KR101911206B1 - Manufacturing method of building material using stone waste - Google Patents

Manufacturing method of building material using stone waste Download PDF

Info

Publication number
KR101911206B1
KR101911206B1 KR1020180027513A KR20180027513A KR101911206B1 KR 101911206 B1 KR101911206 B1 KR 101911206B1 KR 1020180027513 A KR1020180027513 A KR 1020180027513A KR 20180027513 A KR20180027513 A KR 20180027513A KR 101911206 B1 KR101911206 B1 KR 101911206B1
Authority
KR
South Korea
Prior art keywords
weight
parts
stone
waste
mineral admixture
Prior art date
Application number
KR1020180027513A
Other languages
Korean (ko)
Inventor
김숙자
Original Assignee
세진산업 (주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 세진산업 (주) filed Critical 세진산업 (주)
Priority to KR1020180027513A priority Critical patent/KR101911206B1/en
Application granted granted Critical
Publication of KR101911206B1 publication Critical patent/KR101911206B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/16Waste materials; Refuse from building or ceramic industry
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/06Quartz; Sand
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • C04B14/10Clay
    • C04B14/106Kaolin
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/26Carbonates
    • C04B14/28Carbonates of calcium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/30Oxides other than silica
    • C04B14/303Alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/30Oxides other than silica
    • C04B14/304Magnesia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/36Inorganic materials not provided for in groups C04B14/022 and C04B14/04 - C04B14/34
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/02Treatment
    • C04B20/026Comminuting, e.g. by grinding or breaking; Defibrillating fibres other than asbestos
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C1/00Building elements of block or other shape for the construction of parts of buildings
    • E04C1/40Building elements of block or other shape for the construction of parts of buildings built-up from parts of different materials, e.g. composed of layers of different materials or stones with filling material or with insulating inserts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Architecture (AREA)
  • Inorganic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

The present invention relates to a method for manufacturing materials for civil engineering and construction using stone waste, in which stone sludge and stone waste for fine aggregates are used to manufacture materials such as bricks, sidewalk blocks, sidewalk and driveway boundary blocks, retaining wall blocks, slab stones and the like for civil engineering and construction. According to the present invention, the stone sludge and stone waste for fine aggregates are freely separated and sorted out in an efficient way, waste heat discharged and spent in a high-temperature firing kiln is used to enhance productivity and save costs, and at the same time, strength is improved through combination of a given mineral admixture. The method for manufacturing materials for civil engineering and construction using stone waste comprises: a first step (S10) of grinding and sorting out stone waste into stone sludge and stone waste for fine aggregates; a second step (S20) of generating a mineral admixture through combination, which will be mixed with the stone sludge and the stone waste for fine aggregates generated through the first step wherein the mineral admixture includes 30-40 parts by weight of calcium carbonate, 15-20 parts by weight of silicon dioxide, 15-20 parts by weight of kaolin, 10-15 parts by weight of calcium sulfate, 10-15 parts by weight of aluminum oxide, 5-10 parts by weight of magnesium oxide, and 1-2 parts by weight of sodium silicate; a third step (S30) of mixing 70-90 parts by weight of the stone sludge and the stone waste for fine aggregates with 10-30 parts by weight of the mineral admixture and 10 parts by weight of water to generate a mixture of raw materials; and a fourth step (S40) of forming a mixture of raw materials produced through the third step into a molded body having a uniform size to perform firing on the molded body at constant temperature, thereby completing a product.

Description

석재폐기물을 이용한 토목건축자재의 제조방법{Manufacturing method of building material using stone waste}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a building material using stone waste,

본 발명은 석재폐기물을 이용한 토목건축자재의 제조방법에 관한 것으로, 더욱 상세하게는 석재 슬러지(sludge) 및 세골재용 석재 폐기물을 이용하여 벽돌, 보도블록, 보차도경계석, 옹벽블록, 판석 등과 같은 토목 또는 건축 자재를 제조하되, 석재슬러지와 세골재용 석재폐기물을 막힘없이 효율적으로 분리 선별하고 고온 소성 킬른에서 배출 소비되는 폐열을 이용함으로써 생산성 향상과 비용을 절감하며, 동시에 소정의 광물혼화재의 배합으로 강도를 향상시킨 석재 폐기물을 이용한 토목건축자재의 제조방법에 관한 것이다.The present invention relates to a method of manufacturing civil engineering building materials using stone waste, and more particularly, to a method of manufacturing civil engineering building materials using stone waste, such as brick, The construction material is manufactured, but the stone waste for stone sludge and fine aggregate is separated and sorted efficiently without clogging, and productivity and cost are reduced by using the waste heat consumed in the high-temperature calcination kiln. At the same time, And more particularly, to a method of manufacturing civil engineering building materials using improved stone wastes.

종래 토목이나 건축현장에서 발생되는 석재폐기물의 재활용방안을 살펴본다.The recycling method of stone waste generated in civil engineering and construction site is examined.

석재폐기물의 재활용 방법 및 규정에 의해, 건축분야의 경우에는 석재폐기물과 보통골재를 혼합하여 재활용하되, 콘크리트의 품질을 저하하지 않는 정도의 혼입률 범위에서 조골재를 이용하는 것을 목표로 하고 있다.According to the recycling method and regulation of stone waste, in the case of building sector, stone waste and ordinary aggregate are mixed and recycled, but the aim is to use coarse aggregate in the range of mixing ratio that does not deteriorate the quality of concrete.

또한 토목분야에서는 석재폐기물에 골재를 단독으로 사용하는 것을 목표로 하고 있다.In the civil engineering field, the goal is to use aggregate alone in stone waste.

그러나 고운분체의 석재슬러지의 경우 조오크러셔(Jaw crusher)에 의한 분쇄도 되지 않아 이를 재활용하는 것이 어려웠고, 재생콘크리트의 제조 및 품질향상을 위해 연구하고 있지만 종래의 재생콘크리트는 품질이 건설골재로서의 기준을 만족하지 못하고 있는 실정이다.However, in the case of fine powdered stone sludge, it is difficult to recycle it because it is not crushed by a jaw crusher and it is being studied for manufacturing and quality improvement of recycled concrete. However, It is not satisfied.

등록특허공보 10-1499635, 등록특허공보 10-0382665, 공개특허공보 특1999-0046270, 공개특허공보 특1998-068412Patent Registration No. 10-1499635, Registration Patent Publication No. 10-0382665, Publication No. 1999-0046270, Publication No. 1998-068412

본 발명은 상기한 문제점을 해결하기 위하여 안출된 것으로, 본 발명의 목적은 석재 슬러지 및 세골재용 석재 폐기물을 이용하여 벽돌, 보도블록, 보차도경계석, 옹벽블록, 판석 등과 같은 토목 또는 건축 자재를 제조하되, 석재슬러지와 세골재용 석재폐기물을 막힘없이 효율적으로 분리 선별하고 고온 소성 킬른에서 배출 소비되는 폐열을 이용함으로써 생산성 향상과 비용을 절감하며, 동시에 소정의 광물혼화재의 배합으로 강도를 향상시킨 석재 폐기물을 이용한 토목건축자재의 제조방법을 제공하는 것에 있다.SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a method of manufacturing a civil engineering or building material such as a brick, a sidewalk block, , Stone sludge and fine aggregate stone waste are separated and screened efficiently without clogging, and productivity and cost are reduced by using the waste heat consumed in the high-temperature sintering kiln, and at the same time, And to provide a method for manufacturing a civil engineering building material.

이와 같은 목적을 달성하기 위한 본 발명은 석재폐기물을 석재슬러지 및 세골재용 석재폐기물로 분쇄 및 선별하는 제1공정(S10);
상기 제1공정을 통해 생성된 석재슬러지 또는 세골재용 석재폐기물에 혼합될 광물혼화재를 배합 생성하되, 상기 광물혼화재는 탄산칼슘 30~40중량부와, 이산화규소 15~20중량부와, 카오린 15~20중량부와, 황산칼슘 10~15중량부와, 산화알루미늄 10~15중량부와, 산화마그네슘 5~10중량부와, 규산나트륨 1~2중량부를 배합하여 된 제2공정(S20);
상기 석재슬러지 또는 세골재용 석재폐기물 70~90중량부, 상기 광물혼화재 10~30중량부, 물 10중량부를 혼합하여 원료혼합물을 생성하는 제3공정(S30); 및
상기 제3공정을 통해 배합된 원료혼합물을 일정한 크기의 성형체로 성형한 후 터널가마 또는 불연속가마에서 1050~1150℃의 온도로 9~18시간동안 초벌없이 곧바로 소성시켜 제품을 완성하는 제4공정(S40);으로 구성하되,
상기 제1공정(S10)은 폐석재를 크러셔(crusher)를 이용하여 일정한 크기로 잘게 파쇄하는 제1단계와, 상기 제1단계를 통해 파쇄된 폐석재를 선별기를 통해서 입자가 5mm이상인 조골재용과 입자가 5mm 미만인 세골재용 입자로 분리 선별하는 제2단계와, 325매시(43㎛) 미만인 고분말 입자를 얻기 위해 세골재용 입자를 고분말 파쇄기를 통해 분쇄하는 제3단계로 이루어지고;
상기 제2공정(S20)은 상기 광물혼화재는 분체 배합기를 통해 배합한 후 24 내지 36시간 자연 건조하여 주는 것을 특징으로 하는 석재폐기물을 이용한 토목건축자재의 제조방법을 제공한다.
In order to accomplish the above object, the present invention provides a method for producing a sludge, comprising: a first step (S10) of crushing and sorting stone waste into stone waste for stone sludge and fine aggregate;
Wherein the mineral admixture is formed by mixing 30 to 40 parts by weight of calcium carbonate, 15 to 20 parts by weight of silicon dioxide, 15 to 20 parts by weight of kaolin, A second step (S20) in which 10 to 15 parts by weight of calcium sulfate, 10 to 15 parts by weight of aluminum oxide, 5 to 10 parts by weight of magnesium oxide, and 1 to 2 parts by weight of sodium silicate are blended;
A third step (S30) for producing a raw material mixture by mixing 70 to 90 parts by weight of the stone sludge or stone waste for fine aggregate, 10 to 30 parts by weight of the mineral admixture and 10 parts by weight of water; And
A fourth step of molding the raw material mixture blended in the third step into a formed body of a predetermined size and then immediately firing the mixture in a tunnel kiln or a discontinuous kiln at a temperature of 1050 to 1150 ° C for 9 to 18 hours S40), < / RTI >
The first step (S10) comprises a first step of finely crushing the waste stone to a predetermined size using a crusher, a step of crushing the waste stone, which has been crushed through the first step, And a third step of pulverizing the fine aggregate particles through a high-frequency powder crusher to obtain high-strength powder particles having a particle size of less than 325 mm (43 탆);
Wherein the mineral admixture is blended through a powder mixer and then naturally dried for 24 to 36 hours in the second step (S20).

삭제delete

삭제delete

삭제delete

이와 같이 본 발명은 석재 슬러지 및 세골재용 석재 폐기물을 이용하여 벽돌, 보도블록, 보차도경계석, 옹벽블록, 판석 등과 같은 토목 또는 건축 자재를 제조하되, 석재슬러지와 세골재용 석재폐기물을 막힘없이 효율적으로 분리 선별하고 고온 소성 킬른에서 배출 소비되는 폐열을 이용함으로써 생산성 향상과 비용을 절감하며, 동시에 소정의 광물혼화재의 배합으로 강도를 향상시킨 장점을 제공한다.As described above, the present invention relates to a method of manufacturing civil engineering or building materials such as bricks, sidewalk blocks, roadway blocks, retaining wall blocks, slabs and the like by using stone sludge and stone waste for fine aggregates and efficiently separating stone sludge and stone waste for fine aggregate without clogging It is possible to improve the productivity and reduce the cost by using the waste heat consumed by the high-temperature calcination kiln, and at the same time, the strength is improved by the combination of the predetermined mineral admixture.

도 1은 본 발명에 따른 석재 폐기물을 이용한 토목건축자재 제조방법의 공정도이다.1 is a process diagram of a civil engineering building material manufacturing method using stone waste according to the present invention.

본 발명을 좀 더 구체적으로 설명하기 전에, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정되어서는 아니되며, 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서 본 명세서에 기재된 실시 예의 구성은 본 발명의 바람직한 하나의 예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형 예들이 있을 수 있음을 이해하여야 한다.Before describing the invention in more detail, it is to be understood that the words or words used in the specification and claims are not to be construed in a conventional or dictionary sense, It should be interpreted as meaning and concept consistent with the technical idea of the present invention. Therefore, the constitution of the embodiments described herein is merely one example of preferred embodiments of the present invention, and it is not intended to represent all of the technical ideas of the present invention. Accordingly, various equivalents and modifications It should be understood.

이하 첨부된 도면을 참조하여 본 발명의 바람직한 실시 예를 보다 상세히 설명한다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Reference will now be made in detail to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings.

도 1은 본 발명에 따른 석재 폐기물을 이용한 토목건축자재 제조방법의 공정도이다.1 is a process diagram of a civil engineering building material manufacturing method using stone waste according to the present invention.

도시된 바와 같이, 본 발명 석재 폐기물을 이용한 토목건축자재 제조방법은,As shown in the drawings, the method for manufacturing civil engineering building materials using the stone waste of the present invention comprises:

석재폐기물을 석재슬러지 및 세골재용 석재폐기물로 분쇄 및 선별하는 제1공정(S10)과, 상기 제1공정을 통해 생성된 석재슬러지 또는 세골재용 석재폐기물에 혼합될 광물혼화재를 배합 생성하는 제2공정(S20)과, 상기 석재슬러지 또는 세골재용 석재폐기물과 상기 광물혼화재를 일정한 비율로 배합하여 원료혼합물을 생성하는 제3공정(S30)과, 상기 제3공정을 통해 배합된 원료혼합물을 일정한 온도로 소성시켜주어 토목건축자재를 성형하는 제4공정(S40)으로 구성된다.(S10) of crushing and sorting the stone waste into stone sludge and stone waste for fine aggregate, and a second step of mixing and producing the mineral admixture to be mixed with the stone sludge or the stone waste for fine aggregate produced through the first step A third step (S30) of blending the stone sludge or the stone waste for fine aggregate and the mineral admixture at a predetermined ratio to produce a raw material mixture; and a third step (S30) of mixing the raw material mixture formulated through the third step And a fourth step (S40) of forming the civil engineering building material by sintering.

상기 제1공정(S10)은 석재폐기물을 석재슬러지 및 세골재용 석재폐기물로 분쇄 및 선별하는 공정으로, 폐석재를 크러셔(crusher)를 이용하여 일정한 크기로 잘게 파쇄하는 제1단계와, 상기 제1단계를 통해 파쇄된 폐석재를 선별기를 통해서 입자가 5mm이상인 조골재용과 입자가 5mm 미만인 세골재용 입자로 분리 선별하는 제2단계와, 325매시(43㎛) 미만인 고분말 입자를 얻기 위해 세골재용 입자를 고분말 파쇄기를 통해 분쇄하는 제3단계로 구성된다.The first step (S10) is a step of crushing and selecting stone waste as a stone waste for stone sludge and fine aggregate, comprising a first step of finely crushing waste stone to a predetermined size using a crusher, A second step of separating the crushed waste stone from the crushed stone by a separator into fine particles having a particle size of 5 mm or more and fine particles having a particle size of less than 5 mm, and a second step of separating fine particles for obtaining fine particles having a particle size of less than 325 m And a third step of grinding through a high-speed powder crusher.

또한 상기 제1공정(S10)은 석재슬러지와 조골재용 석재폐기물을 막힘없이 효율적으로 분리 선별하고 고온 소성 킬른에서 배출 소비되는 폐열을 이용할 수 있도록 구성될 수 있다.Also, the first step (S10) can be configured to efficiently separate and separate the stone sludge and stone waste for coarse aggregate without clogging, and to utilize the waste heat consumed in the high-temperature firing kiln.

상기 제2공정(S20)은 상기 제1공정을 통해 생성된 석재슬러지 또는 세골재용 석재폐기물에 혼합될 광물혼화재를 배합 생성하는 공정으로, 상기 광물혼화재는 탄산칼슘(calcium carbonate) 3O~40중량부와, 이산화규소(silicon dioxide) 15~20중량부와, 카오린(kaolin) 15~20중량부와, 황산칼슘(calcium sulfate) 10~15중량부와, 산화알루미늄(aluminum oxide) 10~15중량부와, 산화마그네슘(magnesium oxide) 5~10중량부와, 규산나트륨(sodium silicate) 1~2중량부를 배합하여 된 것이다.The second step S20 is a step of mixing the mineral admixture to be mixed with the stone sludge or the stone waste for fine aggregate produced through the first step, and the mineral admixture is composed of 30 to 40 parts by weight of calcium carbonate 15 to 20 parts by weight of silicon dioxide, 15 to 20 parts by weight of kaolin, 10 to 15 parts by weight of calcium sulfate and 10 to 15 parts by weight of aluminum oxide 5 to 10 parts by weight of magnesium oxide, and 1 to 2 parts by weight of sodium silicate.

상기 광물혼화재는 가소반응을 완전히 이루기 위해 높은 알칼리 성분을 함유하여, 원료혼합물의 소결온도를 낮추면서도 흡수율 및 압축강도가 탁월하도록 함으로써 강도를 상승시켜 주는 역할을 수행하게 된다.The mineral admixture contains a high alkali component in order to completely complete the preliminary calcination reaction so that the sintering temperature of the raw material mixture is lowered while the absorptivity and the compressive strength are enhanced to increase the strength.

또한 상기 광물혼화재는 분체 배합기를 통해 배합한 후, 24 내지 36시간 자연 건조하여 준다. 이러한 과정을 통해 내강도를 증진시키고, 부재성분인 황산칼륨의 느슨해진 분자결합을 높여줌으로서 성형제품의 완성된 건조강도를 충족시켜 주게 된다.The mineral admixture is blended through a powder blender and then air-dried for 24 to 36 hours. This process improves the strength and improves the loosened molecular bonding of the component potassium sulphate to meet the finished dry strength of the molded product.

상기 광물혼화재에 사용되는 탄산칼슘은 중화제 기능을 수행하며, 석재슬러지 분말의 탁한 색상을 보완하고자 백색안료로 사용된다. 상기 광물혼화재의 제조에 사용되는 탄산칼슘은 30 내지 40중량부로 포함되며, 탄산칼슘의 함량이 30중량부 미만인 경우는 중화기능이 저하되는 문제가 있고, 40중량부를 초과하는 경우는 성질이 변형되는 문제가 있다.The calcium carbonate used in the mineral admixture performs a neutralizing function and is used as a white pigment in order to complement the muddy color of the stone sludge powder. The calcium carbonate used in the preparation of the mineral admixture is contained in an amount of 30 to 40 parts by weight. When the content of calcium carbonate is less than 30 parts by weight, the neutralization function is deteriorated. When the content is more than 40 parts by weight, there is a problem.

또한 상기 광물혼화재에 사용되는 이산화규소는 실리카의 주성분으로 고화시켜 원료 내 높은 석영강도를 유지하기 위한 기능을 발휘한다. 상기 광물혼화재에 제조에 사용되는 이산화규소는 15 내지 20중량부로 포함되며, 이산화규소의 함량이 15중량부 미만인 경우는 토목건축자재의 석영강도가 저하되는 문제가 있고, 20중량부를 초과하는 경우는 제조단가가 상승하는 문제가 있다.In addition, the silicon dioxide used for the mineral admixture is solidified as a main component of silica and exhibits a function for maintaining a high quartz strength in the raw material. When the content of silicon dioxide is less than 15 parts by weight, the quartz strength of the civil engineering building material is lowered. When the amount of silicon dioxide is more than 20 parts by weight There is a problem that the manufacturing unit cost rises.

또한 상기 광물혼화재에 사용되는 카오린은 내화도가 높고 원료의 점력증진과 고온 소성 시 백색도를 높여주는 기능을 발휘한다. 상기 광물혼화재에 제조에 사용되는 카오린은 15 내지 20중량부로 포함되며, 카오린의 함량이 15중량부 미만인 경우는 토목건축자재의 내화도 및 점력이 저하되는 문제가 있고, 20중량부를 초과하는 경우는 제조단가가 상승하는 문제가 있다.In addition, kaolin used in the mineral admixture has a high refractory power and exhibits a function of increasing the whiteness of the raw material during the promotion of the high temperature baking. When the content of kaolin is less than 15 parts by weight, the fire resistance and the strength of civil engineering building materials deteriorate. When the amount of kaolin exceeds 20 parts by weight, There is a problem that the unit price rises.

또한 상기 광물혼화재에 사용되는 황산칼슘은 소석고라고 하여 슬러지 원료의 경화속도를 단축시켜주는 기능을 발휘한다. 상기 광물혼화재에 제조에 사용되는 황산칼슘은 10 내지 15중량부로 포함되며, 황산칼슘의 함량이 10중량부 미만인 경우는 토목건축자재의 경화속도가 저하되는 문제가 있고, 15중량부를 초과하는 경우는 제조단가가 상승하는 문제가 있다.In addition, calcium sulfate used for the mineral admixture is called calcite and exhibits a function of shortening the curing rate of the sludge raw material. When the content of calcium sulfate is less than 10 parts by weight, the curing speed of the civil engineering building material is lowered. When the amount of calcium sulfate exceeds 15 parts by weight There is a problem that the manufacturing unit cost rises.

또한 상기 광물혼화재에 사용되는 산화알루미늄은 흡착제와 촉매제 기능을 발휘한다. 상기 광물혼화재에 제조에 사용되는 산화알루미늄은 10 내지 15중량부로 포함되며, 산화알루미늄의 함량이 10중량부 미만인 경우는 토목건축자재의 경화속도가 저하되는 문제가 있고, 15중량부를 초과하는 경우는 제조단가가 상승하는 문제가 있다.The aluminum oxide used in the mineral admixture exhibits an adsorbent and a catalyst function. When the content of aluminum oxide is less than 10 parts by weight, the curing speed of the civil engineering building material is lowered. When the content of aluminum oxide exceeds 15 parts by weight There is a problem that the manufacturing unit cost rises.

또한 상기 광물혼화재에 사용되는 산화마그네슘은 끊은 점이 높아 고온에서 원료와 성형체 유지에 탁월한 응집력 기능을 발휘한다. 상기 광물혼화재에 제조에 사용되는 산화마그네슘은 5 내지 10중량부로 포함되며, 산화마그네슘의 함량이 5중량부 미만인 경우는 토목건축자재의 제조를 위한 성분의 응집력이 저하되는 문제가 있고, 10중량부를 초과하는 경우는 토목건축자재의 강도가 저하되는 문제가 있다.The magnesium oxide used for the mineral admixture has a high breaking point and exhibits excellent cohesive force for holding the raw material and the molded article at a high temperature. When the content of magnesium oxide is less than 5 parts by weight, the cohesive force of components for the production of civil engineering building materials is lowered, and when 10 parts by weight of magnesium oxide is used, There is a problem that the strength of the civil engineering building material is lowered.

또한 상기 광물혼화재에 사용되는 규산나트륨은 급결제 기능을 발휘하여, 본 발명의 토목건축자개(인조석)이 제조시간을 단축시키는 역할을 수행한다. 상기 광물혼화재에 제조에 사용되는 규산나트륨은 1 내지 2중량부로 포함되며, 1중량부 미만인 경우는 인조석 응고시간이 길어지는 문제가 있고, 2중량부를 초과하는 경우는 인조석 응고 속도가 너무 빨라져 성형틀에 넣을 때 유동성이 저하될 수 있는 문제가 있다.Also, the sodium silicate used for the mineral admixture exhibits a quick-setting function, and the civil engineering building stone (artificial stone) of the present invention plays a role of shortening the manufacturing time. If the amount of the sodium silicate used in the preparation of the mineral admixture is in the range of 1 to 2 parts by weight and less than 1 part by weight, the coagulation time of the artificial stone may be prolonged. If the amount of the sodium silicate is more than 2 parts by weight, There is a problem in that the fluidity may be lowered.

상기 제3공정(S30)은 상기 석재슬러지 또는 세골재용 석재폐기물과 상기 광물혼화재를 일정한 비율로 배합하여 원료혼합물을 생성하는 공정으로, 상기 원료혼합물은 석재슬러지 또는 세골재용 석재폐기물 70~90중량부, 광물혼화재 10~30중량부, 물 10중량부를 혼합하여 구성한다.In the third step (S30), the raw material mixture is produced by mixing the stone sludge or the stone waste for fine aggregate and the mineral admixture at a predetermined ratio. The raw material mixture is prepared by mixing 70 to 90 parts by weight of the stone sludge or fine- 10 to 30 parts by weight of a mineral admixture, and 10 parts by weight of water.

본 발명에 따르면 상기 원료혼합물의 배합은 혼합기에서 RPM 50 이내로 서서히 혼합시켜준다.According to the present invention, the mixture of the raw material mixture is gradually mixed in RPM 50 or less in the mixer.

상기 원료혼합물에 사용되는 석재슬러지 또는 세골재용 석재폐기물은 70 내지 90중량부로 포함되며, 상기 석재슬러지 또는 세골재용 석재폐기물의 함량이 70중량부 미만인 경우는 토목건축자재(인조석)의 강도가 저하되는 문제가 있고, 90중량부를 초과하는 경우는 토목건축자재의 무게가 너무 증가하는 문제가 있다.When the content of the stone sludge or the stone waste for fine aggregate is less than 70 parts by weight, the strength of the civil engineering building material (artificial stone) is lowered There is a problem, and when it exceeds 90 parts by weight, there is a problem that the weight of the civil engineering building material is excessively increased.

상기 제4공정(S40)은 상기 제3공정을 통해 배합된 원료혼합물을 일정한 온도로 소성시켜주는 공정으로, 상기 원료혼합물을 일정한 형태로 성형 한 후 건조시켜 터널가마(tunnel kiln) 또는 불연속가마에서 1050~1150℃의 온도로 9~18시간동안 산화 또는 환원(중성) 분위기로 소성한 후 서서히 소결, 냉각시켜 토목 또는 건축자재 제품을 완성하게 된다.The fourth step (S40) is a step of firing the raw material mixture blended through the third step to a predetermined temperature. The raw material mixture is shaped into a certain shape and then dried to form a tunnel kiln or a discontinuous kiln After sintering in an oxidation or reduction (neutral) atmosphere at a temperature of 1050 ~ 1150 ℃ for 9 ~ 18 hours, it is gradually sintered and cooled to complete civil engineering or building material products.

상기 토목 또는 건축자재는 친환경적으로 벽돌, 보도블록, 보차도경계석, 옹벽블록, 판석 등으로 이용될 수 있다.The civil engineering or building material may be used as a brick, a sidewalk block, a slope barrier, a retaining wall block, a slate, etc. eco-friendly.

일반적으로 원료혼합물은 함수율이 5~10%의 수분을 갖도록 조율하는데, 이는 원료성형물을 일정한 형태로 성형한 다음에 장시간의 건조공정을 통해 조율하게 된다.In general, the raw material mixture is adjusted to have a moisture content of 5 to 10%, which is formed by shaping the raw material into a certain shape and then adjusting it through a long drying process.

따라서 불필요한 공간과 시간이 소요된다.Therefore, unnecessary space and time are required.

또한 시멘트와 같이 단시일 내에 결합제를 형성하고, 요업공정에서 성형체 표면에 유약이나 세라믹 코팅을 하기 위해서는 보통 초벌의 온도(800~1000℃)로 소성을 한다.In addition, the binder is formed within a short period of time such as cement, and firing is performed usually at a superficial temperature (800 to 1000 ° C) in order to apply a glaze or a ceramic coating to the surface of a molded article in a ceramics process.

그러나 본 발명 원료혼합물은 이와 같은 1차 초벌공정이 불필요하고, 1차 소성만으로 강도나 표면마감이 월등한 최종 제품을 생산할 수 있어, 가스 및 전기의 열량비용을 절감할 수 있는 효과도 볼 수 있다.However, since the raw material mixture of the present invention does not require such a primary roughing process, it is possible to produce final products having superior strength or surface finish only by the first firing, thereby reducing the cost of heat of gas and electricity .

이하, 본 발명에 따른 석재 폐기물을 이용한 토목건축자재를 제조하는 구체적인 실시 예를 기술하기로 한다. 그러나 본 발명의 권리범위가 하기 실시 예에 한정되는 것은 결코 아니다.Hereinafter, concrete examples of manufacturing civil engineering building materials using the stone waste according to the present invention will be described. However, the scope of the present invention is not limited to the following examples.

<실시예><Examples>

석재슬러지 분말 80kg을 준비하였다.80 kg of stone sludge powder was prepared.

그리고 탄산칼슘 35kg, 이산화규소 17kg, 카오린 17kg, 황산칼슘 13kg, 산화알루미늄 12kg, 산화마그네슘 7kg 및 규산나트륨 1kg를 배합하여 광물혼화재를 생성한 후 30시간 자연 건조하여 주었다.35 kg of calcium carbonate, 17 kg of silicon dioxide, 17 kg of kaolin, 13 kg of calcium sulfate, 12 kg of aluminum oxide, 7 kg of magnesium oxide and 1 kg of sodium silicate were mixed to form a mineral admixture, followed by natural drying for 30 hours.

그리고 상기 석재슬러지 80kg, 광물혼화재 20kg 및 물 10kg를 혼합하여 원료 혼합물을 생성하고, 상기 원료혼합물을 내부 공간의 가로×세로×깊이가 각각 220mm×110mm×70mm인 성형틀에 넣고 시편 1 내지 시편 5, 5개의 성형물을 만들었다.Then, 80 kg of the stone sludge, 20 kg of the mineral admixture and 10 kg of water were mixed to produce a raw material mixture. The raw material mixture was placed in a mold having a size of 220 mm x 110 mm x 70 mm, , 5 moldings were made.

그리고 상기 성형물을 터널가마에서 113℃의 온도로 12시간동안 소성한 후 냉각시켜 시편 1 내지 시편 5를 완성하였다.The molded product was calcined in a tunnel furnace at a temperature of 113 캜 for 12 hours and cooled to complete specimens 1 to 5.

그리고 시중에서 판매되는 W사(1200℃ 소성), S사(1250℃ 소성), E사(1180℃ 소성)의 제품 각각 5개와, 일반 시멘트를 28일 양성한 제품 5개와, 화강석 5개를 각각 가로×세로×깊이가 각각 220mm×110mm×70mm가 되도록 비교 시편을 생성하였다.Five products of W (1200 ° C calcination), S (1250 ° C calcination) and E company (1180 ° C calcination) sold in the market, five products of ordinary cement produced for 28 days, and five granites The comparative specimens were prepared so that the width, length, and depth were 220 mm x 110 mm x 70 mm, respectively.

[압축강도 테스트][Compressive strength test]

KS F2519-2000에 따라, 상기 시편 1 내지 시편 5에 의하여 제조된 건축자재의 압축강도를 측정하였으며, 그 결과를 하기 표 1에 나타내었다.According to KS F2519-2000, the compressive strengths of the building materials produced by the above-mentioned Specimens 1 to 5 were measured, and the results are shown in Table 1 below.

Figure 112018501586615-pat00003
Figure 112018501586615-pat00003

상기 표 1의 결과를 살펴보면, 시편 1 내지 시편 5의 본원발명(해당제품)의 건축자재가 압축강도의 평균치가 다른 회사 제품의 압축강도보다 높을 것을 확인 할 수 있다.As can be seen from the results of Table 1, it can be confirmed that the building materials of the present invention (corresponding products) of the test pieces 1 to 5 are higher than the compressive strength of the company products having different average compressive strength values.

Claims (4)

석재폐기물을 석재슬러지 및 세골재용 석재폐기물로 분쇄 및 선별하는 제1공정(S10);
상기 제1공정을 통해 생성된 석재슬러지 또는 세골재용 석재폐기물에 혼합될 광물혼화재를 배합 생성하되, 상기 광물혼화재는 탄산칼슘 30~40중량부와, 이산화규소 15~20중량부와, 카오린 15~20중량부와, 황산칼슘 10~15중량부와, 산화알루미늄 10~15중량부와, 산화마그네슘 5~10중량부와, 규산나트륨 1~2중량부를 배합하여 된 제2공정(S20);
상기 석재슬러지 또는 세골재용 석재폐기물 70~90중량부, 상기 광물혼화재 10~30중량부, 물 10중량부를 혼합하여 원료혼합물을 생성하는 제3공정(S30); 및
상기 제3공정을 통해 배합된 원료혼합물을 일정한 크기의 성형체로 성형한 후 터널가마 또는 불연속가마에서 1050~1150℃의 온도로 9~18시간동안 초벌없이 곧바로 소성시켜 제품을 완성하는 제4공정(S40);으로 구성하되,
상기 제1공정(S10)은 폐석재를 크러셔(crusher)를 이용하여 일정한 크기로 잘게 파쇄하는 제1단계와, 상기 제1단계를 통해 파쇄된 폐석재를 선별기를 통해서 입자가 5mm이상인 조골재용과 입자가 5mm 미만인 세골재용 입자로 분리 선별하는 제2단계와, 325매시(43㎛) 미만인 고분말 입자를 얻기 위해 세골재용 입자를 고분말 파쇄기를 통해 분쇄하는 제3단계로 이루어지고;
상기 제2공정(S20)에서 상기 광물혼화재는 분체 배합기를 통해 배합한 후 24 내지 36시간 자연 건조하여 주는 것을 특징으로 하는 석재폐기물을 이용한 토목건축자재의 제조방법.
A first step (S10) of crushing and sorting the stone waste into stone waste for the stone sludge and fine aggregate;
Wherein the mineral admixture is formed by mixing 30 to 40 parts by weight of calcium carbonate, 15 to 20 parts by weight of silicon dioxide, 15 to 20 parts by weight of kaolin, A second step (S20) in which 10 to 15 parts by weight of calcium sulfate, 10 to 15 parts by weight of aluminum oxide, 5 to 10 parts by weight of magnesium oxide, and 1 to 2 parts by weight of sodium silicate are blended;
A third step (S30) for producing a raw material mixture by mixing 70 to 90 parts by weight of the stone sludge or stone waste for fine aggregate, 10 to 30 parts by weight of the mineral admixture and 10 parts by weight of water; And
A fourth step of molding the raw material mixture blended in the third step into a formed body of a predetermined size and then immediately firing the mixture in a tunnel kiln or a discontinuous kiln at a temperature of 1050 to 1150 ° C for 9 to 18 hours S40), &lt; / RTI &gt;
The first step (S10) comprises a first step of finely crushing the waste stone to a predetermined size using a crusher, a step of crushing the waste stone, which has been crushed through the first step, And a third step of pulverizing the fine aggregate particles through a high-frequency powder crusher to obtain high-strength powder particles having a particle size of less than 325 mm (43 탆);
Wherein the mineral admixture is blended through a powder mixer in the second step (S20), followed by natural drying for 24 to 36 hours.
삭제delete 삭제delete 삭제delete
KR1020180027513A 2018-03-07 2018-03-07 Manufacturing method of building material using stone waste KR101911206B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020180027513A KR101911206B1 (en) 2018-03-07 2018-03-07 Manufacturing method of building material using stone waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180027513A KR101911206B1 (en) 2018-03-07 2018-03-07 Manufacturing method of building material using stone waste

Publications (1)

Publication Number Publication Date
KR101911206B1 true KR101911206B1 (en) 2018-10-24

Family

ID=64132265

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180027513A KR101911206B1 (en) 2018-03-07 2018-03-07 Manufacturing method of building material using stone waste

Country Status (1)

Country Link
KR (1) KR101911206B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112936549A (en) * 2021-02-05 2021-06-11 宁夏金石誉新材料科技发展有限公司 Preparation method of light high-strength assembly type enclosure wall
CN112979268A (en) * 2019-12-14 2021-06-18 姜坤 Novel building material formed by converting mining area waste
CN113752361A (en) * 2021-09-03 2021-12-07 高雁 Molding process for special-shaped processing of modular building materials

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100952225B1 (en) * 2009-04-16 2010-04-09 주식회사 아라개발 Method for manufacturing multi-cellular body by using waste basalt sullage and multi-cellular body made by the method
KR101377475B1 (en) * 2013-06-05 2014-03-26 동양허브 영농조합법인 The method of preparing the block of yellow-soil using masato-soil and sludge coming into being by separating sands from masato-soil
KR101482617B1 (en) * 2014-09-19 2015-01-21 세진산업 (주) Manufacturing method of water permeable block using stone sludge

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100952225B1 (en) * 2009-04-16 2010-04-09 주식회사 아라개발 Method for manufacturing multi-cellular body by using waste basalt sullage and multi-cellular body made by the method
KR101377475B1 (en) * 2013-06-05 2014-03-26 동양허브 영농조합법인 The method of preparing the block of yellow-soil using masato-soil and sludge coming into being by separating sands from masato-soil
KR101482617B1 (en) * 2014-09-19 2015-01-21 세진산업 (주) Manufacturing method of water permeable block using stone sludge

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112979268A (en) * 2019-12-14 2021-06-18 姜坤 Novel building material formed by converting mining area waste
CN112936549A (en) * 2021-02-05 2021-06-11 宁夏金石誉新材料科技发展有限公司 Preparation method of light high-strength assembly type enclosure wall
CN113752361A (en) * 2021-09-03 2021-12-07 高雁 Molding process for special-shaped processing of modular building materials
CN113752361B (en) * 2021-09-03 2022-10-25 永康建设投资集团有限公司 Molding process for special-shaped processing of modular building materials

Similar Documents

Publication Publication Date Title
DK2516348T3 (en) TREATMENT OF AIR BASKET AND MANUFACTURE OF GOODS CONTAINING AIR BASKET COMPOSITIONS
KR101911206B1 (en) Manufacturing method of building material using stone waste
AU2007200392A1 (en) A Process for the Preparation of Self-Glazed Geopolymer Tile from Fly Ash and Blast Furnace Slag
US20080022903A1 (en) Process for the production of portland slag cement using granulated blast furnace slag
CN106588059A (en) Prefabricated member for lime rotary kiln and preparation method of prefabricated member
KR20170129493A (en) Permeable and high strength clay brick manufactured by using welding slag and manufacturing method thereof
KR101566547B1 (en) Structural material manufacturing method using stone powder and blast furnace slag
JPH10152356A (en) Artificial lightweight aggregate and its production
Tonnayopas Green building bricks made with clays and sugar cane bagasse ash
KR101696716B1 (en) Manufacturing method of high-strength artificial stone block using tailing
KR101658887B1 (en) Method of preparing light weight aggregate using gold mine tail
US5228914A (en) Pumice containing composition
KR100949056B1 (en) Clay sintered material comprising red-mud and method for the preparation thereof
JPH08253352A (en) Production of high-strength inorganic foam
JP2603599B2 (en) Artificial lightweight aggregate and manufacturing method thereof
KR101834777B1 (en) Manufacturing method of environment-friendly ready-mixed concrete for saving cement using electric arc furnace reducing slag
KR20100097273A (en) Loess tile composition and low-temperature-fired, high-strength loess tile and method for producing the same
KR101870135B1 (en) Hydraulic Lime Mortar Composition Using Low Grade Dolomite And Manufacturing Method Thereof
JPH02175653A (en) Pottery-like sintered product
JP2003063850A (en) Inorganic formed body and producing method therefor
JP2005035847A (en) Method of recycling waste ceramic ware
CN108863115A (en) A kind of cement and preparation method thereof
EP2455352A1 (en) Artificial stone production process
KR20110033494A (en) Method for manufacturing porous material of calcium silicate using cement kiln by-pass dust and porous material of calcium silicate manufactured with this
JPS61205654A (en) Superhigh strength cement concrete composition

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant