KR102027460B1 - Manufacuring method of cathode active material for lithium rechargeable battery, and cathode active material made by the same - Google Patents

Manufacuring method of cathode active material for lithium rechargeable battery, and cathode active material made by the same Download PDF

Info

Publication number
KR102027460B1
KR102027460B1 KR1020150003710A KR20150003710A KR102027460B1 KR 102027460 B1 KR102027460 B1 KR 102027460B1 KR 1020150003710 A KR1020150003710 A KR 1020150003710A KR 20150003710 A KR20150003710 A KR 20150003710A KR 102027460 B1 KR102027460 B1 KR 102027460B1
Authority
KR
South Korea
Prior art keywords
active material
cathode active
secondary battery
lithium secondary
lithium
Prior art date
Application number
KR1020150003710A
Other languages
Korean (ko)
Other versions
KR20160086228A (en
Inventor
최문호
유현종
김제율
김태근
이종표
Original Assignee
주식회사 에코프로비엠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 에코프로비엠 filed Critical 주식회사 에코프로비엠
Priority to KR1020150003710A priority Critical patent/KR102027460B1/en
Publication of KR20160086228A publication Critical patent/KR20160086228A/en
Application granted granted Critical
Publication of KR102027460B1 publication Critical patent/KR102027460B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

본 발명은 리튬 이차 전지용 양극활물질의 제조 방법 및 이에 의하여 제조된 리튬 이차 전지용 양극활물질에 관한 것으로서, 더욱 상세하게는 전구체 제조 후 플라즈마 처리에 의해 양극활물질 내의 미반응리튬의 양을 감소시키고, 종래 잔류 리튬을 개선하기 위한 수세 공정 도입시 오히려 문제가 되는 열화되는 특성을 개선하여 고용량 및 안정성을 확보한 리튬 이차 전지용 양극활물질의 제조 방법 및 이에 의하여 제조된 리튬 이차 전지용 양극활물질에 관한 것이다.The present invention relates to a method for producing a cathode active material for a lithium secondary battery, and a cathode active material for a lithium secondary battery produced thereby, more specifically, to reduce the amount of unreacted lithium in the cathode active material by plasma treatment after the precursor is prepared, the conventional residual The present invention relates to a method of manufacturing a cathode active material for a lithium secondary battery, which has a high capacity and stability by improving deteriorated characteristics, which is rather problematic when introducing a washing process for improving lithium, and a cathode active material for a lithium secondary battery manufactured thereby.

Description

리튬 이차 전지용 양극활물질의 제조 방법 및 이에 의하여 제조된 리튬 이차 전지용 양극활물질{MANUFACURING METHOD OF CATHODE ACTIVE MATERIAL FOR LITHIUM RECHARGEABLE BATTERY, AND CATHODE ACTIVE MATERIAL MADE BY THE SAME}Method for manufacturing positive electrode active material for lithium secondary battery and positive electrode active material for lithium secondary battery produced by this

본 발명은 리튬 이차 전지용 양극활물질의 제조 방법 및 이에 의하여 제조된 리튬 이차 전지용 양극활물질에 관한 것으로서, 더욱 상세하게는 전구체 제조 후 플라즈마 처리에 의해 양극활물질 내의 미반응 리튬의 양을 감소시키고, 종래 잔류 리튬을 개선하기 위한 수세 공정 도입시 오히려 문제가 되는 열화 특성을 개선하여 고용량 및 안정성을 확보한 리튬 이차 전지용 양극활물질의 제조 방법 및 이에 의하여 제조된 리튬 이차 전지용 양극활물질에 관한 것이다.
The present invention relates to a method for producing a cathode active material for a lithium secondary battery, and a cathode active material for a lithium secondary battery produced thereby, and more particularly, to reduce the amount of unreacted lithium in the cathode active material by plasma treatment after the precursor production, the conventional residual The present invention relates to a method of manufacturing a cathode active material for a lithium secondary battery, which has a high capacity and stability by improving deterioration characteristics which are rather problematic when introducing a washing process to improve lithium, and a cathode active material for a lithium secondary battery manufactured thereby.

