탄소에 결합되어 있는 것이 더욱 바람직하다. 측쇄가 축합 고리로부터 이탈하는 것으로, 분자간 상호 작용이 높아지고, 캐리어 이동도가 향상한다. 또한, 분기쇄 알킬기는 포화 분기쇄 알킬기인 것이 바람직하다. In addition, in Formula 1, one of R 1 and R 2 is a branched chain alkyl group, and the other is hydrogen. The main chain of the branched chain alkyl group is preferably C3 or more, and more preferably C6 or more. Moreover, the branched chain alkyl group has a C1 or more, and more preferably C2 or more. Further, the side chain is preferably bonded to carbon at position 2 or higher in the main chain, and more preferably bonded to carbon at position 3 or higher in the main chain. As the side chains leave the condensed ring, the intermolecular interaction increases, and the carrier mobility improves. Moreover, it is preferable that a branched chain alkyl group is a saturated branched chain alkyl group.

분기쇄 알킬기는 탄소수가 많을수록 유기 용매에 대한 용해성이 높아지는 것으로 생각되지만, 후술되는 실시예에서는, 주쇄의 탄소수가 C6으로 충분히 양호한 용해성을 나타내고 있는 것, 또한, 분기쇄 알킬기가 길면 유기 반도체층을 제조할 때의 패킹이 악화되어, 반도체 특성이 저하될 우려가 있는 것으로부터, 주쇄의 탄소수는 C10 이하면 좋은 것으로 생각된다. It is thought that the solubility in an organic solvent increases as the number of carbon atoms in the branched chain increases, but in the examples described below, the carbon number of the main chain shows a sufficiently good solubility in C6, and an organic semiconductor layer is produced when the branched alkyl group is long. It is considered that the number of carbon atoms in the main chain is less than or equal to C10, since the packing at the time of deterioration and the semiconductor characteristics may deteriorate.

한편, 식 1에 있어서, R1 및 R2 중의 어느 하나는 직쇄 알킬기이고, 다른 하나는 수소인 화합물인 경우, 이 화합물은 유기 용매에 대한 용해성이 결핍하다. 이 때문에, 도포법 등의 용액 프로세스를 이용한 유기 반도체층의 제조에는 적합하지 않다. On the other hand, in Formula 1, when one of R 1 and R 2 is a straight chain alkyl group and the other is hydrogen, this compound lacks solubility in an organic solvent. For this reason, it is not suitable for the production of an organic semiconductor layer using a solution process such as a coating method.

또한, 식 1에 있어서, R1 및 R2 모두가 분기쇄 알킬기인 화합물인 경우, 유기 용매에 대한 용해성은 양호한 한편, 이 화합물을 사용하여 도포법 등으로 제조되는 유기 반도체층은 트랜지스터 특성을 나타내지 않고, 용액 프로세스용의 유기 반도체 재료로서 이용할 수 없다. In addition, in Formula 1, when both R 1 and R 2 are a branched alkyl group, solubility in an organic solvent is good, while an organic semiconductor layer prepared by a coating method or the like using this compound does not exhibit transistor characteristics. It cannot be used as an organic semiconductor material for solution processes.

상기의 식 1로 표시되는 화합물은, 특허문헌 1, 특허문헌 2에 개시된 공지의 방법 등을 참조하여 합성할 수 있다. 예를 들면, 다음과 같이 하여 합성할 수 있지만, 이에 한정되는 것은 아니다. The compound represented by Formula 1 can be synthesized with reference to known methods disclosed in Patent Document 1 and Patent Document 2. For example, it can be synthesized as follows, but is not limited thereto.

하기의 scheme 1에 나타내는 바와 같이, 우선, 6-할로게노-2-메톡시나프탈렌 또는 7-할로게노-2-메톡시나프탈렌(화합물 (A))으로부터, 6-알킬-2-메톡시나프탈렌 또는 7-알킬-2-메톡시나프탈렌(화합물 (B))을 합성한다. 화합물 (A)와 분기쇄 알킬기를 구비하는 알킬 마그네슘 브로마이드 등의 그리냐르 시약을 반응시키는 것에 의해 합성할 수 있다. As shown in Scheme 1 below, first, from 6-halogeno-2-methoxynaphthalene or 7-halogeno-2-methoxynaphthalene (Compound (A)), 6-alkyl-2-methoxynaphthalene or Synthesis of 7-alkyl-2-methoxynaphthalene (Compound (B)). It can be synthesized by reacting a compound (A) with a Grignard reagent such as an alkyl magnesium bromide having a branched chain alkyl group.

이어서, 화합물 (C)를 합성한다. 화합물 (C)의 합성은, 화합물 (B)와 디메틸설파이드 등을 반응시키는 것에 의해 합성할 수 있다. Subsequently, compound (C) is synthesized. The compound (C) can be synthesized by reacting the compound (B) with dimethyl sulfide or the like.

이어서, 화합물 (D)를 합성한다. 화합물 (B)와 트리브로모보레인(Tribromoborane) 등을 반응시키는 것에 의해 합성할 수 있다. Subsequently, compound (D) is synthesized. It can be synthesized by reacting compound (B) with Tribromoborane.

이어서, 화합물 (E)를 합성한다. 화합물 (D)와 트리플루오로메탄술폰산을 반응시키는 것에 의해 합성할 수 있다. Subsequently, compound (E) is synthesized. It can be synthesized by reacting compound (D) with trifluoromethanesulfonic acid.

한편, 화합물 (A)에 있어서, X1 및 X2는 하나가 할로겐 원자이고, 다른 하나는 수소이다. 또한, 화합물 (B)~(E)에 있어서, R1 및 R2는 하나는 분기쇄 알킬기이고, 다른 하나는 수소이다. On the other hand, in compound (A), X 1 and X 2 are one halogen atom and the other is hydrogen. In addition, in compounds (B) to (E), R 1 and R 2 are one branched alkyl group, and the other is hydrogen.

Figure 112015081295948-pct00003
Figure 112015081295948-pct00003

또한, 하기의 scheme 2에 나타내는 바와 같이, 2-메톡시나프탈렌(화합물 (F))으로부터, 화합물 (G), 화합물 (H)를 거쳐, 화합물 (I)를 합성한다. 화합물 (G), 화합물 (H) 및 화합물 (I)의 합성은, 각각 상술한 화합물 (C), 화합물 (D), 화합물 (E)의 합성과 동일하게 하여 합성할 수 있다. Moreover, as shown in scheme 2 below, compound (I) is synthesized from 2-methoxynaphthalene (compound (F)) via compound (G) and compound (H). The synthesis of compound (G), compound (H) and compound (I) can be synthesized in the same manner as the synthesis of compound (C), compound (D) and compound (E) described above, respectively.

Figure 112015081295948-pct00004
Figure 112015081295948-pct00004

이어서, 하기의 scheme 3에 나타내는 바와 같이, 상기의 2개의 화합물(화합물 (E), (I))을 축합하는 것에 의해, 화합물 (J)를 합성한다. 나아가, 화합물 (J)를 폐환하는 것에 의해, 목적 화합물인 화합물 (K)를 합성한다. 클로로포름 중, 옥소를 사용하여 폐환반응을 하는 것에 의해 합성할 수 있다. 한편, 화합물 (E), (J), (K)에 있어서, R1 및 R2는 하나는 분기쇄 알킬기이고, 다른 하나는 수소이다. Subsequently, as shown in Scheme 3 below, compound (J) is synthesized by condensation of the above two compounds (compounds (E) and (I)). Furthermore, the compound (K) which is a target compound is synthesized by closing the compound (J). It can be synthesized by performing a ring-closure reaction using oxo in chloroform. On the other hand, in compounds (E), (J) and (K), R 1 and R 2 are one branched alkyl group and the other is hydrogen.

Figure 112015081295948-pct00005
Figure 112015081295948-pct00005

상기의 합성 방법에서는, 일례로서, 식 1에 있어서, Y1 및 Y2가 유황 원자인 화합물의 합성예를 설명했지만, 상기의 디메틸설파이드 대신에, 디메틸셀레니드, 디메틸에테르를 사용하는 것에 의해, 식 1에 있어서, Y1 및 Y2가 셀렌 원자, 산소 원자인 화합물을 합성할 수 있다. In the above synthesis method, as an example, in Formula 1, a synthesis example of a compound in which Y 1 and Y 2 are sulfur atoms has been described, but by using dimethyl selenide and dimethyl ether instead of dimethyl sulfide described above, In Formula 1, a compound in which Y 1 and Y 2 are selenium atoms and oxygen atoms can be synthesized.

용액 프로세스용 유기 반도체 재료는, 식 1로 표시되는 화합물을 포함하고 있고, 식 1로 표시되는 화합물은, 유기 용매에 대한 용해성이 높다. 따라서, 식 1로 표시되는 화합물을 포함하는 용액 프로세스용 유기 반도체 재료를 사용하여, 스핀 코트법 등의 도포법, 잉크젯법, 스크린 인쇄법, 오프셋 인쇄법, 마이크로컨택트 인쇄법 등의 용액 프로세스를 이용하여 유기 반도체층을 제조할 수 있다. 용액 프로세스에서는, 증착법과 같이 진공이나 고온 상태로 할 필요가 없고, 대면적의 유기 반도체층을 저비용으로 실현할 수 있다. The organic semiconductor material for solution process contains the compound represented by Formula 1, and the compound represented by Formula 1 has high solubility in an organic solvent. Therefore, using an organic semiconductor material for a solution process containing the compound represented by Formula 1, a solution process such as a coating method such as a spin coat method, an inkjet method, a screen printing method, an offset printing method, or a micro contact printing method is used. By doing so, an organic semiconductor layer can be produced. In the solution process, it is not necessary to set the vacuum or high temperature state as in the vapor deposition method, and a large area organic semiconductor layer can be realized at low cost.

