KR102094200B1 - Composition for photodynamic diagnosis or therapy comprising indole-3-acetic acid - Google Patents

Composition for photodynamic diagnosis or therapy comprising indole-3-acetic acid Download PDF

Info

Publication number
KR102094200B1
KR102094200B1 KR1020170025929A KR20170025929A KR102094200B1 KR 102094200 B1 KR102094200 B1 KR 102094200B1 KR 1020170025929 A KR1020170025929 A KR 1020170025929A KR 20170025929 A KR20170025929 A KR 20170025929A KR 102094200 B1 KR102094200 B1 KR 102094200B1
Authority
KR
South Korea
Prior art keywords
cancer
indole
acetic acid
composition
ilm
Prior art date
Application number
KR1020170025929A
Other languages
Korean (ko)
Other versions
KR20180100465A (en
Inventor
오경택
심태훈
Original Assignee
중앙대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 중앙대학교 산학협력단 filed Critical 중앙대학교 산학협력단
Priority to KR1020170025929A priority Critical patent/KR102094200B1/en
Publication of KR20180100465A publication Critical patent/KR20180100465A/en
Application granted granted Critical
Publication of KR102094200B1 publication Critical patent/KR102094200B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions ; Emulsion preconcentrates; Micelles
    • A61K9/1075Microemulsions or submicron emulsions; Preconcentrates or solids thereof; Micelles, e.g. made of phospholipids or block copolymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0057Photodynamic therapy with a photosensitizer, i.e. agent able to produce reactive oxygen species upon exposure to light or radiation, e.g. UV or visible light; photocleavage of nucleic acids with an agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/02Applications for biomedical use

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Polymers & Plastics (AREA)
  • Veterinary Medicine (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Molecular Biology (AREA)
  • Dispersion Chemistry (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

본 발명은 인돌-3-아세트산을 포함하는 광역학 진단 또는 치료용 조성물에 관한 것으로, 폴리(아스파르트산)-폴리에틸렌글라이콜에 이미다졸을 접목시킨 pH 민감성 블록 공중합체(폴리(아스파르트산-접목-이미다졸)-폴리에틸렌글라이콜)를 제조하고, 상기 블록 공중합체에 인돌-3-아세트산을 봉입하여 마이셀 구조의 약물 전달체 조성물을 제조하였다. 상기 조성물은 체내 pH 변화에 반응하여 pH 7.4 이상에서는 마이셀 구조를 형성하고, 약산성(pH 6.5 내지 pH 7.2)을 나타내는 암세포 환경에서는 마이셀 구조가 붕괴되어 암세포에 표적 약물 전달 및 약물 방출을 조절함으로써 암 치료 효과를 향상시킬 수 있다. 또한, 상기 조성물에 봉입된 인돌-3-아세트산은 가시광선 하에 자유 라디칼을 더 많이 생성하여 암세포에 선택적으로 세포 독성을 일으켜 세포사멸을 유도함으로써 광역학 치료에 사용될 수 있다.
따라서, 상기와 같은 효과를 갖는 인돌-3-아세트산을 포함하는 조성물은 광역학 치료용 약학 조성물, 암질환의 광역학 치료용 약학 조성물 또는 광역학 진단용 약학 조성물에 활용될 수 있으며, 암세포 이외에도 세포외 pH가 약산성인 병소의 진단 및 치료를 위한 의약품 개발에 활용될 수 있다.
The present invention relates to a composition for photodynamic diagnosis or treatment comprising indole-3-acetic acid, a pH-sensitive block copolymer (poly (aspartic acid-grafting) in which imidazole is grafted to poly (aspartic acid) -polyethylene glycol. -Imidazole) -polyethylene glycol) was prepared, and indole-3-acetic acid was encapsulated in the block copolymer to prepare a drug carrier composition having a micelle structure. The composition forms a micelle structure at a pH of 7.4 or higher in response to a change in the body's pH, and in a cancer cell environment exhibiting weak acidity (pH 6.5 to pH 7.2), the micelle structure collapses to control target drug delivery and drug release to cancer cells, thereby treating cancer The effect can be improved. In addition, the indole-3-acetic acid encapsulated in the composition can be used for photodynamic therapy by generating more free radicals under visible light to selectively cause cytotoxicity to cancer cells and induce apoptosis.
Therefore, the composition comprising indole-3-acetic acid having the above-described effect can be utilized in a pharmaceutical composition for photodynamic therapy, a pharmaceutical composition for photodynamic treatment of cancer disease, or a pharmaceutical composition for photodynamic diagnosis, in addition to cancer cells. It can be used to develop medicines for the diagnosis and treatment of lesions with weakly acidic pH.

Description

인돌-3-아세트산을 포함하는 광역학 진단 또는 치료용 조성물{Composition for photodynamic diagnosis or therapy comprising indole-3-acetic acid}Composition for photodynamic diagnosis or therapy comprising indole-3-acetic acid

본 발명은 인돌-3-아세트산을 포함하는 광역학 진단 또는 치료용 조성물에 관한 것이다.The present invention relates to a composition for photodynamic diagnosis or treatment comprising indole-3-acetic acid.

마이셀(micelle)은 일반적으로 양친성, 예컨대 친수성기와 소수성기를 동시에 갖는 저분자량의 물질들이 이루는 열역학적으로 안정하고 균일한 구형의 구조를 지칭하며, 상기 마이셀 구조를 갖는 화합물에 비수용성 약물을 녹여 투입하는 경우 약물은 마이셀 내부에 존재하게 되며, 이러한 마이셀은 체내에서 온도나 pH 변화에 반응하여 표적 지향적 약물방출을 할 수 있으므로, 약물 전달체(carrier)로서의 응용 가능성이 대단히 높다.A micelle (micelle) generally refers to a thermodynamically stable and uniform spherical structure formed by materials of low molecular weight having both amphiphilic properties, such as a hydrophilic group and a hydrophobic group, and dissolving and injecting a water-insoluble drug into a compound having the micelle structure In this case, the drug will be present inside the micelle, and since such micelles can be target-oriented drug release in response to changes in temperature or pH in the body, the applicability as a drug carrier is very high.

일반적으로 정상조직 및 혈액의 pH가 7.4인 반면, 암세포의 pH는 평균 7.2 내지 6.5 사이에 있다고 알려져 있다. 따라서, 대부분 고형암의 세포 주변 pH가 약산성인 것을 주목할 때, 암세포의 pH를 집중 타켓 할 수 있는 pH 민감성 고분자 소재의 개발은 암의 진단 및 치료 등에 널리 활용될 수 있으며, 암세포 이외에도 세포외 pH가 약산성인 병소 및 류마티스 관절염의 진단 및 치료를 위한 의약품 개발에 필요한 소재로서 활용될 수 있다.In general, it is known that the pH of normal tissues and blood is 7.4, while the pH of cancer cells is on average between 7.2 and 6.5. Therefore, when it is noted that the pH around the cells of most solid cancers is weakly acidic, the development of a pH-sensitive polymer material capable of intensively targeting the pH of cancer cells can be widely used for diagnosis and treatment of cancer, and in addition to cancer cells, the extracellular pH is weakly acidic It can be used as a material needed to develop pharmaceuticals for the diagnosis and treatment of phosphorus lesions and rheumatoid arthritis.

광역학 치료(PDT)는 악성 세포에 선택적으로 세포 독성 활성을 발휘하는 임상적으로 승인된 침습적 치료방법이다. 감광제(photosensitizer) 투여 후, 자유 라디칼(free radical)의 생성은 직접적인 종양 세포 사멸을 유도한다. 인돌-3-아세트산은 식물 성장 호르몬인 ‘옥신(auxin)’으로도 알려져 있는데, 자외선 또는 가시광선에 의한 자유 라디칼 생성으로 흑색종을 파괴한다. 그러나, 인돌-3-아세트산의 소수성 특징으로 인해 인돌-3-아세트산의 효과적인 전달 및 항암제 개발에 어려움이 있다.Photodynamic therapy (PDT) is a clinically approved invasive treatment method that selectively exerts cytotoxic activity on malignant cells. After administration of photosensitizer, the generation of free radicals induces direct tumor cell death. Indole-3-acetic acid, also known as the plant growth hormone “auxin,” destroys melanoma by the production of free radicals by ultraviolet or visible light. However, due to the hydrophobic nature of indole-3-acetic acid, there are difficulties in effective delivery of indole-3-acetic acid and development of anticancer agents.

표적 약물 전달을 위해, pH 민감성 나노전달체(nanocarrier)가 인돌-3-아세트산 전달을 위해 사용되었다. 50 내지 200 nm 크기의 pH 민감성 나노전달체는 향상된 투과성 및 보존 효과를 가지고 있어 암세포의 산성 pH(세포외 pH (pHex = ~ 6.5 내지 7.2) 또는 엔도좀 pH (pHen ≤ 6.5)) 환경에서 pH 의존 항암제 방출을 통해 표적 지향적 항암 효과를 나타낸다.For targeted drug delivery, a pH-sensitive nanocarrier was used for indole-3-acetic acid delivery. The pH-sensitive nanocarrier with a size of 50 to 200 nm has an improved permeability and preservation effect, so that the pH in an acidic pH (extracellular pH (pH ex = ~ 6.5 to 7.2) or endosome pH (pH en ≤ 6.5)) of cancer cells It exhibits target-oriented anti-cancer effects through the release of dependent anti-cancer agents.

대한민국 공개특허 제 10-2012-0054279호 (2012. 05. 30. 공개)Republic of Korea Patent Publication No. 10-2012-0054279 (2012. 05. 30. published)

본 발명의 목적은 폴리(아스파르트산)-폴리에틸렌글라이콜에 이미다졸을 접목시킨 pH 민감성 블록 공중합체(폴리(아스파르트산-접목-이미다졸)-폴리에틸렌글라이콜)로 이루어진 마이셀 및 상기 마이셀 내 봉입되는 인돌-3-아세트산(indole-3-acetic acid)을 포함하는 광역학 치료용 약학 조성물, 암질환의 광역학 치료용 약학 조성물 또는 광역학 진단용 약학 조성물을 제공하는 데에 있다.The object of the present invention is a micelle consisting of a pH-sensitive block copolymer (poly (aspartic acid-grafting-imidazole) -polyethylene glycol) in which imidazole is grafted to poly (aspartic acid) -polyethylene glycol and in the micelle It is to provide a pharmaceutical composition for photodynamic therapy, a pharmaceutical composition for photodynamic treatment of cancer disease, or a pharmaceutical composition for photodynamic diagnosis, comprising enclosed indole-3-acetic acid.

상기 목적을 달성하기 위하여, 본 발명은 폴리(아스파르트산)-폴리에틸렌글라이콜에 이미다졸을 접목시킨 pH 민감성 블록 공중합체(폴리(아스파르트산-접목-이미다졸)-폴리에틸렌글라이콜)로 이루어진 마이셀 및 상기 마이셀 내 봉입되는 인돌-3-아세트산(indole-3-acetic acid)을 포함하는 광역학 치료용 약학 조성물, 암질환의 광역학 치료용 약학 조성물 또는 광역학 진단용 약학 조성물을 제공한다.In order to achieve the above object, the present invention is made of a pH-sensitive block copolymer (poly (aspartic acid-grafting-imidazole) -polyethylene glycol) in which imidazole is grafted to poly (aspartic acid) -polyethylene glycol. Provides a pharmaceutical composition for photodynamic therapy, a pharmaceutical composition for photodynamic treatment of cancer disease, or a pharmaceutical composition for photodynamic diagnosis, including micelle and indole-3-acetic acid encapsulated in the micelle.

본 발명은 폴리(아스파르트산)-폴리에틸렌글라이콜에 이미다졸을 접목시킨 pH 민감성 블록 공중합체(폴리(아스파르트산-접목-이미다졸)-폴리에틸렌글라이콜)를 제조하고, 상기 블록 공중합체에 인돌-3-아세트산을 봉입하여 마이셀 구조의 약물 전달체 조성물을 제조하였다. 상기 조성물은 체내 pH 변화에 반응하여 pH 7.4 이상에서는 마이셀 구조를 형성하고, 약산성(pH 6.5 내지 pH 7.2)을 나타내는 암세포 환경에서는 마이셀 구조가 붕괴되어 암세포에 표적 약물 전달 및 약물 방출을 조절함으로써 암 치료 효과를 향상시킬 수 있다. 또한, 상기 조성물에 봉입된 인돌-3-아세트산은 가시광선 하에 자유 라디칼을 더 많이 생성하여 암세포에 선택적으로 세포 독성을 일으켜 세포사멸을 유도함으로써 광역학 치료에 사용될 수 있다.The present invention is to prepare a pH-sensitive block copolymer (poly (aspartic acid-grafting-imidazole) -polyethylene glycol) in which imidazole is grafted to poly (aspartic acid) -polyethylene glycol, and to the block copolymer Indole-3-acetic acid was encapsulated to prepare a drug carrier composition having a micelle structure. The composition forms a micelle structure at a pH of 7.4 or higher in response to a change in the body's pH, and in a cancer cell environment exhibiting weak acidity (pH 6.5 to pH 7.2), the micelle structure collapses to control target drug delivery and drug release to cancer cells, thereby treating cancer The effect can be improved. In addition, the indole-3-acetic acid encapsulated in the composition can be used for photodynamic therapy by generating more free radicals under visible light to selectively cause cytotoxicity to cancer cells and induce apoptosis.

따라서, 상기와 같은 효과를 갖는 인돌-3-아세트산을 포함하는 조성물은 광역학 치료용 약학 조성물, 암질환의 광역학 치료용 약학 조성물 또는 광역학 진단용 약학 조성물에 활용될 수 있으며, 암세포 이외에도 세포외 pH가 약산성인 병소의 진단 및 치료를 위한 의약품 개발에 활용될 수 있다. Therefore, the composition comprising indole-3-acetic acid having the above-described effect can be utilized in a pharmaceutical composition for photodynamic therapy, a pharmaceutical composition for photodynamic treatment of cancer disease, or a pharmaceutical composition for photodynamic diagnosis, in addition to cancer cells. It can be used to develop medicines for the diagnosis and treatment of lesions with weakly acidic pH.

도 1(a) 및 도 1(b)는 ILM(indole-3-acetic acid loaded micelle)을 이용한 광역학 치료 효과를 도시화하여 나타낸 것이다.
도 2는 ILM의 형태 및 직경 분포를 광자 상관 분광법 및 전계 방출형 전자 현미경을 이용하여 (a) pH 7.4 또는 (b) pH 6.5 조건에서 확인한 것이며, (c)는 액체 크로마토그래피를 이용하여 다양한 pH 조건에서 ILM으로부터 인돌-3-아세트산의 방출을 확인한 것이다.
도 3은 (a) CCK 분석을 이용하여 인돌-3-아세트산 또는 (b) ILM으로 처리한 B16F10 흑색종 세포의 생존율을 다양한 pH 조건에서 확인한 것이며, (c)는 가시광선(480 nm) 조사 유무에 따른 세포 생존율을 확인한 것이며, (d)는 pH 7.4 또는 pH 6.5 조건에서 인돌-3-아세트산 또는 ILM의 자유 라디칼 생성을 확인한 것이며, (e)는 pH 민감성 마이셀에 의한 세포내 분포 및 엔도좀 파괴를 공초점 현미경으로 확인한 것이다.
도 4는 누드 마우스에 B16F10 흑색종 암세포를 피하 투여하여 종양 마우스를 유도한 후, 인돌-3-아세트산, ILM 또는 인산완충식염수를 정맥 내 투여하고 가시광선 처리 유무 하에 (a) 상대적인 종양 부피 및 (b) 체중 변화를 확인한 것이다.
1 (a) and 1 (b) show the effect of photodynamic therapy using indole-3-acetic acid loaded micelle (ILM).
FIG. 2 shows the shape and diameter distribution of the ILM under (a) pH 7.4 or (b) pH 6.5 conditions using photon correlation spectroscopy and field emission electron microscopy, and (c) various pHs using liquid chromatography. Release of indole-3-acetic acid from ILM was confirmed under conditions.
FIG. 3 shows the survival rate of B16F10 melanoma cells treated with indole-3-acetic acid or (b) ILM using (a) CCK analysis under various pH conditions, and (c) whether there is visible light (480 nm) irradiation. According to the results, the cell viability was confirmed, and (d) confirmed the free radical generation of indole-3-acetic acid or ILM under the conditions of pH 7.4 or pH 6.5. (E) Intracellular distribution and endosomal destruction by pH-sensitive micelles. Was confirmed with a confocal microscope.
Figure 4 is a subcutaneous administration of B16F10 melanoma cancer cells to nude mice to induce tumor mice, followed by intravenous administration of indole-3-acetic acid, ILM or phosphate buffered saline (a) relative tumor volume and (with or without visible light treatment). b) The change in weight was confirmed.

본 발명의 발명자들은 폴리(아스파르트산)-폴리에틸렌글라이콜에 이미다졸을 접목시킨 pH 민감성 블록 공중합체(폴리(아스파르트산-접목-이미다졸)-폴리에틸렌글라이콜)를 형성하고, 상기 블록 공중합체에 인돌-3-아세트산을 봉입하여 마이셀 구조의 ILM(indole-3-acetic acid loaded micelle)을 제조하였으며, 상기 ILM은 pH 7.4 이상에서 마이셀 구조를 형성하고, 약산성(pH 6.5 내지 pH 7.2)을 나타내는 암세포 환경에서는 마이셀 구조가 붕괴되어 암세포에 표적 약물 전달 및 약물 방출을 조절하며, 가시광선 하에서 더 많은 자유 라디칼을 생성하여 암 치료 효과를 향상시키는 것을 확인하며 본 발명을 완성하였다.The inventors of the present invention form a pH-sensitive block copolymer (poly (aspartic acid-grafting-imidazole) -polyethylene glycol) in which imidazole is grafted to poly (aspartic acid) -polyethylene glycol, and the block is airborne. Indole-3-acetic acid was encapsulated in the coalescence to prepare a micelle structured indole-3-acetic acid loaded micelle (ILM), wherein the ILM formed a micelle structure at pH 7.4 or higher, and weak acidity (pH 6.5 to pH 7.2). In the indicated cancer cell environment, the micelle structure is collapsed to control target drug delivery and drug release to cancer cells, and it is completed to complete the present invention, confirming that it improves the cancer treatment effect by generating more free radicals under visible light.

본 발명은 폴리(아스파르트산)-폴리에틸렌글라이콜에 이미다졸을 접목시킨 pH 민감성 블록 공중합체(폴리(아스파르트산-접목-이미다졸)-폴리에틸렌글라이콜)로 이루어진 마이셀 및 상기 마이셀 내 봉입되는 인돌-3-아세트산(indole-3-acetic acid)을 포함하는 광역학 치료용 약학 조성물을 제공한다.The present invention is a poly (aspartic acid) -polyethylene glycol, a micelle made of a pH-sensitive block copolymer (poly (aspartic acid-grafting-imidazole) -polyethylene glycol) grafted with imidazole and encapsulated in the micelle Provided is a pharmaceutical composition for photodynamic therapy comprising indole-3-acetic acid.

바람직하게는, 상기 블록 공중합체는 하기 화학식 1로 표시되는 화합물일 수 있다.Preferably, the block copolymer may be a compound represented by Formula 1 below.

[화학식 1][Formula 1]

Figure 112017020223595-pat00001
Figure 112017020223595-pat00001

R1 및 R2는 각각 동일하거나 다를 수 있고, 수소, (C1~C10)알킬, 또는 (C1~C10)알콕시에서 선택되며,R 1 and R 2 may each be the same or different, and are selected from hydrogen, (C1 to C10) alkyl, or (C1 to C10) alkoxy,

m 및 n은 1 내지 30의 정수임.m and n are integers from 1 to 30.

바람직하게는, 상기 pH 민감성 블록 공중합체는 pH가 7.4 이상에서 마이셀 구조를 형성하고, pH 6 내지 pH 7.2에서는 마이셀 구조가 붕괴되는 것일 수 있다.Preferably, the pH-sensitive block copolymer may have a micelle structure at a pH of 7.4 or higher and a micelle structure at pH 6 to pH 7.2.

바람직하게는, 상기 마이셀은 평균 직경이 50 내지 500 nm일 수 있으나, 이에 제한되는 것은 아님을 명시한다.Preferably, the micelle may have an average diameter of 50 to 500 nm, but is not limited thereto.

또한, 본 발명은 폴리(아스파르트산)-폴리에틸렌글라이콜에 이미다졸을 접목시킨 pH 민감성 블록 공중합체(폴리(아스파르트산-접목-이미다졸)-폴리에틸렌글라이콜)로 이루어진 마이셀 및 상기 마이셀 내 봉입되는 인돌-3-아세트산(indole-3-acetic acid)을 포함하는 암질환의 광역학 치료용 약학 조성물을 제공한다.In addition, the present invention is a micelle made of a pH-sensitive block copolymer (poly (aspartic acid-grafting-imidazole) -polyethylene glycol) in which imidazole is grafted to poly (aspartic acid) -polyethylene glycol and in the micelle Provided is a pharmaceutical composition for photodynamic treatment of cancer diseases including indole-3-acetic acid that is encapsulated.

바람직하게는, 상기 pH 민감성 블록 공중합체는 하기 화학식 1로 표시되는 화합물일 수 있다.Preferably, the pH-sensitive block copolymer may be a compound represented by Formula 1 below.

[화학식 1] [Formula 1]

Figure 112017020223595-pat00002
Figure 112017020223595-pat00002

R1 및 R2는 각각 동일하거나 다를 수 있고, 수소, (C1~C10)알킬, 또는 (C1~C10)알콕시에서 선택되며,R 1 and R 2 may each be the same or different, and are selected from hydrogen, (C1 to C10) alkyl, or (C1 to C10) alkoxy,

m 및 n은 1 내지 30의 정수임.m and n are integers from 1 to 30.

바람직하게는, 상기 암질환은 피부암, 폐암, 비소세포성 폐암, 결장암, 골암, 췌장암, 두부 또는 경부 암, 자궁암, 난소암, 직장암, 위암, 항문부근암, 결장암, 유방암, 나팔관암종, 자궁내막암종, 자궁경부암종, 질암종, 음문암종, 호키슨씨병(Hodgkin's disease), 식도암, 소장암, 내분비선암, 갑상선암, 부갑상선암, 부신암, 연조직 육종, 요도암, 음경암, 전립선암, 만성 또는 급성 백혈병, 림프구 림프종, 방광암, 신장 또는 수뇨관암, 신장세포 암종, 신장골반 암종, 중추신경계(CNS; central nervous system) 종양, 1차 중추신경계 림프종, 척수 종양, 뇌간 신경교종 및 뇌하수체 선종으로 이루어진 군에서 선택된 것일 수 있으나, 이에 제한되는 것은 아님을 명시한다.Preferably, the cancer disease is skin cancer, lung cancer, non-small cell lung cancer, colon cancer, bone cancer, pancreatic cancer, head or neck cancer, uterine cancer, ovarian cancer, rectal cancer, gastric cancer, proximal cancer, colon cancer, breast cancer, fallopian tube carcinoma, endometrium Carcinoma, cervical carcinoma, vaginal carcinoma, vulvar carcinoma, Hodgkin's disease, esophageal cancer, small intestine cancer, endocrine cancer, thyroid cancer, parathyroid cancer, adrenal cancer, soft tissue sarcoma, urethral cancer, penile cancer, prostate cancer, chronic or Acute leukemia, lymphocytic lymphoma, bladder cancer, kidney or urinary tract cancer, renal cell carcinoma, renal pelvic carcinoma, central nervous system (CNS) tumor, primary central nervous system lymphoma, spinal cord tumor, brainstem glioma and pituitary adenoma It may be selected from, but is not limited thereto.

또한, 본 발명은 폴리(아스파르트산)-폴리에틸렌글라이콜에 이미다졸을 접목시킨 pH 민감성 블록 공중합체(폴리(아스파르트산-접목-이미다졸)-폴리에틸렌글라이콜)로 이루어진 마이셀 및 상기 마이셀 내 봉입되는 인돌-3-아세트산(indole-3-acetic acid)을 포함하는 광역학 진단용 약학 조성물을 제공한다.In addition, the present invention is a micelle made of a pH-sensitive block copolymer (poly (aspartic acid-grafting-imidazole) -polyethylene glycol) in which imidazole is grafted to poly (aspartic acid) -polyethylene glycol and in the micelle Provided is a pharmaceutical composition for photodynamic diagnosis including indole-3-acetic acid that is encapsulated.

바람직하게는, 상기 pH 민감성 블록 공중합체는 하기 화학식 1로 표시되는 화합물일 수 있다. Preferably, the pH-sensitive block copolymer may be a compound represented by Formula 1 below.

[화학식 1][Formula 1]

Figure 112017020223595-pat00003
Figure 112017020223595-pat00003

R1 및 R2는 각각 동일하거나 다를 수 있고, 수소, (C1~C10)알킬, 또는 (C1~C10)알콕시에서 선택되며,R 1 and R 2 may each be the same or different, and are selected from hydrogen, (C1 to C10) alkyl, or (C1 to C10) alkoxy,

m 및 n은 1 내지 30의 정수임.m and n are integers from 1 to 30.

본 발명의 조성물이 약학 조성물인 경우, 크림, 젤, 패취, 분무제, 연고제, 경고제, 로션제, 리니멘트제, 파스타제 및 카타플라스마제 등으로 제형화 될 수 있다. 한편, 상기 약학 조성물은 상기 유효성분 이외에 약제학적으로 허용되는 담체를 포함할 수 있는데, 이러한 약제학적으로 허용되는 담체는 약품 제제 시에 통상적으로 이용되는 것으로서, 락토스, 덱스트로스, 수크로스, 솔비톨, 만니톨, 전분, 아카시아 고무, 인산 칼슘, 알기네이트, 젤라틴, 규산 칼슘, 미세결정성 셀룰로스, 폴리비닐피롤리돈, 셀룰로스, 물, 시럽, 메틸 셀룰로스, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 활석, 스테아르산 마그네슘, 미네랄 오일 등을 포함할 수 있으나, 이에 한정되는 것은 아니다. 또한, 상기 약학 조성물은 첨가제로서 윤활제, 습윤제, 감미제, 향미제, 유화제, 현탁제, 보존제 등을 추가로 포함할 수 있다.When the composition of the present invention is a pharmaceutical composition, it may be formulated as a cream, gel, patch, spray, ointment, warning agent, lotion agent, linement agent, pasta agent, and cataplasma agent. On the other hand, the pharmaceutical composition may include a pharmaceutically acceptable carrier in addition to the active ingredient, such a pharmaceutically acceptable carrier is commonly used in pharmaceutical preparations, lactose, dextrose, sucrose, sorbitol, Mannitol, starch, acacia rubber, calcium phosphate, alginate, gelatin, calcium silicate, microcrystalline cellulose, polyvinylpyrrolidone, cellulose, water, syrup, methyl cellulose, methylhydroxybenzoate, propylhydroxybenzoate, Talc, magnesium stearate, mineral oil, and the like, but is not limited thereto. In addition, the pharmaceutical composition may further include a lubricant, wetting agent, sweetener, flavoring agent, emulsifying agent, suspending agent, preservative, etc. as additives.

상기 약학 조성물은 증상 정도에 따라 투여 방법이 결정되는데, 통상적으로는 국소 투여 방식이 바람직하다. 또한, 상기 약학 조성물 중 유효성분의 투여량은 투여경로, 질병의 정도, 환자의 나이, 성별, 체중 등에 따라 달라질 수 있으며, 일일 1회 내지 수회 투여할 수 있다.The method of administration of the pharmaceutical composition is determined according to the severity of symptoms, and a topical administration method is usually preferred. In addition, the dosage of the active ingredient in the pharmaceutical composition may vary depending on the administration route, the degree of disease, the patient's age, gender, weight, etc., and may be administered once to several times a day.

이하에서는 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail through examples. These examples are only intended to illustrate the present invention more specifically, and it will be apparent to those skilled in the art that the scope of the present invention is not limited by these examples according to the gist of the present invention. .

실시예Example 1 : 시약 준비 1: Reagent preparation

인돌-3-아세트산(indole-3-acetic acid, PubChem CID: 802), 폴리(에틸렌 글라이콜) (poly(ethylene glycol), PEG, MW 2000), L-β-아스파르트산-β-벤질 에스테르(L-aspartic acid-β-benzyl ester), 무수 1,4-디옥산, 트리에틸아민(anhydrous 1,4-dioxane, trimethylamine, TEA), 헥실아민(hexylamine, HA), 1-(3-아미노프로필)-이미다졸(1-(3-aminopropyl)-imidazole), n-헥산(n-hexane), 메탄올(methanol, MeOH), N,N-디메틸포름아마이드(N,N-dimethylformamide, DMF), 셀라이트(cellite), 팔라듐(palladium on-charcoal, Pd/C), N-하이드록시숙신이디드(N-hydroxysuccinimide, NHS), N,N'-디사이클로헥실카르보디이미드의(N,N’-dicyclohexylcarbodiimide, DCC), 트리에틸렌아민(triethyleneamine, TEA) 및 테트라메틸실란(tetramethylsilane, TMS)은 시그마-알드리치(Sigma-Aldrich, St. Louis, MO, USA)로부터 구입하였다. 트리포스겐(triphosgene)은 알파 에이사(Alfa Aesar® Johnson Matthey Korea)에서 구입하였으며, 에탄올(EtOH), 디메틸 설폭사이드(dimethylsulfoxide, DMSO) 및 디클로로메탄(dichloromethane, DCM)은 하니웰 버딕&잭슨(Honeywell Burdick & Jackson®, Muskegon, MI, USA)에서 구입하였으며, 기타 다른 화학물질은 분석등급으로 사용하였다. DMEM 배지, 우태아혈청(fetal bovine serum, FBS), 페니실린(penicillin) 및 스트렙토마이신(streptomycin)은 웰진(Welgene INC, Korea)에서 구입하였다. CCK-8(cell counting kit-8)은 도진도 분자 기술 회사(Dojindo Molecular Technologies Inc, Japan)에서 제공받았다. LysoTracker® Red DND-99 및 플루오레세인 DHPE(N-(fluorescein-5-thiocarbamoyl)-1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolmine triethylammonium salt)은 인비트로젠(InvitrogenTM, Molecular Probes®, Life Techloogies, Thermo Fisher Scientific Inc.)에서 구입하였다. OxiSelectTM In Vitro ROS/RNS 분석 키트는 셀 바이오랩스(Cell biolabs, San Diego, CA, USA)에서 구입하였다. P(Asp-g-Im)-PEG(MW 6.5 내지 2 kDa)는 제조하였으며, P(Asp)-PEG에 이미다졸 고리의 결합율은 60%였다.Indole-3-acetic acid (pubChem CID: 802), poly (ethylene glycol), PEG, MW 2000), L-β-aspartic acid-β-benzyl ester (L-aspartic acid-β-benzyl ester), anhydrous 1,4-dioxane, triethylamine (anhydrous 1,4-dioxane, trimethylamine, TEA), hexylamine (HA), 1- (3-amino Propyl) -imidazole (1- (3-aminopropyl) -imidazole), n-hexane, methanol (MeOH), N, N-dimethylformamide (DMF), Of cellite, palladium on-charcoal (Pd / C), N-hydroxysuccinimide (NHS), N, N'-dicyclohexylcarbodiimide (N, N ' -dicyclohexylcarbodiimide (DCC), triethyleneamine (TEA) and tetramethylsilane (TMS) were purchased from Sigma-Aldrich (St. Louis, MO, USA). Triphosgene was purchased from Alfa Aesar ® Johnson Matthey Korea, and ethanol (EtOH), dimethylsulfoxide (DMSO) and dichloromethane (DCM) were Honeywell Burdick and Jackson. & Jackson ® , Muskegon, MI, USA), and other chemicals were used as analytical grades. DMEM medium, fetal bovine serum (FBS), penicillin and streptomycin were purchased from Welgene INC, Korea. Cell counting kit-8 (CCK-8) was provided by Dojindo Molecular Technologies Inc, Japan. LysoTracker ® Red DND-99 and fluorescein DHPE (N- (fluorescein-5-thiocarbamoyl) -1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolmine triethylammonium salt) are invitrogen TM , Molecular Probes ® , Life Techloogies, Thermo Fisher Scientific Inc.). The OxiSelect TM In Vitro ROS / RNS analysis kit was purchased from Cell biolabs (San Diego, CA, USA). P (Asp-g-Im) -PEG (MW 6.5 to 2 kDa) was prepared, and the binding ratio of the imidazole ring to P (Asp) -PEG was 60%.

실시예Example 2 : P(Asp-g- 2: P (Asp-g- ImIm )-PEG 제조) -PEG Preparation

1. β-1. β- 벤질benzyl -L-아스파르트산 N--L-aspartic acid N- 카르복시안하이드라이드Carboxylic cyanide (( BLABLA -NCA) 제조-NCA) Manufacturing

BLA-NCA는 트리포스겐을 이용한 Fuchs-Farthing 방법을 이용하여 합성하였다. 즉, L-아스파르트산-β-벤질 에스테르(5 g)를 트리포스겐(2.2 g)을 함유한 무수 1,4-다이옥산(100 ml)에 현탁하고, 용액이 맑아질 때까지 60℃에서 교반하였다. 합성된 BLA-NCA는 헥산을 첨가하여 침전시키고, 여과하여 얻은 후, 진공 하에서 건조하였다.BLA-NCA was synthesized using the Fuchs-Farthing method using triphosgene. That is, L-aspartic acid-β-benzyl ester (5 g) was suspended in anhydrous 1,4-dioxane (100 ml) containing triphosgene (2.2 g) and stirred at 60 ° C until the solution became clear. . The synthesized BLA-NCA was precipitated by adding hexane, filtered, and dried under vacuum.

2. P(Asp-g-2.P (Asp-g- ImIm )-PEG 제조) -PEG Preparation

폴리(β-벤질-L-아스파르트산) (PBLA; a)은 헥실아민(HA)을 개시제로 사용하여 BLA-NCA의 개환 중합에 의해 합성하였다. 즉, BAL-NCA(6 mmol)를 헥실아민(0.14 mmol) 존재 하에 무수 1,4-다이옥산에 용해시키고, 질소 공기 하 45℃에서 3일 동안 교반하였다. PBLA는 헥산으로 침전시키고 2일 동안 진공에서 건조하였다. 이의 분자량은 내부 표준물질로서 TMS와 300-MHz unit를 사용하여 DMSO-d6에서 1H NMR 분석을 통해 확인하였다.Poly (β-benzyl-L-aspartic acid) (PBLA; a) was synthesized by ring-opening polymerization of BLA-NCA using hexylamine (HA) as an initiator. That is, BAL-NCA (6 mmol) was dissolved in anhydrous 1,4-dioxane in the presence of hexylamine (0.14 mmol) and stirred at 45 ° C. under nitrogen air for 3 days. PBLA was precipitated with hexane and dried in vacuo for 2 days. Its molecular weight was confirmed by 1 H NMR analysis in DMSO-d 6 using TMS and 300-MHz unit as internal standards.

다음으로 PBLA-PEG는 PBLA와 활성화된 모노카르복실레이티드 PEG를 커플링하였다(Macromol Biosci, 5, 1118-1124, 2005). PBLA로부터 벤질기를 제거하기 위하여, PBLA-PEG를 DMF/MeOH 혼합물(1:1 부피비)에 용해시키고, Pd/C 촉매를 상기 용액에 첨가한 후, 실온 1시간 동안 수소 공기 하에서 교반하였다. 그 후, 셀라이트를 이용하여 촉매를 여과하여 제거하였고, 여과물을 차가운 디에틸에테르로 침전시켜 여과물을 얻었으며, 진공 건조하였다. P(Asp)-PEG 상에 탈보호된 카르복실기의 존재는 TMS 표준물질을 사용하여 DMSO-d6에서 1H NMR 분석을 통해 확인하였다. Next, PBLA-PEG coupled PBLA and activated monocarboxylated PEG (Macromol Biosci, 5, 1118-1124, 2005). To remove the benzyl group from PBLA, PBLA-PEG was dissolved in a DMF / MeOH mixture (1: 1 volume ratio), and the Pd / C catalyst was added to the solution, followed by stirring under hydrogen air for 1 hour at room temperature. Thereafter, the catalyst was filtered off using celite, and the filtrate was precipitated with cold diethyl ether to obtain a filtrate and dried under vacuum. The presence of a deprotected carboxyl group on P (Asp) -PEG was confirmed by 1 H NMR analysis in DMSO-d 6 using a TMS standard.

탈보호된 P(Asp)-PEG는 디클로로메탄(DCM)에 용해된 N-하이드록시숙신이미드(NHS) 및 N,N'-디사이클로헥실카르보디이미드(DCC)에 의해 예비 활성화 시키고, 1-(3-아미노프로필)-이미다졸 (P(Asp)-PEG 상의 카르복실기에 대하여 1.5 몰 과량) 존재 하에서 DMF에 용해시킨 후 30℃에서 24시간 동안 교반하였다. 반응 완료 후, 용액을 preswollen 투석막 튜브(Spectra/Por; MWCO 2K)로 전이하고 탈이온수로 3일 동안 투석시켜 결합되지 않은 1-(3-아미노프로필)-이미다졸을 제거하였다. 그 후, 얻어진 용액이 동결건조된 1-(3-아미노프로필)-이미다졸 접합체라는 것을 1H NMR(DMSO-d6 with TMS)의 δ6.88-7.63(이미다졸기)을 통해 확인하였다.Deprotected P (Asp) -PEG is pre-activated by N-hydroxysuccinimide (NHS) and N, N'-dicyclohexylcarbodiimide (DCC) dissolved in dichloromethane (DCM), 1 Dissolved in DMF in the presence of-(3-aminopropyl) -imidazole (1.5 molar excess relative to the carboxyl group on P (Asp) -PEG) and stirred at 30 ° C. for 24 hours. After completion of the reaction, the solution was transferred to a preswollen dialysis membrane tube (Spectra / Por; MWCO 2K) and dialyzed for 3 days with deionized water to remove unbound 1- (3-aminopropyl) -imidazole. Thereafter, it was confirmed through δ6.88-7.63 (imidazole group) of 1 H NMR (DMSO-d 6 with TMS) that the obtained solution was a lyophilized 1- (3-aminopropyl) -imidazole conjugate.

실시예Example 3 : 인돌-3-아세트산이  3: Indole-3-acetic acid 봉입된Enclosed 마이셀Mycell (IAA((IAA ( indoleindole -3-acetic acid) loaded micelle, -3-acetic acid) loaded micelle, ILMILM ) 제조) Produce

ILM은 용매 증발법을 이용하여 제조하였다. 약물 로딩 함량이 10 또는 20 중량%으로 함유되도록 만들기 위해 인돌-3-아세트산 5 mg과 P(Asp-g-lm)-PEG(pKa = 6.5) 45 mg 또는 20 mg을 에탄올에 용해하고 둥근 바닥 플라스크에 옮겼다. ILM 제조를 위해, 유기상은 회전 증발기(n-1000, EYELA, Tokyo, Japan)를 이용하여 제거하였으며 둥근 바닥 플라스크에 박막이 형성된 것을 확인하였다. 붕산염(borate) 완충액(pH 8.2, 1 mM)을 이용하여 박막을 재수화(rehydration)함으로써 ILM을 얻었고, 마이셀 용액의 pH는 인산완충식염수(phosphate buffered saline, PBS, pH 6.0 내지 8.0)로 조절하였다. 약물 로딩 함량과 효율은 하기 계산식을 이용하여 계산하였다.ILM was prepared using a solvent evaporation method. Dissolve 5 mg of indole-3-acetic acid and 45 mg or 20 mg of P (Asp-g-lm) -PEG (pKa = 6.5) in ethanol to make the drug loading content 10 or 20% by weight and round bottom flask Moved on. For ILM production, the organic phase was removed using a rotary evaporator (n-1000, EYELA, Tokyo, Japan), and it was confirmed that a thin film was formed in a round bottom flask. ILM was obtained by rehydration of the thin film using borate buffer (pH 8.2, 1 mM), and the pH of the micelle solution was adjusted with phosphate buffered saline (PBS, pH 6.0-8.0). . The drug loading content and efficiency were calculated using the following calculation formula.

[계산식 1][Calculation formula 1]

약물 로딩 함량(%) = (마이셀에 로딩된 약물의 중량)/(제제의 블록 공중합체 중량) X 100Drug loading content (%) = (weight of drug loaded in micelles) / (block copolymer weight of formulation) X 100

[계산식 2][Calculation formula 2]

약물 로딩 효율(%) = (마이셀에 로딩된 약물의 중량)/(제제에 처음 첨가된 약물의 중량) X 100Drug loading efficiency (%) = (weight of drug loaded in micelles) / (weight of drug first added to formulation) X 100

ILM에서 인돌-3-아세트산의 농도는 에탄올:Na2B4O7 완충 혼합 용액(95:5 볼륨%)에 용해한 후, UV/Vis 분광광도계(GENESYS 10 UV/Vis spectrophotometer, Thermo Scientific, Waltham, MA, USA)를 이용하여 280 nm에서 UV 흡광도를 측정함으로써 결정하였다.The concentration of indole-3-acetic acid in ILM was dissolved in an ethanol: Na 2 B 4 O 7 buffered mixed solution (95: 5% by volume), followed by a UV / Vis spectrophotometer (GENESYS 10 UV / Vis spectrophotometer, Thermo Scientific, Waltham, MA, USA) to measure UV absorbance at 280 nm.

그 결과, pH가 8.2에서 10 또는 20 중량%의 약물 로딩 함량으로 제조된 ILM의 특성을 하기 표 1에 나타내었다. 인돌-3-아세트산의 약물 로딩 함량(질량%)이 증가할수록 ILM의 입자 직경 및 PDI(polydispersity index)가 증가하는 것을 확인하였다. 그러나 약물 로딩 효율은 감소하였다. 상기 결과로부터 ILM에 인돌-3-아세트산의 로딩 함량은 17 중량%로 예상될 수 있다. P(Asp-g-Im)-PEG에서 마이셀의 높은 인돌-3-아세트산 로딩 함량은 인돌-3-아세트산의 인돌 고리와 이미다졸 고리 사이의 수소 결합과 상호작용 때문일 수 있다.As a result, the properties of the ILM prepared with a drug loading content of 10 or 20 wt% at pH 8.2 are shown in Table 1 below. It was confirmed that as the drug loading content (mass%) of indole-3-acetic acid increased, the particle diameter and polydispersity index (PDI) of the ILM increased. However, the drug loading efficiency was reduced. From the above results, the loading content of indole-3-acetic acid in ILM can be expected to be 17% by weight. The high indole-3-acetic acid loading content of micelles in P (Asp-g-Im) -PEG may be due to hydrogen bonding and interaction between the indole ring and the imidazole ring of indole-3-acetic acid.

약물 로딩 함량
(wt%)
Drug loading content
(wt%)
평균 직경
(Deff, nm)
Average diameter
(D eff , nm)
로딩 함량
(wt%)
Loading content
(wt%)
로딩 효율
(wt%)
Loading efficiency
(wt%)
PDIPDI
1010 142 ± 8.7142 ± 8.7 9.3 ± 0.049.3 ± 0.04 93.293.2 0.23 ± 0.0020.23 ± 0.002 2020 163 ± 10.6163 ± 10.6 16.6 ± 0.1516.6 ± 0.15 83.083.0 0.26 ± 0.0310.26 ± 0.031

실시예Example 4 : 동적 광 산란(dynamic light scattering, DLS)을 이용한 입자  4: Particles using dynamic light scattering (DLS) 직경diameter 및 제타 전위(zeta potential) 측정 And zeta potential measurement

유효 역학 직경(effective hydrodynamic diameter, Deff)과 나노-복합 용액의 제타 전위는 Zetasizer Nano-ZS(Malvern Instruments, UK)를 이용하여 광자 상관 분광법(photon correlation spectroscopy)으로 분석하였다. 제조사로부터 공급받은 소프트웨어로 역학적 직경을 계산하였으며, 평균 역학적 직경과 제타 전위 값은 각 샘플을 3회 반복 측정하여 계산하였다.The effective hydrodynamic diameter (D eff ) and the zeta potential of the nano-composite solution were analyzed by photon correlation spectroscopy using Zetasizer Nano-ZS (Malvern Instruments, UK). The mechanical diameter was calculated with the software supplied from the manufacturer, and the average mechanical diameter and zeta potential values were calculated by measuring each sample three times.

실시예Example 5 :  5: ILM의ILM's 형태학적 분석 Morphological analysis

ILM의 형태를 확인하기 위해, 희석 마이셀 용액(0.1 mg/ml, pH 7.4)을 유리 슬라이드에 떨어뜨리고 진공에서 건조하여 제조하였다. ILM의 형태는 전계 방출형 전자 현미경(field emission scanning electron microscope, FE-SEM)을 이용하여 관찰하였다(FE-SEM; SIGMA, Carl Zeiss, Germany).To confirm the morphology of the ILM, a diluted micelle solution (0.1 mg / ml, pH 7.4) was prepared by dropping on a glass slide and drying in vacuo. The shape of the ILM was observed using a field emission scanning electron microscope (FE-SEM) (FE-SEM; SIGMA, Carl Zeiss, Germany).

실시예 4 및 실시예 5의 결과로부터, 도 2(a) 및 도 2(b)를 참조하여 보면, 10%의 인돌-3-아세트산 로딩 함량으로 제조된 ILM은 pH 7.4에서 구형 구조로 140 nm의 입자 직경을 가지고, 입자 직경에 있어서 좁은 분포를 나타내는 것을 확인하였다. 그러나, pH 6.5의 산성에서 ILM은 P(Asp-g-lm)-PEG의 이미다졸 고리와 카르복실기의 양성자에 의한 소수성 코어(core)의 불안정화를 통해 더 큰 입자 직경을 가진 붕괴된 입자 형태를 나타내었다.From the results of Examples 4 and 5, referring to FIGS. 2 (a) and 2 (b), the ILM prepared with an indole-3-acetic acid loading content of 10% was 140 nm in spherical structure at pH 7.4 It was confirmed that it has a particle diameter of and shows a narrow distribution in the particle diameter. However, at acidity of pH 6.5, ILM exhibits collapsed particle morphology with larger particle diameters through destabilization of the hydrophobic core by protons of the imidazole ring and carboxyl group of P (Asp-g-lm) -PEG. Did.

실시예Example 6 : pH 의존  6: pH dependent ILM의ILM's 약물 방출 분석 Drug release analysis

약물 방출을 실험하기 위해, 10 mg의 ILM(10% IAA)을 각각 다른 pH (pH 6.0 내지 7.4)를 가지는 인산완충식염수 1 ml에 분산시키고, 투석막 튜브(Spectra/Por)로 이동시켰다. 각 투석막 튜브는 다른 pH를 가지는 인산완충식염수 10 ml에 담그고, ILM으로부터 인돌-3-아세트산의 방출을 위해 37℃, 1000 rpm 하에서 실험을 수행하였다. 소정의 시간 간격에서 투석막의 외측 상은 약물 농도 분석을 위해 회수하였고, 동일한 양의 새로운 배지를 첨가해주었다. 인산완충식염수로 방출된 인돌-3-아세트산의 농도는 자동 주입기, 고압 펌프 및 UV-Vis 검출기가 포함된 고성능 액체 크로마토그래피(High Performance Liquid Chromatography, HPLC, Agilent 1200 series, Agilent Tech., USA)를 이용하여 정기적으로 모니터링하였다. 역상 C18 컬럼(Cogent C18 e Series, 직경 150 X 4.6 mm, 기공 크기 5μm, Microsolv Tech. corp., NJ, USA)을 사용하였고, 아세토니트릴:물:아세트산(35:65:1)로 이루어진 이동상은 1 ml/분의 유속으로 공급되었다. 컬럼 방출은 280 nm에서 측정하였고, 인돌-3-아세트산의 농도는 표준 인돌-3-아세트산의 선형 보정곡선을 이용하여 계산하였다.To test drug release, 10 mg of ILM (10% IAA) was dispersed in 1 ml of phosphate buffered saline, each with a different pH (pH 6.0 to 7.4), and transferred to a dialysis membrane tube (Spectra / Por). Each dialysis membrane tube was immersed in 10 ml of phosphate buffered saline having a different pH, and experiments were performed at 37 ° C and 1000 rpm for the release of indole-3-acetic acid from ILM. At a given time interval, the outer phase of the dialysis membrane was recovered for drug concentration analysis, and the same amount of fresh medium was added. The concentration of indole-3-acetic acid released into phosphate buffered saline was determined using High Performance Liquid Chromatography (HPLC, Agilent 1200 series, Agilent Tech., USA) with an automatic injector, a high pressure pump and a UV-Vis detector. Monitored regularly. A reverse phase C18 column (Cogent C18 e Series, diameter 150 X 4.6 mm, pore size 5 μm, Microsolv Tech. Corp., NJ, USA) was used, and the mobile phase consisting of acetonitrile: water: acetic acid (35: 65: 1) It was fed at a flow rate of 1 ml / min. Column release was measured at 280 nm, and the concentration of indole-3-acetic acid was calculated using a linear calibration curve of standard indole-3-acetic acid.

그 결과, 도 2(c)를 참조하여 보면, ILM으로부터 pH 의존 인돌-3-아세트산 방출을 조사하기 위해, ILM을 각각 다른 pH 상태(pH 6.0 내지 8.0)에 노출시켰다. pH 7.4 와 pH 8.0에서 ILM으로부터 인돌-3-아세트산 방출이 20% 미만으로 관찰된 반면 pH 7.0 이하에서는 인돌-3-아세트산 방출이 크게 증가하는 것을 확인하였다. 이는 pH 값에 따라 마이셀 코어를 형성하기 위해 P(Asp-g-lm) 블록에서 이미다졸륨/카르복실레이트 상호작용의 변화 때문일 수 있다. pH가 7.4 이상에서 ILM은 소수성 P (ASP-g-lm) 블록 코어와 친수성 PEG 코로나(corona)와 안정된 구형 마이셀을 형성하였다. ILM은 적층 상호작용과 소수성 상호작용으로 코어에 소수성 인돌-3-아세트산을 봉입할 수 있으며, 코어가 단단하게 형성될수록 인돌-3-아세트산의 적은 방출을 야기한다. pH가 7.0에서 P(Asp-g-lm)-PEG는 불안정해지고 불안정해진 코어로부터 인돌-3-아세트산이 방출된다. pH가 6.5 및 6.0으로 더 감소하게 되면 이미다졸과 카르복실기의 양성자에 의한 마이셀 코어의 변화는 마이셀 구조를 더 불안정화시키고 인돌-3-아세트산 방출을 야기한다. 이는 ILM으로부터 인돌-3-아세트산의 방출이 생리적 pH 조건(pH ≥ 7.4)에서 억제되고, 종양 부위에 도달할 때까지 혈액 순환에서 잠재적인 약물의 부작용을 최소화시킨다. As a result, referring to FIG. 2 (c), in order to investigate pH-dependent indole-3-acetic acid release from ILM, ILM was exposed to different pH states (pH 6.0 to 8.0). At pH 7.4 and pH 8.0, indole-3-acetic acid release from ILM was observed to be less than 20%, while it was confirmed that indole-3-acetic acid release significantly increased below pH 7.0. This may be due to the change in imidazolium / carboxylate interaction in the P (Asp-g-lm) block to form a micelle core according to the pH value. At pH above 7.4, ILM formed a stable spherical micelle with a hydrophobic P (ASP-g-lm) block core and hydrophilic PEG corona. ILM can encapsulate hydrophobic indole-3-acetic acid in the core by layered interaction and hydrophobic interaction, and the harder the core is formed, the less release of indole-3-acetic acid. At pH 7.0, P (Asp-g-lm) -PEG becomes unstable and releases indole-3-acetic acid from the unstable core. When the pH is further reduced to 6.5 and 6.0, the change in the micelle core by protons of imidazole and carboxyl groups further destabilizes the micelle structure and causes indole-3-acetic acid release. This inhibits the release of indole-3-acetic acid from the ILM at physiological pH conditions (pH ≥ 7.4) and minimizes side effects of potential drugs in blood circulation until reaching the tumor site.

실시예Example 7 : 세포 생존율 분석 7: Cell viability analysis

B16F10 흑색종 세포(melanoma cell)는 10% 우태아혈청(fetal bovine serum, FBS)이 포함된 DMEM 배지를 이용하여 37℃, 5% CO2 배양기에서 배양하였다. 세포 독성 실험 24시간 전, B16F10 세포(1.25 X 106/ml)를 96 웰 플레이트에 접종하였다. 자유 인돌-3-아세트산과 ILM은 0.1 N의 수산화나트륨(NaOH)과 0.1 N의 염산(HCl)으로 pH가 6.0 내지 7.4로 조절된 무 혈청 배지에 준비하였다. 24시간 혈청 결핍 후, 배지가 제거된 96 웰 플레이트로 각각 다른 pH 상태의 배지를 인돌-3-아세트산(10 내지 50 μg/ml)과 함께 B16F10 세포에 첨가하였다. 광역학 치료(PDT)의 연구를 위해, 세포는 HL-2000 텅스텐 할로겐 광원(Ocean Optics, USA)을 이용하여 가시광선(480 nm, 100 mJ/cm2, 6.8 mW)으로 20분 동안 조사하고 24시간 동안 배양하였다. B16F10 melanoma cells were cultured in a 37 ° C, 5% CO 2 incubator using DMEM medium containing 10% fetal bovine serum (FBS). 24 hours before the cytotoxicity experiment, B16F10 cells (1.25 X 10 6 / ml) were inoculated in a 96 well plate. Free indole-3-acetic acid and ILM were prepared in serum-free medium with pH adjusted from 6.0 to 7.4 with 0.1 N sodium hydroxide (NaOH) and 0.1 N hydrochloric acid (HCl). After 24 hours of serum deficiency, media of different pH conditions were added to B16F10 cells with indole-3-acetic acid (10-50 μg / ml) in a 96-well plate from which the medium was removed. For the study of photodynamic therapy (PDT), cells were irradiated for 20 minutes with visible light (480 nm, 100 mJ / cm 2 , 6.8 mW) using a HL-2000 tungsten halogen light source (Ocean Optics, USA) 24 Incubated for hours.

세포의 생존율은 CCK 분석으로 측정하였다. CCK 용액(10 v/v%)이 포함된 새로운 배지를 각 웰에 첨가하고 3시간 동안 배양하였다. 각 웰의 흡광도는 마이크로플레이트 리더기(Molecular Devices, Sunnyvale, CA, USA)를 이용하여 450 nm에서 흡광도를 측정하였다. Cell viability was measured by CCK analysis. A new medium containing CCK solution (10 v / v%) was added to each well and incubated for 3 hours. The absorbance of each well was measured at 450 nm using a microplate reader (Molecular Devices, Sunnyvale, CA, USA).

종양 환경인 pHex (pHex = ~ 6.5 내지 7.2)에서는 ILM으로부터 인돌-3-아세트산의 방출을 증가시키고 더 효과적인 항암 활성을 유도할 수 있다. 도 3(a) 및 도 3(b)를 참조하여 보면, 인돌-3-아세트산은 pH 의존 독성을 보이지 않은 반면 ILM은 빛 조사 없이 pH 의존 독성을 보이는 것을 확인하였다. pH 6.5 및 pH 6.0의 산성에서 ILM은 세포 독성을 증가시켜 B16F10 흑색종 세포의 생존율을 감소시켰고, pH 7.0 및 pH 7.4의 중성에서는 낮은 세포 독성을 보였으며 ILM 낮은 농도에서는 B16F10 흑색종 세포가 생존하는 것을 확인하였다. ILM의 IC50 값은 pH 6.5와 6.0에서 각각 36.0 μg/ml, 32.1 μg/ml이었다. In the tumor environment, pH ex (pH ex = ~ 6.5 to 7.2), it is possible to increase the release of indole-3-acetic acid from ILM and induce more effective anticancer activity. 3 (a) and 3 (b), it was confirmed that indole-3-acetic acid showed no pH-dependent toxicity, while ILM showed pH-dependent toxicity without light irradiation. At acidity of pH 6.5 and pH 6.0, ILM increased the cytotoxicity to decrease the viability of B16F10 melanoma cells, showed low cytotoxicity at neutral pH 7.0 and pH 7.4, and B16F10 melanoma cells survived at low ILM concentrations. Was confirmed. IC 50 values of ILM were 36.0 μg / ml and 32.1 μg / ml at pH 6.5 and 6.0, respectively.

다음으로 30 μg/ml의 인돌-3-아세트산과 30 μg/ml의 인돌-3-아세트산을 봉입한 ILM로 pH 기반 기능과 광역학 치료 효과를 평가하였다. 그 결과, 도 3(c)를 참조하여 보면, 인돌-3-아세트산은 독성을 보이지 않았고 빛 조사 후 세포 생존율이 10% 감소하는 것을 확인하였다. 반면에 ILM은 pH 조건에 관계없이 빛 조사에 의해 세포 독성이 증가하는 것을 확인함으로써 가시광선(480 nm)이 인돌-3-아세트산을 활성화시켜 자유 라디칼 생성할 수 있음을 보여주었다. pH 민감성 전달체와 빛 조사는 ILM의 세포 독성을 상승적으로 증가시킨다. ILM의 P(Asp-g-Im)-PEG 양성자는 ILM으로부터 인돌-3-아세트산의 방출을 야기하여 인돌-3-아세트산 농도를 증가시키고 더 많은 자유 라디칼을 생성시킬 수 있다. EPR (enhanced permeability & retention) 효과를 이용한 종양 부위로 pH 민감성 ILM 이동은 pHex에서 ILM으로부터 인돌-3-아세트산을 방출하여 종양 부위에 인돌-3-아세트산 농도를 증가시키고 pHen (pHen ≤ 6.5)에서 ILM의 엔도좀 파괴를 일으키며 ILM의 양성화된 P(Asp-g-Im)-PEG에 빛 조사로 세포 독성을 증가시킬 수 있다. Next, the pH-based function and the effect of photodynamic therapy were evaluated with ILM containing 30 μg / ml indole-3-acetic acid and 30 μg / ml indole-3-acetic acid. As a result, referring to FIG. 3 (c), it was confirmed that indole-3-acetic acid did not show toxicity and cell viability decreased by 10% after light irradiation. On the other hand, ILM showed that visible light (480 nm) can activate indole-3-acetic acid to generate free radicals by confirming that cytotoxicity is increased by light irradiation regardless of pH conditions. pH-sensitive transporters and light irradiation synergistically increase the cytotoxicity of ILM. The P (Asp-g-Im) -PEG proton of ILM can cause the release of indole-3-acetic acid from ILM, increasing the indole-3-acetic acid concentration and producing more free radicals. Transfer of pH-sensitive ILM to the tumor site using the enhanced permeability & retention (EPR) effect releases indole-3-acetic acid from the ILM at pH ex , increasing the concentration of indole-3-acetic acid at the tumor site and increasing the pH en (pH en ≤ 6.5 ) Causes endosomal destruction of ILM and can increase cytotoxicity by irradiating ILM positive P (Asp-g-Im) -PEG.

실시예Example 8 : 자유 라디칼(free radical) 발생 분석 8: Free radical generation analysis

자유 라디칼의 발생은 OxiSelectTM In Vitro ROS/RNS 분석 키트(Cell biolabs, Inc. San Diego, CA, USA)를 이용하여 샘플에 존재하는 총 반응성 산소종(reactive oxygen species, ROS) 및 반응성 질소종(reactive nitrogen species, RNS) 자유 라디칼 활성을 측정하여 분석하였다. 10 μg/ml의 인돌-3-아세트산을 포함하는 ILM과 디클로로디하이드로플루오레신(dichlorodihydrofluorescein, DCFH) 용액을 각 웰에 첨가하였다. 플레이트는 알루미늄 호일로 차광하고 실온에서 30분 동안 반응시켰다. 각 웰의 형광은 마이크로플레이트 리더기를 이용하여 480 nm의 여기와 530 nm의 방출에서 흡광도를 측정하였다.The generation of free radicals was performed using OxiSelect TM In Vitro ROS / RNS analysis kit (Cell biolabs, Inc. San Diego, CA, USA) with total reactive oxygen species (ROS) and reactive nitrogen species present in the sample ( Reactive nitrogen species (RNS) was analyzed by measuring free radical activity. ILM containing 10 μg / ml of indole-3-acetic acid and a solution of dichlorodihydrofluorescein (DCFH) were added to each well. The plate was shaded with aluminum foil and reacted at room temperature for 30 minutes. The fluorescence of each well was measured by excitation at 480 nm and emission at 530 nm using a microplate reader.

그 결과, 인돌-3-아세트산과 ILM으로부터의 총 라디칼 ROS/RNS를 측정하고 상대적인 형광 강도를 도 3(d)에 나타내었다. pH 7.4에서 인돌-3-아세트산과 ILM은 비슷한 형광 강도를 보였고 이는 pH 민감성 고분자 비율에 관계없이 자유 라디칼 생성에 차이가 없음을 의미한다. 그러나 pH 6.5에서 ILM은 pH 7.4와 비교하였을 때 더 많은 자유 라디칼을 생성하는 것을 확인하였다. 이는 산성 pH 및 P(Asp-g-Im)-PEG가 라디칼 생성을 상승적으로 증가시키는 중요한 요소임을 나타낸다. 그러므로 ILM의 자유 라디칼 생성은 pH 조건에 의해 조절되고, ILM은 산성 pH 조건에서 자유 라디칼 더 많이 생성하는 것을 확인하였다.As a result, the total radical ROS / RNS from indole-3-acetic acid and ILM was measured and the relative fluorescence intensity is shown in Fig. 3 (d). At pH 7.4, indole-3-acetic acid and ILM showed similar fluorescence intensity, which means that there is no difference in free radical generation regardless of the pH-sensitive polymer ratio. However, it was confirmed that at pH 6.5, ILM produced more free radicals compared to pH 7.4. This indicates that acidic pH and P (Asp-g-Im) -PEG are important factors synergistically increasing radical production. Therefore, it was confirmed that the free radical generation of ILM is controlled by the pH condition, and the ILM produces more free radicals under the acidic pH condition.

실시예Example 9 : pH 의존  9: pH dependent 마이셀에On micelle 의한  by 엔도좀Endosomes (( endosomeendosome ) 파괴 분석) Fracture analysis

pH 의존 마이셀에 의한 엔도좀 파괴 실험은 DHPE 형광 염료(녹색) 및 LysoTracker DND-99 염료(빨강)를 이용하여 수행하였다. 현미경 커버 글라스에 배양한 B16F10 세포에 소수성 DHPE 형광 염료(0.1 중량%)와 lysoTracker DND-99 형광 염료(80 Nm)가 봉입된 20 μg/ml의 고분자 마이셀을 첨가하고 30분 동안 반응시켰다. 마이셀 내부의 DHPE 양은 미리 측정된 DHPE 형광 검정 곡선으로 계산하였다. 마이셀로 처리된 세포는 인산완충식염수로 3회 세척하고 DMEM 배지로 대체하였다. 세포 내부의 DHPE 형광(녹색)과 lysoTracker 형광(빨강)은 공초점 현미경으로 분석하였다. DHPE 형광은 496 nm의 여기와 519 nm의 방출 파장을 가지며, lysoTracker 형광은 577 nm의 여기와 590 nm의 방출 파장을 갖는다.Endosomal destruction experiments by pH-dependent micelles were performed using DHPE fluorescent dye (green) and LysoTracker DND-99 dye (red). To the B16F10 cells cultured in the microscope cover glass, 20 μg / ml of polymer micelles loaded with hydrophobic DHPE fluorescent dye (0.1 wt%) and lysoTracker DND-99 fluorescent dye (80 Nm) were added and reacted for 30 minutes. The amount of DHPE inside the micelle was calculated with a previously measured DHPE fluorescence assay curve. Cells treated with micelles were washed 3 times with phosphate buffered saline and replaced with DMEM medium. DHPE fluorescence (green) and lysoTracker fluorescence (red) inside the cells were analyzed by confocal microscopy. DHPE fluorescence has an excitation of 496 nm and an emission wavelength of 519 nm, lysoTracker fluorescence has an excitation of 577 nm and an emission wavelength of 590 nm.

pH 민감성 나노전달체에 의한 약물의 세포 내 분포를 시각화하기 위해 두 개의 다른 형광 염료를 이용하여 공초점 현미경으로 분석하였다. 그 결과, 도 3(e)를 참조하여 보면, DHPE 형광은 엔도좀 구획과 중첩되지 않는 것을 확인하였으며, 이는 P(Asp-g-Im)-PEG와 함께 제조된 pH에 민감성 마이셀에 봉입된 DHPE가 ‘양성자 스폰지 효과’에 의해 엔도라이소좀(endolysosome) 구획의 파괴를 통해 세포질로 방출된 것을 의미한다.In order to visualize the intracellular distribution of the drug by the pH sensitive nanocarrier, it was analyzed by confocal microscopy using two different fluorescent dyes. As a result, referring to FIG. 3 (e), it was confirmed that DHPE fluorescence does not overlap with the endosomal compartment, which is DHPE encapsulated in pH-sensitive micelles prepared with P (Asp-g-Im) -PEG. Means that it is released into the cytoplasm through destruction of the endolysosome compartment by the 'proton sponge effect'.

실시예Example 10 : 동물 실험 10: animal experiment

동물 실험에 사용된 마우스는 3 내지 5주령의 암컷 누드(nude) 마우스(BALB/c, nu/nu mice; Taconic Bioscience, NY, United Sates)이며, 마우스는 중앙 대학교 동물실험 윤리 위원회(IACUC)에서 승인된 프로토콜의 지침에 따라 수행되었고, 모든 실험은 관련 법률 및 제도적 지침에 따라 수행되었다.The mice used in the animal experiments are female nude mice aged 3 to 5 weeks (BALB / c, nu / nu mice; Taconic Bioscience, NY, United Sates), and the mice are from the Central University Animal Experiment Ethics Committee (IACUC). It was conducted according to the guidelines of the approved protocol, and all experiments were performed according to relevant legal and institutional guidelines.

1. in 1.in vivovivo 종양 성장 억제 효과 분석 Analysis of tumor growth inhibitory effect

B16F10 흑색종 암세포는 인산완충식염수 배지(pH 7.4)에 3 X 105개의 농도로 현탁하여 암컷 누드 마우스에 피하 주사로 투여하였다. 마우스는 종양의 부피가 1 내지 50 mm3이 될 때까지 사육하였고, 자유 인돌-3-아세트산, ILM 또는 인산완충식염수(대조군)를 꼬리 정맥 내로 주사하였다.B16F10 melanoma cancer cells were suspended in phosphate-buffered saline medium (pH 7.4) at a concentration of 3 X 10 5 and administered subcutaneously to female nude mice. Mice were kept until the tumor volume was 1-50 mm 3 , and free indole-3-acetic acid, ILM or phosphate buffered saline (control) was injected into the tail vein.

종양 체적의 변화 및 체중 변화는 계속적으로 모니터링하였으며, 상대 종양 부피(%)는 종양의 초기 부피에 대하여 설정된 시간 간격에서 종양의 부피%로 정의하였다.Changes in tumor volume and weight change were continuously monitored, and the relative tumor volume (%) was defined as the volume percent of the tumor at a set time interval relative to the initial volume of the tumor.

[계산식 3][Calculation formula 3]

종양 부피 = 길이 X (너비)2/2 Tumor volume = length X (width) 2/2

광역학 치료 효과를 규명하기 위해, 24시간 후, 종양 부위는 HL-2000 텅스텐 할로겐 광원을 이용하여 가시광선(480 nm, 100 mJ/cm2, 6.8 mW)으로 20분 동안 조사하였다.To investigate the photodynamic treatment effect, after 24 hours, the tumor site was irradiated with visible light (480 nm, 100 mJ / cm 2 , 6.8 mW) for 20 minutes using a HL-2000 tungsten halogen light source.

그 결과, 도 4를 참조하여 보면, 빛 조사 없이 ILM은 특정 종양 성장 억제를 보였고, 빛 조사를 함께 처리하였을 때 ILM은 더 효과적인 종양 성장 억제를 보였다. 또한, 인돌-3-아세트산, ILM 또는 인산완충식염수를 처리한 누드 마우스에서 각 그룹간 체중 변화는 거의 없었으며, 이는 ILM이 몸에 걸쳐 뚜렷한 독성을 나타내지 않았다는 것을 의미한다.As a result, referring to FIG. 4, without light irradiation, ILM showed specific tumor growth inhibition, and when treated with light irradiation, ILM showed more effective tumor growth inhibition. In addition, in nude mice treated with indole-3-acetic acid, ILM or phosphate buffered saline, there was little change in body weight between the groups, indicating that ILM did not show distinct toxicity across the body.

상기 결과에 기초하여, ILM의 종양 성장 억제는 도 1로 설명될 수 있다. ILM은 탈양성자 P(Asp-g-Im) 블록으로 형성된 마이셀의 소수성 코어에 인돌-3-아세트산을 봉입하고, 정맥으로 ILM의 주입은 혈관(pH 7.4)을 통해 혈관 외 유출 없이 순환하게 되고, 탈양성자 P(Asp-g-Im)-PEG의 안정적이고 단단한 결합에 의해 인돌-3-아세트산의 방출이 최소화 된다. ILM은 혈액 순환 도중 EPR 효과에 의해 종양 부위로 전달되고 축적된다. 종양 부위에서, ILM은 pH 감소에 의해 P(Asp-g-Im)의 양성자를 통해 ILM 코어의 붕괴로 인하여 pHex 및 pHen에서 급격하게 방출된다. 동시에, 인돌-3-아세트산은 pH 민감성 전달체와 가시광선에 의해 자유 라디칼을 형성하고 이는 세포 손상 및 종양 성장 억제를 야기한다.Based on these results, inhibition of tumor growth in ILM can be illustrated in FIG. 1. ILM encapsulates indole-3-acetic acid in the hydrophobic core of micelles formed of deproton P (Asp-g-Im) blocks, and injection of ILM into a vein circulates through the blood vessels (pH 7.4) without extravasation, The release of indole-3-acetic acid is minimized by the stable and tight binding of the deproton P (Asp-g-Im) -PEG. ILM is delivered to the tumor site and accumulates by the EPR effect during blood circulation. At the tumor site, ILM is rapidly released at pH ex and pH en due to the collapse of the ILM core through the proton of P (Asp-g-Im) by pH reduction. At the same time, indole-3-acetic acid forms free radicals by the pH sensitive transporter and visible light, which causes cell damage and tumor growth inhibition.

결론적으로, 나노 크기의 ILM은 생리적 pH에서 잠재적인 약물 손실과 전신 독성을 최소화 할 수 있고, pHex 및 pHen에서 가시광선과 함께 ILM으로부터 인돌-3-아세트산의 증가된 축적 및 방출로 항암 효과를 극대화 할 수 있다. 인돌-3-아세트산, pH 민감성 전달체 및 빛 조사의 조합은 적은 전신 독성 및 높은 치료 효과와 함께 광역학 치료로서 종양 치료를 위한 강력한 해결책이 될 수 있다.In conclusion, nano-sized ILM can minimize potential drug loss and systemic toxicity at physiological pH, and has anti-cancer effects with increased accumulation and release of indole-3-acetic acid from ILM with visible light at pH ex and pH en . Can be maximized. The combination of indole-3-acetic acid, pH sensitive carrier and light irradiation can be a powerful solution for tumor therapy as a photodynamic therapy with less systemic toxicity and high therapeutic effect.

이상으로 본 발명의 특정한 부분을 상세히 기술한 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현 예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.The specific parts of the present invention have been described in detail above, and it is clear that for those skilled in the art, these specific techniques are only preferred embodiments, and the scope of the present invention is not limited thereto. Accordingly, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

본 발명의 범위는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present invention is indicated by the following claims, and all changes or modifications derived from the meaning and scope of the claims and equivalent concepts should be interpreted to be included in the scope of the present invention.

Claims (9)

삭제delete 삭제delete 삭제delete 삭제delete 하기 화학식 1로 표시되는, 폴리(아스파르트산)-폴리에틸렌글라이콜에 이미다졸을 접목시킨 pH 민감성 블록 공중합체(폴리(아스파르트산-접목-이미다졸)-폴리에틸렌글라이콜)로 이루어진 마이셀; 및
상기 마이셀 내 봉입되는 인돌-3-아세트산(indole-3-acetic acid)을 포함하고, pH 6.0 내지 pH 6.5의 약산성에서 마이셀 구조가 붕괴되어 상기 인돌-3-아세트산을 방출시키며, 광 조사 하에 자유 라디칼 생성을 증대시키는 것을 특징으로 하는, 암질환의 광역학 치료용 약학 조성물:
[화학식 1]
Figure 112018087807496-pat00005

R1 및 R2는 각각 동일하거나 다를 수 있고, 수소, (C1~C10)알킬, 또는 (C1~C10)알콕시에서 선택되며,
m 및 n은 1 내지 30의 정수임.
A micelle made of a pH-sensitive block copolymer (poly (aspartic acid-grafting-imidazole) -polyethylene glycol) in which imidazole is grafted to poly (aspartic acid) -polyethylene glycol represented by the following Chemical Formula 1; And
Contains indole-3-acetic acid encapsulated in the micelle, and the micelle structure collapses at a weak acidity of pH 6.0 to pH 6.5 to release the indole-3-acetic acid, and free radicals under light irradiation A pharmaceutical composition for increasing the production, characterized in that for the photodynamic treatment of cancer diseases:
[Formula 1]
Figure 112018087807496-pat00005

R 1 and R 2 may each be the same or different, and are selected from hydrogen, (C1 to C10) alkyl, or (C1 to C10) alkoxy,
m and n are integers from 1 to 30.
삭제delete 제 5항에 있어서, 상기 암질환은 피부암, 폐암, 비소세포성 폐암, 결장암, 골암, 췌장암, 두부 또는 경부 암, 자궁암, 난소암, 직장암, 위암, 항문부근암, 결장암, 유방암, 나팔관암종, 자궁내막암종, 자궁경부암종, 질암종, 음문암종, 호킨스씨병(Hodgkin's disease), 식도암, 소장암, 내분비선암, 갑상선암, 부갑상선암, 부신암, 연조직 육종, 요도암, 음경암, 전립선암, 만성 또는 급성 백혈병, 림프구 림프종, 방광암, 신장 또는 수뇨관암, 신장세포 암종, 신장골반 암종, 중추신경계(CNS; central nervous system) 종양, 1차 중추신경계 림프종, 척수 종양, 뇌간 신경교종 및 뇌하수체 선종으로 이루어진 군에서 선택된 것을 특징으로 하는, 암질환의 광역학 치료용 약학 조성물.The method according to claim 5, wherein the cancer diseases include skin cancer, lung cancer, non-small cell lung cancer, colon cancer, bone cancer, pancreatic cancer, head or neck cancer, uterine cancer, ovarian cancer, rectal cancer, stomach cancer, proximal cancer, colon cancer, breast cancer, fallopian tube carcinoma, Endometrial carcinoma, cervical carcinoma, vaginal carcinoma, vulvar carcinoma, Hodgkin's disease, esophageal cancer, small intestine cancer, endocrine cancer, thyroid cancer, parathyroid cancer, adrenal cancer, soft tissue sarcoma, urethral cancer, penile cancer, prostate cancer, chronic Or acute leukemia, lymphocytic lymphoma, bladder cancer, kidney or urinary tract cancer, renal cell carcinoma, renal pelvic carcinoma, central nervous system (CNS) tumor, primary central nervous system lymphoma, spinal cord tumor, brainstem glioma and pituitary adenoma Characterized in that selected from the group, pharmaceutical composition for photodynamic therapy of cancer diseases. 삭제delete 삭제delete
KR1020170025929A 2017-02-28 2017-02-28 Composition for photodynamic diagnosis or therapy comprising indole-3-acetic acid KR102094200B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170025929A KR102094200B1 (en) 2017-02-28 2017-02-28 Composition for photodynamic diagnosis or therapy comprising indole-3-acetic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170025929A KR102094200B1 (en) 2017-02-28 2017-02-28 Composition for photodynamic diagnosis or therapy comprising indole-3-acetic acid

Publications (2)

Publication Number Publication Date
KR20180100465A KR20180100465A (en) 2018-09-11
KR102094200B1 true KR102094200B1 (en) 2020-03-27

Family

ID=63596385

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170025929A KR102094200B1 (en) 2017-02-28 2017-02-28 Composition for photodynamic diagnosis or therapy comprising indole-3-acetic acid

Country Status (1)

Country Link
KR (1) KR102094200B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100773475B1 (en) * 2006-07-07 2007-11-05 주식회사 웰스킨 Photosensitize containing indole-3-acetic acid, and kit for photodynamic therapy containing the same
KR100664527B1 (en) 1995-01-10 2008-11-12 신기술사업단 Electrostatically Bonded Polymer micelles

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090001013A (en) * 2007-06-29 2009-01-08 주식회사 웰스킨 Acne therapeutics and sebum secernent inhibitor which comprise indole-3-alkylcarboxylicacid, and kits for photodynamic therapy containing the same
KR101386176B1 (en) * 2010-11-12 2014-04-18 성균관대학교산학협력단 pH-sensitive polymersome and Preparing thereof
KR20120054279A (en) 2010-11-19 2012-05-30 중앙대학교 산학협력단 Ph sensitive block copolymer, preparation method thereof and drug delivery system using the same
KR101419124B1 (en) * 2011-09-16 2014-07-11 가톨릭대학교 산학협력단 poly(ethylene oxide)-poly(propylene oxide) copolymer and Photosensitizer Covalent Complex for Photodynamic Therapy
KR101720046B1 (en) * 2014-09-26 2017-03-29 서울대학교산학협력단 Self-Assembled Pharmaceutical Composition for Photodynamic Therapy

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100664527B1 (en) 1995-01-10 2008-11-12 신기술사업단 Electrostatically Bonded Polymer micelles
KR100773475B1 (en) * 2006-07-07 2007-11-05 주식회사 웰스킨 Photosensitize containing indole-3-acetic acid, and kit for photodynamic therapy containing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J. Mater. Chem. B, Vol. 2, pp.1152-1159 (2013년)

Also Published As

Publication number Publication date
KR20180100465A (en) 2018-09-11

Similar Documents

Publication Publication Date Title
Li et al. Singlet oxygen-responsive micelles for enhanced photodynamic therapy
Wang et al. Tumor-targeting core-shell structured nanoparticles for drug procedural controlled release and cancer sonodynamic combined therapy
Hung et al. Active tumor permeation and uptake of surface charge-switchable theranostic nanoparticles for imaging-guided photothermal/chemo combinatorial therapy
Gou et al. Self-assembling doxorubicin prodrug forming nanoparticles for cancer chemotherapy: synthesis and anticancer study in vitro and in vivo
Yang et al. Photo-triggered self-destructive ROS-responsive nanoparticles of high paclitaxel/chlorin e6 co-loading capacity for synergetic chemo-photodynamic therapy
Liu et al. EGFR-targeted nanobody functionalized polymeric micelles loaded with mTHPC for selective photodynamic therapy
Cao et al. Polymeric prodrugs conjugated with reduction-sensitive dextran–camptothecin and pH-responsive dextran–doxorubicin: an effective combinatorial drug delivery platform for cancer therapy
Qiao et al. Self-assembly of cytotoxic peptide conjugated poly (β-amino ester) s for synergistic cancer chemotherapy
US20140294967A1 (en) Stable nanocomposition comprising paclitaxel, process for the preparation thereof, its use and pharmaceutical compositions containing it
Wu et al. A Cascade‐Targeting Nanocapsule for Enhanced Photothermal Tumor Therapy with Aid of Autophagy Inhibition
Kim et al. Peptide 18-4/chlorin e6-conjugated polyhedral oligomeric silsesquioxane nanoparticles for targeted photodynamic therapy of breast cancer
Mondon et al. MPEG‐hexPLA micelles as novel carriers for hypericin, a fluorescent marker for use in cancer diagnostics
CN108938594A (en) A kind of medicinal composition and the preparation method and application thereof
Li et al. Tailor-made legumain/pH dual-responsive doxorubicin prodrug-embedded nanoparticles for efficient anticancer drug delivery and in situ monitoring of drug release
US20140296173A1 (en) Stable nanocomposition comprising epirubicin, process for the preparation thereof, its use and pharmaceutical compositions containing it
Yu et al. Self‐Assembled Nanoparticle‐Mediated Chemophototherapy Reverses the Drug Resistance of Bladder Cancers through Dual AKT/ERK Inhibition
Bao et al. Design and construction of IR780-and EGCG-based and mitochondrial targeting nanoparticles and their application in tumor chemo-phototherapy
Tan et al. Doxorubicin-bound hydroxyethyl starch conjugate nanoparticles with pH/redox responsive linkage for enhancing antitumor therapy
Sim et al. Synergistic photodynamic therapeutic effect of indole-3-acetic acid using a pH sensitive nano-carrier based on poly (aspartic acid-graft-imidazole)-poly (ethylene glycol)
He et al. Redox sensitive nano-capsules self-assembled from hyaluronic acid-hydroxychloroquine conjugates for CD44-targeted delivery of hydroxychloroquine to combat breast cancer metastasis in vitro and in vivo
Karimi-Soflou et al. Redox-Sensitive multifunctional hyaluronic acid-based nanomicelles with Fine-controlled anticancer drug release
KR102206770B1 (en) A photothermal nanocomplex comprising photothermal nanoparticle, anticancer drug and conjugate of hyaluronic acid and PEG
Gebrie et al. pH/redox-responsive core cross-linked based prodrug micelle for enhancing micellar stability and controlling delivery of chemo drugs: An effective combination drug delivery platform for cancer therapy
Xu et al. Dual stimuli-activatable versatile nanoplatform for photodynamic therapy and chemotherapy of triple-negative breast cancer
Jangid et al. Phenylboronic acid conjugated PAMAM G4 dendrimers augmented usnic acid delivery to gastric cancer cells

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
J201 Request for trial against refusal decision
J301 Trial decision

Free format text: TRIAL NUMBER: 2018101004821; TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20181127

Effective date: 20200225

S901 Examination by remand of revocation
GRNO Decision to grant (after opposition)
GRNT Written decision to grant