모바일 기기에 대한 기술과 수요가 증가함에 따라 에너지원으로서 이차전지의 수요가 급격히 증가하고 있고, 그러한 이차전지 중 높은 에너지 밀도와 작동 전위를 나타내고, 사이클 수명이 길며, 자기 방전율이 낮은 리튬 이차전지가 상용화되어 널리 사용되고 있다.As the technology and demand for mobile devices increases, the demand for secondary batteries as energy sources is rapidly increasing. Among them, lithium secondary batteries that exhibit high energy density and operating potential, have a long cycle life, and have a low self discharge rate. It is commercially used and widely used.

양극 활물질들 중 LiCoO2은 수명 특성 및 충방전 효율이 우수하여 가장 많이 사용되고 있지만, 용량이 작고 원료로서 사용되는 코발트의 자원적 한계로 인해 고가이므로 전기자동차 등과 같은 중대형 전지분야의 동력원으로 대량 사용하기에는 가격 경쟁력에 한계가 있다는 단점이 있다. LiMnO2, LiMn2O4 등의 리튬 망간 산화물은 원료로서 사용되는 망간 자원이 풍부하여 가격이 저렴하고, 환경 친화적이며, 열적 안전성이 우수하다는 장점이 있지만, 용량이 작고, 고온 특성 및 사이클 특성 등이 열악한 문제가 있다.Among the cathode active materials, LiCoO 2 is the most used because of its excellent lifespan characteristics and charge / discharge efficiency, but due to its small capacity and high cost due to the resource limitation of cobalt used as a raw material, LiCoO 2 is not suitable for mass use as a power source for medium and large battery fields such as electric vehicles. The disadvantage is the price competitiveness. Lithium manganese oxides such as LiMnO 2 and LiMn 2 O 4 are rich in manganese resources used as raw materials and have the advantages of being cheap, environmentally friendly, and excellent in thermal safety, but having a small capacity, high temperature characteristics and cycle characteristics. There is this poor problem.

이러한 단점을 보완하기 위해 이차 전지 양극 활물질로서 니켈 리치 시스템(Ni rich system)의 수요가 늘어나기 시작하였으나, 이러한 니켈 리치 시스템(Ni rich system)의 활물질은 고용량을 내는 우수한 장점을 가지고 있는 반면, 미반응 리튬의 함량이 많아 스웰링 현상 유발 및 전해액과의 반응에 따른 가스발생 등의 문제점을 가지고 있다.In order to compensate for these drawbacks, the demand for nickel rich systems as a secondary battery cathode active material has begun to increase, but the active materials of such nickel rich systems have excellent advantages of high capacity. Due to the high content of the reaction lithium, there are problems such as causing swelling phenomenon and gas generation due to reaction with the electrolyte.

또한, 리튬 복합 산화물을 제조하는 방법은 일반적으로 전이 금속 전구체를 제조하고, 상기 전이 금속 전구체와 리튬 화합물을 혼합한 후, 상기 혼합물을 소성하는 단계를 포함한다. 이때, 상기 리튬 화합물로는 LiOH 및/또는 Li2CO3가 사용된다.In addition, a method for producing a lithium composite oxide generally includes preparing a transition metal precursor, mixing the transition metal precursor and the lithium compound, and then calcining the mixture. In this case, LiOH and / or Li 2 CO 3 is used as the lithium compound.

