KR102005481B1 - Combustion chamber inner lining component of gas turbine and methode thereof - Google Patents

Combustion chamber inner lining component of gas turbine and methode thereof Download PDF

Info

Publication number
KR102005481B1
KR102005481B1 KR1020160109269A KR20160109269A KR102005481B1 KR 102005481 B1 KR102005481 B1 KR 102005481B1 KR 1020160109269 A KR1020160109269 A KR 1020160109269A KR 20160109269 A KR20160109269 A KR 20160109269A KR 102005481 B1 KR102005481 B1 KR 102005481B1
Authority
KR
South Korea
Prior art keywords
alumina
combustion chamber
gas turbine
inner lining
mullite
Prior art date
Application number
KR1020160109269A
Other languages
Korean (ko)
Other versions
KR20180023630A (en
Inventor
안성배
서형일
성혁제
Original Assignee
한국중부발전(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국중부발전(주) filed Critical 한국중부발전(주)
Priority to KR1020160109269A priority Critical patent/KR102005481B1/en
Publication of KR20180023630A publication Critical patent/KR20180023630A/en
Application granted granted Critical
Publication of KR102005481B1 publication Critical patent/KR102005481B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M5/00Casings; Linings; Walls
    • F23M5/02Casings; Linings; Walls characterised by the shape of the bricks or blocks used
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/61Mechanical properties, e.g. fracture toughness, hardness, Young's modulus or strength
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M2900/00Special features of, or arrangements for combustion chambers
    • F23M2900/05001Preventing corrosion by using special lining materials or other techniques

Abstract

본 발명은 발전소 가스터빈의 연소실 내부에 장착되어 연소실 내부 부품의 보호 및 단열을 위해 사용될 수 있는 발전소 가스터빈의 연소실 내부 라이닝의 조성물에 관한 것이다.
본 발명의 특징은, 알루미나, 멀라이트, 실리카, 알루미나 시멘트를 혼합하여 케스타블을 제조하는 케스타블 제조단계(S10)와, 케스타블을 성형틀에 주입하여 성형물을 성형하는 성형물 성형단계(S20)와, 성형된 성형물을 110~150도(℃)의 온도에서 건조하는 성형물 건조단계(S30)와, 건조된 성형물을 1,600~1,700도(℃)의 온도에서 소결하여 조성물을 완성하는 성형물 소결단계(S40)를 포함한다.
The present invention relates to a composition of a combustion chamber interior lining of a power plant gas turbine which can be mounted inside a combustion chamber of a power plant gas turbine and used for protection and insulation of internal components of the combustion chamber.
A feature of the present invention resides in a method of manufacturing a castable, comprising the steps of: (c) preparing a castable (S10) by mixing alumina, mullite, silica and alumina cement to form a castable; (S30) for drying the molded article at a temperature of 110 to 150 degrees Celsius (S30), and a molded article for sintering the dried article at a temperature of 1,600 to 1,700 degrees Celsius And a sintering step (S40).

Description

발전소 가스터빈의 연소실 내부 라이닝의 조성물 및 그 제조방법{COMBUSTION CHAMBER INNER LINING COMPONENT OF GAS TURBINE AND METHODE THEREOF}Technical Field [0001] The present invention relates to a composition of a combustion liner inner lining of a power plant gas turbine,

본 발명은 발전소 가스터빈의 연소실 내부에 장착되어 연소실 내부 부품의 보호 및 단열을 위해 사용될 수 있는 발전소 가스터빈의 연소실 내부 라이닝의 조성물 및 그 제조방법에 관한 것이다. The present invention relates to a composition of a combustion chamber interior lining of a power plant gas turbine, which can be installed inside a combustion chamber of a power plant gas turbine to protect and insulate internal components of the combustion chamber, and a method of manufacturing the same.

최근에, 일반적으로 가스터빈의 구동 시, 가스 연소 과정에 의해 연소실 내부 온도는 약 1,300℃까지 상승하게 된다. In recent years, when the gas turbine is driven, the internal combustion chamber temperature is raised to about 1,300 DEG C by the gas combustion process.

세라믹 재질의 경우 금속 재질에 비해 연소 온도에서의 내화성, 내식성이 안정한 특성을 가지고 있으며, 열전도율이 낮기 때문에 단열 효과가 있어 라이닝재로 적합한 재질이다. Ceramic materials have fire resistance and corrosion resistance stable at combustion temperature as compared with metal materials. They are suitable for lining materials because of their thermal insulation because of low thermal conductivity.

가스 터빈 연소실 내에서 사용되는 라이닝재는 운용 시 발생하는 진동에 견딜 수 있도록 적정 강도가 부여되어야 하며, 급승온에 의한 열충격 및 라이너 내-외부의 온도 차이에 의한 열충격에 견뎌낼 수 있어야 한다. The lining materials used in the gas turbine combustion chamber shall be provided with adequate strength to withstand the vibrations generated during operation and shall be able to withstand thermal shocks due to thermal shock due to rapid heating and temperature difference between the inside and outside of the liner.

타일과 타일 간의 간격이 5mm 이하이기 때문에 온도 상승에 따른 열팽창에 의한 타일 간 간섭이 없도록 열팽창계수가 높지 않아야 하며, 사용 중 크랙 발생 시 전파가 억제되어 라이닝재 파괴로 인한 부품 비산으로 가스터빈 베인, 블레이드의 추가피해가 발생되지 않도록 해야 한다. Since the gap between tile and tile is less than 5mm, thermal expansion coefficient should not be high so that there is no interference between tiles due to thermal expansion due to temperature rise, and propagation is suppressed when cracks occur during use. Do not allow additional damage to the blade.

또한 지속적인 고온에서의 노출에 의한 추가 소결 및 그에 따른 치수 변화가 억제되어야 한다.In addition, further sintering due to continuous exposure at high temperatures and consequent dimensional changes must be suppressed.

따라서, 상기와 같은 환경에서 적용 가능한 재질의 라이닝재의 개발이 요구되고 있는 실정이다. Accordingly, there is a demand for development of a lining material of a material applicable in such an environment.

본 발명의 배경기술은 대한민국 특허청에 출원되어 공개된 공개특허공보 10-2003-0038748호(2003.05.16.)가 게재되어 있다. The background art of the present invention is disclosed in Published Patent Application No. 10-2003-0038748 (May 16, 2003) filed in the Korean Intellectual Property Office.

본 발명이 해결하고자 하는 과제는, 발전소 가스터빈의 연소실 내부에 장착되어 연소실 내부 부품의 보호 및 단열을 위해 사용될 수 있는 발전소 가스터빈의 연소실 내부 라이닝의 조성물 및 그 제조방법을 제공하고자 하는 것이다. SUMMARY OF THE INVENTION It is an object of the present invention to provide a composition of a lining inside a combustion chamber of a power plant gas turbine, which can be used for protection and insulation of a combustion chamber internal component mounted inside a combustion chamber of a power plant gas turbine, and a method of manufacturing the same.

본 발명의 일실시예에 따른 발전소 가스터빈의 연소실 내부 라이닝의 조성물 제조방법은, 알루미나, 멀라이트, 실리카, 알루미나 시멘트를 혼합하여 케스타블을 제조하는 케스타블 제조단계(S10)와, 케스타블을 성형틀에 주입하여 성형물을 성형하는 성형물 성형단계(S20)와, 성형된 성형물을 110~150도(℃)의 온도에서 건조하는 성형물 건조단계(S30)와, 건조된 성형물을 1,600~1,700도(℃)의 온도에서 소결하여 조성물을 완성하는 성형물 소결단계(S40)를 포함하는 것을 특징으로 한다. A method of manufacturing a composition of a combustion chamber inner lining of a power plant gas turbine according to an embodiment of the present invention includes a step (S10) of producing a castable by mixing alumina, mullite, silica, and alumina cement, (S30) of drying the molded article at a temperature of 110 to 150 degrees Celsius (S30), and drying the molded article at a temperature of 1,600 ~ And sintering at a temperature of 1,700 degrees Celsius to complete the composition.

바람직하게, 알루미나는 47~64 중량%이고, 멀라이트는 33~46 중량%이며, 실리카는 2~4 중량%이고, 알루미나 시멘트는 1~3 중량%인 것을 특징으로 한다. Preferably, the alumina is 47 to 64 wt%, the mullite is 33 to 46 wt%, the silica is 2 to 4 wt%, and the alumina cement is 1 to 3 wt%.

바람직하게, 멀라이트는 알루미나 70~80 중량% 및 실리카 20~30 중량%를 포함하는 것을 특징으로 한다. Preferably, the mullite is characterized in that it comprises 70 to 80% by weight of alumina and 20 to 30% by weight of silica.

바람직하게, 알루미나의 평균 입경은 0.5㎛~3mm이며, 소결알루미나 및 하소알루미나로 구성되는 것을 특징으로 한다. Preferably, the alumina has an average particle diameter of 0.5 mu m to 3 mm and is characterized by being composed of sintered alumina and calcined alumina.

바람직하게, 발전소 가스터빈의 연소실 내부 라이닝 조성물의 열팽창계수는 5.5*10-6/℃ ~ 7.5*10-6/℃ 인 것을 특징으로 한다. Preferably, the thermal expansion coefficient of the combustion chamber interior lining composition of the power plant gas turbine is characterized by 5.5 * 10 -6 / ° C to 7.5 * 10 -6 / ° C.

바람직하게, 발전소 가스터빈의 연소실 내부 라이닝 조성물의 비중은 2.85~3.05 g/cm3, 기공률은 10.0~20.0 %, 꺾임강도는 5~20 MPa, 열간꺾임강도는 3~7 MPa, 열충격강도는 3~7 MPa, 압축강도는 80~130 MPa, 1,400도(℃)에서 기준 잔존선치수변화율은 ±0.2 % 인 것을 특징으로 한다. Preferably, the combustion chamber inner lining composition of the power plant gas turbine has a specific gravity of 2.85 to 3.05 g / cm 3 , a porosity of 10.0 to 20.0%, a bending strength of 5 to 20 MPa, a hot bending strength of 3 to 7 MPa, To 7 MPa, a compressive strength of 80 to 130 MPa, and a reference residual line dimensional change rate of ± 0.2% at 1,400 ° C.

또한, 본 발명은 발전소 가스터빈의 연소실 내부 라이닝의 조성물에 있어서, 알루미나 47~64 중량%, 멀라이트 33~46 중량%, 실리카 2~4 중량%, 알루미나 시멘트 1~3 중량%를 포함하는 것을 특징으로 한다. The present invention also relates to a composition for a combustion chamber inner lining of a power plant gas turbine, which comprises 47 to 64 wt% of alumina, 33 to 46 wt% of mullite, 2 to 4 wt% of silica, and 1 to 3 wt% of alumina cement .

본 발명은 발전소 가스터빈의 연소실 내부에 장착되어 연소실 내부 부품의 보호 및 단열을 위해 사용될 수 있어서, 열적, 화학적, 기계적 및 열용적 안정성이 조화를 이룰 수 있음에 따라 사용특성이 우수해지는 효과가 있다. INDUSTRIAL APPLICABILITY The present invention can be applied to the interior of a combustion chamber of a power plant gas turbine to protect and insulate the internal components of the combustion chamber, and the thermal, chemical, mechanical, and thermal volume stability can be harmonized, .

또한, 성형틀을 이용하여 라이닝의 조성물을 완성하므로 원하는 형태로 성형할 수 있다. In addition, since the composition of the lining is completed by using the mold, it can be molded into a desired shape.

또한, 성형틀에서 성형된 성형물을 건조한 후에 소결하므로 높은 경도의 라이닝 조성물이 완성될 수 있다. In addition, since the molded article formed in the mold is dried and sintered, a high hardness lining composition can be completed.

도 1은 본 발명의 일실시예에 따른 발전소 가스터빈의 연소실 내부 라이닝의 조성물을 제조하는 과정을 보인 순서도.
도 2는 본 발명에 적용되는 발전소 가스터빈의 연소실 내부 라이닝재를 보인 사진.
도 3은 도 2의 라이닝재의 양측이 가공된 상태를 보인 사진.
1 is a flowchart showing a process of manufacturing a composition of a combustion liner inner lining of a power plant gas turbine according to an embodiment of the present invention.
2 is a photograph showing the inner lining material of a combustion chamber of a power plant gas turbine according to the present invention.
Fig. 3 is a photograph showing a state where both sides of the lining material of Fig. 2 are processed. Fig.

이하, 첨부된 도면을 참조하여 본 발명에 대하여 자세히 살펴본다. DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

도 1 내지 도 3에 도시된 바와 같이, 본 발명은 알루미나, 멀라이트, 실리카, 알루미나 시멘트를 혼합하여 케스타블(CASTABLE)을 제조하는 케스타블 제조단계(S10)와, 케스타블을 성형틀에 주입하여 성형물을 성형하는 성형물 성형단계(S20)와, 성형된 성형물을 110~150도(℃)의 온도에서 1~3일 동안 건조하는 성형물 건조단계(S30)와, 건조된 성형물을 1,600~1,700도(℃)의 온도에서 6~7일 동안 소결하여 조성물을 완성하는 성형물 소결단계(S40)를 포함한다. As shown in FIGS. 1 to 3, the present invention relates to a cascade forming step (S10) for producing a castable by mixing alumina, mullite, silica and alumina cement, (S30) for drying the molded article at a temperature of 110 to 150 degrees Celsius for 1 to 3 days, and drying the molded article at a temperature of 1,600 And a sintering step (S40) in which the composition is sintered at a temperature of -1700 degrees Celsius for 6 to 7 days.

여기서, 본 발명에 사용되는 알루미나의 평균 입경은 0.5㎛~3 mm로 미분 및 골재 형태로 투입되며, 내열충격성이 강한 소결알루미나와 고온 소결성이 좋은 하소알루미나로 구성된다. 골재의 경우 라이닝에 내열충격성을 부여하는 역할을 하며, 미분의 경우 소결이 일어나면서 골재-골재를 연결시켜주어 라이닝의 강도를 부여하는 역할을 한다. The average particle diameter of the alumina used in the present invention is 0.5 to 3 mm, and the powder is injected in the form of fine powder and aggregate, and is composed of sintered alumina having high heat shock resistance and calcined alumina having high sinterability at high temperature. In case of aggregate, it plays a role of imparting heat shock resistance to the lining. In the case of fine powder, it plays a role of connecting the aggregate-aggregate while giving sintering and giving strength of the lining.

골재의 경우 30~40 중량% 이내, 미분은 20~30 중량%를 포함한다. 미분 함량이 너무 적으면 골재 간 결합이 잘 이루어지지 않아 강도가 약해지며, 미분 함량이 너무 많으면 강도는 높아지나 조직의 치밀화가 이루어져 열충격에 취약해지는 특징이 있다. 30 to 40% by weight in the case of the aggregate, and 20 to 30% by weight in the fine powder. If the amount of the fine powder is too small, the bonding between the aggregates is not performed well and the strength is weak. If the fine powder content is too high, the strength is high, but the structure becomes densified and becomes vulnerable to thermal shock.

알루미나 47~64 중량%, 멀라이트 33~46 중량%, 실리카 2~4 중량%, 알루미나 시멘트 1~3 중량%인 것이 바람직하다. 47 to 64% by weight of alumina, 33 to 46% by weight of mullite, 2 to 4% by weight of silica, and 1 to 3% by weight of alumina cement.

멀라이트는 알루미나 70~80 중량% 및 실리카 20~30 중량%를 포함한다. 멀라이트 이외에 알루미나와 실리카를 원료 형태로 첨가 후 합성을 통하여 멀라이트 매트릭스를 형성하여 전체적으로 저열팽창 특성을 부여할 수 있다.The mullite comprises 70 to 80% by weight of alumina and 20 to 30% by weight of silica. In addition to mullite, alumina and silica may be added as a raw material and then synthesized to form a mullite matrix, thereby providing low thermal expansion characteristics as a whole.

그리고, 본 발명에 사용되는 멀라이트의 원료 함량은 33~46 중량%이다. 33% 미만일 경우 멀라이트의 첨가 목적인 내열충격성 향상 및 저열팽창성의 특성 발현이 잘 일어나지 않으며, 46% 이상 첨가 시에는 전체 매트릭스의 강도가 저하되는 문제가 있다. The raw material content of mullite used in the present invention is 33 to 46% by weight. When the content is less than 33%, improvement in thermal shock resistance and development of low thermal expansion properties for the purpose of adding mullite are not likely to occur, and when the content is 46% or more, the strength of the entire matrix is deteriorated.

성형물이 소결되는 과정에서 케스타블이 모두 산화물로 구성되어 있기 때문에 산화분위기에서 소결을 진행하며, 6~7일 동안 소결공정을 통해 열적, 구조적, 안정성이 향상된 라이닝이 완성될 수 있다. Since the castable is composed of oxides in the process of sintering the molding, the sintering is carried out in an oxidizing atmosphere, and the sintering process for 6 to 7 days can complete the lining having improved thermal, structural and stability.

또한, 본 발명의 연소실 내부 라이닝재에 대한 비중은 2.85~3.05 g/cm3, 기공률은 10.0~20.0%, 꺾임강도는 5~20MPa, 열간꺾임강도는 3~7MPa, 열충격강도는 3~7MPa, 압축강도는 80~130MPa, 1,400도(℃)에서 기준 잔존선치수변화율은 ±0.2% 인 것이 바람직하다. The specific gravity of the inner lining material of the present invention is 2.85 to 3.05 g / cm 3 , the porosity is 10.0 to 20.0%, the bending strength is 5 to 20 MPa, the hot bending strength is 3 to 7 MPa, the thermal shock strength is 3 to 7 MPa, The compression strength is preferably 80 to 130 MPa and the reference residual line dimensional change rate is preferably ± 0.2% at 1,400 ° C.

이와 같은, 제조방법으로 제조된 발전소 가스터빈의 연소실 내부 라이닝의 조성물은 하기와 같은 물성을 가지며, 각 물성이 갖는 의미는 다음과 같다. The composition of the inner lining of the combustion chamber of the power plant gas turbine manufactured by the manufacturing method has the following physical properties, and the meaning of each physical property is as follows.

열팽창계수는 그 값이 증가할수록 온도의 상승에 따른 라이닝재의 열변형이 발생되어 라이닝재 간의 간섭 현상 및 라이닝 고정 부품과의 간섭 현상으로 야기되는 응력 발생에 의한 부재 탈락 현상이 일어날 수 있다. As the value of thermal expansion coefficient increases, thermal deformation of the lining material occurs due to the rise of temperature, so that the phenomenon of interference due to the interference between the lining materials and the interference with the lining fixing parts may occur.

본 발명에 따라 제조된 발전소 가스터빈의 연소실 내부 라이닝재는 5.5*10-6/℃ ~ 7.5*10-6/℃의 열팽창계수 값을 가지며, 내열충격성이 우수한 특성을 가진다. 이러한 특성은 열팽창계수가 낮으며 열적 안정성이 우수한 멀라이트와 소결 과정에서 합성되는 멀라이트 및 미분 알루미나의 비율을 적절하게 배합하여 적용함으로써 나타난다. The inner lining material of the combustion chamber of the power plant gas turbine manufactured according to the present invention has a thermal expansion coefficient value of 5.5 * 10 -6 / ° C to 7.5 * 10 -6 / ° C, and is excellent in thermal shock resistance. These properties are exhibited by appropriately combining the ratio of mullite and fine alumina synthesized during the sintering process and mullite having a low thermal expansion coefficient and excellent thermal stability.

또한, 본 발명의 연소실 내부 라이닝재에 대한 비중은 2.85~3.05 g/cm3, 기공률은 10.0~20.0 %, 꺾임강도는 5~20 MPa, 열간꺾임강도는 3~7 MPa, 열충격강도는 3~7 MPa, 압축강도는 80~130 MPa, 1,400도(℃)에서 기준 잔존선치수변화율은 ±0.2 % 인 것이 특징이며, 상기 물성을 갖는 연소실 내부 라이닝은 화학적, 열적 안정성이 우수할 뿐만 아니라, 고온 기계강도 및 크랙 전파 억제 특성이 우수하여 고온에서의 안정적인 지속적 사용이 가능하다.Also, the specific gravity of the inner lining material of the present invention is 2.85 to 3.05 g / cm 3 , the porosity is 10.0 to 20.0%, the bending strength is 5 to 20 MPa, the hot bending strength is 3 to 7 MPa, 7 MPa, a compressive strength of 80 to 130 MPa, and a dimensional change of the reference residual line of ± 0.2% at 1,400 degrees Celsius. The internal lining of the combustion chamber having the above physical properties is excellent not only in chemical and thermal stability, It is excellent in mechanical strength and crack propagation suppressing property and stable and stable use at high temperature is possible.

이하, 본 발명은 하기의 실시예에 의하여 보다 더 잘 이해될 수 있으며, 하기의 실시예는 본 발명의 예시 목적을 위한 것으로서 본 발명의 보호 범위를 제한하고자 하는 것은 아니다. Hereinafter, the present invention will be better understood by reference to the following examples, and the following examples are for illustrative purposes only and are not intended to limit the scope of protection of the present invention.

[시험예][Test Example]

열팽창계수 측정Measurement of thermal expansion coefficient

연소실 내부 라이닝재 시편을 ㅨ6*25 mm 로 가공하여 1,000 ℃까지 산화 분위기에서 가열하여 평균 열팽창계수를 측정하였다. The inner lining of the combustion chamber was processed to 6 * 25 mm and heated in an oxidizing atmosphere to 1,000 ℃ to measure the average thermal expansion coefficient.

부피비중, 기공률 측정 (KS L ISO 5017)Measurement of porosity in volume ratio (KS L ISO 5017)

연소실 내부 라이닝재 시편을 35*35*35 mm로 가공하여 아르키메데스 법으로 부피비중 및 기공률을 측정하였다.The inner lining of the combustion chamber was processed to 35 * 35 * 35 mm and the volume ratio and porosity were measured by the Archimedes method.

곡강도 측정 (KS L 3110)Bending strength measurement (KS L 3110)

연소실 내부 라이닝재 시편을 15*15*80 mm로 가공하여 3점 곡강도 실험으로 곡강도를 측정하였다. 이 때 crosshead speed는 분당 0.1 mm로 하였으며, span은 60 mm로 하였다. The inner lining of the combustion chamber was processed to 15 * 15 * 80 mm and the bending strength was measured by three-point bending strength test. The crosshead speed was 0.1 mm per minute and the span was 60 mm.

압축강도 측정 (KS L 3503)Compressive strength measurement (KS L 3503)

연소실 내부 라이닝재 시편을 35*35*35mm 로 가공하여, crosshead speed를 분당 0.1 mm로 설정 후 압축강도를 측정하였다. The internal lining of the combustion chamber was machined to 35 * 35 * 35 mm and the crosshead speed was set to 0.1 mm / min and the compressive strength was measured.

열간곡강도 측정 (KS L 3139)Hot bending strength measurement (KS L 3139)

연소실 내부 라이닝재 시편을 15*15*80 mm로 가공하여, 시편의 온도를 1,500℃까지 가열한 상태에서 3점 곡강도 실험으로 곡강도를 측정하였다. The inner lining of the combustion chamber was processed to 15 * 15 * 80 mm, and the bending strength was measured by three-point bending strength test while the temperature of the specimen was heated to 1,500 ° C.

내스폴링성(열충격강도) 측정 (KS L 1003)Measuring the resistance to scratching (thermal shock strength) (KS L 1003)

연소실 내부 라이닝재 시편을 15*15*80 mm로 가공한 뒤, 1,100 ℃로 30분간 가열한 후 흐르는 물에 담궈 급냉시킨 후 균열의 유무 파악 및 그 강도를 3점 곡강도 실험으로 측정하였다. The inner lining of the combustion chamber was processed to 15 * 15 * 80 mm, heated at 1,100 ℃ for 30 minutes, immersed in running water and quenched, and the cracks were observed and their strength was measured by three-point bending strength test.

잔존선치수변화율 측정 (KS L 3518)Measurement of residual line dimensional change (KS L 3518)

연소실 내부 라이닝재 시편을 35*35*60 mm로 가공한 뒤 가열 전의 길이를 측정하고, 1,400 ℃로 3시간 가열 후 자연냉각을 시킨 다음 길이를 측정하여 치수변화율을 측정하였다. The inner lining of the combustion chamber was processed to 35 * 35 * 60 mm, and the length before heating was measured. After heating for 3 hours at 1,400 ° C, it was cooled naturally and the length was measured to measure the dimensional change.

[실시예 1~4, 비교예 1~3][Examples 1 to 4, Comparative Examples 1 to 3]

하기 표 1은 본 발명에서 사용된 원료의 성분 및 첨가량을 나타낸 것이고, 하기 표 2는 그에 따른 물성 측정 결과를 나타낸 것이다. 멀라이트는 용융품을 사용하였다. Table 1 below shows the components and amounts of the raw materials used in the present invention, and Table 2 shows the results of the physical properties. Mullite was a molten product.

하기 표 1과 같은 조성으로 각각의 성분을 혼합하여 캐스터블을 제조한 후, 몰드에 캐스팅하여 성형한 후 110 ℃에서 24시간 이상 건조하고, 1,650 ℃에서 총 7일간 소결하여 연소실 내부 라이닝재를 제조하였다. Castables were prepared by mixing the components as shown in the following Table 1, cast into a mold, molded, dried at 110 DEG C for more than 24 hours, sintered at 1,650 DEG C for 7 days to manufacture an inner lining material Respectively.

조성Furtherance 알루미나Alumina 멀라이트Mullite 실리카Silica 알루미나
시멘트
Alumina
cement
>1 mm> 1 mm <1 mm<1 mm 1.5~0.5 mm1.5 to 0.5 mm <0.5 mm<0.5 mm 실시예 1Example 1 3030 2525 3030 1010 33 22 실시예 2Example 2 3030 2727 3030 1010 1One 22 실시예 3Example 3 3030 2424 2525 1515 44 22 실시예 4Example 4 2525 3030 2525 1515 22 33 비교예 1Comparative Example 1 3030 2828 3030 1010 00 22 비교예 2Comparative Example 2 1515 5050 3030 -- 33 22 비교예 3Comparative Example 3 2525 2020 3030 2020 33 22

항목Item 열팽창
계수
Thermal expansion
Coefficient
부피
비중
volume
importance
기공률Porosity 곡강도Ruggedness 압축
강도
compression
burglar
열간
곡강도
Hot
Ruggedness
열충격
강도
Thermal shock
burglar
잔존선
치수
변화율
Remaining line
size
Rate of change
실시예 1Example 1 0.630.63 2.932.93 14.814.8 12.512.5 110110 6.46.4 6.96.9 +0.08+0.08 실시예 2Example 2 0.650.65 2.992.99 14.414.4 14.314.3 111111 4.14.1 6.76.7 -0.01-0.01 실시예 3Example 3 0.700.70 2.982.98 15.715.7 16.116.1 115115 7.07.0 5.45.4 +0.10+0.10 실시예 4Example 4 0.710.71 2.972.97 17.217.2 12.912.9 108108 3.63.6 3.23.2 +0.02+0.02 비교예 1Comparative Example 1 0.690.69 3.003.00 14.014.0 1313 105105 3.03.0 4.04.0 -0.07-0.07 비교예 2Comparative Example 2 0.720.72 2.992.99 15.715.7 19.219.2 135135 3.43.4 2.82.8 +0.03+0.03 비교예 3Comparative Example 3 0.580.58 2.932.93 13.913.9 10.110.1 9292 2.52.5 3.43.4 +0.04+0.04

상기의 표 1에 대한 조성으로 물성시험 측정 결과 표 2에서 보이는 바와 같이 재질 내의 멀라이트 함량이 증가하면서 열팽창계수가 낮아짐을 확인할 수 있었으며, 미분부에서의 멀라이트가 생성되지 않을 경우 열간 강도가 낮아짐을 확인할 수 있었다. 또한 미분 알루미나가 과량 투입될 경우 재질의 강도는 높아지나 열간 특성이 낮아짐을 비교예 2를 통하여 확인할 수 있었다. 멀라이트 함량이 높아지면서, 열팽창계수는 낮아지나, 강도 측면에서도 낮아짐을 확인할 수 있었다.As shown in Table 2, the mullite content in the material was increased and the coefficient of thermal expansion was lowered. As a result, when the mullite was not produced in the finely divided portion, the hot strength was lowered . In addition, when the excessive amount of the alumina powder is added, the strength of the material is high but the thermal property is low. As the mullite content increased, the coefficient of thermal expansion was lower, but it was also found to be lower in terms of strength.

이와 같이, 본 발명은 가스 터빈 연소실 내부를 둘러싸는 형태로 장착되어 내부 부품 보호 및 단열 역할을 수행하므로 연소실 내부 라이닝재용 조성물에 적용되어 널리 사용될 수 있는 매우 유용한 발명이라 할 수 있다. As described above, since the present invention is installed in the form of surrounding the inside of the gas turbine combustion chamber and serves to protect internal components and adiabatic heat, it can be applied to a composition for an inner lining material of a combustion chamber and can be widely used.

본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예는 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해되어야 하고, 본 발명의 범위는 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의의 및 범위 그리고 그 등가개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.It will be understood by those skilled in the art that the present invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. It is to be understood, therefore, that the embodiments described above are to be considered in all respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims rather than by the foregoing description, All changes or modifications that come within the scope of the equivalent concept are to be construed as being included within the scope of the present invention.

S10 : 케스타블 제조단계
S20 : 성형물 성형단계
S30 : 성형물 건조단계
S40 : 성형물 소결단계
S10: Castable production step
S20: Molding step
S30: Molding material drying step
S40: Sintering of the molding

Claims (8)

케스타블을 성형틀에 주입하여 성형물을 성형하는 성형물 성형단계(S20)와,
성형된 성형물을 110~150도(℃)의 온도에서 건조하는 성형물 건조단계(S30)와,
건조된 성형물을 1,600~1,700도(℃)의 온도에서 소결하여 조성물을 완성하는 성형물 소결단계(S40)를 포함하고,
알루미나는 47~64 중량%이고, 실리카는 2~4 중량%이며, 알루미나 시멘트는 1~3 중량%이고, 멀라이트는 33~46 중량%이어서, 내열충격성 향상 및 저열팽창성이 있으며,
멀라이트는 알루미나 70~80 중량% 및 실리카 20~30 중량%를 포함하여, 멀라이트 이외에 알루미나와 실리카를 첨가 후 합성을 통하여 멀라이트 매트릭스를 형성하여 전체적으로 저열팽창 특성을 부여할 수 있고,
알루미나는 평균 입경이 0.5㎛~3mm로 미분 및 골재 형태로 투입되며, 내열충격성이 강한 소결알루미나와 고온 소결성이 좋은 하소알루미나로 구성되어, 골재의 경우 라이닝에 내열충격성을 부여하는 역할을 하고, 미분의 경우 소결이 일어나면서 골재-골재를 연결시켜주어 라이닝의 강도를 부여하는 역할을 하며,
골재는 30~40 중량%를 포함하고, 미분은 20~30 중량%를 포함하며,
발전소 가스터빈의 연소실 내부 라이닝 조성물의 열팽창계수는 5.5*10-6/℃ ~ 7.5*10-6/℃ 이어서, 내열충격성이 우수할 수 있고,
발전소 가스터빈의 연소실 내부 라이닝 조성물의 비중은 2.85~3.05 g/cm3, 기공률은 10.0~20.0%, 꺾임강도는 5~20MPa, 열간꺾임강도는 3~7MPa, 열충격강도는 3~7MPa, 압축강도는 80~130MPa, 1,400도(℃)에서 기준 잔존선치수변화율은 ±0.2% 이어서, 라이닝은 화학적, 열적 안정성, 고온 기계강도 및 크랙 전파 억제가 우수하며,
성형물 소결단계(S40)에서 케스타블이 산화물로 구성되기 때문에 산화분위기에서 소결을 진행하며, 6~7일 동안 소결공정을 통해 열적, 구조적, 안정성이 향상될 수 있는 것을 특징으로 하는 발전소 가스터빈의 연소실 내부 라이닝의 조성물 제조방법.
(S20) of molding a molded product by injecting castable into a mold,
(S30) for drying the molded article at a temperature of 110 to 150 degrees Celsius,
And a sintering step (S40) for sintering the dried shaped article at a temperature of 1,600 to 1,700 degrees Celsius to complete the composition,
Alumina is 47 to 64 wt%, silica is 2 to 4 wt%, alumina cement is 1 to 3 wt%, mullite is 33 to 46 wt%, thermal shock resistance is improved and thermal expansion is low,
The mullite comprises 70 to 80% by weight of alumina and 20 to 30% by weight of silica, wherein alumina and silica are added in addition to mullite, and then a mullite matrix is formed through synthesis to give a low thermal expansion property as a whole,
The alumina is composed of sintered alumina having a high thermal shock resistance and calcined alumina having high sinterability at high temperature. The alumina has an average particle diameter of 0.5 μm to 3 mm and is injected in the form of fine powder and aggregate. In the case of sintering, aggregate-aggregate is connected to give strength of lining,
The aggregate contains 30 to 40 wt%, the fine powder includes 20 to 30 wt%
The thermal expansion coefficient of the inner lining composition of the combustion chamber of the power plant gas turbine is 5.5 * 10 -6 / ° C to 7.5 * 10 -6 / ° C,
The inner lining composition of the power plant gas turbine has a specific gravity of 2.85 to 3.05 g / cm 3 , a porosity of 10.0 to 20.0%, a bending strength of 5 to 20 MPa, a hot bending strength of 3 to 7 MPa, a thermal shock strength of 3 to 7 MPa, The lining has excellent chemical and thermal stability, high temperature mechanical strength and crack propagation suppression because the standard residual line dimensional change rate is ± 0.2% at 80 to 130 MPa and 1,400 ° C.,
In the sintering step (S40), since the castable is composed of the oxide, the sintering is carried out in the oxidizing atmosphere and the thermal, structural and stability can be improved through the sintering process for 6 to 7 days. Of the inner lining of the combustion chamber.
삭제delete 삭제delete 삭제delete 삭제delete 삭제delete 청구항 1에 의한 제조방법으로 제조된 발전소 가스터빈의 연소실 내부 라이닝의 조성물.
A composition of the inner lining of a combustion chamber of a power plant gas turbine produced by the method of claim 1.
삭제delete
KR1020160109269A 2016-08-26 2016-08-26 Combustion chamber inner lining component of gas turbine and methode thereof KR102005481B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160109269A KR102005481B1 (en) 2016-08-26 2016-08-26 Combustion chamber inner lining component of gas turbine and methode thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160109269A KR102005481B1 (en) 2016-08-26 2016-08-26 Combustion chamber inner lining component of gas turbine and methode thereof

Publications (2)

Publication Number Publication Date
KR20180023630A KR20180023630A (en) 2018-03-07
KR102005481B1 true KR102005481B1 (en) 2019-07-30

Family

ID=61688797

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160109269A KR102005481B1 (en) 2016-08-26 2016-08-26 Combustion chamber inner lining component of gas turbine and methode thereof

Country Status (1)

Country Link
KR (1) KR102005481B1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015038031A (en) * 2005-09-26 2015-02-26 サン−ゴバン セントレ デ レシェルシェ エト デチュード ユーロピーン Sintered refractory product exhibiting enhanced thermal shock resistance
JP7115952B2 (en) * 2018-10-03 2022-08-09 株式会社ホシプラ stepless adjustment bush

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0815952B2 (en) * 1987-02-25 1996-02-21 大日本印刷株式会社 Empty pallet carrier for sheet-fed printing press
JP3205018B2 (en) * 1991-10-25 2001-09-04 川崎製鉄株式会社 Manufacturing method of continuous cast slab with excellent surface properties
KR100936163B1 (en) * 2008-03-05 2010-01-12 조선내화 주식회사 Refractories for industrial iron and steel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015038031A (en) * 2005-09-26 2015-02-26 サン−ゴバン セントレ デ レシェルシェ エト デチュード ユーロピーン Sintered refractory product exhibiting enhanced thermal shock resistance
JP7115952B2 (en) * 2018-10-03 2022-08-09 株式会社ホシプラ stepless adjustment bush

Also Published As

Publication number Publication date
KR20180023630A (en) 2018-03-07

Similar Documents

Publication Publication Date Title
Abyzov Lightweight refractory concrete based on aluminum-magnesium-phosphate binder
TWI615377B (en) Method for manufacturing composite refractory and composite refractory
KR101719284B1 (en) Sialon bonded silicon carbide material
CN101607830A (en) The preparation method of a kind of fiber reinforced aluminum titanate composite material and goods
KR101514180B1 (en) Method for manufacturing ceramic body having uniform density
KR20200078759A (en) Manufacturing method of the aluminum titanate ceramics
KR102005481B1 (en) Combustion chamber inner lining component of gas turbine and methode thereof
KR101325509B1 (en) Manufacturing method of ceramic ware with high plasticity and high strength
KR101659437B1 (en) Ceramic block having improved heat resistance and fire resistance
Sun et al. Thermal shock resistance of the porous boron nitride/silicon oxynitride ceramic composites
JP5199151B2 (en) Ceramic fired body and manufacturing method thereof
CN105523768B (en) Modified ceramic fiber doped heat insulation material and preparation method thereof
KR101486792B1 (en) Basic hot reparing material
KR101418642B1 (en) Fabrication of artificial light-weight aggregates of uniform bloating properties using a temperature-raising sintering method
KR101142265B1 (en) High dense silicon carbide for core materials of glass lens and Preparing method thereof
KR100486121B1 (en) A Method for Producing Aluminum titanate- Zirconium titanate Ceramics with Low Thermal Expansion Behavior
KR101110363B1 (en) Sintered lithium oxide-aluminum oxide-silicon oxide having low thermal expansion and manufacturing method of the same
KR102053603B1 (en) Refractory article and method for forming the same
JP3103480B2 (en) Method for producing zirconia refractory for thermal insulation
CN109721381A (en) The preparation method of silicon nitride shell reinforcing silicon nitride foam ceramic
CN105198450B (en) Boron nitride complex phase ceramic side seal board low temperature hot-press sintering method
KR102216429B1 (en) Cordierite based ceramic composition for use of ceramic heater
KR102273124B1 (en) Construction method of refractory for lining of induction melting furnace and refractory for lining of induction melting furnace constructed by the same
KR101315631B1 (en) Method for preparing heat-resistant ceramic by lithium solution penetration
KR102156549B1 (en) Alumina sintered body and manufacturing method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant