KR101905668B1 - Fabrication method of light guide panel having quantum dots layer - Google Patents

Fabrication method of light guide panel having quantum dots layer Download PDF

Info

Publication number
KR101905668B1
KR101905668B1 KR1020170066753A KR20170066753A KR101905668B1 KR 101905668 B1 KR101905668 B1 KR 101905668B1 KR 1020170066753 A KR1020170066753 A KR 1020170066753A KR 20170066753 A KR20170066753 A KR 20170066753A KR 101905668 B1 KR101905668 B1 KR 101905668B1
Authority
KR
South Korea
Prior art keywords
tri
raw material
hydrophobic
sulfide
quantum dot
Prior art date
Application number
KR1020170066753A
Other languages
Korean (ko)
Inventor
임태윤
김재일
Original Assignee
큐디브릭 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 큐디브릭 주식회사 filed Critical 큐디브릭 주식회사
Priority to KR1020170066753A priority Critical patent/KR101905668B1/en
Application granted granted Critical
Publication of KR101905668B1 publication Critical patent/KR101905668B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00663Production of light guides
    • B29C47/04
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/48Selenium- or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/53Phosphorus bound to oxygen bound to oxygen and to carbon only
    • C08K5/5317Phosphonic compounds, e.g. R—P(:O)(OR')2
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/5398Phosphorus bound to sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/56Organo-metallic compounds, i.e. organic compounds containing a metal-to-carbon bond
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/70Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/16Auxiliary treatment of granules
    • B29B2009/163Coating, i.e. applying a layer of liquid or solid material on the granule

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Ophthalmology & Optometry (AREA)
  • Mechanical Engineering (AREA)
  • Luminescent Compositions (AREA)

Abstract

The present invention relates to a method for manufacturing a light guide plate with a laminated quantum dot layer, wherein the manufacturing method according to the present invention manufactures the quantum dot layer containing a quantum dot, a core-shell quantum dot and a core-gradient shell quantum dot by applying a molten polymer as a solvent, and thus manufacturing processes can be shortened as compared with a conventional method for manufacturing a quantum dot sheet, and since quantum dots are generated and maintained in a polymer matrix, it is possible to block the oxidation from the source. In addition, the quantum dot layer and the light guide plate can be simultaneously manufactured while being laminated by coextrusion molding.

Description

양자점층이 적층된 도광판의 제조방법 {Fabrication method of light guide panel having quantum dots layer}BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to a light guide plate having a quantum dot layer,

본 발명은 양자점층이 적층된 도광판의 제조방법에 관한 것이다.The present invention relates to a method of manufacturing a light guide plate in which a quantum dot layer is laminated.

반도체의 크기가 일정한 크기 이하로 작아지면, 입자의 크기에 따라 발광 파장이 달라지는 양자 크기 효과(quantum size effect)를 관찰할 수 있다. 일반적으로, 고온에서 트리-n-옥틸포스핀 옥사이드(tri-n-octylphosphine oxide, 이하 'TOPO')와 같은 용매에 II족 금속 전구체와 VI족 칼코게나이드(chalcogenide) 전구체를 넣어주면 II-VI족 금속 칼코게나이드(CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe) 반도체 양자점을 얻을 수 있다. 이러한 고온 열분해방법(high temperature pyrolysis; C.B.Murrary, D.J.Norris, and M.G.Bawendi, J.Am.Chem.Soc. 1993, 115, 8706-8715)을 이용하여 카드뮴 칼코게나이드 양자점을 얻은 이후에 많은 그룹에서 동일하거나 약간 변형된 방법을 이용하여 카드뮴 칼코게나이드 양자점을 합성하고 이의 광학적 성질을 연구하였다.If the size of the semiconductor becomes smaller than a certain size, a quantum size effect in which the emission wavelength varies depending on the particle size can be observed. Generally, when a Group II metal precursor and a VI chalcogenide precursor are added to a solvent such as tri-n-octylphosphine oxide (hereinafter, referred to as 'TOPO') at a high temperature, II-VI (CdS, CdSe, CdTe, ZnS, ZnSe, ZnTe) semiconductor quantum dots can be obtained. After obtaining cadmium chalcogenide quantum dots using such high temperature pyrolysis (CBMurrary, DJNorris, and MGBawendi, J. Am. Chem. Soc. 1993, 115, 8706-8715) The cadmium chalcogenide quantum dots were synthesized using the same or slightly modified method and their optical properties were studied.

이러한 양자점은 표면에 긴 알킬 체인(유기 리간드)을 가지고 있는데, 이는 해당 양자점을 합성하는 조건에서 사용된 용매 또는 첨가제가 양자점의 표면에 들러붙어 양자점을 안정화시킨 결과이다. 이렇게 표면에 존재하는 긴 알킬 체인으로 인하여 유기용매 내 분산성이 향상되고, 다양한 분야로의 응용이 가능하다. 실제로 빛을 내는 물질이 필요한 분야 중 유기 용매를 기반으로 하는 분야 즉, 발광소자, 태양전지, 레이저 등에는 이 물질을 이용한 연구가 활발하게 진행되고 있다.These quantum dots have a long alkyl chain (organic ligand) on the surface, which is the result of the solvent or additive used in the synthesis of the quantum dot sticking to the surface of the quantum dot to stabilize the quantum dot. The long alkyl chain on the surface improves the dispersibility in the organic solvent and is applicable to various fields. Researches using organic materials such as light emitting devices, solar cells, and lasers have been actively conducted in fields requiring light emitting materials.

한편, 제조된 양자점은 공기 중에서 산화되기 쉬워 안정성이 낮고, 이는 곧 고유 발광성 감소로 이어지는 문제가 있고, 종래 도광판에 적용하는 양자점 시트는 따로 제조하여 도광판 표면에 적층하므로 제조과정이 추가로 요구되는 실정이다.On the other hand, the quantum dots produced are easily oxidized in the air and thus are low in stability, which leads to a decrease in the intrinsic luminescence. Conventionally, quantum dot sheets applied to the light guide plate are separately prepared and laminated on the surface of the light guide plate. to be.

이에, 본 발명자들은 용융 고분자를 용매로 응용하여 양자점, 코어-쉘 양자점 및 코어-그라디언트 쉘 양자점 포함 양자점층을 제조함에 따라서, 종래 양자점 시트 제조방법에 비하여 제조공정을 단축할 수 있을 뿐만 아니라, 고분자 매트릭스 내에서 양자점이 생성되고 유지되기 때문에 산화를 원천 차단할 수 있고, 양자점층과 도광판을 공압출성형으로 동시에 적층한 형태로 제조할 수 있음을 알아내고 본 발명을 완성하였다.Accordingly, the present inventors have succeeded in shortening the manufacturing process as compared with the conventional method for producing a quantum dot sheet by manufacturing a quantum dot layer including a quantum dot, a core-shell quantum dot and a core-gradient shell quantum dot by applying the molten polymer as a solvent, Since quantum dots are generated and retained in the matrix, it is possible to prevent oxidation from occurring, and the quantum dot layer and the light guide plate can be simultaneously laminated by coextrusion molding.

공개특허공보 10-2006-0066623호Published Patent Application No. 10-2006-0066623

본 발명의 목적은 양자점층이 적층된 도광판의 제조방법을 제공하는 것이다.An object of the present invention is to provide a method of manufacturing a light guide plate in which a quantum dot layer is laminated.

본 발명의 다른 목적은 상기 제조방법으로 제조된 양자점층이 적층된 도광판을 제공하는 것이다.Another object of the present invention is to provide a light guide plate in which the quantum dot layer manufactured by the above-described manufacturing method is laminated.

상기 목적을 달성하기 위하여,In order to achieve the above object,

본 발명은 양자점층 형성을 위한 제1원료 및 도광판(Light Guide Panel, LGP) 형성을 위한 제2원료를 공압출성형기에 투입하는 단계(단계 1); 및The present invention relates to a method of manufacturing a light guide panel (LGP), comprising the steps of: (1) inputting a first raw material for forming a quantum dot layer and a second raw material for forming a light guide panel (LGP) into a coextrusion molding machine; And

불활성 가스를 주입하면서, 100-400℃의 작동온도를 유지하며, 진공 펌프를 가동하면서 공압출성형하는 단계(단계 2);를 포함하고,(Step 2) of co-extruding while operating the vacuum pump while maintaining an operating temperature of 100-400 占 폚 while injecting an inert gas,

상기 제1원료는 소수성 양자점 원료 및 열가소성 고분자; 소수성 코어 양자점, 소수성 쉘 원료, 열가소성 고분자 및 소수성 유기용매; 또는 소수성 양자점 원료, 소수성 쉘 원료, 열가소성 고분자 및 소수성 유기용매;이고,Wherein the first raw material comprises a hydrophobic quantum dot raw material and a thermoplastic polymer; Hydrophobic core quantum dots, hydrophobic shell raw materials, thermoplastic polymers and hydrophobic organic solvents; Or a hydrophobic quantum dot raw material, a hydrophobic shell raw material, a thermoplastic polymer, and a hydrophobic organic solvent;

상기 제2원료는 열가소성 고분자이며,The second raw material is a thermoplastic polymer,

상기 제1원료 및 제2원료의 열가소성 고분자는 동일한 것을 특징으로 하는 양자점층이 적층된 도광판의 제조방법을 제공한다.Wherein the first raw material and the second raw material have the same thermoplastic polymer, wherein the quantum dot layer is laminated.

또한, 본 발명은 상기 제조방법으로 제조된 양자점층이 적층된 도광판을 제공한다.In addition, the present invention provides a light guide plate in which the quantum dot layer formed by the above-described manufacturing method is laminated.


또한, 본 발명은 양자점층 형성을 위한 제1원료 및 도광판(Light Guide Panel, LGP) 형성을 위한 제2원료를 공압출성형기에 투입하는 단계(단계 1); 및
불활성 가스를 주입하면서, 100-400℃의 작동온도를 유지하며, 진공 펌프를 가동하면서 공압출성형하는 단계(단계 2);를 포함하고,
상기 제1원료는 (가) 소수성 코어 양자점과 소수성 쉘 원료와 열가소성 고분자와 소수성 유기용매가 포함된 원료 또는 (나) 소수성 양자점 원료와 소수성 쉘 원료와 열가소성 고분자와 소수성 유기용매가 포함된 원료이며,
상기 제2원료는 열가소성 고분자이며,
상기 제1원료 및 제2원료의 열가소성 고분자는 동일하고,
소수성 코어 양자점, 소수성 쉘 원료, 열가소성 고분자 및 소수성 유기용매를 사용할 경우 코어-쉘 양자점이 분산된 양자점층이 제조되고,
소수성 양자점 원료, 소수성 쉘 원료, 열가소성 고분자 및 소수성 유기용매를 사용할 경우 코어-그라디언트 쉘 양자점이 분산된 양자점층이 제조되는 것을 특징으로 하는 양자점층이 적층된 도광판의 제조방법을 제공한다.

Further, the present invention provides a method for manufacturing a light guide panel, comprising the steps of: (1) inputting a first raw material for forming a quantum dot layer and a second raw material for forming a light guide panel (LGP) into a coextrusion molding machine; And
(Step 2) of co-extruding while operating the vacuum pump while maintaining an operating temperature of 100-400 占 폚 while injecting an inert gas,
The first raw material includes (a) a raw material containing a hydrophobic core quantum dots, a hydrophobic shell raw material, a thermoplastic polymer and a hydrophobic organic solvent, or (b) a raw material containing a hydrophobic quantum dot raw material, a hydrophobic shell raw material, a thermoplastic polymer and a hydrophobic organic solvent,
The second raw material is a thermoplastic polymer,
The thermoplastic polymers of the first raw material and the second raw material are the same,
When a hydrophobic core quantum dot, a hydrophobic shell raw material, a thermoplastic polymer and a hydrophobic organic solvent are used, a quantum dot layer in which core-shell quantum dots are dispersed is produced,
There is provided a method of manufacturing a light guide plate in which a quantum dot layer in which a core-gradient shell quantum dot is dispersed is manufactured using a hydrophobic quantum dot raw material, a hydrophobic shell raw material, a thermoplastic polymer, and a hydrophobic organic solvent.

본 발명에 따른 제조방법은 용융 고분자를 용매로 응용하여 양자점, 코어-쉘 양자점 및 코어-그라디언트 쉘 양자점 포함 양자점층을 제조함에 따라서, 종래 양자점 시트 제조방법에 비하여 제조공정을 단축할 수 있을 뿐만 아니라, 고분자 매트릭스 내에서 양자점이 생성되고 유지되기 때문에 산화를 원천 차단할 수 있고, 양자점층과 도광판을 공압출성형으로 동시에 적층한 형태로 제조할 수 있는 효과가 있다.The manufacturing method according to the present invention not only can shorten the manufacturing process compared to the conventional method for producing a quantum dot sheet by manufacturing a quantum dot layer including a quantum dot, a core-shell quantum dot and a core-gradient shell quantum dot by applying the molten polymer as a solvent , Since quantum dots are generated and maintained in the polymer matrix, oxidation can be prevented from origin and the quantum dot layer and the light guide plate can be simultaneously laminated by coextrusion molding.

도 1은 실시예 1에서 사용한 코어 양자점이 분산된 펠렛의 압출성형 방법의 개략도이다.
도 2는 실시예 2에서 사용한 코어-쉘 양자점이 분산된 펠렛의 압출성형 방법의 개략도이다.
도 3은 실시예 3에서 사용한 코어-그라디언트 쉘 양자점이 분산된 펠렛의 압출성형 방법의 개략도이다.
도 4는 실시예 1에서 제조한 펠렛 및 실시예 6에서 제조한 박막 각각에 UV 조사 전(a) 및 후(b)의 발광을 확인한 사진이다.
도 5는 직하형(direct type) LCD용 종래 도광판의 구조 및 본 발명 도광판의 구조를 나타낸 개략도이다.
도 6은 실시예 6에서 제조한 도광판을 BLU (Back Light Unit) 위에 올린 다음 전원 ON/OFF 시에 각각 촬영한 사진이다.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view of a method for extrusion molding a pellet in which core quantum dots are dispersed in Example 1. FIG.
2 is a schematic view of a method of extruding a pellet in which core-shell quantum dots dispersed in Example 2 are dispersed.
3 is a schematic view of a method of extruding a pellet in which core-gradient shell quantum dots dispersed in Example 3 are dispersed.
4 is a photograph showing the luminescence of (a) and (b) before UV irradiation on the pellet prepared in Example 1 and the thin film prepared in Example 6, respectively.
5 is a schematic view showing the structure of a conventional light guide plate for a direct type LCD and the structure of the light guide plate of the present invention.
Fig. 6 is a photograph taken at the time of power ON / OFF after the light guide plate manufactured in Example 6 is placed on a BLU (Back Light Unit).

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

양자점Qdot (( QDQD ) 층이 ) Layer 적층된Laminated 도광판(Light Guide Panel,  Light guide panel, LGPLGP )의 제조방법)

본 발명은 양자점층 형성을 위한 제1원료 및 도광판(Light Guide Panel, LGP) 형성을 위한 제2원료를 공압출성형기에 투입하는 단계(단계 1); 및The present invention relates to a method of manufacturing a light guide panel (LGP), comprising the steps of: (1) inputting a first raw material for forming a quantum dot layer and a second raw material for forming a light guide panel (LGP) into a coextrusion molding machine; And

불활성 가스를 주입하면서, 100-400℃의 작동온도를 유지하며, 진공 펌프를 가동하면서 공압출성형하는 단계(단계 2);를 포함하고,(Step 2) of co-extruding while operating the vacuum pump while maintaining an operating temperature of 100-400 占 폚 while injecting an inert gas,

상기 제1원료는 소수성 양자점 원료 및 열가소성 고분자; 소수성 코어 양자점, 소수성 쉘 원료, 열가소성 고분자 및 소수성 유기용매; 또는 소수성 양자점 원료, 소수성 쉘 원료, 열가소성 고분자 및 소수성 유기용매;이고,Wherein the first raw material comprises a hydrophobic quantum dot raw material and a thermoplastic polymer; Hydrophobic core quantum dots, hydrophobic shell raw materials, thermoplastic polymers and hydrophobic organic solvents; Or a hydrophobic quantum dot raw material, a hydrophobic shell raw material, a thermoplastic polymer, and a hydrophobic organic solvent;

상기 제2원료는 열가소성 고분자이며,The second raw material is a thermoplastic polymer,

상기 제1원료 및 제2원료의 열가소성 고분자는 동일한 것을 특징으로 하는 양자점층이 적층된 도광판의 제조방법을 제공한다.Wherein the first raw material and the second raw material have the same thermoplastic polymer, wherein the quantum dot layer is laminated.

본 발명에 따른 제조방법에 있어서, 상기 단계 1은 양자점층 형성을 위한 제1원료 및 도광판(Light Guide Panel, LGP) 형성을 위한 제2원료를 공압출성형기에 투입하는 단계이다.In the manufacturing method according to the present invention, the step 1 is a step of injecting a first raw material for forming a quantum dot layer and a second raw material for forming a light guide panel (LGP) into a co-extrusion molding machine.

상기 양자점층 형성을 위한 제1원료에 광산란제를 더 포함할 수 있다. 상기 광산란제의 예로는 ZnS, ZnO, TiO2, ZrO2, WO3, PS bead, PMMA bead, SiO2 bead, silicone bead 등을 단독으로 또는 2종 이상 혼합하여 사용할 수 있다.The first raw material for forming the quantum dot layer may further include a light scattering agent. Examples of the light scattering agent include ZnS, ZnO, TiO 2 , ZrO 2 , WO 3 , PS bead, PMMA bead, SiO 2 bead and silicone bead.

상기 단계 1에서,In the step 1,

소수성 양자점 원료 및 열가소성 고분자를 사용할 경우 코어 양자점이 분산된 양자점층이 제조되고,When a hydrophobic quantum dot raw material and a thermoplastic polymer are used, a quantum dot layer in which core quantum dots are dispersed is produced,

소수성 코어 양자점, 소수성 쉘 원료, 열가소성 고분자 및 소수성 유기용매를 사용할 경우 코어-쉘 양자점이 분산된 양자점층이 제조되고,When a hydrophobic core quantum dot, a hydrophobic shell raw material, a thermoplastic polymer and a hydrophobic organic solvent are used, a quantum dot layer in which core-shell quantum dots are dispersed is produced,

소수성 양자점 원료, 소수성 쉘 원료, 열가소성 고분자 및 소수성 유기용매를 사용할 경우 코어-그라디언트 쉘 양자점이 분산된 양자점층이 제조될 수 있다.When a hydrophobic quantum dot raw material, a hydrophobic shell raw material, a thermoplastic polymer, and a hydrophobic organic solvent are used, a quantum dot layer in which core-gradient shell quantum dots are dispersed can be produced.

상기 '소수성 양자점 원료'는 유기물이 치환된 카드뮴, 유기물이 치환된 셀레늄, 유기물이 치환된 황, 유기물이 치환된 인듐, 유기물이 치환된 인 등을 단독으로 또는 혼합하여 사용할 수 있다.The 'hydrophobic quantum dot raw material' may be cadmium substituted with an organic substance, selenium substituted with an organic substance, sulfur substituted with an organic substance, indium substituted with an organic substance, phosphorus substituted with an organic substance, or the like.

상기 '유기물이 치환된 카드뮴'은 카드뮴 스테아레이트(cadium stearate), 카드뮴 올레이트 (cadmium oleate), 카드뮴 아세테이트 (cadmium acetate), 카드뮴 미리스테이트 (cadmium myristate), 카드뮴 팔미에이트 (cadmium palmiate), 카드뮴 운데실레네이트 (cadmium undecylenate), 카드뮴 옥타데실포스포네이트 (cadmium octadecylphosphonate), 카드뮴 테트라데실포스포네이트 (cadmium tetradecylphosphonate), 다이메틸 카드뮴 (dimethyl cadmium), 또는 다이에틸 카드뮴 (diethyl cadmium)이고,The 'organic-substituted cadmium' may be cadmium stearate, cadmium oleate, cadmium acetate, cadmium myristate, cadmium palmiate, But are not limited to, cadmium undecylenate, cadmium octadecylphosphonate, cadmium tetradecylphosphonate, dimethyl cadmium, or diethyl cadmium,

상기 '유기물이 치환된 셀레늄'은 트리-n-옥틸포스핀셀레나이드(tri-n-octylphosphine selenide), 트리-n-부틸포스핀셀레나이드(tri-n-butylphosphine selenide), 트리-n-페닐포스핀셀레나이드(tri-n-phenylphosphine selenide), 다이-n-옥틸포스핀셀레나이드(tri-n-octylphosphine selenide), 다이-n-부틸포스핀셀레나이드(tri-n-butylphosphine selenide), 다이-n-페닐포스핀셀레나이드(tri-n-phenylphosphine selenide), 모노-n-옥틸포스핀셀레나이드(tri-n-octylphosphine selenide), 모노-n-부틸포스핀셀레나이드(tri-n-butylphosphine selenide), 모노-n-페닐포스핀셀레나이드(tri-n-phenylphosphine selenide), 셀레늄 파우더 (Selenium), 셀레늄 옥사이드 (Selenium dioxide), 셀레노 우레아 (Seleno-urea), 옥탄셀레놀 (octane-selenol) 또는 도데칸셀레놀 (dodecane-selenol)이고,The 'organic substance-substituted selenium' may be selected from the group consisting of tri-n-octylphosphine selenide, tri-n-butylphosphine selenide, Tri-n-butylphosphine selenide, tri-n-octylphosphine selenide, tri-n-butylphosphine selenide, n-phenylphosphine selenide, tri-n-octylphosphine selenide, mono-n-butylphosphine selenide, selenide, mono-n-phenylphosphine selenide, selenium powder, selenium dioxide, seleno-urea, octane-selenol, ) Or dodecane-selenol,

상기 '유기물이 치환된 황'은 트리-n-옥틸포스핀설파이드 (tri-n-octylphosphine sulfide), 트리-n-부틸포스핀설파이드 (tri-n-butylphosphine sulfide), 트리-n-페닐포스핀설파이드 (tri-n-phenylphosphine sulfide), 다이-n-옥틸포스핀설파이드 (tri-n-octylphosphine sulfide), 다이-n-부틸포스핀설파이드 (tri-n-butylphosphine sulfide), 다이-n-페닐포스핀설파이드 (tri-n-phenylphosphine sulfide), 모노-n-옥틸포스핀설파이드 (tri-n-octylphosphine sulfide), 모노-n-부틸포스핀설파이드 (tri-n-butylphosphine sulfide), 모노-n-페닐포스핀설파이드 (tri-n-phenylphosphine sulfide), 황 파우더 (elemental Sulfur powder), 황산화물 (Sulfur oxide), 싸이오우레아 (thio-urea), 옥탄티올 (octanethiol) 또는 도데칸티올 (dodecanethiol)이고,The 'organic-substituted sulfur' includes tri-n-octylphosphine sulfide, tri-n-butylphosphine sulfide, tri-n-phenylphosphine Tri-n-phenylphosphine sulfide, tri-n-octylphosphine sulfide, tri-n-butylphosphine sulfide, N-pentylphosphine sulfide, tri-n-phenylphosphine sulfide, tri-n-octylphosphine sulfide, mono-n-butylphosphine sulfide, Tri-n-phenylphosphine sulfide, elemental sulfur powder, sulfur oxide, thio-urea, octanethiol or dodecanethiol,

상기 '유기물이 치환된 인듐'은 트리메틸인듐 (trimethyl indium), 트리에틸인듐 (triethyl indium), 인듐 아세테이트 (indium acetate), 인듐 미리스테이트 (indium myristate), 인듐 팔메이트 (indium palmate), 인듐 스테아레이트 (indium stearate), 인듐 올레이트 (indium oleate), 인듐 옥타데실포스포네이트 (indium octadecylphisphonate), 인듐 테트라데실포스포네이트 (indium tetradecylphosphonate) 또는 인듐 트리-도데칸싸이올레이트 (indium thiolate)이고,The 'organic substance-substituted indium' may be at least one selected from the group consisting of trimethyl indium, triethyl indium, indium acetate, indium myristate, indium palmate, indium stearate, indium oleate, indium octadecylphisphonate, indium tetradecylphosphonate or indium tri-dodecane thiolate,

상기 '유기물이 치환된 인'은 P(TMS)3 (Tris(trimethylsilyl)phosphine), PH(TMS)2 (Di(trimethylsilyl)phosphine), PH2(TMS) (Mono(trimethylsilyl)phosphine), P(DA)3 (tris(dimethylamono)phosphine) 또는 P(DEA)3 (tris(diethylamono)phosphine)을 사용할 수 있다.The 'organic phosphorus-substituted phosphorus' may be selected from the group consisting of P (TMS) 3 (trimethylsilyl) phosphine, PH (TMS) 2 (trimethylsilyl) phosphine, PH 2 (TMS) DA) 3 (tris (dimethylammono) phosphine) or P (DEA) 3 (tris (diethylammono) phosphine).

상기 '열가소성 고분자'는 PMMA (Poly(methyl methacrylate), PS (Polystyrene), UAP (Urethane acrylate polymer), COP (Cyclic olefin polymer), COC (cyclic olefin copolymer) 등과 같이 투명한 고분자를 사용할 수 있다.The 'thermoplastic polymer' may be a transparent polymer such as PMMA (methyl methacrylate), PS (polystyrene), UA (Urethane acrylate polymer), COP (cyclic olefin polymer) or COC (cyclic olefin copolymer).

상기 '소수성 코어 양자점'은 CdSe, InP, CuInS, CuInSe, CuInS2, CuInSe2, CsPbCl3, CsPbBr3, CsPbI3 등을 단독으로 또는 혼합하여 사용할 수 있다.The "hydrophobic core quantum dots" may be used alone or in combination, such as CdSe, InP, CuInS, CuInSe, CuInS 2, CuInSe 2, CsPbCl 3, CsPbBr 3, CsPbI 3.

상기 '소수성 쉘 원료'는 트리-메틸-갈륨 (tri-methyl-gallium), 갈륨 아세테이트 (Gallium acetate), 갈륨 클로라이드 (Gallium chloride), 갈륨 올리에이트 (Gallium oleate), 갈륨 스테아레이트 (Gallium stearate), 아연 스테아레이트 (Zinc stearate), 아연 올레이트 (zinc oleate), 아연 아세테이트 (zinc acetae), 디메틸 아연 (dimethyl zinc), 디에틸 아연 (diethyl zinc), 트리-n-옥틸포스핀셀레나이드(tri-n-octylphosphine selenide), 트리-n-부틸포스핀셀레나이드(tri-n-butylphosphine selenide), 트리-n-페닐포스핀셀레나이드(tri-n-phenylphosphine selenide), 다이-n-옥틸포스핀셀레나이드(tri-n-octylphosphine selenide), 다이-n-부틸포스핀셀레나이드(tri-n-butylphosphine selenide), 다이-n-페닐포스핀셀레나이드(tri-n-phenylphosphine selenide), 모노-n-옥틸포스핀셀레나이드(tri-n-octylphosphine selenide), 모노-n-부틸포스핀셀레나이드(tri-n-butylphosphine selenide), 모노-n-페닐포스핀셀레나이드(tri-n-phenylphosphine selenide), 셀레늄 파우더 (Selenium), 셀레늄 옥사이드 (Selenium dioxide), 셀레노 우레아 (Seleno-urea), 옥탄셀레놀 (octane-selenol), 도데칸셀레놀 (dodecane-selenol), 트리-n-옥틸포스핀설파이드 (tri-n-octylphosphine sulfide), 트리-n-부틸포스핀설파이드 (tri-n-butylphosphine sulfide), 트리-n-페닐포스핀설파이드 (tri-n-phenylphosphine sulfide), 다이-n-옥틸포스핀설파이드 (tri-n-octylphosphine sulfide), 다이-n-부틸포스핀설파이드 (tri-n-butylphosphine sulfide), 다이-n-페닐포스핀설파이드 (tri-n-phenylphosphine sulfide), 모노-n-옥틸포스핀설파이드 (tri-n-octylphosphine sulfide), 모노-n-부틸포스핀설파이드 (tri-n-butylphosphine sulfide), 모노-n-페닐포스핀설파이드 (tri-n-phenylphosphine sulfide), 황 파우더 (elemental Sulfur powder), 황산화물 (Sulfur oxide), 싸이오우레아 (thio-urea), 옥탄티올 (octanethiol), 도데칸티올 (dodecanethiol) 등을 단독으로 또는 혼합하여 사용할 수 있다.The hydrophobic shell material may be selected from the group consisting of tri-methyl-gallium, gallium acetate, gallium chloride, gallium oleate, gallium stearate, Zinc stearate, zinc oleate, zinc acetae, dimethyl zinc, diethyl zinc, tri-n-octylphosphine selenide, n-octylphosphine selenide, tri-n-butylphosphine selenide, tri-n-phenylphosphine selenide and di-n-octylphosphine selenide. N-octylphosphine selenide, tri-n-butylphosphine selenide, tri-n-phenylphosphine selenide, mono-n-butylphosphine selenide, Tri-n-octylphosphine selenide, mono-n-butylphosphine selenide, lenide, mono-n-phenylphosphine selenide, selenium powder, selenium dioxide, seleno-urea, octane-selenol, Dodecane-selenol, tri-n-octylphosphine sulfide, tri-n-butylphosphine sulfide, tri-n-butylphosphine sulfide, Tri-n-butylphosphine sulfide, tri-n-pentylphosphine sulfide, tri-n-pentylphosphine sulfide, N-octylphosphine sulfide, tri-n-butylphosphine sulfide, mono-n-butylphosphine sulfide, tri- tri-n-phenylphosphine sulfide, elemental sulfur powder, sulfur oxide, thio-urea, octane Octanethiol, dodecanethiol, etc. may be used alone or in combination.

상기 '소수성 유기용매'는 옥타데신 (1-octadcene), 옥타데칸 (octadecane), 트리-n-옥틸포스핀 (tri-n-octylphosphine), 트리-n-옥틸포스핀 옥사이드 (tri-n-octylphosphine oxide), 트리-n-옥틸아민 (tri-n-octylamine), 다이-n-옥틸아민 (di-n-octylamine), n-옥틸아민 (n-octylamine), 톨루엔, 파라핀 (paraffin), 스쿠알렌 (squalene) 등을 단독으로 또는 혼합하여 사용할 수 있다.The hydrophobic organic solvent may be at least one selected from the group consisting of 1-octadecene, octadecane, tri-n-octylphosphine, tri-n-octylphosphine oxide, tri-n-octylamine, di-n-octylamine, n-octylamine, toluene, paraffin, squalene squalene) may be used alone or in combination.

상기 단계 1에서 공압출성형기에 투입되는 모든 원료의 투입속도는 0.001-1000kg/min, 바람직하게는 10-100kg/min, 더욱 바람직하게는 30-50kg/min일 수 있다. 만약, 원료 투입속도가 0.001kg/min 미만일 경우 고분자가 산화되는 문제가 있을 수 있고, 1000kg/min 초과일 경우 고분자 내에 양자점 원료의 분산성이 저하되는 문제가 있을 수 있다.In step 1, the feed rate of all the raw materials fed into the co-extrusion molding machine may be 0.001-1000 kg / min, preferably 10-100 kg / min, more preferably 30-50 kg / min. If the feed rate is less than 0.001 kg / min, the polymer may be oxidized. If the feed rate is more than 1000 kg / min, the dispersibility of the quantum dot material may be degraded in the polymer.

상기 단계 1에서,In the step 1,

제1원료로 소수성 양자점 원료 및 열가소성 고분자를 사용할 경우, 열가소성 고분자 100 중량부 대비 소수성 양자점 원료 0.0001-80 중량부 범위로 투여할 수 있고,When the hydrophobic quantum dot raw material and the thermoplastic polymer are used as the first raw material, they can be administered in the range of 0.0001-80 parts by weight of the hydrophobic quantum dot raw material with respect to 100 parts by weight of the thermoplastic polymer,

제1원료로 소수성 코어 양자점, 소수성 쉘 원료, 열가소성 고분자 및 소수성 유기용매를 사용할 경우, 열가소성 고분자 100 중량부 대비 소수성 코어 양자점 0.0001-50 중량부, 소수성 쉘 원료 0.0001-50 중량부, 소수성 유기용매 0.0001-99 중량부 범위로 투여할 수 있으며,When the hydrophobic core quantum dots, the hydrophobic shell raw material, the thermoplastic polymer, and the hydrophobic organic solvent are used as the first raw material, 0.0001-50 parts by weight of the hydrophobic core quantum dots, 0.0001-50 parts by weight of the hydrophobic shell raw materials, -99 parts by weight,

제1원료로 소수성 양자점 원료, 소수성 쉘 원료, 열가소성 고분자 및 소수성 유기용매를 사용할 경우, 열가소성 고분자 100 중량부 대비 소수성 양자점 원료 0.0001-50 중량부, 소수성 쉘 원료 0.0001-50 중량부, 소수성 유기용매 0.0001-99 중량부 범위로 투여할 수 있다.When the hydrophobic raw material for a quantum dot material, the hydrophobic shell raw material, the thermoplastic polymer and the hydrophobic organic solvent are used as the first raw material, 0.0001-50 parts by weight of the hydrophobic quantum dot raw material, 0.0001-50 parts by weight of the hydrophobic shell raw material, -99 parts by weight.

본 발명에 따른 제조방법에 있어서, 상기 단계 2는 불활성 가스를 주입하면서, 100-400℃의 작동온도를 유지하며, 진공 펌프를 가동하면서 공압출성형하는 단계이다.In the manufacturing method according to the present invention, step 2 is a step of co-extruding while operating the vacuum pump while maintaining an operating temperature of 100-400 캜 while injecting an inert gas.

여기서, 불활성 가스로는 아르곤, 질소, 네온, 탄산 등을 사용할 수 있다. 본 발명에서 불활성 가스는 양자점 원료의 산화를 방지하는 역할을 한다.As the inert gas, argon, nitrogen, neon, carbonic acid, or the like can be used. In the present invention, the inert gas serves to prevent oxidation of the quantum dot raw material.

상기 작동온도 100-400℃는 열가소성 고분자가 용융되는 온도의 범위로 사용하는 열가소성 고분자의 융점 이상이라면 제약 없이 사용할 수 있고, 바람직하게는 열가소성 고분자의 유리전이온도(Tg) 보다 30-100℃ 높은 작동온도를 사용할 수 있다.The operating temperature of 100-400 ° C may be used without restriction as long as it is higher than the melting point of the thermoplastic polymer to be used in the range of the temperature at which the thermoplastic polymer is melted and is preferably 30-100 ° C higher than the glass transition temperature Tg of the thermoplastic polymer Temperature can be used.

상기 진공 펌프는 제조되는 도광판에 기포가 발생하는 것을 방지하는 역할을 한다.The vacuum pump serves to prevent bubbles from being generated in the light guide plate to be manufactured.

양자점층이The quantum dot layer 적층된Laminated 도광판 Light guide plate

본 발명은 상기 제조방법으로 제조된 양자점층이 적층된 도광판을 제공한다.The present invention provides a light guide plate in which a quantum dot layer manufactured by the above-described manufacturing method is laminated.

본 발명에 따른 양자점층이 적층된 도광판은 고분자 매트릭스 내에서 양자점이 생성되고 유지되기 때문에 산화를 원천 차단할 수 있고, 제조한 양자점층에서 양자점이 균일하게 분산되는 효과가 있으며, 양자점층과 도광판을 공압출성형으로 동시에 적층한 형태로 제조할 수 있어 제조비용을 절감할 수 있다.The light guide plate in which the quantum dot layer according to the present invention is laminated has the effect that the quantum dot is uniformly dispersed in the produced quantum dot layer because the quantum dot is generated and maintained in the polymer matrix, It can be manufactured by extrusion molding at the same time, so that the manufacturing cost can be reduced.

본 발명에 따른 양자점층이 적층된 도광판은 직하형(direct type) LCD(Liquid crystal display)의 BLU(Back light unit) 구성요소로 사용될 수 있다(도 5 참조).The light guide plate in which the quantum dot layer according to the present invention is laminated can be used as a back light unit (BLU) component of a direct type LCD (Liquid Crystal Display) (see FIG. 5).

바람직하게, 본 발명에 따른 양자점층이 적층된 도광판은 도광판이 광원에 가까운 쪽에 구비되도록 사용하여, 열손실에 의한 양자점의 발광성 저하를 저하할 수 있다.Preferably, the light guide plate in which the quantum dot layer according to the present invention is laminated is used so that the light guide plate is provided near the light source, thereby lowering the light emitting property of the quantum dot due to heat loss.

또한, 본 발명에 따른 양자점층이 적층된 도광판은 광산란제를 더 포함할 수 있는데, 양자점층 표면상 또는 내부에 광산란제를 더 포함할 수 있다.In addition, the light guide plate in which the quantum dot layer according to the present invention is laminated may further include a light scattering agent, and may further include a light scattering agent on or in the surface of the quantum dot layer.

종래 도광판은 광원과 가까운 하부 표면에 점 매트릭스 패턴이 출력되어 있거나 선 형태의 패턴이 파여 있어, 빛을 화면 전체적으로 고르게 확산되도록 한다. Conventionally, the light guide plate has a point matrix pattern printed on a lower surface close to a light source, or a line-shaped pattern is formed so that the light spreads evenly over the entire screen.

본 발명에 따른 양자점층이 적층된 도광판은 광산란제를 더 포함할 경우 도광판 하부 표면에 별도의 패턴이 없어도 빛을 화면 전체적으로 고르게 확산되도록 할 수 있다.The light guide plate in which the quantum dot layer according to the present invention is laminated can further diffuse the light uniformly over the entire screen even if the light guide plate further includes a light scattering agent.

이하, 본 발명을 하기의 실시예에 의하여 더욱 상세하게 설명한다. 단, 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the following examples are illustrative of the present invention, and the present invention is not limited by the following examples.

<< 실시예Example 1>  1> CdSeCdSe 양자점이The quantum dot 분산된 PMMA 고분자  Dispersed PMMA polymer 펠렛의Pellet 제조 Produce

CdSe 양자점 원료: CdSA2 (cadium stearate) (1mmol) 및 TOPSe (tri-n-octylphosphine selenide) (1mmol)CdSe quantum dot raw material: CdSA2 (cadium stearate) (1 mmol) and TOPSe (tri-n-octylphosphine selenide) (1 mmol)

고분자 원료: PMMA (Poly(methyl methacrylate)) (100g)Polymer raw material: Poly (methyl methacrylate) (PMMA) (100 g)

상기 원료를 혼합하여 압출성형기(도 1 참조)에 투입하였다. 여기서, 혼합 원료를 투입할 시에 양자점의 산화를 보호할 목적으로 불활성 가스로서 아르곤 가스를 함께 주입하였다. 혼합 원료의 투입속도는 10g/min으로 하였고, 압출성형기의 온도는 300℃를 유지하였으며, 진공을 유지하였다. 상기 혼합 원료를 압출성형기를 통해 CdSe 양자점이 분산된 PMMA 고분자 펠렛을 얻었다.The raw materials were mixed and charged into an extruder (see Fig. 1). Here, argon gas was injected as an inert gas for the purpose of protecting the oxidation of the quantum dots when the mixed raw material was introduced. The feed rate of the mixed raw materials was 10 g / min, the temperature of the extruder was maintained at 300 ° C, and the vacuum was maintained. PMMA polymer pellets in which CdSe quantum dots were dispersed were obtained through an extruder.

<< 실시예Example 2>  2> CdSeCdSe -- ZnSZnS (코어-쉘) 양자점이 분산된 PMMA 고분자 펠렛의 제조(Core-Shell) Production of PMMA polymer pellets dispersed with quantum dots

CdSe-ZnS(코어-쉘) 양자점 원료: CdSe (1g), Zinc stearate (10g) 및 Dodecanethiol (10mL)CdSe-ZnS (Core-Shell) Quantum dot raw materials: CdSe (1 g), Zinc stearate (10 g) and Dodecanethiol (10 mL)

고분자 원료: PMMA 100gPolymer raw material: PMMA 100 g

용매: 톨루엔 (10mL)Solvent: Toluene (10 mL)

상기 원료를 혼합하여 사용한 것을 제외하고는, 실시예 1과 동일한 조건으로 압출성형기(도 2 참조)를 통해 CdSe-ZnS(코어-쉘) 양자점이 분산된 PMMA 고분자 펠렛을 얻었다. 여기서, 도데칸티올(Dodecanethiol)은 고온 작업시에 가스가 발생하므로, 후드를 설치하여 가스 배출을 유도하였다.PMMA polymer pellets in which CdSe-ZnS (core-shell) quantum dots were dispersed were obtained through an extruder (see Fig. 2) under the same conditions as in Example 1, except that the raw materials were mixed. Here, since dodecanethiol generates gas during high temperature operation, a hood is installed to induce gas discharge.

<< 실시예Example 3>  3> CdSeCdSe -- ZnSZnS (코어-(core- 그라디언트Gradient (gradient) 쉘) 양자점이 분산된 PMMA 고분자 펠렛의 제조(gradient) shell) Production of PMMA polymer pellets dispersed with quantum dots

CdSe-ZnS(코어-그라디언트(gradient) 쉘) 양자점 원료: CdSA2 (cadium stearate) (1mmol), TOPSe (tri-n-octylphosphine selenide) (1mmol), Zinc stearate (10g) 및 Dodecanethiol (10mL)CdSe-ZnS (Core-Gradient Shell) Quantum dot raw materials: CdSa2 (1 mmol), TOPSe (1 mmol), Zinc stearate (10 g) and Dodecanethiol (10 mL)

고분자 원료: PMMA 100gPolymer raw material: PMMA 100 g

용매: 옥타데센(octadecene) (10mL)Solvent: octadecene (10 mL)

상기 원료를 혼합하여 사용한 것을 제외하고는, 실시예 1과 동일한 조건으로 압출성형기(도 3 참조)를 통해 CdSe-ZnS(코어-그라디언트 쉘) 양자점이 분산된 PMMA 고분자 펠렛을 얻었다. 여기서, 도데칸티올(Dodecanethiol)은 고온 작업시에 가스가 발생하므로, 후드를 설치하여 가스 배출을 유도하였다.PMMA polymer pellets in which CdSe-ZnS (core-gradient shell) quantum dots were dispersed were obtained through an extruder (see Fig. 3) under the same conditions as in Example 1, except that the raw materials were used in combination. Here, since dodecanethiol generates gas during high temperature operation, a hood is installed to induce gas discharge.

<< 실시예Example 3-1>  3-1> CdSeCdSe -- ZnSZnS 양자점이The quantum dot 분산된  Distributed PEPE 고분자  Polymer 펠렛의Pellet 제조 Produce

CdSe-ZnS 양자점 원료: CdSA2 (cadium stearate) (1mmol), TOPSe (tri-n-octylphosphine selenide) (1mmol), Zinc stearate (10g) 및 Dodecanethiol (10mL)(1 mmol) of CdSe-ZnS quantum dot raw material: CdSA2 (1 mmol), tri-n-octylphosphine selenide (TOPSe) (1 mmol), Zinc stearate (10 g) and Dodecanethiol

고분자 원료: LDPE 100g Polymer raw material: LDPE 100g

용매: 1-Octadecene (10mL)Solvent: 1-Octadecene (10 mL)

상기 원료를 혼합하여 사용한 것을 제외하고는, 실시예 1과 동일한 조건으로 섬유방사기(도 3 참조)를 통해 CdSe-ZnS 양자점이 분산된 PE 고분자 섬유를 얻었다. 여기서, 도데칸티올(Dodecanethiol)은 고온 작업시에 가스가 발생하므로, 후드를 설치하여 가스 배출을 유도하였다.A PE polymer fiber having CdSe-ZnS quantum dots dispersed therein was obtained through a fiber emitter (see Fig. 3) under the same conditions as in Example 1, except that the raw materials were mixed. Here, since dodecanethiol generates gas during high temperature operation, a hood is installed to induce gas discharge.

<< 실시예Example 3-2>  3-2> CdSeCdSe -- ZnSZnS 양자점이The quantum dot 분산된  Distributed PEPE Wax 고분자  Wax polymer 펠렛의Pellet 제조 Produce

CdSe-ZnS 양자점 원료: CdSA2 (cadium stearate) (1mmol), TOPSe (tri-n-octylphosphine selenide) (1mmol), Zinc stearate (10g) 및 Dodecanethiol (10mL)(1 mmol) of CdSe-ZnS quantum dot raw material: CdSA2 (1 mmol), tri-n-octylphosphine selenide (TOPSe) (1 mmol), Zinc stearate (10 g) and Dodecanethiol

고분자 원료: Oxidized PE Wax 100g (Acid number 5~80 mg KOH/g)Polymer raw material: Oxidized PE wax 100g (Acid number 5 ~ 80 mg KOH / g)

용매: 1-Octadecene (10mL)Solvent: 1-Octadecene (10 mL)

상기 원료를 혼합하여 사용한 것을 제외하고는, 실시예 1과 동일한 조건으로 섬유방사기(도 3 참조)를 통해 CdSe-ZnS 양자점이 분산된 PE 고분자 섬유를 얻었다. 여기서, 도데칸티올(Dodecanethiol)은 고온 작업시에 가스가 발생하므로, 후드를 설치하여 가스 배출을 유도하였다.A PE polymer fiber having CdSe-ZnS quantum dots dispersed therein was obtained through a fiber emitter (see Fig. 3) under the same conditions as in Example 1, except that the raw materials were mixed. Here, since dodecanethiol generates gas during high temperature operation, a hood is installed to induce gas discharge.

<< 실시예Example 3-3>  3-3> CdSeCdSe -- ZnSZnS 양자점이The quantum dot 분산된  Distributed PEPE Wax 고분자  Wax polymer 펠렛의Pellet 제조 Produce

CdSe-ZnS 양자점 원료: CdSe-ZnS QDs (100mg/mL, 10mL Toluene)CdSe-ZnS Quantum dot raw material: CdSe-ZnS QDs (100 mg / mL, 10 mL Toluene)

고분자 원료: Oxidized PE Wax 100g (Acid number 5~80 mg KOH/g)Polymer raw material: Oxidized PE wax 100g (Acid number 5 ~ 80 mg KOH / g)

용매: Toluene (10mL)Solvent: Toluene (10 mL)

상기 원료를 혼합하여 사용한 것을 제외하고는, 실시예 1과 동일한 조건으로 섬유방사기(도 3 참조)를 통해 CdSe-ZnS 양자점이 분산된 Oxidized PE Wax 고분자 섬유를 얻었다. 여기서, 톨루엔(Toluene)은 고온 작업시에 가스가 발생하므로, 후드를 설치하여 가스 배출을 유도하였다.Oxidized PE wax polymer fibers were obtained in which CdSe-ZnS quantum dots were dispersed through a fiber emitter (see Fig. 3) under the same conditions as in Example 1, except that the raw materials were mixed. Here, since toluene (Toluene) generates gas during high temperature operation, a hood is installed to induce gas discharge.

<< 실시예Example 3-4>  3-4> CdSeCdSe -- ZnSZnS 양자점이The quantum dot 분산된 PMMA 고분자  Dispersed PMMA polymer 펠렛의Pellet 제조 Produce

CdSe-ZnS 양자점 원료: CdSe-ZnS QDs (100mg/mL, 10mL Toluene)CdSe-ZnS Quantum dot raw material: CdSe-ZnS QDs (100 mg / mL, 10 mL Toluene)

고분자 원료: Oxidized PE Wax 20g (Acid number 5~80 mg KOH/g), PMMA 200gPolymer raw materials: Oxidized PE wax 20 g (Acid number 5 to 80 mg KOH / g), PMMA 200 g

용매: 1-Octadecene (10mL)Solvent: 1-Octadecene (10 mL)

상기 원료를 혼합하여 사용한 것을 제외하고는, 실시예 1과 동일한 조건으로 섬유방사기(도 3 참조)를 통해 CdSe-ZnS 양자점이 분산된 PMMA 고분자 섬유를 얻었다. 여기서, 톨루엔(Toluene)은 고온 작업시에 가스가 발생하므로, 후드를 설치하여 가스 배출을 유도하였다.PMMA polymer fibers in which CdSe-ZnS quantum dots were dispersed were obtained through a fiber emitter (see Fig. 3) under the same conditions as in Example 1, except that the raw materials were mixed. Here, since toluene (Toluene) generates gas during high temperature operation, a hood is installed to induce gas discharge.

<< 실시예Example 4>  4> InPInP -- ZnSZnS (코어-쉘) 양자점이 분산된 PMMA 고분자 펠렛의 제조 (Core-Shell) Production of PMMA polymer pellets dispersed with quantum dots

InP-ZnS(코어- 쉘) 양자점 원료: Indium myristate (1mmol), tris(diethylamino)phosphine (1mmol), Zinc stearate (10g) 및 Dodecanethiol (10mL)(1mmol), tris (diethylamino) phosphine (1mmol), Zinc stearate (10g) and Dodecanethiol (10mL) were added to the InP-ZnS (core-

고분자 원료: PMMA 100gPolymer raw material: PMMA 100 g

용매: 옥타데센 (10mL)Solvent: octadecene (10 mL)

상기 원료를 혼합하여 사용한 것을 제외하고는, 실시예 1과 동일한 조건으로 압출성형기(도 3 참조)를 통해 InP-ZnS(코어- 쉘) 양자점이 분산된 PMMA 고분자 펠렛을 얻었다. 여기서, 도데칸티올(Dodecanethiol)은 고온 작업시에 가스가 발생하므로, 후드를 설치하여 가스 배출을 유도하였다.PMMA polymer pellets in which InP-ZnS (core-shell) quantum dots were dispersed were obtained through an extruder (see Fig. 3) under the same conditions as in Example 1, except that the raw materials were used in combination. Here, since dodecanethiol generates gas during high temperature operation, a hood is installed to induce gas discharge.

<< 실시예Example 5>  5> InPInP -- GaPGaP -- ZnSZnS (코어-쉘-쉘) 양자점이 분산된 PMMA 고분자 펠렛의 제조 (Core-shell-shell) Quantum dot dispersed PMMA polymer pellets

InP-GaP-ZnS(코어-쉘-쉘) 양자점 원료: Indium myristate (1mmol), gallium chloride (0.33mmol), oleic acid (1.5mmol), tris(diethylamino)phosphine (1mmol), Zinc stearate (10g) 및 Dodecanethiol (10mL)(1mmol), gallium chloride (0.33mmol), oleic acid (1.5mmol), tris (diethylamino) phosphine (1mmol), Zinc stearate (10g), and InP-GaP-ZnS (core- shell-shell) quantum dot raw materials: Indium myristate Dodecanethiol (10 mL)

고분자 원료: PMMA 100gPolymer raw material: PMMA 100 g

용매: 옥타데신 (10mL)Solvent: octadecine (10 mL)

상기 원료를 혼합하여 사용한 것을 제외하고는, 실시예 1과 동일한 조건으로 압출성형기(도 3 참조)를 통해 InP-GaP-ZnS(코어-쉘-쉘) 양자점이 분산된 PMMA 고분자 펠렛을 얻었다. 여기서, 도데칸티올(Dodecanethiol)은 고온 작업시에 가스가 발생하므로, 후드를 설치하여 가스 배출을 유도하였다.PMMA polymer pellets in which InP-GaP-ZnS (core-shell-shell) quantum dots were dispersed was obtained under the same conditions as in Example 1, except that the raw materials were mixed and used. Here, since dodecanethiol generates gas during high temperature operation, a hood is installed to induce gas discharge.

<< 실시예Example 6> 양자점층이  6> The quantum dot layer 적층된Laminated 도광판의 제조 Manufacture of light guide plate

양자점층 형성을 위한 제1원료는 실시예 1의 원료와 같고,The first raw material for forming the quantum dot layer is the same as the raw material for the first embodiment,

도광판 형성을 위한 제2원료는 PMMA (Poly(methyl methacrylate))를 사용하였다.PMMA (poly (methyl methacrylate)) was used as the second raw material for forming the light guide plate.

상기 제1원료(0.1 mm)와 제2원료(3 mm)를 공압출성형기에 각각 투입하면서, 투입할 시에 양자점의 산화를 보호할 목적으로 불활성 가스로서 아르곤 가스를 함께 주입하였다. 제1원료와 제2원료의 투입속도는 10g/min으로 하였고, 공압출성형기의 온도는 300℃를 유지하였으며, 진공을 유지하였다. 상기 제1원료와 제2원료를 공압출성형기를 통해 CdSe 양자점이 분산된 PMMA 층(양자점층)이 적층된 PMMA 도광판을 얻었다.The first raw material (0.1 mm) and the second raw material (3 mm) were injected into a co-extruder, and argon gas was injected as an inert gas together with the objective of protecting the oxidation of the quantum dots during charging. The feed rate of the first raw material and the second raw material was 10 g / min, the temperature of the co-extruder was kept at 300 ° C, and the vacuum was maintained. A PMMA light guide plate in which a PMMA layer (quantum dot layer) having CdSe quantum dots dispersed therein was laminated through a coextrusion molding machine of the first raw material and the second raw material.

도 6은 실시예 6에서 제조한 도광판을 BLU (Back Light Unit) 위에 올린 다음 전원 ON/OFF 시에 각각 촬영한 사진이다.Fig. 6 is a photograph taken at the time of power ON / OFF after the light guide plate manufactured in Example 6 is placed on a BLU (Back Light Unit).

<< 실험예Experimental Example 1> 고분자 내  1> in polymer 양자점Qdot 생성 및 분산성 평가 Production and dispersibility evaluation

실시예 1에서 제조한 양자점이 분산된 고분자 펠렛에서 고분자 내에서 양자점이 잘 생성되었는지, 그리고 실시예 1에서 제조한 펠렛을 이용하여 사출성형한 필름에서 분산성은 우수한지 알아보기 위하여, 상기에서 준비한 펠렛 및 필름 각각에 UV 조사 전(a) 및 후(b)의 발광을 확인하였다(도 4 참조).In order to determine whether quantum dots were well formed in the polymer in the polymer pellets in which the quantum dots were dispersed prepared in Example 1 and that the dispersibility in the injection-molded films using the pellets prepared in Example 1 was excellent, And each of the films was confirmed to emit light (a) and (b) before UV irradiation (see Fig. 4).

도 4는 실시예 1에서 제조한 펠렛 및 실시예 1에서 제조한 펠렛을 이용하여 사출성형한 필름 각각에 UV 조사 전(a) 및 후(b)의 발광을 확인한 사진이다.Fig. 4 is a photograph showing the luminescence of (a) and (b) before UV irradiation on each of the pellets prepared in Example 1 and the films injection-molded using the pellets prepared in Example 1. Fig.

도 4에 나타난 바와 같이, 실시예 1에서 제조한 펠렛은 UV 조사할 경우 발광이 일어나는 것으로 보아 고분자 내에서 양자점이 잘 생성되었음을 알 수 있었다. 또한, 실시예 1에서 제조한 펠렛을 이용하여 사출성형한 필름에 UV 조사할 경우 핌름 내에서 균일한 분포도로 양자점이 분산되어 있음을 알 수 있었다.As shown in FIG. 4, when the pellet prepared in Example 1 was irradiated with UV light, it was found that quantum dots were generated well in the polymer. It was also found that the quantum dots were dispersed uniformly in the resin film when UV-irradiated films were injection-molded using the pellets prepared in Example 1.

따라서, 본 발명에 따른 제조방법은 용융 고분자를 용매로 응용하여 양자점, 코어-쉘 양자점 및 코어-그라디언트 쉘 양자점을 모두 제조할 수 있어 종래 제조방법에 비하여 제조공정을 단출할 수 있을 뿐만 아니라, 제조한 양자점층에서 양자점이 균일하게 분산되는 효과가 있다.Therefore, the manufacturing method according to the present invention can manufacture both the quantum dots, the core-shell quantum dots and the core-gradient shell quantum dots by using the molten polymer as a solvent, so that the manufacturing process can be omitted compared to the conventional manufacturing method, There is an effect that the quantum dots are uniformly dispersed in one quantum dot layer.

Claims (17)

양자점층 형성을 위한 제1원료 및 도광판(Light Guide Panel, LGP) 형성을 위한 제2원료를 공압출성형기에 투입하는 단계(단계 1); 및
불활성 가스를 주입하면서, 100-400℃의 작동온도를 유지하며, 진공 펌프를 가동하면서 공압출성형하는 단계(단계 2);를 포함하고,
상기 제1원료는 (가) 소수성 코어 양자점과 소수성 쉘 원료와 열가소성 고분자와 소수성 유기용매가 포함된 원료 또는 (나) 소수성 양자점 원료와 소수성 쉘 원료와 열가소성 고분자와 소수성 유기용매가 포함된 원료이며,
상기 제2원료는 열가소성 고분자이며,
상기 제1원료 및 제2원료의 열가소성 고분자는 동일하고,
소수성 코어 양자점, 소수성 쉘 원료, 열가소성 고분자 및 소수성 유기용매를 사용할 경우 코어-쉘 양자점이 분산된 양자점층이 제조되고,
소수성 양자점 원료, 소수성 쉘 원료, 열가소성 고분자 및 소수성 유기용매를 사용할 경우 코어-그라디언트 쉘 양자점이 분산된 양자점층이 제조되는 것을 특징으로 하는 양자점층이 적층된 도광판의 제조방법.
(Step 1) of introducing a first raw material for forming a quantum dot layer and a second raw material for forming a light guide panel (LGP) into a co-extrusion molding machine; And
(Step 2) of co-extruding while operating the vacuum pump while maintaining an operating temperature of 100-400 占 폚 while injecting an inert gas,
The first raw material includes (a) a raw material containing a hydrophobic core quantum dots, a hydrophobic shell raw material, a thermoplastic polymer and a hydrophobic organic solvent, or (b) a raw material containing a hydrophobic quantum dot raw material, a hydrophobic shell raw material, a thermoplastic polymer and a hydrophobic organic solvent,
The second raw material is a thermoplastic polymer,
The thermoplastic polymers of the first raw material and the second raw material are the same,
When a hydrophobic core quantum dot, a hydrophobic shell raw material, a thermoplastic polymer and a hydrophobic organic solvent are used, a quantum dot layer in which core-shell quantum dots are dispersed is produced,
Wherein a quantum dot layer in which core-gradient shell quantum dots are dispersed is produced when a hydrophobic quantum dot raw material, a hydrophobic shell raw material, a thermoplastic polymer, and a hydrophobic organic solvent are used.
삭제delete 제1항에 있어서,
상기 소수성 양자점 원료는 유기물이 치환된 카드뮴, 유기물이 치환된 셀레늄, 유기물이 치환된 황, 유기물이 치환된 인듐 및 유기물이 치환된 인으로 이루어지는 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 제조방법.
The method according to claim 1,
Wherein the hydrophobic quantum dot raw material is at least one selected from the group consisting of cadmium substituted with an organic substance, selenium substituted with an organic substance, sulfur substituted with an organic substance, indium substituted with an organic substance, and phosphorus substituted with an organic substance.
제3항에 있어서,
상기 유기물이 치환된 카드뮴은 카드뮴 스테아레이트(cadium stearate), 카드뮴 올레이트 (cadmium oleate), 카드뮴 아세테이트 (cadmium acetate), 카드뮴 미리스테이트 (cadmium myristate), 카드뮴 팔미에이트 (cadmium palmiate), 카드뮴 운데실레네이트 (cadmium undecylenate), 카드뮴 옥타데실포스포네이트 (cadmium octadecylphosphonate), 카드뮴 테트라데실포스포네이트 (cadmium tetradecylphosphonate), 다이메틸 카드뮴 (dimethyl cadmium), 또는 다이에틸 카드뮴 (diethyl cadmium)이고,
상기 유기물이 치환된 셀레늄은 트리-n-옥틸포스핀셀레나이드(tri-n-octylphosphine selenide), 트리-n-부틸포스핀셀레나이드(tri-n-butylphosphine selenide), 트리-n-페닐포스핀셀레나이드(tri-n-phenylphosphine selenide), 다이-n-옥틸포스핀셀레나이드(tri-n-octylphosphine selenide), 다이-n-부틸포스핀셀레나이드(tri-n-butylphosphine selenide), 다이-n-페닐포스핀셀레나이드(tri-n-phenylphosphine selenide), 모노-n-옥틸포스핀셀레나이드(tri-n-octylphosphine selenide), 모노-n-부틸포스핀셀레나이드(tri-n-butylphosphine selenide), 모노-n-페닐포스핀셀레나이드(tri-n-phenylphosphine selenide), 셀레늄 파우더 (Selenium), 셀레늄 옥사이드 (Selenium dioxide), 셀레노 우레아 (Seleno-urea), 옥탄셀레놀 (octane-selenol) 또는 도데칸셀레놀 (dodecane-selenol)이고,
상기 유기물이 치환된 황은 트리-n-옥틸포스핀설파이드 (tri-n-octylphosphine sulfide), 트리-n-부틸포스핀설파이드 (tri-n-butylphosphine sulfide), 트리-n-페닐포스핀설파이드 (tri-n-phenylphosphine sulfide), 다이-n-옥틸포스핀설파이드 (tri-n-octylphosphine sulfide), 다이-n-부틸포스핀설파이드 (tri-n-butylphosphine sulfide), 다이-n-페닐포스핀설파이드 (tri-n-phenylphosphine sulfide), 모노-n-옥틸포스핀설파이드 (tri-n-octylphosphine sulfide), 모노-n-부틸포스핀설파이드 (tri-n-butylphosphine sulfide), 모노-n-페닐포스핀설파이드 (tri-n-phenylphosphine sulfide), 황 파우더 (elemental Sulfur powder), 황산화물 (Sulfur oxide), 싸이오우레아 (thio-urea), 옥탄티올 (octanethiol) 또는 도데칸티올 (dodecanethiol)이고,
상기 유기물이 치환된 인듐은 트리메틸인듐 (trimethyl indium), 트리에틸인듐 (triethyl indium), 인듐 아세테이트 (indium acetate), 인듐 미리스테이트 (indium myristate), 인듐 팔메이트 (indium palmate), 인듐 스테아레이트 (indium stearate), 인듐 올레이트 (indium oleate), 인듐 옥타데실포스포네이트 (indium octadecylphisphonate), 인듐 테트라데실포스포네이트 (indium tetradecylphosphonate) 또는 인듐 트리-도데칸싸이올레이트 (indium thiolate)이고,
상기 유기물이 치환된 인은 P(TMS)3 (Tris(trimethylsilyl)phosphine), PH(TMS)2 (Di(trimethylsilyl)phosphine), PH2(TMS) (Mono(trimethylsilyl)phosphine), P(DA)3 (tris(dimethylamono)phosphine) 또는 P(DEA)3 (tris(diethylamono)phosphine)인 것을 특징으로 하는 제조방법.
The method of claim 3,
The organic substance-substituted cadmium may be cadmium stearate, cadmium oleate, cadmium acetate, cadmium myristate, cadmium palmiate, cadmium undecylenate but are not limited to, cadmium undecylenate, cadmium octadecylphosphonate, cadmium tetradecylphosphonate, dimethyl cadmium, or diethyl cadmium,
The organic substance-substituted selenium may be tri-n-octylphosphine selenide, tri-n-butylphosphine selenide, tri-n-butylphosphine selenide, Tri-n-phenylphosphine selenide, tri-n-octylphosphine selenide, tri-n-butylphosphine selenide, Tri-n-phenylphosphine selenide, tri-n-octylphosphine selenide, tri-n-butylphosphine selenide, Tri-n-phenylphosphine selenide, selenium powder, selenium dioxide, seleno-urea, octane-selenol or the like. Dodecane-selenol, &lt; / RTI &gt;
The organic substance-substituted sulfur is preferably selected from the group consisting of tri-n-octylphosphine sulfide, tri-n-butylphosphine sulfide, tri-n-phenylphosphine sulfide n-phenylphosphine sulfide, tri-n-octylphosphine sulfide, tri-n-butylphosphine sulfide, di-n-phenylphosphine sulfide tri-n-phenylphosphine sulfide, tri-n-octylphosphine sulfide, tri-n-butylphosphine sulfide, mono-n-phenylphosphine sulfide tri-n-phenylphosphine sulfide, elemental sulfur powder, sulfur oxide, thio-urea, octanethiol or dodecanethiol,
The organic substance-substituted indium may be at least one selected from the group consisting of trimethyl indium, triethyl indium, indium acetate, indium myristate, indium palmate, indium stearate, stearate, indium oleate, indium octadecylphisphonate, indium tetradecylphosphonate or indium tri-dodecane thiolate,
Phosphorus compounds such as P (TMS) 3 (trimethylsilyl) phosphine, PH (TMS) 2 (trimethylsilyl) phosphine, PH 2 (TMS) 3 (tris (dimethylammono) phosphine) or P (DEA) 3 (tris (diethylammono) phosphine).
제1항에 있어서,
상기 열가소성 고분자는 PMMA (Poly(methyl methacrylate), PS (Polystyrene), UAP (Urethane acrylate polymer), COP (Cyclic olefin polymer) 및 COC (cyclic olefin copolymer)로 이루어지는 군으로부터 선택되는 1종인 것을 특징으로 하는 제조방법.
The method according to claim 1,
Wherein the thermoplastic polymer is one selected from the group consisting of PMMA (methyl methacrylate), PS (polystyrene), Urethane acrylate polymer (UAP), cyclic olefin polymer (COP), and cyclic olefin copolymer Way.
제1항에 있어서,
상기 소수성 코어 양자점은 CdSe, InP, CuInS, CuInSe, CuInS2, CuInSe2, CsPbCl3, CsPbBr3 및 CsPbI3으로 이루어지는 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 제조방법.
The method according to claim 1,
The hydrophobic core quantum dots are produced characterized in that at least one member selected from CdSe, InP, CuInS, CuInSe, CuInS 2, CuInSe 2, CsPbCl 3, CsPbBr 3 and the group consisting of CsPbI 3.
제1항에 있어서,
상기 소수성 쉘 원료는 트리-메틸-갈륨 (tri-methyl-gallium), 갈륨 아세테이트 (Gallium acetate), 갈륨 클로라이드 (Gallium chloride), 갈륨 올리에이트 (Gallium oleate), 갈륨 스테아레이트 (Gallium stearate), 아연 스테아레이트 (Zinc stearate), 아연 올레이트 (zinc oleate), 아연 아세테이트 (zinc acetae), 디메틸 아연 (dimethyl zinc), 디에틸 아연 (diethyl zinc), 트리-n-옥틸포스핀셀레나이드(tri-n-octylphosphine selenide), 트리-n-부틸포스핀셀레나이드(tri-n-butylphosphine selenide), 트리-n-페닐포스핀셀레나이드(tri-n-phenylphosphine selenide), 다이-n-옥틸포스핀셀레나이드(tri-n-octylphosphine selenide), 다이-n-부틸포스핀셀레나이드(tri-n-butylphosphine selenide), 다이-n-페닐포스핀셀레나이드(tri-n-phenylphosphine selenide), 모노-n-옥틸포스핀셀레나이드(tri-n-octylphosphine selenide), 모노-n-부틸포스핀셀레나이드(tri-n-butylphosphine selenide), 모노-n-페닐포스핀셀레나이드(tri-n-phenylphosphine selenide), 셀레늄 파우더 (Selenium), 셀레늄 옥사이드 (Selenium dioxide), 셀레노 우레아 (Seleno-urea), 옥탄셀레놀 (octane-selenol), 도데칸셀레놀 (dodecane-selenol), 트리-n-옥틸포스핀설파이드 (tri-n-octylphosphine sulfide), 트리-n-부틸포스핀설파이드 (tri-n-butylphosphine sulfide), 트리-n-페닐포스핀설파이드 (tri-n-phenylphosphine sulfide), 다이-n-옥틸포스핀설파이드 (tri-n-octylphosphine sulfide), 다이-n-부틸포스핀설파이드 (tri-n-butylphosphine sulfide), 다이-n-페닐포스핀설파이드 (tri-n-phenylphosphine sulfide), 모노-n-옥틸포스핀설파이드 (tri-n-octylphosphine sulfide), 모노-n-부틸포스핀설파이드 (tri-n-butylphosphine sulfide), 모노-n-페닐포스핀설파이드 (tri-n-phenylphosphine sulfide), 황 파우더 (elemental Sulfur powder), 황산화물 (Sulfur oxide), 싸이오우레아 (thio-urea), 옥탄티올 (octanethiol) 및 도데칸티올 (dodecanethiol)으로 이루어지는 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 제조방법.
The method according to claim 1,
The hydrophobic shell material may be selected from the group consisting of tri-methyl-gallium, Gallium acetate, Gallium chloride, Gallium oleate, Gallium stearate, Zinc stearate, zinc oleate, zinc acetae, dimethyl zinc, diethyl zinc, tri-n-octylphosphine selenide (tri-n- octylphosphine selenide, tri-n-butylphosphine selenide, tri-n-phenylphosphine selenide, di-n-octylphosphine selenide tri-n-octylphosphine selenide, tri-n-butylphosphine selenide, tri-n-phenylphosphine selenide, Tri-n-octylphosphine selenide, mono-n-butylphosphine selenide, nide, tri-n-phenylphosphine selenide, selenium powder, selenium dioxide, seleno-urea, octane-selenol, Dodecane-selenol, tri-n-octylphosphine sulfide, tri-n-butylphosphine sulfide, tri-n-butylphosphine sulfide, Tri-n-butylphosphine sulfide, tri-n-pentylphosphine sulfide, tri-n-pentylphosphine sulfide, N-octylphosphine sulfide, tri-n-butylphosphine sulfide, mono-n-butylphosphine sulfide, tri- tri-n-phenylphosphine sulfide, elemental sulfur powder, sulfur oxide, thio-urea, octane (Octanethiol) and the first production process, characterized in that at least member selected from the group consisting of dodecanethiol (dodecanethiol).
제1항에 있어서,
상기 소수성 유기용매는 옥타데신 (1-octadcene), 옥타데칸 (octadecane), 트리-n-옥틸포스핀 (tri-n-octylphosphine), 트리-n-옥틸포스핀 옥사이드 (tri-n-octylphosphine oxide), 트리-n-옥틸아민 (tri-n-octylamine), 다이-n-옥틸아민 (di-n-octylamine), n-옥틸아민 (n-octylamine), 톨루엔, 파라핀 (paraffin) 및 스쿠알렌 (squalene)으로 이루어지는 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 제조방법.
The method according to claim 1,
The hydrophobic organic solvent may be at least one selected from the group consisting of octadecene, octadecane, tri-n-octylphosphine, tri-n-octylphosphine oxide, Tri-n-octylamine, di-n-octylamine, n-octylamine, toluene, paraffin, and squalene. And at least one member selected from the group consisting of polyvinyl alcohol and polyvinyl alcohol.
제1항에 있어서,
상기 단계 1에서 공압출성형기에 투입되는 모든 원료의 투입속도는 0.001-1,000kg/min인 것을 특징으로 하는 제조방법.
The method according to claim 1,
Wherein the feed rate of all the raw materials fed into the co-extrusion molding machine in step 1 is 0.001-1,000 kg / min.
제1항에 있어서,
상기 단계 2에서 공압출성형기의 작동온도는 열가소성 고분자 유리전이온도(Tg) 보다 30-100℃ 높은 온도인 것을 특징으로 하는 제조방법.
The method according to claim 1,
Wherein the operation temperature of the co-extrusion molding machine in step 2 is 30-100 DEG C higher than the thermoplastic polymeric glass transition temperature (Tg).
삭제delete 제1항에 있어서,
상기 단계 1에서,
제1원료로 소수성 코어 양자점, 소수성 쉘 원료, 열가소성 고분자 및 소수성 유기용매를 사용할 경우,
열가소성 고분자 100 중량부 대비 소수성 코어 양자점 0.0001-50 중량부, 소수성 쉘 원료 0.0001-50 중량부, 소수성 유기용매 0.0001-99 중량부 범위로 투여하는 것을 특징으로 하는 제조방법.
The method according to claim 1,
In the step 1,
When the hydrophobic core quantum dots, the hydrophobic shell raw material, the thermoplastic polymer and the hydrophobic organic solvent are used as the first raw material,
Wherein the hydrophobic core material is administered in the range of 0.0001 to 50 parts by weight of the hydrophobic core quantum dots, 0.0001 to 50 parts by weight of the hydrophobic shell raw material, and 0.0001 to 99 parts by weight of the hydrophobic organic solvent with respect to 100 parts by weight of the thermoplastic polymer.
제1항에 있어서,
상기 단계 1에서,
제1원료로 소수성 양자점 원료, 소수성 쉘 원료, 열가소성 고분자 및 소수성 유기용매를 사용할 경우,
열가소성 고분자 100 중량부 대비 소수성 양자점 원료 0.0001-50 중량부, 소수성 쉘 원료 0.0001-50 중량부, 소수성 유기용매 0.0001-99 중량부 범위로 투여하는 것을 특징으로 하는 제조방법.
The method according to claim 1,
In the step 1,
When a hydrophobic quantum dot raw material, a hydrophobic shell raw material, a thermoplastic polymer, and a hydrophobic organic solvent are used as the first raw material,
Wherein the hydrophobic raw material is in the range of 0.0001 to 50 parts by weight, the hydrophobic shell raw material is in the range of 0.0001 to 50 parts by weight, and the hydrophobic organic solvent is in the range of 0.0001 to 99 parts by weight relative to 100 parts by weight of the thermoplastic polymer.
제1항에 있어서,
상기 양자점층 형성을 위한 제1원료에, ZnS, ZnO, TiO2, ZrO2, WO3, PS bead, PMMA bead, SiO2 bead, 및 silicone bead로 이루어지는 군으로부터 선택되는 1종 이상의 광산란제를 더 포함하는 것을 특징으로 하는 제조방법.
The method according to claim 1,
The first raw material for formation of the quantum dot layer is further provided with one or more light scattering agents selected from the group consisting of ZnS, ZnO, TiO 2 , ZrO 2 , WO 3 , PS bead, PMMA bead, SiO 2 bead, &Lt; / RTI &gt;
제1항의 제조방법으로 제조된 양자점층이 적층된 도광판.
A light guide plate laminated with a quantum dot layer manufactured by the manufacturing method of claim 1.
제15항에 있어서,
상기 양자점층이 적층된 도광판은 도광판이 광원에 가까운 쪽에 구비되는 것을 특징으로 하는 양자점층이 적층된 도광판.
16. The method of claim 15,
Wherein the light guide plate on which the quantum dot layer is laminated is provided on a side closer to the light source than the light guide plate.
제15항에 있어서,
상기 도광판은 직하형(direct type) LCD(Liquid crystal display)의 BLU(Back light unit) 구성요소로 사용되는 것을 특징으로 하는 도광판.
16. The method of claim 15,
Wherein the light guide plate is used as a BLU (Back Light Unit) component of a direct type LCD (Liquid Crystal Display).
KR1020170066753A 2017-05-30 2017-05-30 Fabrication method of light guide panel having quantum dots layer KR101905668B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020170066753A KR101905668B1 (en) 2017-05-30 2017-05-30 Fabrication method of light guide panel having quantum dots layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020170066753A KR101905668B1 (en) 2017-05-30 2017-05-30 Fabrication method of light guide panel having quantum dots layer

Publications (1)

Publication Number Publication Date
KR101905668B1 true KR101905668B1 (en) 2018-10-10

Family

ID=63875804

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170066753A KR101905668B1 (en) 2017-05-30 2017-05-30 Fabrication method of light guide panel having quantum dots layer

Country Status (1)

Country Link
KR (1) KR101905668B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102029617B1 (en) 2019-02-27 2019-10-07 반신애 Direct type backlight unit using a light guide plate integrated with a quantum dot film including a white layer
KR102064107B1 (en) 2019-02-20 2020-01-08 반신애 Quantum dot film integrated light guide plate and backlight unit using the same
KR20200104778A (en) 2019-09-23 2020-09-04 반신애 Direct type backlight unit using a light guide plate integrated with a quantum dot film including a white layer
KR102423676B1 (en) 2021-04-05 2022-07-21 (주)이노큐디 Quantum Dot Integrated Light Diffusion Plate and Back Light Unit Comprising the Same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101631489B1 (en) * 2015-08-21 2016-06-17 주식회사 두하누리 Composite of quantum dot and polymer and method for manufacturing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101631489B1 (en) * 2015-08-21 2016-06-17 주식회사 두하누리 Composite of quantum dot and polymer and method for manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102064107B1 (en) 2019-02-20 2020-01-08 반신애 Quantum dot film integrated light guide plate and backlight unit using the same
KR102029617B1 (en) 2019-02-27 2019-10-07 반신애 Direct type backlight unit using a light guide plate integrated with a quantum dot film including a white layer
KR20200104778A (en) 2019-09-23 2020-09-04 반신애 Direct type backlight unit using a light guide plate integrated with a quantum dot film including a white layer
KR102187324B1 (en) * 2019-09-23 2020-12-04 반신애 Direct type backlight unit using a light guide plate integrated with a quantum dot film including a white layer
KR102423676B1 (en) 2021-04-05 2022-07-21 (주)이노큐디 Quantum Dot Integrated Light Diffusion Plate and Back Light Unit Comprising the Same

Similar Documents

Publication Publication Date Title
KR20180130765A (en) Fabrication method of light guide panel having sequentially insulation layer, quantum dots layer and LGP layer
KR101905668B1 (en) Fabrication method of light guide panel having quantum dots layer
US10734546B2 (en) Coated semiconductor nanocrystals and products including same
EP2603935B1 (en) Quantum dot based lighting
KR102093258B1 (en) Highly stable qds-composites for solid state lighting and the method of making them through initiator-free polymerization
CN108128004B (en) Perovskite quantum dot optics feature board and preparation method thereof
JP7046935B2 (en) Backlight unit for display device
EP3072944A2 (en) Core-shell nanoplatelets film and display device using the same
WO2015117876A1 (en) Quantum dots with inorganic ligands in an inorganic matrix
US10008631B2 (en) Coated semiconductor nanocrystals and products including same
WO2013078242A1 (en) Methods for coating semiconductor nanocrystals
US20230235224A1 (en) SYNTHESIS OF BLUE-EMITTING ZnSe1-xTex ALLOY NANOCRYSTALS WITH LOW FULL WIDTH AT HALF-MAXIMUM
US20210087466A1 (en) Thermally and chemically stable quantum dots encapsulated with functional polymeric ligands, method for preparing the encapsulated quantum dots and thermally stable quantum dot optical film using the encapsulated quantum dots
KR20180130753A (en) Preparation method of thin films having quantum dots
JP2020534560A (en) Display device based on nanostructures
JP7456435B2 (en) Increased color gamut performance and efficiency in quantum dot color conversion layers
JP2022531290A (en) Nanostructure-based display device with improved light extraction efficiency
KR20180130750A (en) Preparation method of polymer fibers having quantum dots
KR101981769B1 (en) Number and korean symbol sticker for vehicle license plate having quantum dots and preparation method thereof
RU2581093C2 (en) Method for producing fluorescing polymer film
KR20210113943A (en) A quantum dot, a quantum dot dispersion, a quantum dot light-emitting diode, a quantum dot film, and a light converting curable composition comprising the quantum dot, a cured film manufactured by the composition and a display device comprising the same
KR20180046054A (en) Preparation method of quantum dots in polymer composite
KR20180130758A (en) Diffuser film including quantum dots and manufacturing method thereof
KR20180069577A (en) Turn signal outer cover having quantum dots and preparation method thereof
KR102245819B1 (en) Manufacturing method of high cri led light fixtures using quantum dot honeycomb structure

Legal Events

Date Code Title Description
N231 Notification of change of applicant
GRNT Written decision to grant