일반적으로 양극활물질의 Ni함량이 65% 이하일 경우에는 Li2CO3를 사용하며, Ni 함량이 65% 이상일 경우에는 저온 반응이므로 LiOH를 사용하는 것이 바람직하다. 그러나, Ni 함량이 65% 이상인 니켈 리치 시스템(Ni rich system)은 저온 반응이므로 양극활물질 표면에 LiOH, Li2CO3 형태로 존재하는 잔류 리튬량이 높다는 문제점이 있다. 이러한 잔류 리튬 즉, 미반응 LiOH 및 Li2CO3는 전지 내에서 전해액 등과 반응하여 가스 발생 및 스웰링(swelling) 현상을 유발함으로써, 고온 안전성이 심각하게 저하되는 문제를 야기시킨다. 또한, 미반응 LiOH는 극판 제조 전 슬러리 믹싱 시 점도가 높아 겔화를 야기시키기도 한다.
Generally, when the Ni content of the positive electrode active material is 65% or less, Li 2 CO 3 is used, and when the Ni content is 65% or more, it is preferable to use LiOH because it is a low temperature reaction. However, since the Ni rich system having a Ni content of 65% or more is a low temperature reaction, there is a problem in that the amount of residual lithium present in the form of LiOH and Li 2 CO 3 on the surface of the cathode active material is high. Such residual lithium, that is, unreacted LiOH and Li 2 CO 3 reacts with the electrolyte and the like in the battery, causing gas generation and swelling, thereby causing a problem of severely deteriorating high temperature safety. In addition, unreacted LiOH may cause gelation due to its high viscosity during slurry mixing before electrode plate production.

본 발명은 상기와 같은 종래 기술의 문제점을 해결하기 위하여 잔류 리튬을 저감시킬 수 있는 리튬 이차 전지용 양극활물질의 제조 방법 및 이에 의하여 제조된 리튬 이차 전지용 양극활물질을 제공하는 것을 목적으로 한다.
An object of the present invention is to provide a method for producing a cathode active material for a lithium secondary battery capable of reducing residual lithium, and a cathode active material for a lithium secondary battery produced thereby to solve the above problems of the prior art.

본 발명은 상기와 같은 과제를 해결하기 위하여The present invention to solve the above problems

아래 화학식 1로 표시되는 리튬 이차 전지용 양극활물질 전구체를 제조하는 제 1 단계;
[화학식 1] NiaCobM1c(OH)2
A first step of preparing a cathode active material precursor for a lithium secondary battery represented by Formula 1 below;
Ni a Co b M 1c (OH) 2

(상기 화학식 1에서 M1은 Mn, Al, Fe, V, Cr, Ti 및 W 로 이루어진 그룹에서 선택되고, 0.7≤a≤1, 0.05≤b≤1, 0.01≤c≤1, 1≤a/b≤20)(In Formula 1, M 1 is selected from the group consisting of Mn, Al, Fe, V, Cr, Ti, and W, and 0.7 ≦ a ≦ 1, 0.05 ≦ b ≦ 1, 0.01 ≦ c ≦ 1, 1 ≦ a /). b≤20)

삭제delete

상기 양극활물질 전구체를 리튬 화합물과 반응시키고 제 1 열처리하여 양극활물질을 제조하는 제 2 단계;A second step of preparing a cathode active material by reacting the cathode active material precursor with a lithium compound and performing first heat treatment;

상기 양극활물질을 플라즈마 처리하는 제 3 단계;로 구성되는,And a third step of plasma treating the cathode active material.

아래 화학식 2로 표시되는 리튬 이차 전지용 양극활물질의 제조 방법을 제공한다.
[화학식2] LiNiaCobM1cO2
It provides a method for producing a cathode active material for a lithium secondary battery represented by the formula (2).
LiNi a Co b M 1c O 2

(상기 화학식 2에서 M1은 Mn, Al, Fe, V, Cr, Ti 및 W 로 이루어진 그룹에서 선택되고, 0.50≤a≤0.95, 0.02≤b≤0.25, 0.01≤c≤0.20, 1≤a/b≤20)(In Formula 2, M 1 is selected from the group consisting of Mn, Al, Fe, V, Cr, Ti, and W, and 0.50 ≦ a ≦ 0.95, 0.02 ≦ b ≦ 0.25, 0.01 ≦ c ≦ 0.20, and 1 ≦ a /). b≤20)

삭제delete

본 발명에 의한 리튬 이차 전지용 양극활물질의 제조 방법에 있어서, 상기 양극활물질을 플라즈마 처리하는 제 3 단계에서는 Al, Al2O3, Co, Fe, Ti, Si, Mg, 및 Zr으로 이루어진 그룹에서 선택되는 금속 타겟을 사용하여 양극활물질 표면을 코팅하는 것을 특징으로 한다. In the method for manufacturing a cathode active material for a lithium secondary battery according to the present invention, in the third step of plasma treatment of the cathode active material, it is selected from the group consisting of Al, Al 2 O 3 , Co, Fe, Ti, Si, Mg, and Zr. It characterized by coating the surface of the positive electrode active material using a metal target.

본 발명에 의한 리튬 이차 전지용 양극활물질의 제조 방법에 있어서, 상기 양극활물질을 플라즈마 처리하는 제 3 단계에서는 상기 양극활물질을 교반하면서 플라즈마 처리하는 것을 특징으로 한다. In the method for manufacturing a cathode active material for a lithium secondary battery according to the present invention, in the third step of plasma treating the cathode active material, the cathode active material may be plasma treated while stirring.

본 발명에 의한 리튬 이차 전지용 양극활물질의 제조 방법에 있어서, 상기 양극활물질을 플라즈마 처리하는 제 3 단계에서는 상기 금속 타겟을 이용하여 5 mol 이하로 코팅하는 것을 특징으로 한다. In the method for manufacturing a cathode active material for a lithium secondary battery according to the present invention, in the third step of plasma treatment of the cathode active material is characterized in that the coating to 5 mol or less using the metal target.

본 발명에 의한 리튬 이차 전지용 양극활물질의 제조 방법에 있어서, 상기 양극활물질을 플라즈마 처리하는 제 3 단계에서는 불활성 분위기에서 플라즈마 처리하는 것을 특징으로 한다. In the method for producing a cathode active material for a lithium secondary battery according to the present invention, in the third step of plasma treating the cathode active material, plasma treatment is performed in an inert atmosphere.

본 발명은 또한, 본 발명에 의한 리튬 이차 전지용 양극활물질의 제조 방법에 의하여 제조된 리튬 이차 전지용 양극활물질을 제공한다.
The present invention also provides a cathode active material for a lithium secondary battery manufactured by the method for producing a cathode active material for a lithium secondary battery according to the present invention.

본 발명에 의한 리튬 이차 전지용 양극활물질의 제조 방법은 플라즈마를 사용하여 양극활물질 표면을 표면에 잔류하는 리튬과 반응할 수 있는 금속으로 코팅함으로써 잔류리튬을 감소시키고 이에 따라 전지 용량 및 수명 특성을 개선시키는 효과가 있다.
In the method of manufacturing a cathode active material for a lithium secondary battery according to the present invention, the surface of the cathode active material is coated with a metal capable of reacting with lithium remaining on the surface by using a plasma to reduce residual lithium and thereby improve battery capacity and life characteristics. It works.

도 1 은 플라즈마 처리장치를 나타내는 모식도이다.
도 2 는 본 발명의 일 실시예 및 비교예에서 제조된 양극활물질의 SEM 사진을 나타낸다.
도 3은 본 발명의 일 실시예 및 비교예에서 제조된 양극활물질의 XRD 사진을 측정한 결과를 나타낸다.
도 4는 본 발명의 일 실시예 및 비교예에서 제조된 양극활물질을 포함하는 전지의 충방전 특성을 측정한 결과를 나타낸다.
도 5는 본 발명의 일 실시예 및 비교예에서 제조된 양극활물질을 포함하는 전지의 저장 특성을 측정한 결과를 나타낸다.
1 is a schematic diagram showing a plasma processing apparatus.
Figure 2 shows a SEM photograph of the positive electrode active material prepared in one embodiment and comparative example of the present invention.
Figure 3 shows the results of measuring the XRD photographs of the positive electrode active material prepared in Examples and Comparative Examples of the present invention.
Figure 4 shows the results of measuring the charge and discharge characteristics of a battery including a cathode active material prepared in one embodiment and comparative example of the present invention.
Figure 5 shows the results of measuring the storage characteristics of a battery comprising a positive electrode active material prepared in one embodiment and comparative example of the present invention.

이하에서는 본 발명을 실시예에 의하여 더욱 상세히 설명한다. 그러나, 본 발명이 이하의 실시예에 의하여 한정되는 것은 아니다.
Hereinafter, the present invention will be described in more detail with reference to Examples. However, the present invention is not limited by the following examples.

<< 실시예Example 1> 1>

양극활물질을 제조하기 위하여 먼저 공침반응에 의하여 NiCoMn(OH)2 전구체를 제조하였다. 제조된 전구체에 리튬 화합물로서 LiOH를 첨가하고 제 1 열처리하여 Li1.02Ni0.91Co0.08Mn0.014O2 로 표시되는 리튬 이차 전지용 양극활물질을 제조하였다.In order to prepare a positive electrode active material, NiCoMn (OH) 2 precursor was prepared by coprecipitation. LiOH was added as a lithium compound to the prepared precursor and subjected to a first heat treatment to prepare a cathode active material for a lithium secondary battery represented by Li 1.02 Ni 0.91 Co 0.08 Mn 0.014 O 2.

제조된 양극활물질을 도 1에 표시된 플라즈마 반응기 내에 도입하고, 타겟으로 Al 및 Al2O3를 사용하였다. 전원을 인가하여 양극활물질을 교반하면서 타겟을 양극활물질 표면에 코팅되도록 하였다.
The prepared cathode active material was introduced into the plasma reactor shown in FIG. 1, and Al and Al 2 O 3 were used as targets. The target was applied to the surface of the positive electrode active material while stirring the positive electrode active material by applying power.

<< 비교예Comparative example >>

플라즈마 코팅을 실시하지 않은 것을 제외하고는 상기 실시예 1과 동일하게 하여 비교예 1의 활물질을 제조하였다. An active material of Comparative Example 1 was prepared in the same manner as in Example 1, except that plasma coating was not performed.

또한, 금속을 고상 혼합 후 교반하여 표면 코팅을 실시하여 양극활물질을 제조하여 비교예 2의 활물질을 제조하였다.
In addition, the metal was mixed with the solid phase and then stirred to prepare a cathode active material by surface coating to prepare an active material of Comparative Example 2.

<< 실험예Experimental Example >> SEMSEM 사진 측정 Photo measurement

상기 실시예와 비교예에서 제조된 활물질의 SEM 사진을 측정하고 그 결과를 도 2에 나타내었다. SEM photographs of the active materials prepared in Examples and Comparative Examples were measured and the results are shown in FIG. 2.

도 2에서 본 발명의 실시예에 의하여 플라즈마 처리된 경우 코팅 금속에 의하여 표면이 비교예에 비하여 표면 굴곡이 증가하는 것을 확인할 수 있다.
When the plasma treatment in accordance with an embodiment of the present invention in Figure 2 it can be seen that the surface curvature increases by the coating metal compared to the comparative example.

<< 실험예Experimental Example >> XRDXRD 측정 Measure

상기 실시예와 비교예에서 제조된 활물질의 XRD 사진을 측정하고 그 결과를 도 3에 나타내었다. XRD photographs of the active materials prepared in Examples and Comparative Examples were measured and the results are shown in FIG. 3.

도 3에서 본 발명의 실시예에서 표면이 플라즈마로 코팅된 경우 코팅 전후 결정 구조의 변화가 없다는 것을 알수 있다.
In the embodiment of the present invention in Figure 3 it can be seen that there is no change in the crystal structure before and after coating the surface is coated with plasma.

<< 실험예Experimental Example >잔류 리튬 측정> Residual Lithium Measurement

미반응 리튬의 측정은 pH 적정에 의해 pH 4 가 될 때까지 사용된 0.1M HCl의 양으로 측정한다. Determination of unreacted lithium is determined by the amount of 0.1M HCl used until pH 4 by pH titration.

먼저, 양극 활물질 5 g을 DIW 100 ml에 넣고 15 분간 교반한 후 필터링하고, 필터링 된 용액 50 ml를 취한 후 여기에 0.1M HCl을 가하여 pH 변화에 따른 HCl 소모량을 측정하여 Q1, Q2를 결정하고, 아래 계산식에 따라 미반응 LiOH 및 Li2CO3 을 계산하였다.First, 5 g of the positive electrode active material was added to 100 ml of DIW, stirred for 15 minutes, filtered, and 50 ml of the filtered solution was taken, and 0.1 M HCl was added thereto to measure the amount of HCl consumed according to the pH change, thereby determining Q1 and Q2. , Unreacted LiOH and Li 2 CO 3 was calculated according to the formula below.