용액 프로세스용 유기 반도체 재료가 가용인 유기 용매로서, 예를 들면, 클로로포름, 염화메틸렌, 디클로로에탄 등의 할로게노 탄화수소계 용매, 메탄올, 에탄올, 프로필알코올, 부탄올 등의 알코올계 용매, 옥타플루오로펜타놀, 펜타플루오로프로판올 등의 불화알코올계 용매, 아세트산에틸, 아세트산부틸, 안식향산에틸, 탄산디에틸 등의 에스테르계 용매, 톨루엔, 헥실벤젠, 크실렌, 메시틸렌, 클로로벤젠, 디클로로벤젠, 메톡시벤젠, 클로로나프탈렌, 메틸나프탈렌, 테트라히드로나프탈렌 등의 방향족 탄화수소계 용매, 아세톤, 메틸에틸케톤, 메틸이소부틸케톤, 시클로펜타논, 시클로헥산 등의 케톤계 용매, 디메틸포름아미드, 디메틸아세트아미드, N-메틸피롤리돈 등의 아미드계 용매, 테트라히드로푸란, 디이소부틸에테르, 디페닐에테르 등의 에테르계 용매, 옥탄, 데칸, 시클로헥산 등의 탄화수소계 용매 등을 들 수 있다. As an organic solvent in which the organic semiconductor material for the solution process is soluble, for example, halogenated hydrocarbon-based solvents such as chloroform, methylene chloride, and dichloroethane, alcohol-based solvents such as methanol, ethanol, propyl alcohol and butanol, and octafluoropenta Alcohol-based fluorinated solvents such as phenol and pentafluoropropanol, ester solvents such as ethyl acetate, butyl acetate, ethyl benzoate, and diethyl carbonate, toluene, hexylbenzene, xylene, mesitylene, chlorobenzene, dichlorobenzene, and methoxybenzene , Aromatic hydrocarbon-based solvents such as chloronaphthalene, methylnaphthalene, and tetrahydronaphthalene, ketone-based solvents such as acetone, methylethylketone, methylisobutylketone, cyclopentanone, and cyclohexane, dimethylformamide, dimethylacetamide, N- Amide solvents such as methylpyrrolidone, ethers such as tetrahydrofuran, diisobutyl ether and diphenyl ether Type there may be mentioned solvents, octane, decane, and hydrocarbon solvents such as cyclohexane.

또한, 용액 프로세스용 유기 반도체 재료는, 식 1로 표시되는 화합물 이외에, 유기 반도체층의 제막성의 향상, 도핑 등을 위해 첨가제나 다른 반도체 재료가 혼합되어도 좋다. In addition, in addition to the compound represented by Formula 1, the organic semiconductor material for solution process may be mixed with additives or other semiconductor materials for improving film forming properties, doping, and the like of the organic semiconductor layer.

(유기 반도체 디바이스) (Organic semiconductor device)

본 실시형태에 따른 유기 반도체 디바이스는, 상술한 용액 프로세스용 유기 반도체 재료가 사용된 디바이스이다. 이 유기 반도체 디바이스로서, 예를 들면, 유기 반도체층을 구비하는 전계효과 트랜지스터나, 유기 캐리어 수송층 및/또는 발광층을 구비하는 발광 디바이스 등을 들 수 있다. 유기 반도체 디바이스는, 종래 공지의 다양한 제조 방법을 사용하여 제조할 수 있고, 특히 한정되는 것은 아니다. The organic semiconductor device according to the present embodiment is a device in which the above-described organic semiconductor material for solution process is used. Examples of the organic semiconductor device include a field effect transistor provided with an organic semiconductor layer, a light emitting device provided with an organic carrier transport layer and / or a light emitting layer, and the like. The organic semiconductor device can be manufactured using various conventionally known manufacturing methods, and is not particularly limited.

[실시예] [Example]

이하에 기재하는 바와 같이, 단계적으로 2-(2-에틸헥실)디나프토[2,3-b:2',3'-f]티에노[2,3-b]티오펜(이하, 2-2-EH-DNTT)을 합성했다. As described below, 2- (2-ethylhexyl) dinaphtho [2,3-b: 2 ', 3'-f] thieno [2,3-b] thiophene (hereafter 2- 2-EH-DNTT) was synthesized.

(6-(2-에틸헥실)-2-메톡시나프탈렌(이하, 화합물 1)의 합성) (Synthesis of 6- (2-ethylhexyl) -2-methoxynaphthalene (hereinafter Compound 1))

Figure 112015081295948-pct00006
Figure 112015081295948-pct00006

테트라히드로푸란(이하, THF)(30mL)에 6-브로모-2-메톡시나프탈렌(7.14g, 30mmol) 및 Ni(dppp)Cl2(813mg, 1.5mmol)을 첨가한 용액에, 2-에틸헥실 마그네슘 브로마이드의 THF 용액을 실온에서 첨가하고, 24시간 환류했다. 한편, 2-에틸헥실 마그네슘 브로마이드의 THF 용액은, 1-브로모-2-에틸헥사실 브로마이드(9.0mL, 45mmol) 및 마그네슘(1.17g, 48mmol)을 THF(7.5mL)에 첨가하여 조제했다. 2-ethyl to a solution in which 6-bromo-2-methoxynaphthalene (7.14 g, 30 mmol) and Ni (dppp) Cl 2 (813 mg, 1.5 mmol) were added to tetrahydrofuran (hereinafter, THF) (30 mL). A THF solution of hexyl magnesium bromide was added at room temperature and refluxed for 24 hours. On the other hand, the THF solution of 2-ethylhexyl magnesium bromide was prepared by adding 1-bromo-2-ethylhexasil bromide (9.0 mL, 45 mmol) and magnesium (1.17 g, 48 mmol) to THF (7.5 mL).

냉각후, 혼합물을 물(30mL)로 희석하고, 미반응의 마그네슘 및 생성된 고체를 여과하여 제거했다. After cooling, the mixture was diluted with water (30 mL), and unreacted magnesium and resulting solid were removed by filtration.

여과액을 에테르(15mL×3)로 추출했다. 추출한 복합물을 염수(30mL×3)로 세정하고, 황산마그네슘으로 건조했다. 이를 감압 건조하여, 담황색의 오일상의 화합물 1(5.4g, 수율 50%)을 얻었다. The filtrate was extracted with ether (15 mL x 3). The extracted composite was washed with brine (30 mL x 3), and dried over magnesium sulfate. This was dried under reduced pressure to obtain pale yellow oily compound 1 (5.4 g, yield 50%).

얻어진 화합물 1의 측정 데이터를 이하에 나타낸다. The measurement data of the obtained compound 1 is shown below.

1H NMR (500MHz, CDCl3) δ 0.87 (t, J=7.1 Hz, 3H), 0.92 (t, J=7.5 Hz, 3H) 1.22 1.37 (m, 8H), 1.67 (sept, J=6.2 Hz, 2H), 2.68 (t, J=6.6 Hz, 2H), 3.93 (s, 3H), 7.13 (s, 1H), 7.16 (dd, J=8.8, 2.6 Hz, 1H), 7.31 (dd, J=8.6, 1.3 Hz, 1H), 7.53 (s, 1H), 7.67 (d, J=8.6 Hz, 1H), 7.69 (d, J=8.6 Hz, 1H), 1 H NMR (500MHz, CDCl 3 ) δ 0.87 (t, J = 7.1 Hz, 3H), 0.92 (t, J = 7.5 Hz, 3H) 1.22 1.37 (m, 8H), 1.67 (sept, J = 6.2 Hz, 2H), 2.68 (t, J = 6.6 Hz, 2H), 3.93 (s, 3H), 7.13 (s, 1H), 7.16 (dd, J = 8.8, 2.6 Hz, 1H), 7.31 (dd, J = 8.6 , 1.3 Hz, 1H), 7.53 (s, 1H), 7.67 (d, J = 8.6 Hz, 1H), 7.69 (d, J = 8.6 Hz, 1H),

13C NMR (126 MHz, CDCl3); δ11.2, 14.5, 23.4, 23.6, 25.8, 29.2, 32.7, 40.5, 41.4, 55.6, 106.0, 118.9, 126.8, 127.5, 128.9, 129.3, 129.4, 133.2, 137.5, 157.4; 13 C NMR (126 MHz, CDCl 3 ); δ11.2, 14.5, 23.4, 23.6, 25.8, 29.2, 32.7, 40.5, 41.4, 55.6, 106.0, 118.9, 126.8, 127.5, 128.9, 129.3, 129.4, 133.2, 137.5, 157.4;

EIMS (70 eV) m/z=270 (M+). HRMS (APCI) Calcd for C19H26O: 270.19782; Found: 270.19791. EIMS (70 eV) m / z = 270 (M + ). HRMS (APCI) Calcd for C 19 H 26 O: 270.19782; Found: 270.19791.

(6-(2-에틸헥실)-3-메틸티오-2-메톡시나프탈렌(이하, 화합물 2)의 합성) (Synthesis of 6- (2-ethylhexyl) -3-methylthio-2-methoxynaphthalene (hereinafter Compound 2))

Figure 112015081295948-pct00007
Figure 112015081295948-pct00007

THF(2.7mL)에 화합물 1(730mg, 2.7mmol)을 첨가한 용액에, n-부틸리튬(2.0mL, 3.2mmol)의 1.59M 헥산 용액을 -78℃에서 첨가했다. To a solution in which compound 1 (730 mg, 2.7 mmol) was added to THF (2.7 mL), a 1.59 M hexane solution of n-butyllithium (2.0 mL, 3.2 mmol) was added at -78 ° C.

이 혼합물을 실온에서 1시간 교반한 후, 디메틸 디설파이드(0.36mL, 4.1mmol)을 -78℃에서 첨가했다. 그리고, 생성된 혼합물을 실온에서 18시간 교반했다. After the mixture was stirred at room temperature for 1 hour, dimethyl disulfide (0.36 mL, 4.1 mmol) was added at -78 ° C. Then, the resulting mixture was stirred at room temperature for 18 hours.

혼합물을 포화 염화암모늄 수용액(5mL)에 부어넣고, 에테르(5mL×3)로 추출했다. The mixture was poured into saturated aqueous ammonium chloride solution (5 mL), and extracted with ether (5 mL x 3).

추출한 복합물을 염수(5mL×3)로 세정하고, 황산마그네슘으로 건조했다. 이를 감압하에서 농축하여, 거의 순수한 황색 오일상의 화합물 2(853mg, quant.)를 얻었다. The extracted complex was washed with brine (5 mL x 3) and dried over magnesium sulfate. It was concentrated under reduced pressure to obtain almost pure yellow oily compound 2 (853 mg, quant.).

한편, 분석용 샘플은, 실리카겔 칼럼크로마토그래피(전개 용매: 디클로로메탄-헥산(V/V=1:1, Rf=0.35))로 분리 정제하여 사용했다. On the other hand, the analytical sample was separated and purified by silica gel column chromatography (developing solvent: dichloromethane-hexane (V / V = 1: 1, Rf = 0.35)).

얻어진 화합물 2의 측정 데이터를 이하에 나타낸다. The measurement data of the obtained compound 2 is shown below.

