KR102030627B1 - A method of manufacturing concrete agent using ferronickel slag and granulated rock mixture - Google Patents

A method of manufacturing concrete agent using ferronickel slag and granulated rock mixture Download PDF

Info

Publication number
KR102030627B1
KR102030627B1 KR1020180047344A KR20180047344A KR102030627B1 KR 102030627 B1 KR102030627 B1 KR 102030627B1 KR 1020180047344 A KR1020180047344 A KR 1020180047344A KR 20180047344 A KR20180047344 A KR 20180047344A KR 102030627 B1 KR102030627 B1 KR 102030627B1
Authority
KR
South Korea
Prior art keywords
aggregate
weight
ferronickel slag
mixed
particle size
Prior art date
Application number
KR1020180047344A
Other languages
Korean (ko)
Inventor
황용출
김화성
백준하
Original Assignee
황용출
김화성
백준하
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 황용출, 김화성, 백준하 filed Critical 황용출
Priority to KR1020180047344A priority Critical patent/KR102030627B1/en
Application granted granted Critical
Publication of KR102030627B1 publication Critical patent/KR102030627B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/14Waste materials; Refuse from metallurgical processes
    • C04B18/141Slags
    • C04B18/144Slags from the production of specific metals other than iron or of specific alloys, e.g. ferrochrome slags
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/06Quartz; Sand
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/12Waste materials; Refuse from quarries, mining or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/0076Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials characterised by the grain distribution
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/02Treatment
    • C04B20/026Comminuting, e.g. by grinding or breaking; Defibrillating fibres other than asbestos
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

The present invention relates to a method for manufacturing a concrete composition using ferronickel slag and mixed fine aggregate from granulated rock and, more specifically, to a method for manufacturing an improved concrete composition using ferronickel slag and mixed fine aggregate from granulated rock to reduce manufacturing costs and maintain enough compressive strength and slump as a concrete structure by mixing and grinding ferronickel slag, a by-product from industrial sites, and granulated rock generated when collecting soil and stone, and replacing a part of aggregate.

Description

페로니켈 슬래그와 발파암 혼합잔골재를 이용한 콘크리트 조성물 제조방법{A method of manufacturing concrete agent using ferronickel slag and granulated rock mixture}Method of manufacturing concrete agent using ferronickel slag and granulated rock mixture}

본 발명은 페로니켈 슬래그와 발파암 혼합잔골재를 이용한 콘크리트 조성물 제조방법에 관한 것으로, 보다 상세하게는 산업현장에서 부생하는 페로니켈슬래그와 토석 채취시 발생하는 발파암을 동시에 혼합, 분쇄하여 골재의 일부를 대체하도록 함으로써 제조원가를 낮출 뿐만 아니라 콘크리트 구조체로서의 충분한 압축강도와 슬럼프를 유지할 수 있도록 개량된 페로니켈 슬래그와 발파암 혼합잔골재를 이용한 콘크리트 조성물 제조방법에 관한 것이다.The present invention relates to a method for producing a concrete composition using ferronickel slag and blasted rock mixed aggregate, and more particularly, to replace a part of the aggregate by mixing and pulverizing ferronickel slag produced by the industrial site and blasting rock generated at the same time. The present invention relates to a method of manufacturing a concrete composition using ferronickel slag and blasted rock mixed aggregate, which is improved to not only lower manufacturing cost but also maintain sufficient compressive strength and slump as a concrete structure.

일반적으로, 콘크리트(Concrete)라 함은 시멘트에 자갈과 같은 굵은 골재와 모래와 같은 잔골재를 섞고 물을 가해 반죽한 것 또는 그것을 굳힌 것을 의미한다.In general, concrete refers to a cement mixed with coarse aggregate such as gravel and fine aggregate such as sand and kneaded by adding water or hardening it.

이러한 콘크리트에 요구되는 규격은 콘크리트 표준 시방서에 잘 나타나 있는데, 이를 살펴보면 콘크리트는 시멘트, 물, 잔골재, 굵은골재 및 혼화재 등으로 구성되어 있다.The specification required for such concrete is well shown in the concrete standard specification. Looking at the concrete, concrete is composed of cement, water, fine aggregate, coarse aggregate, and admixture.

이중 잔골재는 상기 콘크리트 표준시방서에 의하면 일정 크기의 스크린(체)를 통과하는 골재의 중량 백분율이 10mm 100%, 5mm 95~100%, 2.5mm 80~100%, 1.2mm 50~85%, 0.6mm 25~60%,0.3mm 10~30%, 0.15mm 2~10%의 입도분포를 만족시키는 골재를 말하는데, 이외에도 콘크리트의 품질을 보증하기 위하여 깨끗하고, 강하며, 내구적이고, 먼지, 흙, 유기불순물, 염분 등의 유해물을 함유해서는 안된다는 조건에 부합하여야 한다.Double fine aggregate is according to the concrete standard specifications, the weight percentage of aggregate passing through the screen (sieve) of a certain size is 10mm 100%, 5mm 95-100%, 2.5mm 80-100%, 1.2mm 50-85%, 0.6mm Aggregate that satisfies the particle size distribution of 25 ~ 60%, 0.3mm 10 ~ 30%, 0.15mm 2 ~ 10%. Besides, it is clean, strong, durable, dust, soil, organic It should meet the condition that it should not contain harmful substances such as impurities and salts.

또한, 그 모양은 입방체 또는 구형에 가까운 형상이어야 하며, 시멘트와의 부착력이 큰 표면조직을 가져야 하며, 지나치게 가벼우면 재료분리가 생길 위험이 있으므로 적당한 소요중량을 가져야 하고, 내마모성이 요구되는 경우도 있다.In addition, the shape should be close to a cube or spherical shape, should have a surface structure with a large adhesion to cement, and if it is too light, it will have a suitable required weight because there is a risk of material separation, and wear resistance may be required. .