M1 = 23.94 (LiOH Molecular weight)M1 = 23.94 (LiOH Molecular weight)

M2 = 73.89 (Li2CO3 Molecular weight)M2 = 73.89 (Li 2 CO 3 Molecular weight)

SPL Size = (Sample weight × Solution Weight) / Water WeightSPL Size = (Sample weight × Solution Weight) / Water Weight

LiOH(wt%) = [(Q1-Q2)×C×M1×100]/(SPL Size ×1000)LiOH (wt%) = [(Q1-Q2) × C × M1 × 100] / (SPL Size × 1000)

Li2CO3(wt%) = [2×Q2×C×M2/2×100]/(SPL Size×1000)Li2CO3 (wt%) = [2 × Q2 × C × M2 / 2 × 100] / (SPL Size × 1000)

이와 같은 방법을 적용하여 상기 실시예 및 비교예에서 제조된 NCA 계열 리튬 복합 산화물에 있어서 미반응 LiOH 및 Li2CO3 의 농도를 측정한 결과는 다음 표1 과 같다.The results of measuring the concentration of unreacted LiOH and Li 2 CO 3 in the NCA-based lithium composite oxides prepared in Examples and Comparative Examples by applying the above method are shown in Table 1 below.

Figure 112015002583693-pat00001
Figure 112015002583693-pat00001

<< 실험예Experimental Example >> 충방전Charging and discharging 특성 평가 Property evaluation

상기 실시예 및 비교예에서 제조된 양극활물질을 각각 양극으로 사용하고, 리튬 금속을 음극으로 사용하여 코인 셀을 제조하고 C/10 충전 및 C/10 방전 속도(1 C = 150 mA/g)로 3 ~ 4.3 V 사이에서 충방전실험을 수행한 결과를 도 4 및 표 2에 나타내었다.Coin cells were prepared using the cathode active materials prepared in Examples and Comparative Examples, respectively, as a cathode, and lithium metal as the anode, and were prepared at C / 10 charging and C / 10 discharge rates (1 C = 150 mA / g). Charging and discharging experiments performed between 3 and 4.3 V are shown in FIGS. 4 and 2.

Figure 112015002583693-pat00002
Figure 112015002583693-pat00002

<< 실험예Experimental Example >저장 후 임피던스 측정 결과Impedance measurement results after storage

상기 실시예에서 제조된 양극활물질을 각각 양극으로 포함하는 코인 셀에 대해서 저장 후 임피던스를 측정하고 그 결과를 도 5에 나타내었다. For the coin cell each containing a cathode active material prepared in the above example as a cathode, the impedance after storage was measured and the results are shown in FIG. 5.

도 5에서 비교예에 비해 플라즈마 코팅된 실시예의 저장 후 임피던스가 감소한 것을 확인할 수 있다.In Figure 5 it can be seen that the impedance is reduced after the storage of the plasma coated example compared to the comparative example.

Claims (6)