1H NMR (500 MHz, CDCl3) δ 0.87 (t, J=7.0 Hz, 3H), 0.89 (t, J=7.2 Hz, 3H) 1.25-1.36 (m, 8H), 1.64 (sept, J=6.6 Hz, 2H), 2.55 (s, 1H), 2.66 (t, J=6.5 Hz, 2H), 3.99 (s, 3H), 7.07 (s, 1H), 7.22 (d, J=8.3 Hz, 1H), 7.42 (s, 1H) 7.47 (s, 1H), 7.62 (d, J=8.3 Hz, 1H), 1 H NMR (500 MHz, CDCl 3 ) δ 0.87 (t, J = 7.0 Hz, 3H), 0.89 (t, J = 7.2 Hz, 3H) 1.25-1.36 (m, 8H), 1.64 (sept, J = 6.6 Hz, 2H), 2.55 (s, 1H), 2.66 (t, J = 6.5 Hz, 2H), 3.99 (s, 3H), 7.07 (s, 1H), 7.22 (d, J = 8.3 Hz, 1H), 7.42 (s, 1H) 7.47 (s, 1H), 7.62 (d, J = 8.3 Hz, 1H),

13C NMR (126 MHz, CDCl3); δ11.2, 14.5, 14.9, 23.4, 25.8, 29.3, 32.8, 40.5, 41.5, 56.2, 105.0, 123.2, 126.3, 126.5, 127.9, 129.6, 129.7, 130.7, 128.0, 154.3; 13 C NMR (126 MHz, CDCl 3 ); δ11.2, 14.5, 14.9, 23.4, 25.8, 29.3, 32.8, 40.5, 41.5, 56.2, 105.0, 123.2, 126.3, 126.5, 127.9, 129.6, 129.7, 130.7, 128.0, 154.3;

EIMS (70 eV) m/z=316(M+). HRMS (APCI) Calcd for C20H28OS: 316.18554; Found: 316.18576. EIMS (70 eV) m / z = 316 (M +). HRMS (APCI) Calcd for C 20 H 28 OS: 316.18554; Found: 316.18576.

(6-(2-에틸헥실)-3-메틸티오-2-히드록시나프탈렌(이하, 화합물 3)의 합성) (Synthesis of 6- (2-ethylhexyl) -3-methylthio-2-hydroxynaphthalene (hereinafter compound 3))

Figure 112015081295948-pct00008
Figure 112015081295948-pct00008

디클로로메탄(5mL)에 화합물 2(681mg, 2.2mmol)를 첨가한 용액에, Tribromoborane의 디클로로메탄 용액(약 2M, 1.1mL, 4.3mmol)을 -78℃에서 적하했다. To a solution in which compound 2 (681 mg, 2.2 mmol) was added to dichloromethane (5 mL), a dichloromethane solution of Tribromoborane (about 2M, 1.1 mL, 4.3 mmol) was added dropwise at -78 ° C.

혼합물을 실온에서 5시간 교반한 후, 얼음(약 2g)에 첨가했다. The mixture was stirred at room temperature for 5 hours, then added to ice (about 2 g).

정제한 혼합물을 디클로로메탄(5mL×3)으로 추출했다. The purified mixture was extracted with dichloromethane (5 mL x 3).

유기상을 염수(5mL×3)로 세정하고, 황산마그네슘으로 건조하여, 감압하에서 농축했다. The organic phase was washed with brine (5 mL x 3), dried over magnesium sulfate, and concentrated under reduced pressure.

잔류물을 실리카겔 칼럼크로마토그래피(전개 용매: 디클로로메탄-헥산(V/V=1/1, Rf=0.28))로 분리 정제하여, 황색 오일상의 화합물 3(650mg, quant.)을 얻었다. The residue was separated and purified through silica gel column chromatography (developing solvent: dichloromethane-hexane (V / V = 1/1, Rf = 0.28)) to obtain compound 3 (650 mg, quant.) As a yellow oil.

얻어진 화합물 3의 측정 데이터를 이하에 나타낸다. The measurement data of the obtained compound 3 is shown below.

1H NMR (500 MHz, CDCl3) δ 0.88 (t, J=6.9 Hz, 3H), 0.91 (t, J=7.3 Hz, 3H) 1.25-1.36 (m, 8H), 1.66 (sept, J=6.0 Hz, 2H), 2.43 (s, 1H), 2.65 (t, J=6.4 Hz, 2H), 6.60 (s, 1H), 7.26 (d, J=8.4 Hz, 1H), 7.47 (s, 1H) 7.60 (d, J=8.4 Hz, 1H), 7.95 (s, 1H), 1 H NMR (500 MHz, CDCl 3 ) δ 0.88 (t, J = 6.9 Hz, 3H), 0.91 (t, J = 7.3 Hz, 3H) 1.25-1.36 (m, 8H), 1.66 (sept, J = 6.0 Hz, 2H), 2.43 (s, 1H), 2.65 (t, J = 6.4 Hz, 2H), 6.60 (s, 1H), 7.26 (d, J = 8.4 Hz, 1H), 7.47 (s, 1H) 7.60 (d, J = 8.4 Hz, 1H), 7.95 (s, 1H),

13C NMR (126 MHz, CDCl3); δ11.2, 14.5, 20.2, 23.4, 02325.8, 29.2, 32.7, 40.5, 41.3, 109.4, 124.4, 126.5, 127.0, 129.4 129.6, 133.8 (×2), 137.8, 152.4; IR (KBr) ν 3411 cm-1 (OH); 13 C NMR (126 MHz, CDCl 3 ); δ11.2, 14.5, 20.2, 23.4, 02325.8, 29.2, 32.7, 40.5, 41.3, 109.4, 124.4, 126.5, 127.0, 129.4 129.6, 133.8 (× 2), 137.8, 152.4; IR (KBr) ν 3411 cm -1 (OH);

EIMS (70 eV) m/z=302(M+). HRMS (APCI) Calcd for C19H26O: 302.16989; Found: 302. 17023. EIMS (70 eV) m / z = 302 (M + ). HRMS (APCI) Calcd for C 19 H 26 O: 302.16989; Found: 302. 17023.

(6-(2-에틸헥실)-3-메틸티오-2-(트리플루오로메탄술포닐옥시)나프탈렌(이하, 화합물 4)의 합성) (Synthesis of 6- (2-ethylhexyl) -3-methylthio-2- (trifluoromethanesulfonyloxy) naphthalene (hereinafter compound 4))

Figure 112015081295948-pct00009
Figure 112015081295948-pct00009

디클로로메탄(7mL)에 화합물 3(640mg, 2.1mmol) 및 피리딘(0.89mL, 6.4mmol)을 첨가하여 탈기한 용액에, 무수 트리플루오로메탄술폰산(0.7mL, 4.2mmol)을 0℃에서 첨가했다. To the degassed solution by adding compound 3 (640 mg, 2.1 mmol) and pyridine (0.89 mL, 6.4 mmol) to dichloromethane (7 mL), trifluoromethanesulfonic anhydride (0.7 mL, 4.2 mmol) was added at 0 ° C. .

실온에서 25분간 교반한 후에, 혼합물을 물(5mL)과 염산(4M, 2mL)으로 희석한 후, 디클로로메탄(5mL×3)으로 추출했다. After stirring at room temperature for 25 minutes, the mixture was diluted with water (5 mL) and hydrochloric acid (4M, 2 mL), and then extracted with dichloromethane (5 mL x 3).

유기상을 염수(5mL×3)로 세정하고, 황산마그네슘으로 건조하여, 감압하에서 농축하여 황색 오일상의 거의 순수한 화합물 4(800mg, 87%)를 얻었다. The organic phase was washed with brine (5 mL x 3), dried over magnesium sulfate, and concentrated under reduced pressure to give almost yellow compound 4 (800 mg, 87%) as a yellow oil.

얻어진 화합물 4의 측정 데이터를 이하에 나타낸다. The measurement data of the obtained compound 4 are shown below.

1H NMR (500 MHz, CDCl3) δ 0.87 (t, J=7.2 Hz, 3H), 0.89 (t, J=7.5 Hz, 3H) 1.24-1.36 (m, 8H), 1.67 (sept, J=6.4 Hz, 2H), 2.59 (s, 3H), 2.67 (d, J=7.0 Hz, 1H), 2.69 (d, d, J=7.2 Hz, 1H), 7.32 (dd, J =1.5, 8.4 Hz, 1H), 7.54 (s, 1H), , 7.63 (s, 1H) 7.68 (s, 1H), 7.71 (d, J=8.4 Hz, 1H), 1 H NMR (500 MHz, CDCl 3 ) δ 0.87 (t, J = 7.2 Hz, 3H), 0.89 (t, J = 7.5 Hz, 3H) 1.24-1.36 (m, 8H), 1.67 (sept, J = 6.4 Hz, 2H), 2.59 (s, 3H), 2.67 (d, J = 7.0 Hz, 1H), 2.69 (d, d, J = 7.2 Hz, 1H), 7.32 (dd, J = 1.5, 8.4 Hz, 1H ), 7.54 (s, 1H),, 7.63 (s, 1H) 7.68 (s, 1H), 7.71 (d, J = 8.4 Hz, 1H),

13C NMR (126 MHz, CDCl3); δ11.1, 14.5, 16.2, 23.4, 25.8, 29.2, 32.7, 40.7, 41.4, 120.0, 120.3 (q, J=315 Hz) 126.5, 126.7, 127.8, 129.2, 129.8, 130.0, 131.0, 133.2, 142.1, 145.2; 13 C NMR (126 MHz, CDCl 3 ); δ11.1, 14.5, 16.2, 23.4, 25.8, 29.2, 32.7, 40.7, 41.4, 120.0, 120.3 (q, J = 315 Hz) 126.5, 126.7, 127.8, 129.2, 129.8, 130.0, 131.0, 133.2, 142.1, 145.2 ;

IR (KBr) ν1425, 1210 cm-1 (-O-SO2-); IR (KBr) ν1425, 1210 cm -1 (-O-SO 2- );

EIMS (70 eV), HRMS (APCI) Calcd for C20H25F3O3S2: 434.11917; Found: 434.11905. EIMS (70 eV), HRMS (APCI) Calcd for C 20 H 25 F 3 O 3 S 2 : 434.11917; Found: 434.11905.

(트랜스-1-(3-메틸티오나프탈렌-2-일)-2-(6-(2-에틸헥실)-3-메틸티오나프탈렌-2-일)에텐(이하, 화합물 5)의 합성) (Synthesis of trans-1- (3-methylthionaphthalen-2-yl) -2- (6- (2-ethylhexyl) -3-methylthionaphthalen-2-yl) ethene (hereinafter compound 5))

Figure 112015081295948-pct00010
Figure 112015081295948-pct00010

DMF(N,N-디메틸포름아미드)(48mL)에 화합물 4(2.58g, 5.94mmol), 3-메틸티오-2-(트리플루오로메탄술포닐옥시)나프탈렌(1.91g, 5.94mmol) 및 트랜스-1,2-비스(트리부틸스태닐)에틸렌(trans-1,2-Bis(tributylstannyl)ethylene)(3.6g, 5.94mmol)을 첨가하여 탈기한 용액에, Pd(PPh3)4(343mg, 0.3mmol, 5mol%)를 첨가했다. Compound 4 (2.58 g, 5.94 mmol), 3-methylthio-2- (trifluoromethanesulfonyloxy) naphthalene (1.91 g, 5.94 mmol) and trans to DMF (N, N-dimethylformamide) (48 mL) To a degassed solution by adding -1,2-bis (tributylstannyl) ethylene (trans-1,2-Bis (tributylstannyl) ethylene) (3.6g, 5.94mmol), Pd (PPh 3 ) 4 (343mg, 0.3 mmol, 5 mol%) was added.

이 혼합물을 암실에서 24시간 90℃에서 가열했다. 그 후, 물로 희석하고, 클로로포름으로 추출했다. The mixture was heated at 90 ° C. for 24 hours in the dark. Then, it was diluted with water and extracted with chloroform.

추출물을 염수로 세정하고, 황산마그네슘으로 건조하여, 감압하에서 농축했다. The extract was washed with brine, dried over magnesium sulfate, and concentrated under reduced pressure.

잔류물을 실리카겔 패드에 통과시켜(전개 용매: 디클로로메탄), 황색 고체의 화합물 5(910mg, 32%)를 얻었다. The residue was passed through a pad of silica gel (developing solvent: dichloromethane) to obtain compound 5 (910 mg, 32%) as a yellow solid.

얻어진 화합물 5의 측정 데이터를 이하에 나타낸다. The measurement data of the obtained compound 5 is shown below.

Mp 78-79℃; Mp 78-79 ° C;

1H NMR (500 MHz, CDCl3) δ 0.88 (t, J=7.1 Hz, 3H), 0.92 (t, J=8.6 Hz, 3H), 1.24-1.38 (m, 8H), 1.67 (sept, J=7.4 Hz, 1H), 2.60 (s, 1H), 2.69 (d, d, J=6.7, 6.8 Hz, 2H), 7.27 (s, 1H), 7.44 (tt, J=1.1, 7.5 Hz, 2H), 7.50 (s, 1H), 7.60 (s, 1H), 7.64 (s, 1H), 7.65 (s, 1H), 7.66 (d, J=7.5 Hz, 1H), 7.74 (d, J=8.3 Hz, 1H), 7.77 (d, J=8.3 Hz, 1H), 7.85 (d, J=7.5 Hz, 1H), 8.06 (s, 1H), 8.09 (s, 1H); 1 H NMR (500 MHz, CDCl 3 ) δ 0.88 (t, J = 7.1 Hz, 3H), 0.92 (t, J = 8.6 Hz, 3H), 1.24-1.38 (m, 8H), 1.67 (sept, J = 7.4 Hz, 1H), 2.60 (s, 1H), 2.69 (d, d, J = 6.7, 6.8 Hz, 2H), 7.27 (s, 1H), 7.44 (tt, J = 1.1, 7.5 Hz, 2H), 7.50 (s, 1H), 7.60 (s, 1H), 7.64 (s, 1H), 7.65 (s, 1H), 7.66 (d, J = 7.5 Hz, 1H), 7.74 (d, J = 8.3 Hz, 1H ), 7.77 (d, J = 8.3 Hz, 1H), 7.85 (d, J = 7.5 Hz, 1H), 8.06 (s, 1H), 8.09 (s, 1H);

13C NMR (126 MHz, CDCl3); δ 11.2, 14.5, 16.7, 16.8, 23.4, 25.8, 29.3, 32.8, 40.8, 41.4, 124.3, 124.5, 125.3, 125.4, 126.0, 126.4, 126.8, 126.9,128.0, 128.2, 128.3, 128.4, 129.1, 130.3, 131.9, 133.7, 133.8, 134.5, 135.4, 136.0,136.2, 140.7; 13 C NMR (126 MHz, CDCl 3 ); δ 11.2, 14.5, 16.7, 16.8, 23.4, 25.8, 29.3, 32.8, 40.8, 41.4, 124.3, 124.5, 125.3, 125.4, 126.0, 126.4, 126.8, 126.9,128.0, 128.2, 128.3, 128.4, 129.1, 130.3, 131.9 , 133.7, 133.8, 134.5, 135.4, 136.0,136.2, 140.7;

EIMS (70 eV) m/z=484(M+). HRMS (APCI) Calcd for C32H36S2: 484.22529; Found: 484.22568. EIMS (70 eV) m / z = 484 (M + ). HRMS (APCI) Calcd for C 32 H 36 S 2 : 484.22529; Found: 484.22568.

(2-2-EH-DNTT의 합성) (Synthesis of 2-2-EH-DNTT)

Figure 112015081295948-pct00011
Figure 112015081295948-pct00011

클로로포름(15mL)에 화합물 5(720mg, 1.5mmol) 및 옥소(11g, 45mmol)를 첨가하고, 80℃에서 20시간 교반했다. Compound 5 (720 mg, 1.5 mmol) and oxo (11 g, 45 mmol) were added to chloroform (15 mL) and stirred at 80 ° C for 20 hours.

이 혼합물을 아황산수소나트륨 수용액(20mL)에 첨가했다. This mixture was added to an aqueous sodium hydrogen sulfite solution (20 mL).

그 후, 클로로포름으로 추출하고, 추출물을 염수로 세정하고, 황산마그네슘으로 건조하여, 감압하에서 농축했다. Then, it was extracted with chloroform, and the extract was washed with brine, dried over magnesium sulfate, and concentrated under reduced pressure.

잔류물을 헥산으로 세정하고, 담황색의 고체의 2-2-EH-DNTT(186mg, 28%)를 얻었다. The residue was washed with hexane to obtain 2-2-EH-DNTT (186 mg, 28%) as a pale yellow solid.

얻어진 2-2-EH-DNTT의 측정 데이터를 이하에 나타낸다. The obtained 2-2-EH-DNTT measurement data is shown below.

Mp>300℃; Mp> 300 ° C;

1H NMR (500 MHz, CDCl3) δ 0.88 (t, J=7.0 Hz, 3H), 0.92 (t, J=7.4 Hz, 3H), 1.26-1.38 (m, 8H), 1.72 (sept, J=6.4 Hz, 1H), 2.74 (d, d, J=7.2, 7.1 Hz, 2H), 7.36 (d, J=8.4 Hz, 1H) 7.52-7.54 (m, 2H), 7.67 (s, 1H), 7.94 (d, J=8.4 Hz, 1H), 7.94-7.96 (m, 1H), 8.03-8.05 (m, 1H), 8.33 (s, 1H), 8.34 (s, 1H), 8.36 (s, 1H), 8.42 (s, 1H); 1 H NMR (500 MHz, CDCl 3 ) δ 0.88 (t, J = 7.0 Hz, 3H), 0.92 (t, J = 7.4 Hz, 3H), 1.26-1.38 (m, 8H), 1.72 (sept, J = 6.4 Hz, 1H), 2.74 (d, d, J = 7.2, 7.1 Hz, 2H), 7.36 (d, J = 8.4 Hz, 1H) 7.52-7.54 (m, 2H), 7.67 (s, 1H), 7.94 (d, J = 8.4 Hz, 1H), 7.94-7.96 (m, 1H), 8.03-8.05 (m, 1H), 8.33 (s, 1H), 8.34 (s, 1H), 8.36 (s, 1H), 8.42 (s, 1 H);

13C NMR (126 MHz, CDCl3); δ 11.2, 14.5, 23.3, 25.9, 29.2, 32.8, 40.8, 41.2, 120.2, 120.3, 122.1, 122.7, 126.0, 126.2, 126.8, 127.7, 128.3, 128.4, 128.6, 130.2, 130.7, 131.6, 131.7, 132.0 (×2), 132.8, 133.6, 134.2, 140.1, 141.1; 13 C NMR (126 MHz, CDCl 3 ); δ 11.2, 14.5, 23.3, 25.9, 29.2, 32.8, 40.8, 41.2, 120.2, 120.3, 122.1, 122.7, 126.0, 126.2, 126.8, 127.7, 128.3, 128.4, 128.6, 130.2, 130.7, 131.6, 131.7, 132.0 (× 2), 132.8, 133.6, 134.2, 140.1, 141.1;

EIMS (70 eV) m/z=452(M+). HRMS (APCI) Calcd for C30H28S2: 452.16269; Found: 452.16248. EIMS (70 eV) m / z = 452 (M + ). HRMS (APCI) Calcd for C 30 H 28 S 2 : 452.16269; Found: 452.16248.

또한, 비교예로서, 이하에 기재하는 바와 같이 단계적으로 2,9-디(2-에틸헥실)디나프토[2,3-b:2',3'-f]티에노[2,3-b]티오펜(이하, 2,9-EH-DNTT)을 합성했다. In addition, as a comparative example, 2,9-di (2-ethylhexyl) dinaphtho [2,3-b: 2 ', 3'-f] thieno [2,3-b stepwise as described below. ] Thiophene (hereinafter, 2,9-EH-DNTT) was synthesized.

(트랜스-1,2-비스(6-(2-에틸헥실)-3-메틸티오나프탈렌-2-일)에텐(이하, 화합물 6)의 합성) (Synthesis of trans-1,2-bis (6- (2-ethylhexyl) -3-methylthionaphthalen-2-yl) ethene (hereinafter compound 6))

Figure 112015081295948-pct00012
Figure 112015081295948-pct00012

DMF(27mL)에 화합물 4(1.48g, 3.4mmol) 및 트랜스-1,2-비스(트리부틸스태닐)에틸렌(trans-1,2-Bis(tributylstannyl)ethylene)을 첨가하여 탈기한 용액에, Pd(PPh3)4(158mg, 0.13mmol, 4mol%)를 첨가했다. To the degassed solution by adding compound 4 (1.48g, 3.4mmol) and trans-1,2-bis (tributylstannyl) ethylene (trans-1,2-Bis (tributylstannyl) ethylene) to DMF (27mL), Pd (PPh 3 ) 4 (158 mg, 0.13 mmol, 4 mol%) was added.

이 혼합물을 암실에서 24시간 90℃에서 가열했다. 그 후, 물로 희석하고, 클로로포름으로 추출했다. The mixture was heated at 90 ° C. for 24 hours in the dark. Then, it was diluted with water and extracted with chloroform.

추출물을 염수로 세정하고, 황산마그네슘으로 건조하여, 감압하에서 농축했다. The extract was washed with brine, dried over magnesium sulfate, and concentrated under reduced pressure.

잔류물을 실리카겔 패드에 통과시켜(전개 용매: 디클로로메탄), 황색 고체의 화합물 6(880mg, 87%)을 얻었다. The residue was passed through a pad of silica gel (developing solvent: dichloromethane) to obtain compound 6 (880 mg, 87%) as a yellow solid.

얻어진 화합물 6의 측정 데이터를 이하에 나타낸다. The measurement data of the obtained compound 6 are shown below.

Mp 64-65℃; Mp 64-65 ° C;

1H NMR (500 MHz, CDCl3) δ 0.87 (t, J=7.2 Hz, 6H), 0.90 (t, J=7.4 Hz, 6H) 1.25-1.37 (m, 16H), 1.69 (sept, J=6.1 Hz, 4H), 2.59 (s, 2H), 2.67 (d, J=6.9 Hz, 4H), 2.69 (d, J=7.1 Hz, 2H),7.25 (d, J=8.4 Hz, 2H),7.49 (s, 2H), 7.59 (s, 2H), 7.64 (s, 2H) 7.75 (d, J=8.4 Hz, 2H),8.01 (s, 2H), 1 H NMR (500 MHz, CDCl 3 ) δ 0.87 (t, J = 7.2 Hz, 6H), 0.90 (t, J = 7.4 Hz, 6H) 1.25-1.37 (m, 16H), 1.69 (sept, J = 6.1 Hz, 4H), 2.59 (s, 2H), 2.67 (d, J = 6.9 Hz, 4H), 2.69 (d, J = 7.1 Hz, 2H), 7.25 (d, J = 8.4 Hz, 2H), 7.49 ( s, 2H), 7.59 (s, 2H), 7.64 (s, 2H) 7.75 (d, J = 8.4 Hz, 2H), 8.01 (s, 2H),

13C NMR (126 MHz, CDCl3); δ11.2, 14.5, 17.8, 23.4, 25.8, 29.3, 32.8, 40.8, 41.4, 124.3, 125.2, 126.4, 127.9, 128.2, 128.6, 130.4, 133.8, 134.6, 136.0, 140.6; 13 C NMR (126 MHz, CDCl 3 ); δ11.2, 14.5, 17.8, 23.4, 25.8, 29.3, 32.8, 40.8, 41.4, 124.3, 125.2, 126.4, 127.9, 128.2, 128.6, 130.4, 133.8, 134.6, 136.0, 140.6;

EIMS (70 eV) m/z=596 (M+). HRMS (APCI) Calcd for C40H52S2: 596.35049; Found: 596.35077. EIMS (70 eV) m / z = 596 (M + ). HRMS (APCI) Calcd for C 40 H 52 S 2 : 596.35049; Found: 596.35077.

(2,9-EH-DNTT의 합성) (Synthesis of 2,9-EH-DNTT)

Figure 112015081295948-pct00013
Figure 112015081295948-pct00013

클로로포름(37mL)에 화합물 6(2.2g, 3.7mmol) 및 옥소(28g, 111mmol)를 첨가하고, 80℃에서 20시간 교반했다. Compound 6 (2.2 g, 3.7 mmol) and oxo (28 g, 111 mmol) were added to chloroform (37 mL) and stirred at 80 ° C for 20 hours.

이 혼합물을 아황산수소나트륨 수용액(20mL)에 첨가했다. This mixture was added to an aqueous sodium hydrogen sulfite solution (20 mL).

그 후, 클로로포름으로 추출하고, 추출물을 염수로 세정하고, 황산마그네슘으로 건조하여, 감압하에서 농축했다. Then, it was extracted with chloroform, and the extract was washed with brine, dried over magnesium sulfate, and concentrated under reduced pressure.

잔류물을 헥산으로 세정하고, 담황색의 고체의 2,9-EH-DNTT(966mg, 46%)를 얻었다. The residue was washed with hexane to obtain 2,9-EH-DNTT (966mg, 46%) as a pale yellow solid.

얻어진 2,9-EH-DNTT의 측정 데이터를 이하에 나타낸다. The measurement data of the obtained 2,9-EH-DNTT is shown below.

Mp 218-219 ℃; Mp 218-219 ° C;

1H NMR (500 MHz, CDCl3) δ 0.87 (t, J=7.1 Hz, 6H), 0.92 (t, J=7.5 Hz, 6H) 1.25-1.37 (m, 16H), 1.72 (sept, J=6.0 Hz, 4H), 2.73 (d, J=6.7 Hz, 2H), 2.74 (d, J=7.1 Hz, 2H)7.34 (d, J=8.5 Hz, 2H), 7.65 (s, 2H), 7.92 (d, J=8.5 Hz, 2H), 8.29 (s, 2H), 8.32 (s, 2H); 1 H NMR (500 MHz, CDCl 3 ) δ 0.87 (t, J = 7.1 Hz, 6H), 0.92 (t, J = 7.5 Hz, 6H) 1.25-1.37 (m, 16H), 1.72 (sept, J = 6.0 Hz, 4H), 2.73 (d, J = 6.7 Hz, 2H), 2.74 (d, J = 7.1 Hz, 2H) 7.34 (d, J = 8.5 Hz, 2H), 7.65 (s, 2H), 7.92 (d , J = 8.5 Hz, 2H), 8.29 (s, 2H), 8.32 (s, 2H);

13C NMR (126 MHz, CDCl3); δ 11.2, 14.5, 23.4, 25.9, 29.2, 32.8, 40.8, 41.3, 120.1, 122.1, 126.8, 128.3 (×2), 130.2, 132.1, 133.7, 140.0, 141.1; 13 C NMR (126 MHz, CDCl 3 ); δ 11.2, 14.5, 23.4, 25.9, 29.2, 32.8, 40.8, 41.3, 120.1, 122.1, 126.8, 128.3 (× 2), 130.2, 132.1, 133.7, 140.0, 141.1;

EIMS (70 eV) m/z=564(M+). HRMS (APCI) Calcd for C38H44S2: 594.28789; Found: 594.28815. EIMS (70 eV) m / z = 564 (M + ). HRMS (APCI) Calcd for C 38 H 44 S 2 : 594.28789; Found: 594.28815.

또한, 비교예로서, 2-에틸헥실 마그네슘 브로마이드를 데실 마그네슘 브로마이드로 바꾸는 이외에는, 상기한 2-2-EH-DNTT의 합성과 동일하게 하여, 2-데실-디나프토[2,3-b:2',3'-f]티에노[2,3-b]티오펜(이하, 2-D-DNTT)을 합성했다. As a comparative example, 2-decyl-dinaphtho [2,3-b: 2, in the same manner as the synthesis of 2-2-EH-DNTT described above, except that 2-ethylhexyl magnesium bromide is replaced with decyl magnesium bromide. ', 3'-f] thieno [2,3-b] thiophene (hereinafter, 2-D-DNTT) was synthesized.

Figure 112015081295948-pct00014
Figure 112015081295948-pct00014

(2,9-D-DNTT의 합성) (Synthesis of 2,9-D-DNTT)

또한, 비교예로서, 2-에틸헥실 마그네슘 브로마이드를 데실 마그네슘 브로마이드로 바꾸는 이외에는, 상기한 2,9-EH-DNTT의 합성과 동일하게 하여, 2,9-디데실디나프토[2,3-b:2',3'-f]티에노[2,3-b]티오펜(이하, 2,9-D-DNTT)을 합성했다. In addition, as a comparative example, except for replacing 2-ethylhexyl magnesium bromide with decyl magnesium bromide, in the same manner as in the synthesis of 2,9-EH-DNTT described above, 2,9- didecyldinaphtho [2,3-b : 2 ', 3'-f] thieno [2,3-b] thiophene (hereinafter, 2,9-D-DNTT) was synthesized.

Figure 112015081295948-pct00015
Figure 112015081295948-pct00015

(용해도의 평가) (Evaluation of solubility)

2-2-EH-DNTT, 2,9-EH-DNTT, 2-D-DNTT, 2,9-D-DNTT를 각각 실온의 클로로포름에 용해시켜, 용해도를 측정했다. 그 결과를 표 1에 나타낸다. The solubility was measured by dissolving 2-2-EH-DNTT, 2,9-EH-DNTT, 2-D-DNTT, and 2,9-D-DNTT in chloroform at room temperature, respectively. Table 1 shows the results.

Figure 112015081295948-pct00016
Figure 112015081295948-pct00016

분기쇄 알킬기를 구비하는 화합물(2-2-EH-DNTT, 2,9-EH-DNTT)은 양호한 용해성을 나타냈다. 한편, 직쇄 알킬기를 구비하는 화합물(2-D-DNTT, 2,9-D-DNTT)은 용매에 용해되지 않고, 도포용 유기 반도체 재료로서 이용할 수 없음이 명확하다. Compounds having branched chain alkyl groups (2-2-EH-DNTT, 2,9-EH-DNTT) showed good solubility. On the other hand, it is clear that the compound (2-D-DNTT, 2,9-D-DNTT) having a straight chain alkyl group is not soluble in a solvent and cannot be used as an organic semiconductor material for application.

(박막 물성의 평가) (Evaluation of thin film properties)

용매에 대한 용해성이 양호했던 2-2-EH-DNTT 및 2,9-EH-DNTT를 사용하여 박막을 제작하고, 그 물성을 평가했다. Thin films were prepared using 2-2-EH-DNTT and 2,9-EH-DNTT, which had good solubility in solvents, and their properties were evaluated.

(2-2-EH-DNTT 박막, 2,9-EH-DNTT 박막의 제작, 평가) (Preparation and evaluation of 2-2-EH-DNTT thin film, 2,9-EH-DNTT thin film)

2-2-EH-DNTT를 클로로포름에 용해하여 0.3g/L의 용액을 조제하고, 멤브레인 필터로 여과한 후, 상기 표면 처리한 n-형 실리콘 기판상에 스핀 코트법으로 약 100nm의 두께로 2-2-EH-DNTT 박막을 제작했다. 또한, 2,9-EH-DNTT를 사용하여, 상기와 동일하게 2,9-EH-DNTT 박막을 제작했다. 2-2-EH-DNTT was dissolved in chloroform to prepare a 0.3 g / L solution, filtered with a membrane filter, and then spin-coated on the surface-treated n-type silicon substrate to a thickness of about 100 nm 2 A 2-EH-DNTT thin film was prepared. In addition, a 2,9-EH-DNTT thin film was produced in the same manner as described above using 2,9-EH-DNTT.

2,9-EH-DNTT 박막의 흡수 스펙트럼을 도 1(A)에 나타낸다. 2,9-EH-DNTT의 박막의 흡수 스펙트럼에서는, 치환기를 갖지 않는 디나프토[2,3-b:2',3'-f]티에노[2,3-b]티오펜(이하, DNTT)의 증착막에 비해, 현저한 단파장 시프트가 보인다. 이로부터, 박막 상태에서 분자간 상호 작용이 약한 것을 알 수 있다. The absorption spectrum of the 2,9-EH-DNTT thin film is shown in Fig. 1 (A). In the absorption spectrum of the thin film of 2,9-EH-DNTT, dinaphtho [2,3-b: 2 ', 3'-f] thieno [2,3-b] thiophene (hereinafter, DNTT) without a substituent ), A significant short wavelength shift is observed. From this, it can be seen that the interaction between molecules in the thin film state is weak.

또한, 2,9-EH-DNTT 박막의 광전자 스펙트럼을 도 1(B)에 나타낸다. 광전자 스펙트럼에 의해 평가한 2,9-EH-DNTT 박막에서의 이온화 전위는 5.7eV로서 무치환 DNTT의 5.4eV에 비해 커져 있다. 이는, 분자간 상호 작용이 약해져 있는 것으로 설명할 수 있다. In addition, the photoelectron spectrum of the 2,9-EH-DNTT thin film is shown in Fig. 1 (B). The ionization potential in the 2,9-EH-DNTT thin film evaluated by the photoelectron spectrum is 5.7 eV, which is larger than that of the unsubstituted DNTT 5.4 eV. This can be explained by the weak interaction between molecules.

또한, 2,9-EH-DNTT 박막의 면외의 X선 회절 결과를 도 1(C)에 나타낸다. 도 1(C)에서는 결정 피크는 보이지만, 평가된 층간 거리는 16옹스트롬으로서 짧고, 분자 배향도 바람직한 형태라고는 할 수 없다. In addition, the results of out-of-plane X-ray diffraction of the 2,9-EH-DNTT thin film are shown in Fig. 1 (C). Although the crystal peak is seen in Fig. 1 (C), the estimated interlayer distance is as short as 16 Angstroms, and the molecular orientation cannot be said to be a preferable form.

이어서, 2-2-EH-DNTT 박막의 흡수 스펙트럼을 도 2(A)에 나타낸다. 2-2-EH-DNTT 박막의 흡수 스펙트럼은 DNTT와 동일한 흡수 피크를 나타내고 있고, 2,9-EH-DNTT 박막에 비해 명확한 장파장 시프트가 보여졌다. 이는, 박막 상태에서의 분자간 상호 작용이 2,9-EH-DNTT 박막에 비해 회복된 것을 나타내고 있다. Next, the absorption spectrum of the 2-2-EH-DNTT thin film is shown in Fig. 2 (A). The absorption spectrum of the 2-2-EH-DNTT thin film showed the same absorption peak as that of the DNTT, and a clear long wavelength shift was observed compared to the 2,9-EH-DNTT thin film. This indicates that the intermolecular interaction in the thin film state was recovered compared to the 2,9-EH-DNTT thin film.

또한, 2-2-EH-DNTT 박막의 광전자 스펙트럼을 도 2(B)에 나타낸다. 광전자 스펙트럼에 의해 평가한 박막에서의 이온화 전위는 5.0eV로서 무치환 DNTT의 5.4eV보다 저하되어 있고, 또한, 비대칭 직쇄 알킬체와 동일하기 때문에, 이로부터도 분자간 상호 작용이 존재하는 것이 시사된다. In addition, the photoelectron spectrum of the 2-2-EH-DNTT thin film is shown in Fig. 2 (B). Since the ionization potential in the thin film evaluated by the photoelectron spectrum is 5.0 eV, which is lower than 5.4 eV of unsubstituted DNTT, and it is the same as the asymmetric straight chain alkyl body, it is suggested that there is also an intermolecular interaction.

또한, 2-2-EH-DNTT 박막의 면외의 X선 회절 결과를 도 2(C)에 나타낸다. 면외의 X선 회절로 관측되는 피크는, 기판면에 분자 장축을 세워 배향한 결정 구조인 것을 시사하고 있고, 평가된 층간 거리도 26옹스트롬으로서, 알킬기도 포함한 분자 장축의 길이에 대응하고 있다. In addition, the results of out-of-plane X-ray diffraction of the 2-2-EH-DNTT thin film are shown in Fig. 2 (C). The peak observed by out-of-plane X-ray diffraction suggests a crystal structure in which a long molecular axis is aligned on the substrate surface, and the estimated interlayer distance is 26 Angstroms, corresponding to the length of the long molecular axis including an alkyl group.

(트랜지스터 소자의 제작, 평가) (Production and evaluation of transistor elements)

상기에서 용해성이 양호했던 2-2-EH-DNTT 및 2,9-EH-DNTT를 사용하여, 바텀 게이트형 트랜지스터 소자를 제작하고, 특성을 평가했다. Bottom gate transistor elements were fabricated using 2-2-EH-DNTT and 2,9-EH-DNTT, which had good solubility in the above, and characteristics were evaluated.

게이트 전극이 되는 200nm 두께의 실리콘 산화막을 구비하는 고농도로 도핑된 n-형 실리콘 기판을 충분히 세정한 후, n-형 실리콘 기판의 실리콘 산화막 표면을 퍼플루오로데실트리에톡시실란(perfluorodecyltriethoxysilane)(FDTS)으로 실란 처리했다. After sufficiently cleaning the heavily doped n-type silicon substrate having a 200 nm thick silicon oxide film as a gate electrode, the surface of the silicon oxide film of the n-type silicon substrate is perfluorodecyltriethoxysilane (FDTS) ).

2-2-EH-DNTT를 클로로포름에 용해하여 0.3g/L의 용액을 조제하고, 멤브레인 필터로 여과한 후, 상기 표면 처리한 n-형 실리콘 기판상에 스핀 코트법으로 약 100nm의 두께로 2-2-EH-DNTT 박막을 제작했다. 2-2-EH-DNTT was dissolved in chloroform to prepare a 0.3 g / L solution, filtered through a membrane filter, and then spin-coated on the surface-treated n-type silicon substrate to a thickness of about 100 nm 2 A 2-EH-DNTT thin film was prepared.

이 박막을 질소 분위기하에서, 200℃에서 30분 가열했다. The thin film was heated at 200 ° C for 30 minutes in a nitrogen atmosphere.

2-2-EH-DNTT 박막 상에 금을 진공 증착하여, 소스 전극 및 드레인 전극을 형성했다. 이와 같이 하여, 채널 길이 50㎛, 채널 폭 1.5mm의 바텀 게이트·탑 컨택트형 트랜지스터 소자를 제작했다. 이하, 이 트랜지스터 소자를 트랜지스터 소자 2-2-EH-DNTT로 기재한다. Gold was vacuum-deposited on the 2-2-EH-DNTT thin film to form a source electrode and a drain electrode. In this way, a bottom gate-top contact transistor device having a channel length of 50 µm and a channel width of 1.5 mm was produced. Hereinafter, this transistor element is described as transistor element 2-2-EH-DNTT.

또한, 2,9-EH-DNTT를 사용하여, 상기와 동일하게 하여, 바텀 게이트·탑 컨택트형 트랜지스터 소자를 제작했다. 이하, 이 트랜지스터 소자를 트랜지스터 소자 2,9-EH-DNTT로 기재한다. Further, a 2,9-EH-DNTT was used to produce a bottom gate-top contact transistor element in the same manner as above. Hereinafter, this transistor element is described as transistor element 2,9-EH-DNTT.

2-2-EH-DNTT를 사용하여, 제작한 트랜지스터 소자 2-2-EH-DNTT에, 게이트 전압 Vg를 20~-60V, 소스·드레인간 전압 Vd를 0~-60V로 변화시켜 트랜지스터 특성을 측정했다. 도 3(A)에 전달 특성, 도 3(B)에 출력 특성을 나타낸다. 이들의 특성으로부터, 이동도는 0.3cm2/Vs로 산출되었다. Using 2-2-EH-DNTT, the transistor characteristics were changed by changing the gate voltage Vg to 20--60 V and the source-drain voltage Vd to 0--60 V in the produced transistor element 2-2-EH-DNTT. Measured. The transfer characteristics are shown in Fig. 3A, and the output characteristics are shown in Fig. 3B. From these properties, the mobility was calculated to be 0.3 cm 2 / Vs.

한편, 트랜지스터 소자 2,9-EH-DNTT에 대해서도 상기와 동일하게 트랜지스터 특성의 측정을 시도했지만, 트랜지스터 소자 2,9-EH-DNTT에서는, 전혀 응답하지 않고, 트랜지스터로서 움직이지 않음이 판명 되었다. 상술한 2,9-EH-DNTT 박막의 물성 해석으로부터, 2개의 에틸헥실기가 입체적으로 부피가 크기 때문에, 빽빽한 분자의 충전을 방해하고, 분자간 상호 작용을 현저하게 감소되어 있는 것이 강하게 시사되어 있다. 이로부터도, 트랜지스터 소자 2,9-EH-DNTT에서는 응답이 없는, 즉, 박막내에 주입된 캐리어를 이동할 수 없는 것을 반증하고 있다. On the other hand, the transistor element 2,9-EH-DNTT was also measured in the same manner as described above, but it was found that the transistor element 2,9-EH-DNTT did not respond at all and did not move as a transistor. From the physical analysis of the 2,9-EH-DNTT thin film described above, it is strongly suggested that the two ethylhexyl groups are three-dimensionally bulky, which interferes with the packing of dense molecules and significantly reduces the interaction between molecules. . From this, the transistor elements 2,9-EH-DNTT demonstrate that there is no response, that is, the carrier injected into the thin film cannot be moved.

(2-(3-에틸헵틸)디나프토[2,3-b:2',3'-f]티에노[2,3-b]티오펜(이하, 2-3-EH-DNTT)의 합성) Synthesis of (2- (3-ethylheptyl) dinaphtho [2,3-b: 2 ', 3'-f] thieno [2,3-b] thiophene (hereinafter 2-3-EH-DNTT) )

2-에틸헥실 마그네슘 브로마이드 대신에, 3-에틸헵틸 마그네슘 브로마이드를 사용하는 것 이외에, 차례로, 상기한 화합물 1의 합성, 화합물 2의 합성, 화합물 3의 합성, 화합물 4의 합성, 화합물 5의 합성, 2-2-EH-DNTT의 합성과 동일하게 하여, 2-3-EH-DNTT를 합성했다. In addition to using 3-ethylheptyl magnesium bromide instead of 2-ethylhexyl magnesium bromide, in turn, synthesis of compound 1, synthesis of compound 2, synthesis of compound 3, synthesis of compound 4, synthesis of compound 5, 2-3-EH-DNTT was synthesized in the same manner as in the synthesis of 2-2-EH-DNTT.

Figure 112015081295948-pct00017
Figure 112015081295948-pct00017

얻어진 2-3-EH-DNTT의 측정 데이터를 이하에 나타낸다. The obtained measurement data of 2-3-EH-DNTT is shown below.

mp>300℃; mp> 300 ° C;

1H-NMR (500 MHz, CDCl3) δ 0.90 (t, J=7.2 Hz, 3H), 0.92 (t, J=6.6 Hz, 3H), 1.25-1.43 (m, 9H), 1.67-1.73 (m, 2H), 2.80 (t, J=8.4 Hz, 2H), 7.40 (dd, J=8.8 and 1.5 Hz, 1H), 7.52 (d, J=6.7 Hz, 1H), 7.53 (d, J=6.4 Hz, 1H), 7.71 (s, 1H), 7.94-7.97 (m, 1H), 7.96 (d, J=8.8 Hz, 1H), 8.03-8.05 (m, 1H), 8.33 (s, 1H), 8.35 (s, 1H), 8.36 (s, 1H), 8.43 (s, 1H); 1 H-NMR (500 MHz, CDCl 3 ) δ 0.90 (t, J = 7.2 Hz, 3H), 0.92 (t, J = 6.6 Hz, 3H), 1.25-1.43 (m, 9H), 1.67-1.73 (m , 2H), 2.80 (t, J = 8.4 Hz, 2H), 7.40 (dd, J = 8.8 and 1.5 Hz, 1H), 7.52 (d, J = 6.7 Hz, 1H), 7.53 (d, J = 6.4 Hz , 1H), 7.71 (s, 1H), 7.94-7.97 (m, 1H), 7.96 (d, J = 8.8 Hz, 1H), 8.03-8.05 (m, 1H), 8.33 (s, 1H), 8.35 ( s, 1H), 8.36 (s, 1H), 8.43 (s, 1H);

13C-NMR (126 MHz, CDCl3) 11.0, 14.2, 23.3, 26.2, 29.2, 33.1, 33.8, 35.2, 39.0, 120.1 (x3), 120.2, 121.9, 122.0, 122.5, 122.6, 125.5, 125.6, 125.8 (x2), 126.0 (x2), 127.5, 127.7, 127.8, 128.4, 128.5, 130.2, 131.6, 131.7, 132.0, 132.1, 132.7, 133.5, 134.2, 141.0, 141.1, 141.4 (x2); 13C -NMR (126 MHz, CDCl 3 ) 11.0, 14.2, 23.3, 26.2, 29.2, 33.1, 33.8, 35.2, 39.0, 120.1 (x3), 120.2, 121.9, 122.0, 122.5, 122.6, 125.5, 125.6, 125.8 (x2 ), 126.0 (x2), 127.5, 127.7, 127.8, 128.4, 128.5, 130.2, 131.6, 131.7, 132.0, 132.1, 132.7, 133.5, 134.2, 141.0, 141.1, 141.4 (x2);

EI-MS (70 eV) m/z 466 (M+); HR-MS (APCI) m/z calcd for C31H31S2 [M+H]+ 467.18617, found 467.18637; Anal. Calcd for C31H30S2 C; 79.78, H; 6.48%. Found. C; 79.97, H; 6.46%. EI-MS (70 eV) m / z 466 (M + ); HR-MS (APCI) m / z calcd for C 31 H 31 S 2 [M + H] + 467.18617, found 467.18637; Anal. Calcd for C 31 H 30 S 2 C; 79.78, H; 6.48%. Found. C; 79.97, H; 6.46%.

(용해도의 평가) (Evaluation of solubility)

2-3-EH-DNTT를 실온의 클로로포름에 용해시켜, 용해도를 측정했다. 2-3-EH-DNTT의 용해도는, 0.67g/L이고, 2-2-EH-DNTT(0.43g/L)보다 양호했다. The solubility was measured by dissolving 2-3-EH-DNTT in chloroform at room temperature. The solubility of 2-3-EH-DNTT was 0.67 g / L, and was better than 2-2-EH-DNTT (0.43 g / L).

(트랜지스터 소자의 제작, 평가) (Production and evaluation of transistor elements)

2-3-EH-DNTT를 사용하여, 바텀 게이트·탑 컨택트형 트랜지스터 소자를 제작하고, 특성을 평가했다. A bottom gate-top contact transistor device was fabricated using 2-3-EH-DNTT, and characteristics were evaluated.

게이트 전극이 되는 200nm 두께의 실리콘 산화막을 구비하는 고농도로 도핑된 n-형 실리콘 기판을 충분히 세정했다. A highly doped n-type silicon substrate having a 200 nm thick silicon oxide film serving as a gate electrode was sufficiently cleaned.

2-3-EH-DNTT를 클로로포름에 용해하여 0.3g/L의 용액을 조제하고, 멤브레인 필터로 여과한 후, 상기 표면 처리한 n-형 실리콘 기판상에 스핀 코트법으로 약 100nm의 두께로 2-3-EH-DNTT 박막을 제작했다. 2-3-EH-DNTT was dissolved in chloroform to prepare a 0.3 g / L solution, filtered through a membrane filter, and then spin-coated on the surface-treated n-type silicon substrate to a thickness of about 100 nm 2 A -3-EH-DNTT thin film was prepared.

이 박막을 질소 분위기하에서, 100℃에서 30분 가열했다. The thin film was heated at 100 ° C for 30 minutes in a nitrogen atmosphere.

2-3-EH-DNTT 박막 상에 금을 진공 증착하여, 소스 전극 및 드레인 전극을 형성했다. 이와 같이 하여, 채널 길이 40㎛, 채널 폭 3mm의 바텀 게이트·탑 컨택트형 트랜지스터 소자(Untreated 소자)를 제작했다. Gold and vacuum were deposited on the 2-3-EH-DNTT thin film to form a source electrode and a drain electrode. In this way, a bottom gate-top contact transistor element (untreated element) having a channel length of 40 µm and a channel width of 3 mm was produced.

또한, n-형 실리콘 기판의 세정후, 실리콘 산화막 표면을 1,1,1,3,3,3-헥사메틸디실라젠(HMDS)으로 실란 처리하고, 상기와 동일하게 바텀 게이트·탑 컨택트형 트랜지스터 소자(HMDS 처리 소자)을 제작했다. Further, after cleaning the n-type silicon substrate, the surface of the silicon oxide film is silane treated with 1,1,1,3,3,3-hexamethyldisilagen (HMDS), and the bottom gate / top contact type is similar to the above. A transistor element (HMDS processing element) was produced.

또한, n-형 실리콘 기판의 세정후, 실리콘 산화막 표면을 옥타데실트리클로로실란(ODTS)로 실란 처리하고, 상기와 동일하게 바텀 게이트·탑 컨택트형 트랜지스터 소자(ODTS 처리 소자)를 제작했다. Further, after cleaning the n-type silicon substrate, the surface of the silicon oxide film was silane treated with octadecyltrichlorosilane (ODTS) to produce a bottom gate-top contact transistor device (ODTS processing element) in the same manner as above.

또한, n-형 실리콘 기판의 세정후, 실리콘 산화막 표면을 옥틸트리클로로실란(OTS)으로 실란 처리하고, 상기와 동일하게 바텀 게이트·탑 컨택트형 트랜지스터 소자(OTS 처리 소자)를 제작했다. Further, after the n-type silicon substrate was cleaned, the surface of the silicon oxide film was silane treated with octyl trichlorosilane (OTS) to produce a bottom gate / top contact transistor device (OTS processing element) in the same manner as above.

제작한 각각의 트랜지스터 소자에 대해, 게이트 전압 Vg를 20~-60V, 소스·드레인간 전압 Vd를 0~-60V로 변화시켜 트랜지스터 특성을 측정했다. 각각의 트랜지스터 소자의 캐리어 이동도(μ[cm2V-1s-1]), 임계 전압(Vth[V]), 온/오프비(Ion/off)를 표 2에 나타낸다. 또한, 기판을 ODTS로 실란 처리하여 제작한 트랜지스터 소자의 전달 특성을 도 4(A)에, 출력 특성을 도 4(B)에 나타낸다. 한편, 트랜지스터 소자는 각각 15 이상 제작하고, 표 2 중의 캐리어 이동도는, 그 평균값 및 최고값(괄호내)을 나타내고 있다. For each of the fabricated transistor elements, the transistor characteristics were measured by changing the gate voltage Vg from 20 to 60 V and the source-drain voltage Vd from 0 to 60 V. Table 2 shows carrier mobility (μ [cm 2 V -1 s -1 ]), threshold voltage (V th [V]), and on / off ratio (I on / off ) of each transistor element. In addition, the transfer characteristics of the transistor device produced by silane treatment of the substrate with ODTS are shown in Fig. 4 (A), and the output characteristics are shown in Fig. 4 (B). On the other hand, 15 or more transistor elements are manufactured, and the carrier mobility in Table 2 shows the average value and the highest value (in parentheses).

Figure 112015081295948-pct00018
Figure 112015081295948-pct00018

2-3-EH-DNTT로 제작한 트랜지스터 소자에서는, 트랜지스터 소자 2-2-EH-DNTT에 비해, 캐리어 이동도가 향상되어 있다. 특히, 기판을 ODTS 처리하여 제작한 ODTS 소자에서는, 캐리어 이동도가 최고로 1.6cm2/Vs(평균: 1.02cm2/Vs)이고, 양호한 트랜지스터 특성을 나타냈다. 에틸헵틸기의 측쇄의 에틸기가 DNTT 골격으로부터 이탈하여, 분자간 상호 작용이 높아졌기 때문으로 생각된다. In the transistor element made of 2-3-EH-DNTT, carrier mobility is improved compared to the transistor element 2-2-EH-DNTT. Particularly, in the ODTS device manufactured by ODTS processing the substrate, the carrier mobility was the highest of 1.6 cm 2 / Vs (average: 1.02 cm 2 / Vs), and exhibited good transistor characteristics. It is considered that the ethyl group of the side chain of the ethylheptyl group is separated from the DNTT skeleton, and the intermolecular interaction is increased.

이상의 결과로부터, 식 1로 표시되는 화합물과 같이, 한쪽의 나프탈렌에만 분기쇄 알킬기를 도입하는 분자 설계는, 유기 용매에 대한 용해성 및 트랜지스터 특성 모두를 만족하기 위해 꼭 필요한 것으로 생각된다. From the above results, it is considered that, like the compound represented by Formula 1, molecular design in which a branched chain alkyl group is introduced into only one naphthalene is necessary to satisfy both solubility in an organic solvent and transistor characteristics.

한편, 본 발명은, 본 발명의 범위를 일탈하지 않고, 다양한 실시형태 및 변형이 가능하다. 또한, 상술한 실시형태는, 본 발명을 설명하기 위한 것이고, 본 발명의 범위를 한정하는 것은 아니다. On the other hand, the present invention is capable of various embodiments and modifications without departing from the scope of the present invention. In addition, the above-mentioned embodiment is for explaining this invention, and does not limit the scope of the present invention.

본 출원은, 2013년 1월 22일에 출원된 일본국 특허출원 2013-9153호, 2013년 8월 27일에 출원된 일본국 특허출원 2013-175678호를 기초로 한다. 본 명세서에, 일본국 특허출원 2013-9153호, 일본국 특허출원 2013-175678호의 명세서, 특허청구범위, 도면 전체를 참조로 원용한다. This application is based on Japanese Patent Application No. 2013-9153 filed on January 22, 2013 and Japanese Patent Application No. 2013-175678 filed on August 27, 2013. In this specification, the specifications of the Japanese Patent Application No. 2013-9153, the Japanese Patent Application No. 2013-175678, the claims, and the entire drawings are incorporated by reference.

상술한 바와 같이, 본 발명에 따른 용액 프로세스용 유기 반도체 재료는, 용매에 대한 용해성이 우수하여, 도포법 등의 용액 프로세스를 이용하여 유기 반도체층을 형성할 수 있기 때문에, 전계효과 트랜지스터 등의 반도체 장치의 제조에 이용 가능하다. As described above, the organic semiconductor material for a solution process according to the present invention has excellent solubility in a solvent and can form an organic semiconductor layer using a solution process such as a coating method, so that semiconductors such as field effect transistors It is available for the manufacture of devices.

Claims (8)

식 1로 표시되는 화합물을 포함하고,
[화학식 1]
Figure 112019117168648-pct00019

식 1에 있어서, Y1 및 Y2는 각각 독립적으로 칼코겐 원자이고, R1 및 R2는 하나가 분기쇄(branched chain) 알킬기이고, 다른 하나는 수소이고,
상기 분기쇄 알킬기의 측쇄가 주쇄의 2번 위치 이상의 탄소에 결합되어 있는 것을 특징으로 하는 용액 프로세스용 유기 반도체 재료.
Contains a compound represented by Formula 1,
[Formula 1]
Figure 112019117168648-pct00019

In Formula 1, Y 1 and Y 2 are each independently a chalcogen atom, R 1 and R 2 are one branched chain alkyl group, the other is hydrogen,
The organic semiconductor material for a solution process, characterized in that the side chain of the branched chain alkyl group is bonded to carbon at position 2 or higher in the main chain.
제1항에 있어서,
상기 분기쇄 알킬기의 주쇄(main chain)가 C3 이상인 것을 특징으로 하는 용액 프로세스용 유기 반도체 재료.
According to claim 1,
An organic semiconductor material for a solution process, wherein the main chain of the branched chain alkyl group is C3 or more.
제2항에 있어서,
상기 분기쇄 알킬기의 주쇄가 C6 이상인 것을 특징으로 하는 용액 프로세스용 유기 반도체 재료.
According to claim 2,
An organic semiconductor material for a solution process, wherein the main chain of the branched chain alkyl group is C6 or more.
제1항에 있어서,
상기 분기쇄 알킬기의 측쇄(side chain)가 C2 이상인 것을 특징으로 하는 용액 프로세스용 유기 반도체 재료.
According to claim 1,
An organic semiconductor material for a solution process, characterized in that the side chain of the branched chain alkyl group is C2 or more.
제1항에 있어서,
상기 분기쇄 알킬기의 측쇄가 주쇄의 3번 위치 이상의 탄소에 결합되어 있는 것을 특징으로 하는 용액 프로세스용 유기 반도체 재료.
According to claim 1,
The organic semiconductor material for the solution process, characterized in that the side chain of the branched chain alkyl group is bonded to carbon 3 or more positions of the main chain.
제1항에 있어서,
상기 Y1 및 Y2가 유황 원자 또는 셀렌 원자인 것을 특징으로 하는 용액 프로세스용 유기 반도체 재료.
According to claim 1,
The organic semiconductor material for a solution process, wherein Y 1 and Y 2 are sulfur atoms or selenium atoms.
제1항 내지 제6항 중 어느 한 항에 기재된 용액 프로세스용 유기 반도체 재료를 포함하는 것을 특징으로 하는 유기 반도체 디바이스. An organic semiconductor device comprising the organic semiconductor material for a solution process according to any one of claims 1 to 6. 삭제delete
KR1020157022803A 2013-01-22 2014-01-22 Organic semiconductor material for solution process and organic semiconductor device KR102101242B1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JPJP-P-2013-009153 2013-01-22
JP2013009153 2013-01-22
JP2013175678 2013-08-27
JPJP-P-2013-175678 2013-08-27
PCT/JP2014/051213 WO2014115749A1 (en) 2013-01-22 2014-01-22 Organic semiconductor material for solution process and organic semiconductor device

Publications (2)

Publication Number Publication Date
KR20150108918A KR20150108918A (en) 2015-09-30
KR102101242B1 true KR102101242B1 (en) 2020-04-17

Family

ID=51227540

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020157022803A KR102101242B1 (en) 2013-01-22 2014-01-22 Organic semiconductor material for solution process and organic semiconductor device

Country Status (5)

Country Link
JP (1) JP6080870B2 (en)
KR (1) KR102101242B1 (en)
CN (1) CN104956508B (en)
TW (1) TW201444852A (en)
WO (1) WO2014115749A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101703599B1 (en) 2015-07-31 2017-02-07 현대자동차 주식회사 Roof laser brazing system
JP6654517B2 (en) * 2016-06-21 2020-02-26 山本化成株式会社 Organic transistor
JP6910880B2 (en) * 2016-08-03 2021-07-28 日本化薬株式会社 Organic photoelectric conversion elements, materials for organic photoelectric conversion elements, and organic imaging devices using these
JP6906357B2 (en) * 2017-04-28 2021-07-21 日本化薬株式会社 Photoelectric conversion element for image sensor
JP2018190755A (en) * 2017-04-28 2018-11-29 日本化薬株式会社 Photoelectric conversion element for imaging device
US11355715B2 (en) 2017-10-19 2022-06-07 Clap Co., Ltd. Substituted benzonaphthathiophene compounds for organic electronics
US11152578B2 (en) 2017-11-21 2021-10-19 Clap Co., Ltd. Sulfonium salts of DNTT and related compounds as soluble photocleavable precursors for organic semiconductors for use in organic field-effect transistors
CN112119515A (en) 2018-03-07 2020-12-22 Clap有限公司 Patterning method for manufacturing top-gate bottom-contact organic field effect transistor
JP7241346B2 (en) * 2019-05-21 2023-03-17 国立大学法人東北大学 Method for producing aromatic compound
WO2021054161A1 (en) 2019-09-17 2021-03-25 日本化薬株式会社 Fused polycyclic aromatic compound
JP7317301B2 (en) * 2019-11-13 2023-07-31 日本化薬株式会社 Organic semiconductor compound and its use
CN110849252B (en) * 2019-11-14 2021-06-18 东北师范大学 Method for preparing large-area conformable semiconductor type proximity sensor
TW202136272A (en) * 2019-12-10 2021-10-01 日商日本化藥股份有限公司 Condensed polycyclic aromatic compound
WO2023189381A1 (en) * 2022-03-30 2023-10-05 ソニーグループ株式会社 Light-emitting element and electronic device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2077590B1 (en) * 2006-10-20 2013-06-19 Nippon Kayaku Kabushiki Kaisha Field-effect transistor
CN101528753B (en) * 2006-10-25 2012-05-23 国立大学法人广岛大学 Novel fused-ring aromatic compound, process for producing the same, and use thereof
JP5428104B2 (en) * 2008-05-23 2014-02-26 日本化薬株式会社 Organic semiconductor composition
JP5477978B2 (en) * 2009-02-27 2014-04-23 日本化薬株式会社 Field effect transistor
CN104650110B (en) * 2011-02-25 2017-04-12 日本化药株式会社 Novel heterocyclic compound, method for producing intermediate therefor, and use thereof
WO2013039842A1 (en) * 2011-09-12 2013-03-21 Polyera Corporation Compounds having semiconducting properties and related compositions and devices

Also Published As

Publication number Publication date
TW201444852A (en) 2014-12-01
CN104956508B (en) 2017-07-21
JP6080870B2 (en) 2017-02-15
CN104956508A (en) 2015-09-30
KR20150108918A (en) 2015-09-30
WO2014115749A1 (en) 2014-07-31
JPWO2014115749A1 (en) 2017-01-26

Similar Documents

Publication Publication Date Title
KR102101242B1 (en) Organic semiconductor material for solution process and organic semiconductor device
US9911927B2 (en) Compounds having semiconducting properties and related compositions and devices
TWI600648B (en) Organic compound containing chalocogen, method for manufacturing the same and application thereof
KR20130076904A (en) [1]benzothieno[3,2-b][1]benzothiophene compound and method for producing the same, and organic electronic device using the same
WO2011004869A1 (en) Substituted benzochalcogenoacene compound, thin film comprising the compound, and organic semiconductor device including the thin film
CN107266469B (en) Method for synthesizing fused heteroaromatic compound and intermediate thereof, and electronic device
KR20110065511A (en) Novel compound and organic semiconductor material
JP5765559B2 (en) Substituent leaving compound and organic semiconductor material obtained therefrom, organic electronic device, organic thin film transistor and display device using the same
KR20130021439A (en) Leaving substituent-containing compound, organic semiconductor material formed therefrom, organic electronic device, organic thin-film transistor and display device using the organic semiconductor material, method for producing film-like product, pi-electron conjugated compound and method for producing the pi-electron conjugated compound
JP6332644B2 (en) Compound, polymer compound, organic semiconductor material, organic semiconductor device, compound synthesis method, polymer compound synthesis method
CA2762471A1 (en) Small molecule semiconductor
JP5807359B2 (en) Method for producing film-like body containing π-electron conjugated compound having aromatic ring, and method for producing π-electron conjugated compound
KR102539063B1 (en) Naphthoindacenodithiophenes and polymers
KR20180128026A (en) Novel organic polymers and methods for their preparation
JP6252032B2 (en) Benzodifuran derivatives and organic thin film transistors
JP2018008885A (en) Heteroacene derivative, organic semiconductor layer, and organic thin film transistor
JP5650107B2 (en) Thienopyrazine compound and field effect transistor containing the same
TW201841923A (en) Organic semiconductor and manufacturing method thereof
JP5637985B2 (en) Diazaborol compound and field effect transistor containing the same
Li et al. Structurally tailored thiophene-based hybrid materials for thin-film and single-crystal transistors: Synthesis, photophysics and carrier-transport properties
KR102392669B1 (en) Organic compound and organic thin film and electronic device
KR20220143703A (en) Novel compounds and their uses
JP6047969B2 (en) Dithienobenzodithiophene derivative solution and organic semiconductor layer using the same

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right