이와 같은 잔골재로 사용되는 재료는 강모래를 원칙적으로 사용하였으나 환경보호 측면에서 강모래의 사용량이 점차 감소하는 추세에 있고, 재생모래, 부순모래, 대체모래 등의 사용량이 점차 증가하는 추세에 있다.The material used as fine aggregates is steel sand in principle, but the consumption of steel sand is gradually decreasing in terms of environmental protection, and the use of recycled sand, crushed sand, and alternative sand is gradually increasing.

그러나, 재생모래의 경우에는 품질이 불안정한 고품질의 콘크리트에 적용하기에는 많은 난점이 있고, 부순모래, 대체모래 등도 품질이 만족스럽지 못하여 사용 증대에 한계가 있어 왔다.However, in the case of reclaimed sand, there are many difficulties in applying to high quality concrete whose quality is unstable, and there has been a limit in increasing the use because the quality of the crushed sand and the replacement sand are not satisfactory.

대한민국 등록특허 제10-1372676호(2014.03.04.) '철강 슬래그를 이용한 콘크리트 조성물'Republic of Korea Patent No. 10-1372676 (2014.03.04.) 'Concrete composition using steel slag'

본 발명은 상술한 바와 같은 종래 기술상의 제반 문제점들을 감안하여 이를 해결하고자 창출된 것으로, 산업현장에서 부생하는 페로니켈슬래그와 토석 채취시 발생하는 발파암을 동시에 혼합, 분쇄하여 골재의 일부를 대체하도록 함으로써 제조원가를 낮출 뿐만 아니라 콘크리트 구조체로서의 충분한 압축강도와 슬럼프를 유지할 수 있도록 개량된 페로니켈 슬래그와 발파암 혼합잔골재를 이용한 콘크리트 조성물 제조방법을 제공함에 그 주된 목적이 있다.The present invention was created in view of the above-described problems in the prior art, by simultaneously mixing and pulverizing the ferronickel slag by-produced in the industrial site and the blasting rock generated during the excavation to replace a part of the aggregate The main object of the present invention is to provide a method for producing a concrete composition using ferronickel slag and blasted rock mixed aggregate which is improved to not only reduce manufacturing cost but also maintain sufficient compressive strength and slump.

본 발명은 상기한 목적을 달성하기 위한 수단으로, 페로니켈 슬래그와 발파암을 일정비율로 혼합하는 제1단계와; 상기 제1단계 후 혼합골재를 잘게 파쇄하는 제2단계와; 상기 제2단계에서 파쇄된 혼합골재를 입자 크기별로 선별하는 제3단계와; 상기 제3단계를 통해 선별된 골재를 입도별로 일정비율로 혼합한 선별골재혼합물에 자연사, 굵은골재, 시멘트를 배합하는 제4단계;를 포함하는 페로니켈 슬래그와 발파암 혼합잔골재를 이용한 콘크리트 조성물 제조방법에 있어서;
상기 제1단계에서, 상기 페로니켈 슬래그와 발파암은 페로니켈 슬래그:발파암을 40-60:40-60중량%의 비율로 혼합되고; 상기 제2단계에서, 혼합골재의 파쇄는 0.1~20mm의 크기로 이루어지며; 상기 제3단계에서, 선별은 10mm, 5mm, 2.5mm, 1.2mm, 0.6mm, 0.3mm, 0.15mm 체눈 크기의 표준체를 각각 통과하게 하여 0.15 내지 10mm 크기의 입도별로 분리하고;
상기 제4단계에서, 상기 선별골재혼합물은 상기 제3단계를 통해 선별된 입도 크기별로 0.15mm 이하 2-5중량%, 0.16-0.3mm 5-10중량%, 0.31-0.6mm 10~20중량%, 0.61-1.2mm 10~25중량%, 1.21-2.5mm 15~20중량%, 2.51-5mm 10~15중량% 및 나머지 5.1-10mm의 입도를 갖는 잔골재로 조성하며;
상기 선별골재혼합물이 조성되면, 자연사 20-25중량%와, 굵은 골재 30-40중량%와, 시멘트 10-15중량% 및 나머지 선별골재혼합물을 균일하게 교반하여 콘크리트 조성물을 만드는 것을 특징으로 하는 페로니켈 슬래그와 발파암 혼합잔골재를 이용한 콘크리트 조성물 제조방법을 제공한다.
The present invention is a means for achieving the above object, the first step of mixing the ferronickel slag and blasting rock at a constant ratio; A second step of finely crushing the mixed aggregate after the first step; A third step of selecting the mixed aggregate crushed in the second step by particle size; Method for producing a concrete composition using ferronickel slag and blasting rock mixed aggregate comprising; a fourth step of blending the natural aggregates, coarse aggregates, cement to the selected aggregate mixture mixed in a certain proportion by the particle size selected aggregate by the third step; To;
In the first step, the ferronickel slag and blasting rock are mixed with ferronickel slag: blasting rock at a ratio of 40-60: 40-60 wt%; In the second step, the crushing of the mixed aggregate is made of a size of 0.1 ~ 20mm; In the third step, the screening is separated by the particle size of 0.15 to 10mm by passing through the standard body of 10mm, 5mm, 2.5mm, 1.2mm, 0.6mm, 0.3mm, 0.15mm body size, respectively;
In the fourth step, the selected aggregate mixture is 0.15mm or less 2-5% by weight, 0.16-0.3mm 5-10% by weight, 0.31-0.6mm 10 ~ 20% by weight by the particle size selected through the third step , 0.61-1.2mm 10-25% by weight, 1.21-2.5mm 15-20% by weight, 2.51-5mm 10-15% by weight, and the remaining aggregates having a particle size of 5.1-10mm;
When the selective aggregate mixture is formed, ferro, characterized in that 20-25% by weight of natural history, 30-40% by weight of coarse aggregate, 10-15% by weight of cement and the remaining selective aggregate mixture are uniformly stirred to make a concrete composition. It provides a method for producing a concrete composition using nickel slag and blasted rock mixed aggregate.

삭제delete

삭제delete

본 발명에 따르면, 산업현장에서 부생하는 페로니켈 슬래그와 토석 채취시 발생되는 발파암을 파쇄설비로 동시에 혼합, 분쇄하여 사용함으로써 제조원가를 절감시킬 뿐만 아니라, 골재의 품질향상과, 기존 골재 대체에 따른 환경친화적인 효과을 얻고, 산업현장에서 발생되는 부생 슬래그의 재활용에 따른 폐기물 감량, 그에 따른 환경오염 방지에 기여하는 효과를 얻을 수 있다.According to the present invention, by mixing and pulverizing ferronickel slag by-produced in the industrial site and blasting rock generated at the same time as a crushing facility, not only to reduce the manufacturing cost, but also to improve the quality of the aggregate and the environment by replacing the existing aggregate A friendly effect can be obtained, and waste can be reduced by recycling the by-product slag generated in the industrial site, thereby contributing to the prevention of environmental pollution.

도 1은 본 발명에 따른 콘크리트 조성물 제조방법을 보인 예시적인 공정 블럭도이다.
도 2는 본 발명에 따른 페로니켈 슬래그와 발파암 혼합골재의 입자를 보인 예시적인 사진이다.
1 is an exemplary process block diagram showing a method for producing a concrete composition according to the present invention.
Figure 2 is an exemplary photograph showing the particles of ferronickel slag and blast rock mixed aggregate according to the present invention.

이하에서는, 첨부도면을 참고하여 본 발명에 따른 바람직한 실시예를 보다 상세하게 설명하기로 한다.Hereinafter, with reference to the accompanying drawings will be described in detail a preferred embodiment according to the present invention.

본 발명 설명에 앞서, 이하의 특정한 구조 내지 기능적 설명들은 단지 본 발명의 개념에 따른 실시예를 설명하기 위한 목적으로 예시된 것으로, 본 발명의 개념에 따른 실시예들은 다양한 형태로 실시될 수 있으며, 본 명세서에 설명된 실시예들에 한정되는 것으로 해석되어서는 아니된다.Prior to the description of the present invention, the following specific structures or functional descriptions are merely illustrated for the purpose of describing embodiments according to the inventive concept, and the embodiments according to the inventive concept may be implemented in various forms, It should not be construed as limited to the embodiments described herein.

또한, 본 발명의 개념에 따른 실시예는 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있으므로, 특정 실시예들은 도면에 예시하고 본 명세서에 상세하게 설명하고자 한다. 그러나, 이는 본 발명의 개념에 따른 실시예들을 특정한 개시 형태에 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경물, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.In addition, embodiments in accordance with the concepts of the present invention may be modified in various ways and may have various forms, specific embodiments will be illustrated in the drawings and described in detail herein. However, this is not intended to limit the embodiments in accordance with the concept of the present invention to a particular disclosed form, it should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the present invention.

본 발명에 따른 페로니켈 슬래그와 발파암 혼합잔골재를 이용한 콘크리트 조성물 제조방법은 도 1의 예시와 같이, 페로니켈 슬래그와 발파암을 일정비율로 혼합하는 제1단계와; 상기 제1단계 후 혼합골재를 잘게 파쇄하는 제2단계와; 상기 제2단계에서 파쇄된 혼합골재를 입자 크기별로 선별하는 제3단계와; 상기 제3단계를 통해 선별된 골재를 입도별로 일정비율로 혼합한 선별골재혼합물에 자연사, 굵은골재, 시멘트를 배합하는 제4단계;를 포함한다.The method for producing a concrete composition using ferronickel slag and blasted rock mixed aggregate according to the present invention includes a first step of mixing ferronickel slag and blasted rock at a predetermined ratio as shown in FIG. A second step of finely crushing the mixed aggregate after the first step; A third step of selecting the mixed aggregate crushed in the second step by particle size; And a fourth step of blending natural sand, coarse aggregate, and cement into the selected aggregate mixture in which the aggregate selected through the third step is mixed at a predetermined ratio for each particle size.

이때, 상기 제1단계에서 사용되는 페로니켈 슬래그는 페로니켈( Ferronickel) 제조공정에서 발생되는 슬래그를 말한다.At this time, the ferronickel slag used in the first step refers to the slag generated in the ferronickel manufacturing process.

여기에서, 페로니켈은 합금철의 일종으로서 제철소의 스테인리스강을 제조하기 위해 사용되는 원료이다.Here, ferronickel is a kind of ferroalloy and is a raw material used for producing stainless steel in steel mills.

이러한 페로니켈을 제조하는 과정에서 페로니켈 슬래그가 필수적으로 부산물로 발생하게 되는데, 이는 산업폐기물로 지정된 물질이며, 국내 기준 매년 180만톤씩 발생되고 있다.In the process of manufacturing such ferronickel, ferronickel slag is essentially generated as a by-product, which is designated as industrial waste, and 1.8 million tons are generated annually in Korea.

하지만, 아직까지 이를 재활용할 수 있는 기술이 없어 지금까지 폐기물로 버려지고 있는데, 그로 인한 환경오염은 물론 폐기용량 한계에 다달아 향후 심각한 문제가 될 수 있다.However, since there is no technology to recycle it, it has been discarded as a waste until now, which may be a serious problem in the future due to environmental pollution as well as reaching a waste capacity limit.

그런데, 페로니켈 슬래그는 마그네슘과 페로실리콘 성분이 94% 이상 함유되어 있어 자원재활용 측면에서 실익이 있는 것으로 보고되어 있다.By the way, ferronickel slag contains more than 94% of magnesium and ferrosilicon components have been reported to be beneficial in terms of resource recycling.

그리고, 발파암은 파쇄공장 주변의 토사 채취시 발생하는 것을 사용하는데, 이러한 발파암에는 SiO2, Al2O3, CaO 등이 다량 함유되어 있어 재활용시 가치가 매우 높을 것으로 판단된다.In addition, the blasting rock is used when the soil is collected around the crushing plant, and the blasting rock contains a large amount of SiO 2 , Al 2 O 3 , CaO, etc. It is considered that the value of recycling is very high.

본 발명에서는 이러한 특성을 갖는 폐기물로 분류된 페로니켈 슬래그와 발파암을 수거하여 페로니켈 슬래그:발파암을 40-60:40-60중량%의 비율로 혼합한 후 임팩트 크러셔를 통해 분쇄하고, 분쇄물을 컨베이어로 이송하면서 바이브레이션 스크린을 통해 입자 크기별로 선별하여 사용한다.In the present invention, the ferronickel slag and blasting rock classified as waste having such characteristics are collected and mixed with the ferronickel slag: blasting rock at a ratio of 40-60: 40-60% by weight, and then crushed through an impact crusher, It is used to sort by particle size through the vibration screen while transferring to the conveyor.

이때, 상기 페로니켈 슬래그와 발파암을 상기 비율로 혼합하는 이유는 페로니켈 슬래그에 함유된 Mg 성분이 콘크리트로 수화되는 과정에서 발파암 성분으로부터 용출되는 성분들과 결합하여 Mg(OH)2를 만들도록 하고, 이 Mg(OH)2가 CO2를 고용하여 MgCO3의 침전반응을 유도함으로써 이산화탄소에 의한 콘크리트 중성화를 억제하여 콘크리트의 수명을 연장시키기 위함이며, 그 형상은 도 2의 예시와 같다.At this time, the reason for mixing the ferronickel slag and blasting rock at the ratio is that the Mg component contained in the ferronickel slag is combined with the components eluted from the blasting rock component in the process of hydration into concrete to form Mg (OH) 2 , the Mg (OH) 2 is intended, and to prolong the life of the concrete to inhibit concrete carbonation due to carbon dioxide by inducing precipitation of MgCO 3 by employing a CO 2, the shape is as illustrated in FIG.

때문에, 상기 혼합비율을 벗어나게 되면 상술한 페로니켈 슬래그와 발파암의 반응 효과를 얻기 어렵거나 미약하고, 지나치면 콘크리트의 에트링자이트와 포졸란 반응 효율을 떨어뜨리므로 상기 범위로 한정해야 한다.Therefore, if it is out of the mixing ratio it is difficult or weak to obtain the reaction effect of the above-mentioned ferronickel slag and blasting rock, and if excessive, it will be limited to the above range since the efficiency of the ettringite and pozzolanic reaction of concrete.

특히, 페로니켈 슬래그(수재)의 주요성분 결정구조가 완화휘석으로 석면을 함유하고 있다는 점에서 산업폐기물로 분리되어 있으나, 실상 페로니켈 슬래그는 사문암과 유사한 MgO, SiO2를 포함하고 있지만 고온에서 용융 생성되어 결정구조가 전혀 상이하여 석면이 함유되어 있지 않은 것으로 확인되었다. 그럼에도 불구하고, 일반인들은 오해하고 있으므로 상기와 같이 발파암을 특정되는 특정성분을 함유시켜 수화반응시 유해성분이 자동적으로 제거되도록 함으로써 재활용시 안전성도 높이도록 한 것이다.In particular, the main component crystal structure of ferronickel slag (wood) is separated from industrial wastes in that it contains asbestos as a soft clay, but in fact, ferronickel slag contains MgO and SiO 2 similar to serpentine, but melts at high temperatures. As a result, it was confirmed that asbestos was not contained because the crystal structure was completely different. Nevertheless, the general public is misunderstood, so as to contain the specific components to specify the blasting cancer as described above to ensure that the harmful components are automatically removed during the hydration reaction to increase the safety when recycling.

그리고, 상기 제2단계는 페로니켈 슬래그와 발파암이 상기 범위로 혼합된 상태에서 임팩트 크러셔를 이용하여 분쇄하는 단계이고, 상기 제3단계는 분쇄된 분쇄물을 컨베이어로 이송하면서 바이브레이션 스크린을 이용하여 입자별로 선별하는 단계이다.And, the second step is a step of pulverizing using an impact crusher in a state in which ferronickel slag and blasting rock is mixed in the above range, the third step is a particle using a vibration screen while transferring the pulverized crushed product to a conveyor It is a step of sorting.

이때, 분쇄과정은 생산하고자 하는 입자크기별 소요중량이 미달될 경우 분쇄공정을 달리할 수 있으며, 분쇄단계에서 포집된 잔골재는 0.1~20mm의 크기를 갖도록 분쇄하여야 한다.At this time, the grinding process may be different if the required weight for each particle size to be produced is less than the grinding process, the fine aggregate collected in the grinding step should be crushed to have a size of 0.1 ~ 20mm.

그리고, 선별과정은 0.15 내지 10mm 크기의 입자를 선별하는 것으로, 10mm, 5mm, 2.5mm, 1.2mm, 0.6mm, 0.3mm, 0.15mm 체눈 크기의 표준체를 각각 통과하게 하여 입도별로 분리하는 과정이다.In addition, the screening process is to screen particles of 0.15 to 10 mm in size, and to separate the particles by particle size by passing through standard bodies having a size of 10 mm, 5 mm, 2.5 mm, 1.2 mm, 0.6 mm, 0.3 mm, and 0.15 mm respectively.

이렇게 입도별로 분리하는 이유는 입도별로 함량을 달리하여 선별된 골재들을 재혼합함으로써 콘크리트 구조체를 완성할 때 골재간 교합성, 바인딩성을 강화하고, 내구성과 슬럼프를 강화시키기 위함이다.The reason for separating by particle size is to reintegrate selected aggregates by varying the content by particle size to reinforce the interlocking properties, binding properties, and durability and slump between aggregates.

이를 위해, 선별된 선별골재들은 입도별로 다음과 같은 비율로 혼합되어 선별골재혼합물을 구성함이 바람직하다.To this end, the selected selective aggregates are preferably mixed in the following proportions by particle size to form a selective aggregate mixture.

이러한 선별골재혼합물을 구성하는 것은 제4단계에서 이루어지며, 선별골재혼합물이 구성되며, 이 선별골재혼합물에 자연사, 굵은 골재, 시멘트를 일정비율로 혼합하여 콘크리트 조성물을 완성하게 된다.The composition of the sorted aggregate mixture is made in the fourth step, the sorted aggregate mixture is constituted, and the natural aggregate, coarse aggregate, and cement are mixed with the sorted aggregate mixture at a predetermined ratio to complete the concrete composition.

여기에서, 상기 선별골재혼합물은 상기 제3단계를 통해 선별된 입도 크기별로 0.15mm 이하 2-5중량%, 0.16-0.3mm 5-10중량%, 0.31-0.6mm 10~20중량%, 0.61-1.2mm 10~25중량%, 1.21-2.5mm 15~20중량%, 2.51-5mm 10~15중량% 및 나머지 5.1-10mm의 입도를 갖는 잔골재로 조성한다.Here, the selected aggregate mixture is 0.15mm or less 2-5% by weight, 0.16-0.3mm 5-10% by weight, 0.31-0.6mm 10 ~ 20% by weight, 0.61- by particle size selected through the third step 1.2mm 10-25% by weight, 1.21-2.5mm 15-20% by weight, 2.51-5mm 10-15% by weight and the remainder is composed of fine aggregate having a particle size of 5.1-10mm.

이때, 이와 같은 중량비율로 선별골재혼합물을 구성하는 이유는 10mm 이상의 큰 입도를 갖는 잔골재의 함량이 많아지면 공극이 커져 콘크리트 구조체의 내구성, 압축강도, 내수성을 저하시키고; 0.15mm 이하의 작은 입도를 갖는 잔골재의 함량이 많아지면 배합성이 떨어지고 양생기간이 길어지며 골재간 결합력이 약화되므로 상기 범위로 한정하여야 한다.At this time, the reason for constituting the sorted aggregate mixture at such a weight ratio is that if the content of fine aggregate having a large particle size of 10 mm or more increases, the pores become large, thereby deteriorating the durability, compressive strength, and water resistance of the concrete structure; If the content of the fine aggregate having a small particle size of 0.15mm or less increases, the compoundability is decreased, the curing period is long, and the binding strength between the aggregates is weakened.

상기와 같은 선별골재혼합물이 완성되면, 자연사 20-25중량%와, 굵은 골재 30-40중량%와, 시멘트 10-15중량% 및 나머지 선별골재혼합물을 균일하게 교반하여 콘크리트 조성물을 만들게 된다.When the sorted aggregate mixture as described above is completed, 20-25% by weight of natural sand, 30-40% by weight coarse aggregate, 10-15% by weight of cement and the remaining sorted aggregate mixture is uniformly stirred to make a concrete composition.

그리고, 타설할 때는 물과 콘크리트 조성물을 일정비율로 혼합하여 사용한다.In addition, when pouring, water and concrete composition are mixed and used at a predetermined ratio.

여기에서, 굵은 골재는 상술한 페로니켈 슬래그와 발파암을 제외한 자갈, 쇄석 등을 말하는 것으로 10mm 이하 5mm 이상의 입도를 갖는 것을 말한다.Here, coarse aggregate refers to the above-mentioned ferronickel slag and crushed rock, gravel, crushed stone, etc., having a particle size of 10 mm or less and 5 mm or more.

특히, 본 발명에서는 바인딩 특성과 중성화 방지특성, 압축강도 및 슬럼프 향상 특성을 갖는 선별골재혼합물(페로니켈 슬래그 및 발파암을 함유)을 사용함으로써 종래와 달리 잔골재나 자연사의 사용함량을 현저히 감소시킬 수 있는 장점이 있다. 즉, 종래에는 압축강도와 슬럼프 확보를 위해 자연사(잔골재 포함)를 50-60중량%까지 포함시켜야만 했다.In particular, in the present invention, by using a screening aggregate mixture (containing ferronickel slag and blasting rock) having binding properties, anti-neutralization properties, compressive strength, and slump enhancement properties, it is possible to significantly reduce the amount of fine aggregate or natural sand used. There is an advantage. In other words, in order to secure compressive strength and slump in the past, natural sand (including fine aggregates) had to be included in an amount of 50-60% by weight.

이에 더하여, 본 발명에서는 콘크리트혼화제를 더 포함할 수 있다.In addition, the present invention may further include a concrete admixture.

상기 콘크리트혼화제는 통상적으로 알려진 성분이 아닌 본 발명에 의해서만 실시되는 톡특한 성분으로서, 상기 콘크리트 조성물 전체량 대비 규불화아연(ZnSiF6) 3.5중량부와, 리그닌 설페이드 1.5중량부와, 아비에틴산 1.5중량%와, 알루민산삼석회(3CaOㆍAl2O3) 2.5중량%와, 테르페노이드(terpenoids)를 포함하는 초산 셀룰로오스(Cellulose Acetate) 2.5중량%와, 디스테아디모늄 헥토라이트(disteardimonium hectorite) 1.5중량%와, 세레신(Ceresin) 2.5중량%와, 무정형의 나노입자 크기의 질화붕소를 분산시킨 질화규소 4중량%와, 소성된 산화이테르븀 3.5중량%를 더 첨가할 수 있다.The concrete admixture is a unique component to be carried out only by the present invention, not commonly known components, 3.5 parts by weight of zinc silicate (ZnSiF 6 ), 1.5 parts by weight of lignin sulfate, and abienic acid, based on the total amount of the concrete composition. 1.5% by weight, 2.5% by weight of tricalcium aluminate (3CaOAl 2 O 3 ), 2.5% by weight of cellulose acetate containing terpenoids, and disteardimonium hectorite hectorite) 1.5% by weight, Ceresin 2.5% by weight, 4% by weight of silicon nitride in which amorphous nanoparticles of boron nitride dispersed, and 3.5% by weight of calcined ytterbium oxide may be added.

이때, 상기 규불화아연은 시멘트 페이스트의 초기 유동성을 증대시켜 경시변화를 크게 하면서 응결시간과 수화열을 감소시키는 효과를 얻기 위해 첨가된다.At this time, the zinc silicate is added to increase the initial fluidity of the cement paste to increase the changes over time while reducing the setting time and the heat of hydration.

그리고, 상기 리그닌 설페이드는 시멘트에 필요한 배합용 물의 용량을 줄이고 고형화를 촉진시키기 위해 첨가된다.And, the lignin sulfate is added to reduce the capacity of the mixing water required for the cement and to promote solidification.

또한, 상기 아비에틴산은 물과 반응하여 불용성의 칼슘 비누화를 유도하고 이를 통해 강고한 지막을 형성함으로써 수밀성을 강화시켜 동결융해 저항성을 증대시키기 위해 첨가된다.In addition, the abienic acid is added to increase the water-tightness by increasing the water-tightness by reacting with water to induce insoluble calcium saponification and thereby form a firm film.

뿐만 아니라, 상기 알루민산삼석회는 수화반응을 촉진하여 고화 속도를 조절하고, 강도를 증진시키기 위해 첨가된다.In addition, the tricalcium aluminate is added to promote the hydration reaction, to control the rate of solidification, and to enhance the strength.

아울러, 상기 초산 셀룰로오스는 셀룰로스 분자 속의 하이드록시기를 아세틸화한 아세트산 에스터로서 성분간 결합력을 강화시켜 내구성을 향상시키고, 테르페노이드는 이물 부착억제력을 향상시키는데, 상기 초산 셀룰로오스와 테르페노이드는 1:0.5의 중량비로 혼합된 것을 사용한다.In addition, the cellulose acetate is an acetylated acetic acid ester of hydroxy groups in the cellulose molecule to enhance the binding strength between components to enhance durability, terpenoids to improve the adhesion control of foreign substances, the cellulose acetate and terpenoids 1: Mix with a weight ratio of 0.5 is used.

또한, 상기 디스테아디모늄 헥토라이트는 코팅 표면의 피막 형성을 통해 수밀성을 높이고, 점도를 조절하기 위해 첨가된다.In addition, the disteadimonium hectorite is added to increase the watertightness through the film formation of the coating surface and to adjust the viscosity.

그리고, 상기 세레신은 결합안정감을 높이고, 콘크리트 구조체의 유연성을 유도하여 내크랙성을 강화시키기 위해 첨가된다.In addition, the ceresin is added to enhance the bond stability and induce flexibility of the concrete structure to enhance crack resistance.

뿐만 아니라, 무정형의 나노입자 크기의 질화붕소를 분산시킨 질화규소는 고열 팽창시 열충격을 흡수하여 미소 크랙이 발생하는 것을 억제하며, 내침식성을 강화시키기 위해 첨가된다.In addition, silicon nitride, in which amorphous nanoparticle-sized boron nitride is dispersed, absorbs thermal shock during high thermal expansion, suppresses the occurrence of minute cracks, and is added to enhance erosion resistance.

또한, 소성된 산화이테르븀은 희토류 금속으로서 결정립 미세화를 통해 내구성을 증대시키면서 내화학성, 내약품성을 증대시키기 위해 첨가된다.In addition, calcined ytterbium oxide is added as a rare earth metal to increase chemical resistance and chemical resistance while increasing durability through grain refinement.

이하, 실시예에 대하여 설명한다.Hereinafter, an Example is described.

[실시예 1]Example 1

자연사 22중량%와, 굵은 골재 35중량%와, 시멘트 13중량% 및 나머지 선별골재혼합물을 균일하게 교반하여 콘크리트 조성물을 만든 후 물과 혼합하여 지름 10cm, 높이 20cm의 공시체를 3일, 7일, 28일에 걸쳐 양생하였다.22% by weight of natural sand, 35% by weight of coarse aggregate, 13% by weight of cement and the remainder of the selected aggregate mixture were uniformly stirred to form a concrete composition, and then mixed with water to test specimens having a diameter of 10 cm and a height of 20 cm for 3 days, 7 days, Cured over 28 days.

[실시예 2]Example 2

실시예 1과 동일하게 하되, 상술한 콘크리트혼화제를 더 첨가하여 공시체를 제조하였다.In the same manner as in Example 1, the test mixture was prepared by further adding the concrete admixture.

[비교예 1]Comparative Example 1

실시예 1의 선별골재혼합물(페로니켈 슬래그 및 발파암 함유)을 사용하지 않고 시멘트 함량은 그대로 유지한 채 나머지를 모두 자연사로 조성하였다.Without using the selected aggregate mixture (containing ferronickel slag and blasting rock) of Example 1, all the rest was composed of natural history while maintaining the cement content.

[비교예 2]Comparative Example 2

비교예 1에서 자연사와 굵은 골재의 비율을 1:1의 중량비로 변경하였다.In Comparative Example 1, the ratio of natural sand and coarse aggregate was changed to a weight ratio of 1: 1.

그런 다음, 공시체의 압축강도, 슬럼프, 공기량을 확인하기 위해 KS F 2403에 의해 공시체를 평가하였으며, 그 결과는 하기한 표 1과 같았다.Then, the specimens were evaluated by KS F 2403 to confirm the compressive strength, slump, and air volume of the specimens, and the results are shown in Table 1 below.

구분division 슬럼프slump 공기량Air volume 압축강도(MPa)Compressive strength (MPa) 3일3 days 7일7 days 28일28 days 실시예1Example 1 160160 8.68.6 10.410.4 15.815.8 27.827.8 실시예2Example 2 165165 8.98.9 11.211.2 16.416.4 28.528.5 비교예1Comparative Example 1 8080 4.24.2 5.15.1 12.412.4 23.523.5 비교예2Comparative Example 2 불량Bad 6.56.5 7.67.6 13.613.6 22.822.8

표 1에서와 같이, 본 발명에 따른 실시예1,2의 경우, 슬럼프값이 양호하여 작업성이 좋았으나, 비교예1,2의 경우에는 슬럼프값이 매우 나쁘고 불량인 경우도 있어 작업성이 좋지 않음을 확인할 수 있었다.As shown in Table 1, in Examples 1 and 2 according to the present invention, the slump value was good and the workability was good. However, in Comparative Examples 1 and 2, the slump value was very bad and bad, and thus the workability was good. It was confirmed that it is not good.

또한, 압축강도에 있어서도 실시예1,2의 경우는 비교예1,2에 비해 매우 우수함을 확인할 수 있었고, 이를 통해 콘크리트 구조체 제조에 충분히 활용할 수 있음을 확인할 수 있었다.In addition, also in the compressive strength of Examples 1 and 2 was confirmed to be very excellent compared to Comparative Examples 1 and 2, it was confirmed that can be sufficiently utilized in the production of concrete structures.

이에 더하여, KS F 2762에서 규정한 방법에 따라 각각 부착강도(양생 4시간 후, 재령28일)를 측정하였고, 그 결과 실시예1,2는 각각 1.75MPa, 1.79MPa로 부착강도가 나타났으나, 비교예1,2는 각각 1.32MPa, 1.47MPa로 나타나 실시예 1,2가 비교예 1,2 대비 우수한 부착강도를 유지함도 확인하였다.In addition, according to the method specified in KS F 2762, the adhesive strength (after 4 hours of curing, 28 days of age) was measured. As a result, Examples 1 and 2 showed 1.75 MPa and 1.79 MPa, respectively. , Comparative Examples 1 and 2 are 1.32 MPa and 1.47 MPa, respectively, and it was confirmed that Example 1 and 2 maintained excellent adhesion strengths as compared with Comparative Examples 1 and 2.

뿐만 아니라, 수밀성 테스트를 위해 염소 이온의 침투 영역을 측정하는 방식으로 진행하였는데, 이를 위해 염화나트륨 용액을 사용하였다.In addition, the water-tightness test was carried out by measuring the penetration region of chlorine ions, for which sodium chloride solution was used.

실시예1,2 및 비교예1,2의 공시체를 염화나트륨 용액에 10일 동안 침적시킨 후 2등분하여 그 단면에 0.1%의 플루오레세인의 나트륨염인 우라닌과 0.1N 질산은 용액을 분무하여 형광을 발하는 부분을 염소 이온 침투 영역으로 인식하고 침투깊이를 측정하였으며, 테스트 결과 실시예1에는 미소한 침투가 발견된 곳이 한 군데 있었고, 실시예2에서는 침투가 발견되지 않았으며, 비교예1,2에서는 10군데 이상에서 상당한 침투가 확인되었다.The specimens of Examples 1 and 2 and Comparative Examples 1 and 2 were immersed in a sodium chloride solution for 10 days, and then divided into 2 parts and fluoresced by spraying a solution of uranin and 0.1 N silver nitrate, 0.1% of sodium salt of fluorescein, on the cross-section thereof. The permeation depth was recognized as a chlorine ion permeation region and the penetration depth was measured. As a result of the test, there was one place where minute penetration was found, and in Example 2, no penetration was found, and Comparative Example 1, In 2, significant penetration was confirmed in more than 10 places.

이를 통해, 본 발명에 따른 콘크리트 조성물을 이용할 경우 수밀성도 우수함을 확인할 수 있었다.Through this, when using the concrete composition according to the invention it was confirmed that the water-tightness is also excellent.

Claims (3)

페로니켈 슬래그와 발파암을 일정비율로 혼합하는 제1단계와; 상기 제1단계 후 혼합골재를 잘게 파쇄하는 제2단계와; 상기 제2단계에서 파쇄된 혼합골재를 입자 크기별로 선별하는 제3단계와; 상기 제3단계를 통해 선별된 골재를 입도별로 일정비율로 혼합한 선별골재혼합물에 자연사, 굵은골재, 시멘트를 배합하는 제4단계;를 포함하는 페로니켈 슬래그와 발파암 혼합잔골재를 이용한 콘크리트 조성물 제조방법에 있어서;
상기 제1단계에서, 상기 페로니켈 슬래그와 발파암은 페로니켈 슬래그:발파암을 40-60:40-60중량%의 비율로 혼합되고; 상기 제2단계에서, 혼합골재의 파쇄는 0.1~20mm의 크기로 이루어지며; 상기 제3단계에서, 선별은 10mm, 5mm, 2.5mm, 1.2mm, 0.6mm, 0.3mm, 0.15mm 체눈 크기의 표준체를 각각 통과하게 하여 0.15 내지 10mm 크기의 입도별로 분리하고;
상기 제4단계에서, 상기 선별골재혼합물은 상기 제3단계를 통해 선별된 입도 크기별로 0.15mm 이하 2-5중량%, 0.16-0.3mm 5-10중량%, 0.31-0.6mm 10~20중량%, 0.61-1.2mm 10~25중량%, 1.21-2.5mm 15~20중량%, 2.51-5mm 10~15중량% 및 나머지 5.1-10mm의 입도를 갖는 잔골재로 조성하며;
상기 선별골재혼합물이 조성되면, 자연사 20-25중량%와, 굵은 골재 30-40중량%와, 시멘트 10-15중량% 및 나머지 선별골재혼합물을 균일하게 교반하여 콘크리트 조성물을 만드는 것을 특징으로 하는 페로니켈 슬래그와 발파암 혼합잔골재를 이용한 콘크리트 조성물 제조방법.
A first step of mixing ferronickel slag and blasting rock at a predetermined ratio; A second step of finely crushing the mixed aggregate after the first step; A third step of selecting the mixed aggregate crushed in the second step by particle size; Method for producing a concrete composition using ferronickel slag and blasting rock mixed aggregate comprising; a fourth step of blending natural aggregates, coarse aggregates, cement to the selected aggregate mixture mixed in a predetermined ratio by particle size selected by the third step; To;
In the first step, the ferronickel slag and blasting rock are mixed with ferronickel slag: blasting rock at a ratio of 40-60: 40-60 wt%; In the second step, the crushing of the mixed aggregate is made of a size of 0.1 ~ 20mm; In the third step, the screening is separated by the particle size of 0.15 to 10mm by passing through the standard body of 10mm, 5mm, 2.5mm, 1.2mm, 0.6mm, 0.3mm, 0.15mm grid size respectively;
In the fourth step, the selected aggregate mixture is 0.15mm or less 2-5% by weight, 0.16-0.3mm 5-10% by weight, 0.31-0.6mm 10 ~ 20% by weight by the particle size selected through the third step , 0.61-1.2mm 10-25% by weight, 1.21-2.5mm 15-20% by weight, 2.51-5mm 10-15% by weight and the remainder is composed of fine aggregate having a particle size of 5.1-10mm;
When the selective aggregate mixture is formed, ferro, characterized in that the concrete composition by uniformly stirring 20-25% by weight of natural history, 30-40% by weight of coarse aggregate, 10-15% by weight of cement and the remaining selective aggregate mixture. Method for producing concrete composition using nickel slag and blasted rock mixed aggregate.
삭제delete 삭제delete
KR1020180047344A 2018-04-24 2018-04-24 A method of manufacturing concrete agent using ferronickel slag and granulated rock mixture KR102030627B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180047344A KR102030627B1 (en) 2018-04-24 2018-04-24 A method of manufacturing concrete agent using ferronickel slag and granulated rock mixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180047344A KR102030627B1 (en) 2018-04-24 2018-04-24 A method of manufacturing concrete agent using ferronickel slag and granulated rock mixture

Publications (1)

Publication Number Publication Date
KR102030627B1 true KR102030627B1 (en) 2019-10-10

Family

ID=68206355

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180047344A KR102030627B1 (en) 2018-04-24 2018-04-24 A method of manufacturing concrete agent using ferronickel slag and granulated rock mixture

Country Status (1)

Country Link
KR (1) KR102030627B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022169472A3 (en) * 2020-04-21 2022-12-01 University Of Florida Research Foundation Boron-doped cement and concrete

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR880000726B1 (en) * 1985-01-11 1988-04-29 장규동 Method for preparing construction sand
KR20110076395A (en) * 2009-12-29 2011-07-06 재단법인 포항산업과학연구원 Composition for sub base with ferronickel slag and the method of manufacturing the same
KR101372676B1 (en) 2012-10-10 2014-03-12 재단법인 포항산업과학연구원 Concrete composition with iron and steelmaking slag

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR880000726B1 (en) * 1985-01-11 1988-04-29 장규동 Method for preparing construction sand
KR20110076395A (en) * 2009-12-29 2011-07-06 재단법인 포항산업과학연구원 Composition for sub base with ferronickel slag and the method of manufacturing the same
KR101372676B1 (en) 2012-10-10 2014-03-12 재단법인 포항산업과학연구원 Concrete composition with iron and steelmaking slag

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
조봉식 등 5명, 페로니켈슬래그의 콘크리트용 잔골재 적용성 검증 연구, 한국콘크리트학회 2014 가을 학술대회 논문집, pp. 583-584, 2014.10.* *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022169472A3 (en) * 2020-04-21 2022-12-01 University Of Florida Research Foundation Boron-doped cement and concrete

Similar Documents

Publication Publication Date Title
US7537655B2 (en) Slag concrete manufactured aggregate
KR101247707B1 (en) Additive for cement, mortar and concrete comprising ferronickel slag
KR101795570B1 (en) Urgently Repair Material of Road Using Silicon Manganese Slag and Repairing Method Using the Same
EP2484651A2 (en) Heavy concrete composition using slag by-products
KR101352937B1 (en) A high early strength concrete composition using the eco-friendly cycling silica sand and repairing method of concrete pavement using the same
KR20200076566A (en) Fine aggregate and concrete composition comprising the same
CN113754398A (en) Modified phosphogypsum stabilized macadam and preparation method and application thereof
TWI543957B (en) Method for manufacturing hydrated solidified body and hydrated solidified body
US4662941A (en) Mineral wool waste cement
KR100852391B1 (en) Composition for solidifying soils and industrial wastes
KR100836598B1 (en) A composition of concrete mortar which used waste concrete
KR102277129B1 (en) Autoclaved Functional Block Using Tungsten Tailing And Manufacturing Method Thereof
KR102030627B1 (en) A method of manufacturing concrete agent using ferronickel slag and granulated rock mixture
JP3555987B2 (en) Recyclable concrete, mortar and recycling method
KR102008742B1 (en) Wet Concrete Secondary Products Using Recycled Aggregate Recycling Waste Electric Pole And Manufacturing Method Thereof
JP4850777B2 (en) Method for producing steelmaking slag solidified body, and steelmaking slag solidified body
JP6292257B2 (en) Hydrated solidified product using desulfurized slag
KR101629833B1 (en) Revetment block and preparing method thereof
KR101322911B1 (en) Concrete compound using granulated slag-water cooled and manufacturing method thereof
JPH0834654A (en) Production of concrete
KR101727728B1 (en) Blended concrete composite using silica fume and manufacturing method thereof
KR101572190B1 (en) Pellet using waste CRT powder and red clay, and its production method
CN115385644B (en) Wet-mixed cured mortar prepared from solid waste limestone slag, and preparation and application methods thereof
JP3583323B2 (en) Blast furnace slag fine aggregate, method for producing the same, and fine aggregate for concrete or mortar
KR102485927B1 (en) Prepartion method of low heated mixed cement using ferro-nickel slag powder and concrete composition prepared using the same

Legal Events

Date Code Title Description
GRNT Written decision to grant