아래 화학식 1로 표시되는 리튬 이차 전지용 양극활물질 전구체를 제조하는 제 1 단계;
[화학식 1] NiaCobM1c(OH)2
(상기 화학식 1에서 M1은 Mn, Al, Fe, V, Cr, Ti 및 W 로 이루어진 그룹에서 선택되고, 0.7≤a≤1, 0.05≤b≤1, 0.01≤c≤1, 1≤a/b≤20)
상기 양극활물질 전구체를 리튬 화합물과 반응시키고 제 1 열처리하여 양극활물질을 제조하는 제 2 단계;
상기 양극활물질을 플라즈마 처리하는 제 3 단계;로 구성되며,
상기 양극활물질을 플라즈마 처리하는 제 3 단계에서는 Al, Al2O3, Co, Fe, Ti, Si, Mg, 및 Zr으로 이루어진 그룹에서 선택되는 금속 타겟을 사용하여 양극활물질 표면을 3 mol% 이하로 코팅하는 것인,
아래 화학식 2로 표시되는 리튬 이차 전지용 양극활물질의 제조 방법.
[화학식2] LiNiaCobM1cO2
(상기 화학식 2에서 M1은 Mn, Al, Fe, V, Cr, Ti 및 W 로 이루어진 그룹에서 선택되고, 0.50≤a≤0.95, 0.02≤b≤0.25, 0.01≤c≤0.20, 1≤a/b≤20)
A first step of preparing a cathode active material precursor for a lithium secondary battery represented by Formula 1 below;
Ni a Co b M 1c (OH) 2
(In Formula 1, M 1 is selected from the group consisting of Mn, Al, Fe, V, Cr, Ti, and W, and 0.7 ≦ a ≦ 1, 0.05 ≦ b ≦ 1, 0.01 ≦ c ≦ 1, 1 ≦ a /). b≤20)
A second step of preparing a cathode active material by reacting the cathode active material precursor with a lithium compound and performing first heat treatment;
And a third step of plasma treating the cathode active material.
In the third step of plasma treatment of the cathode active material, the surface of the cathode active material is 3 mol% or less using a metal target selected from the group consisting of Al, Al 2 O 3 , Co, Fe, Ti, Si, Mg, and Zr. Coating,
Method for producing a cathode active material for a lithium secondary battery represented by the formula (2) below.
LiNi a Co b M 1c O 2
(In Formula 2, M 1 is selected from the group consisting of Mn, Al, Fe, V, Cr, Ti, and W, and 0.50 ≦ a ≦ 0.95, 0.02 ≦ b ≦ 0.25, 0.01 ≦ c ≦ 0.20, and 1 ≦ a /). b≤20)
삭제delete 삭제delete 제 1 항에 있어서,
상기 양극활물질을 플라즈마 처리하는 제 3 단계에서는 상기 양극활물질을 교반하면서 플라즈마 처리하는 것인 리튬 이차 전지용 양극활물질의 제조 방법.
The method of claim 1,
In the third step of the plasma treatment of the positive electrode active material is a method of manufacturing a positive electrode active material for a lithium secondary battery which is a plasma treatment while stirring the positive electrode active material.
제 1 항에 있어서,
상기 양극활물질을 플라즈마 처리하는 제 3 단계에서는 불활성 분위기에서 플라즈마 처리하는 것인 리튬 이차 전지용 양극활물질의 제조 방법.
The method of claim 1,
In the third step of the plasma treatment of the positive electrode active material is a plasma treatment in an inert atmosphere manufacturing method of a positive electrode active material for a lithium secondary battery.
제 1 항의 제조 방법에 의하여 제조된 리튬 이차 전지용 양극활물질.A cathode active material for a lithium secondary battery prepared by the method of claim 1.
KR1020150003710A 2015-01-09 2015-01-09 Manufacuring method of cathode active material for lithium rechargeable battery, and cathode active material made by the same KR102027460B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150003710A KR102027460B1 (en) 2015-01-09 2015-01-09 Manufacuring method of cathode active material for lithium rechargeable battery, and cathode active material made by the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150003710A KR102027460B1 (en) 2015-01-09 2015-01-09 Manufacuring method of cathode active material for lithium rechargeable battery, and cathode active material made by the same

Publications (2)

Publication Number Publication Date
KR20160086228A KR20160086228A (en) 2016-07-19
KR102027460B1 true KR102027460B1 (en) 2019-10-02

Family

ID=56616372

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150003710A KR102027460B1 (en) 2015-01-09 2015-01-09 Manufacuring method of cathode active material for lithium rechargeable battery, and cathode active material made by the same

Country Status (1)

Country Link
KR (1) KR102027460B1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102133916B1 (en) 2016-12-28 2020-07-15 주식회사 엘지화학 Positive electrode active material for secondary battery, method for preparing the same and lithium secondary battery comprising the same
WO2018124593A1 (en) * 2016-12-28 2018-07-05 주식회사 엘지화학 Cathode active material for secondary battery, method for manufacturing same, and lithium secondary battery comprising same
KR102231062B1 (en) 2018-03-09 2021-03-23 주식회사 엘지화학 Positive electrode active material, method for producing thereof, positive electrode and secondary battery comprising the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002110156A (en) 2000-09-28 2002-04-12 Hitachi Metals Ltd Manufacturing method of positive pole active material for nonaqueous lithium secondary battery, and its positive pole active material and nonaqueous lithium secondary battery using it
KR101447840B1 (en) 2010-08-17 2014-10-14 유미코르 Alumina dry-coated cathode material precursors

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101166334B1 (en) * 2010-04-09 2012-07-18 주식회사 에코프로 Manufacturing method of cathode active materials for secondary battery containing metal composite oxides and cathode active materials made by the same
KR101492175B1 (en) * 2011-05-03 2015-02-10 주식회사 엘지화학 Treatment method of surface of cathode active particle and cathode active particle formed therefrom
KR101348547B1 (en) * 2011-11-18 2014-01-09 재단법인대구경북과학기술원 Surface coated lithium titanate powder and fabricating method thereof
KR101354481B1 (en) * 2012-04-18 2014-01-27 한국기초과학지원연구원 A method for removing impurities of lithium transtion metal oxide

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002110156A (en) 2000-09-28 2002-04-12 Hitachi Metals Ltd Manufacturing method of positive pole active material for nonaqueous lithium secondary battery, and its positive pole active material and nonaqueous lithium secondary battery using it
KR101447840B1 (en) 2010-08-17 2014-10-14 유미코르 Alumina dry-coated cathode material precursors

Also Published As

Publication number Publication date
KR20160086228A (en) 2016-07-19

Similar Documents

Publication Publication Date Title
JP7438922B2 (en) Lithium composite oxide for lithium secondary battery and method for producing the same
KR101567039B1 (en) Manufacuring method of cathode active material for lithium rechargeable battery, and cathode active material made by the same
JP6875172B2 (en) Lithium composite oxide for lithium secondary batteries and its manufacturing method
JP7354184B2 (en) Lithium composite oxide for lithium secondary battery and method for producing the same
JP6845869B2 (en) Method for producing positive electrode active material for lithium secondary battery and lithium secondary battery positive electrode active material produced by this method.
KR101378580B1 (en) Cathod active material, lithium rechargeble battery including the same, and method of activiting the same
KR101550741B1 (en) Manufacturing method of positive active material for lithium rechargeable batteries and positive active material made by the same
JP6771419B2 (en) Lithium composite oxide for lithium secondary batteries and its manufacturing method
JP6793588B2 (en) Lithium composite oxide for lithium secondary batteries and its manufacturing method
KR101875868B1 (en) Lithium complex oxide for lithium secondary battery positive active material and a method of preparing the same
JP7150911B2 (en) Lithium composite oxide for lithium secondary battery and method for producing the same
KR20160091172A (en) Manufacturing method of positive active material containing reduced residual lithium and positive active material manufactured by the same
JP7257475B2 (en) Lithium composite oxide and method for producing the same
JP2019503551A (en) Method for producing positive electrode active material and positive electrode active material produced thereby
WO2023155930A1 (en) Positive electrode material of lithium-ion battery and preparation method therefor
KR20180015044A (en) Lithium complex oxide for lithium rechargeable battery positive active material and preparing method of the same
KR102027460B1 (en) Manufacuring method of cathode active material for lithium rechargeable battery, and cathode active material made by the same
KR20180015046A (en) Lithium complex oxide for lithium secondary battery positive active material and a method of preparing the same
CN115411258A (en) Sodium-ion battery positive electrode material and preparation method and application thereof
US11508960B2 (en) Lithium metal complex oxide and manufacturing method of the same
KR20180015047A (en) Lithium complex oxide for lithium secondary battery positive active material and a method of preparing the same
CN115863553A (en) Activation method of lithium-rich cathode material

Legal Events

Date Code Title Description
N231 Notification of change of applicant
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant