KR101889598B1 - 올레핀계 중합체 - Google Patents

올레핀계 중합체 Download PDF

Info

Publication number
KR101889598B1
KR101889598B1 KR1020150174229A KR20150174229A KR101889598B1 KR 101889598 B1 KR101889598 B1 KR 101889598B1 KR 1020150174229 A KR1020150174229 A KR 1020150174229A KR 20150174229 A KR20150174229 A KR 20150174229A KR 101889598 B1 KR101889598 B1 KR 101889598B1
Authority
KR
South Korea
Prior art keywords
group
olefin
carbon atoms
polymer
temperature
Prior art date
Application number
KR1020150174229A
Other languages
English (en)
Other versions
KR20170067499A (ko
Inventor
박상은
박해웅
이충훈
정승환
우지윤
김효주
이영우
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=59013807&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=KR101889598(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to KR1020150174229A priority Critical patent/KR101889598B1/ko
Priority to CN201680043554.7A priority patent/CN107849172B/zh
Priority to US15/743,469 priority patent/US10508165B2/en
Priority to PCT/KR2016/014369 priority patent/WO2017099491A1/ko
Priority to EP16873356.6A priority patent/EP3305815B1/en
Publication of KR20170067499A publication Critical patent/KR20170067499A/ko
Application granted granted Critical
Publication of KR101889598B1 publication Critical patent/KR101889598B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/04Polymerisation in solution
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/02Ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/08Butenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/14Monomers containing five or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/06Hydrocarbons
    • C08F212/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/34Monomers containing two or more unsaturated aliphatic radicals
    • C08F212/36Divinylbenzene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/045Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated conjugated hydrocarbons other than butadiene or isoprene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/06Butadiene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/01High molecular weight, e.g. >800,000 Da.
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/04Broad molecular weight distribution, i.e. Mw/Mn > 6
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/08Low density, i.e. < 0.91 g/cm3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2800/00Copolymer characterised by the proportions of the comonomers expressed
    • C08F2800/20Copolymer characterised by the proportions of the comonomers expressed as weight or mass percentages

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

본 발명에서는 하기 (1) 내지 (4)의 요건을 충족하여, 인장 강도 등의 기계적 물성의 저하 없이 개선된 충격 강도를 나타낼 수 있는 올레핀계 중합체를 제공한다:
(1) 밀도(d): 0.850 내지 0.910 g/cc, (2) 용융지수(MI, 190 ℃, 2.16 kg 하중 조건): 0.1 내지 100 g/10분, (3) 분자량 분포(MWD): 1.5 내지 3.0, (4) 온도상승 용리 분별(TREF; temperature rising elution fractionation) 측정시 -20 ℃ 내지 120 ℃ 온도 범위에서 2개의 피크를 가지며, T(90)-T(50) ≥ 60℃ (여기서, T(90)은 올레핀계 중합체의 90중량%가 용출되는 온도이고, T(50)은 올레핀계 중합체의 50중량%가 용출되는 온도이다)

Description

올레핀계 중합체{OLEFIN BASED POLYMER}
본 발명은 올레핀계 중합체에 관한 것으로, 더욱 구체적으로는 결정성의 조절로 인장 강도 등 기계적 물성의 저하 없이 개선된 충격 강도를 나타낼 수 있는 올레핀계 중합체에 관한 것이다.
다우(Dow) 사가 1990년대 초반 [Me2Si(Me4C5)NtBu]TiCl2(Constrained-Geometry Catalyst, 이하에서 CGC로 약칭한다)를 발표하였는데(미국 특허 등록 제5,064,802호), 에틸렌과 알파-올레핀의 공중합 반응에서 상기 CGC가 기존까지 알려진 메탈로센 촉매들에 비해 우수한 측면은 크게 다음과 같이 두 가지로 요약할 수 있다 :
(1) 높은 중합 온도에서도 높은 활성도를 나타내면서 고분자량의 중합체를 생성하며,
(2) 1-헥센 및 1-옥텐과 같은 입체적 장애가 큰 알파-올레핀의 공중합성도 매우 뛰어나다는 점이다.
한편, 이러한 CGC 촉매에 의하여 제조된 공중합체는 종래의 지글러-나타계 촉매에 의하여 제조된 공중합체에 비해 저분자량을 가지는 부분의 함량이 낮아 강도(strength) 등의 물성이 향상된다.
그러나, 이러한 장점에도 불구하고 상기 CGC 등에 의해 제조된 공중합체의 경우 기존의 지글러-나타 촉매들에 의해 제조된 중합체에 비해 가공성이 저하되는 단점이 있었다.
미국특허 제5,539,076호는, 특정 이정점 고밀도 공중합체를 제조하기 위한 메탈로센/비메탈로센 혼합 촉매 시스템을 개시한다. 상기 촉매 시스템은 무기 담지체상에 담지된다. 상기 담지된 지글러-나타 및 메탈로센 촉매 시스템의 문제점은, 담지된 혼성 촉매가 균일 단독 촉매 보다 활성이 낮아, 용도에 맞는 특성을 가지는 올레핀계 중합체를 제조하기 어렵다는 것이다. 또한, 단일 반응기에서 올레핀계 중합체를 제조하기 때문에, 상기 블렌딩 방법에서 발생하는 겔이 생성될 우려가 있고, 고분자량 부분에 공단량체의 삽입이 어려우며, 생성되는 중합체의 형태가 불량해질 우려가 있고, 또한 2가지 중합체 성분이 균일하게 혼합되지 않아, 품질 조절이 어려워질 우려가 있다.
따라서, 종래의 올레핀계 중합체가 가지는 단점을 극복하고 보다 향상된 물성을 제공할 수 있는 올레핀계 중합체의 개발이 여전히 요구된다.
미국 특허 등록 제5,064,802호 미국 특허 등록 제5,539,076호
본 발명이 해결하고자 하는 과제는 결정성의 조절로 인장 강도 등 기계적 물성의 저하 없이 개선된 충격 강도를 나타낼 수 있는 올레핀계 중합체를 제공하는 것이다.
본 발명의 일 실시예에 따르면, 하기 (1) 내지 (4)의 요건을 충족하는 올레핀계 중합체를 제공한다:
(1) 밀도(d): 0.850 내지 0.910 g/cc
(2) 용융지수(MI, 190 ℃, 2.16 kg 하중 조건): 0.1 내지 100g/10분,
(3) 분자량 분포(MWD): 1.5 내지 3.0,
(4) 온도상승 용리 분별(TREF; temperature rising elution fractionation) 측정시 -20 ℃ 내지 120 ℃ 온도 범위에서 2개의 피크를 가지며, T(90)-T(50) ≥ 60℃ (여기서, T(90)은 올레핀계 중합체의 90중량%가 용출되는 온도이고, T(50)은 올레핀계 중합체의 50중량%가 용출되는 온도이다)
본 발명에 따른 올레핀계 중합체는 결정성의 조절로 인장 강도 등 기계적 물성의 저하 없이 개선된 충격 강도를 나타낼 수 있다. 그 결과, 자동차용, 전선용, 완구용, 섬유용, 의료용 등의 재료과 같은 각종 포장용, 건축용, 생활용품 등의 다양한 분야 및 용도로 사용될 수 있으며, 특히 높은 충격 강도가 요구되는 자동차용으로 유용할 수 있다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.
도 1은 실시예 1에 의하여 제조된 올레핀계 중합체의 온도상승 용리 분별 (TREF) 그래프를 나타낸 것이다.
도 2은 실시예 2에 의하여 제조된 올레핀계 중합체의 온도상승 용리 분별 (TREF) 그래프를 나타낸 것이다.
도 3은 실시예 3에 의하여 제조된 올레핀계 중합체의 온도상승 용리 분별 (TREF) 그래프를 나타낸 것이다.
도 4은 실시예 4에 의하여 제조된 올레핀계 중합체의 온도상승 용리 분별 (TREF) 그래프를 나타낸 것이다.
도 5는 실시예 5에 의하여 제조된 올레핀계 중합체의 온도상승 용리 분별 (TREF) 그래프를 나타낸 것이다.
도 6은 실시예 6에 의하여 제조된 올레핀계 중합체의 온도상승 용리 분별 (TREF) 그래프를 나타낸 것이다.
도 7은 실시예 7에 의하여 제조된 올레핀계 중합체의 온도상승 용리 분별 (TREF) 그래프를 나타낸 것이다.
도 8은 비교예 1에 의하여 제조된 올레핀계 중합체의 온도상승 용리 분별 (TREF) 그래프를 나타낸 것이다.
도 9는 비교예 2에 의하여 제조된 올레핀계 중합체의 온도상승 용리 분별 (TREF) 그래프를 나타낸 것이다.
도 10은 비교예 3에 의하여 제조된 올레핀계 중합체의 온도상승 용리 분별 (TREF) 그래프를 나타낸 것이다.
도 11은 비교예 4에 의하여 제조된 올레핀계 중합체의 온도상승 용리 분별 (TREF) 그래프를 나타낸 것이다.
도 12는 실시예 1에 의하여 제조된 올레핀계 중합체의 분자량 분포(GPC) 그래프를 나타낸 것이다.
도 13은 실시예 2에 의하여 제조된 올레핀계 중합체의 분자량 분포(GPC) 그래프를 나타낸 것이다.
도 14는 실시예 3에 의하여 제조된 올레핀계 중합체의 분자량 분포(GPC) 그래프를 나타낸 것이다.
도 15는 실시예 4에 의하여 제조된 올레핀계 중합체의 분자량 분포(GPC) 그래프를 나타낸 것이다.
도 16은 실시예 5에 의하여 제조된 올레핀계 중합체의 분자량 분포(GPC) 그래프를 나타낸 것이다.
도 17은 실시예 6에 의하여 제조된 올레핀계 중합체의 분자량 분포(GPC) 그래프를 나타낸 것이다.
도 18는 실시예 7에 의하여 제조된 올레핀계 중합체의 분자량 분포(GPC) 그래프를 나타낸 것이다.
도 19는 비교예 1에 의하여 제조된 올레핀계 중합체의 분자량 분포(GPC) 그래프를 나타낸 것이다.
도 20은 비교예 2에 의하여 제조된 올레핀계 중합체의 분자량 분포(GPC) 그래프를 나타낸 것이다.
도 21은 비교예 3에 의하여 제조된 올레핀계 중합체의 분자량 분포(GPC) 그래프를 나타낸 것이다.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 명세서에서, 용어 "중합체"란 동일하거나 상이한 유형의 단량체의 중합에 의해 제조되는 중합체 화합물을 의미한다. "중합체"라는 총칭은 "단독중합체", "공중합체", "삼원공중합체" 뿐만 아니라 "혼성중합체"라는 용어를 포함한다. 또 상기 "혼성중합체"란 둘 이상의 상이한 유형의 단량체의 중합에 의해 제조된 중합체를 의미한다. "혼성중합체"라는 총칭은 (두 가지의 상이한 단량체로부터 제조된 중합체를 지칭하는데 통상적으로 사용되는) "공중합체"라는 용어뿐만 아니라 (세 가지의 상이한 유형의 단량체로부터 제조된 중합체를 지칭하는데 통상적으로 사용되는) "삼원공중합체"라는 용어를 포함한다. 이것은 네 가지 이상의 유형의 단량체의 중합에 의해 제조된 중합체를 포함한다.
올레핀계 중합체는 결정성에 따라 폴리프로필렌 수지와 같은 다른 고분자와 컴파운딩 되었을 때 서로 상이한 물성을 갖게 된다. TREF 측정시 저온에서 피크를 갖는 저결정성 올레핀계 중합체는 폴리프로필렌 수지와 같은 다른 고분자와 컴파운딩 되었을 때, 높은 충격 강도를 나타낼 수 있으나, 기계적 물성은 저하된다. 한편, TREF 측정시 고온에서 피크를 갖는 고결정성 중합체는 충격 강도가 저하되는 반면 기계적 물성은 상승한다.
이에 대해, 본 발명에서는 올레핀계 중합체의 제조시 혼화성이 우수한 이종의 전이금속 화합물을 포함하는 촉매 조성물을 사용하는 동시에 공단량체의 함량 및 제조 조건을 제어함으로써, 중합체내 결정성 차이가 큰 이종의 결정 구조가 형성되어, 인장 강도 등 기계적 물성의 저하 없이 우수한 충격 강도를 갖는 올레핀계 중합체를 제공할 수 있다.
즉, 본 발명의 일 실시예에 따른 올레핀계 중합체는 하기 (1) 내지 (4)의 요건을 충족한다:
(1) 밀도(d): 0.850 내지 0.910 g/cc
(2) 용융지수(MI, 190 ℃, 2.16 kg 하중 조건): 0.1 내지 100g/10분,
(3) 분자량 분포(MWD): 1.5 내지 3.0,
(4) 온도상승 용리 분별(TREF; temperature rising elution fractionation) 측정시 -20 ℃ 내지 120 ℃ 온도 범위에서 2개의 피크를 가지며, T(90)-T(50) ≥ 60℃ (여기서, T(90)은 올레핀계 중합체의 90중량%가 용출되는 온도이고, T(50)은 올레핀계 중합체의 50중량%가 용출되는 온도이며, 중합체의 수득비는 TREF에서 온도-용출량 그래프의 적분값으로 계산할 수 있다)
구체적으로, 본 발명의 일 실시예에 따른 올레핀계 중합체는 ASTM D-792에 따른 측정시 0.850 내지 0.910g/cc의 저밀도를 나타낸다.
통상 올레핀계 중합체의 밀도는 중합시 사용되는 단량체의 종류와 함량, 중합도 등의 영향을 받으며, 공중합체의 경우 공단량체의 함량에 의한 영향이 크다. 본 발명에서는 특징적 구조를 갖는 이종의 전이금속 화합물을 포함하는 메탈로센계 촉매 조성물의 사용으로 많은 양의 공단량체 도입이 가능하다. 그 결과, 본 발명의 일 실시예에 따른 올레핀계 중합체는 상기한 바와 같은 범위의 저밀도를 가지며, 그 결과로서 우수한 충격강도를 나타낼 수 있다. 보다 구체적으로, 상기 올레핀계 중합체는 0.860 내지 0.890g/cc의 밀도를 가질 수 있으며, 이 경우 밀도 제어에 따른 기계적 물성 유지 및 충격강도 개선 효과가 보다 현저하다.
또, 올레핀계 중합체의 기계적 물성 및 충격강도, 그리고 성형성에 영향을 미치는 용융지수(MI)는 그 중합과정에서 사용되는 촉매 사용량을 조절함으로써 제어될 수 있다. 본 발명의 일 실시예에 따른 올레핀계 중합체는 상기한 바와 같은 저밀도 조건에서 ASTM D1238에 따라 190℃, 2.16kg 하중 조건에서 측정한 용융 지수(MI)가 구체적으로 0.1 내지 100g/10min, 보다 구체적으로는 0.1 내지 50g/10min를 나타냄으로써 기계적 물성의 저하없이 우수한 충격강도를 나타낼 수 있다.
또, 2종 이상의 중합체가 혼합될 경우 통상 분자량 분포(MWD; Molecular Weight Distribution)가 증가하고, 그 결과로서 충격 강도와 기계적 물성 등이 감소하게 되며 블로킹 현상 등이 일어나게 된다. 이에 대해 본 발명의 일 실시예에 따른 올레핀계 중합체는 특징적 구조를 갖는 이종의 전이금속 화합물을 포함하는 메탈로센계 촉매 조성물을 사용함으로써, 2종 이상의 중합체 혼합에도 불구하고 GPC 측정시 분자량 분포 곡선에서 단일 피크, 즉 모노모달형(monomodal-type) 피크를 나타낸다. 또 본 발명의 일 실시예에 따른 올레핀계 중합체는 좁은 분자량 분포를 나타내며, 그 결과 우수한 충격 강도를 나타낼 수 있다. 구체적으로, 상기 올레핀계 중합체는 중량평균 분자량(Mw)과 수평균 분자량(Mn)의 비(Mw/Mn)인 분자량 분포(MWD)가 1.5 내지 3.0, 보다 구체적으로는 1.5 내지 2.8일 수 있다.
또, 상기 올레핀계 중합체는 상기한 분자량 분포 범위 내에서 중량 평균 분자량(Mw)이 10,000 내지 500,000 g/mol, 보다 구체적으로는 20,000 내지 200,000 g/mol, 보다 더 구체적으로는 50,000 내지 100,000 g/mol일 수 있다.
본 발명에 있어서, 중량평균 분자량(Mw)과 수평균 분자량(Mn)은 겔 투과형 크로마토그래피(GPC: gel permeation chromatography)로 분석되는 폴리스티렌 환산 분자량이다.
일반적인 메탈로센 촉매로 중합되는 올레핀계 중합체는 그 결정성에 따라 컴파운딩시 물성이 결정되게 되는데, 통상 TREF 측정시 -20℃ 내지 120℃ 온도 범위에서 1개의 피크를 나타내는 단일 결정성을 가지며, T(90)-T(50)이 10℃ 내지 30℃다. 이에 대해 본 발명의 일 실시예에 따른 상기 올레핀계 중합체는 결정성 차이가 큰 이종의 결정구조를 포함함으로써 컴파운딩시 충격 강도가 향상되는 동시에 개선된 기계적 물성을 나타낼 수 있다.
구체적으로, 본 발명의 일 실시예에 따른 상기 올레핀계 중합체는 온도 상승 용리 분별(TREF) 측정시, -20℃ 내지 120℃ 온도 범위에서 2개의 피크를 가지며, 올레핀계 중합체의 용출량이 50중량%일 때의 용리온도 T(50)와, 용출량 90중량%일 때의 용리 온도T(90)의 차이, T(90)-T(50)이 60℃ 이상, 구체적으로는 70℃ 이상, 보다 구체적으로는 70℃ 내지 110℃, 보다 더 구체적으로는 80℃ 내지 110℃일 수 있다.
통상, 밀도 및 결정성이 상이한 올레핀계 중합체를 2종 이상 각각 별개의 반응기에서 제조 후 블렌딩할 경우 이 조성물이나 올레핀 블록 공중합체의 경우 TREF 측정 시 2개의 피크가 나타날 있다. 그러나, 본 발명은 이와 달리 단일 반응기 내에서 연속 용액 중합을 통하여 결정성 분포를 넓게 조절함으로써, 중합체내 블록을 형성하지 않은 상태에서 TREF 측정시 2개의 피크를 나타내며, T(90)-T(50)이 60℃ 이상, 구체적으로는 70℃ 이상, 보다 구체적으로는 70℃ 내지 110℃, 보다 더 구체적으로는 80℃ 내지 110℃로 그 차이가 매우 크다.
또 올레핀계 중합체가 아닌 지글러-나타 촉매 시스템을 적용한 선형 저밀도 에틸렌계 중합체의 경우에도 TREF에서 2개의 피크가 나타날 수 있으나, 이는 T(90)-T(50) < 50℃로, 그 차이가 작다.
또, 본 발명의 일 실시예에 따른 상기 올레핀계 중합체는 기계적 강도를 제공하는 고결정성 결정 구조로 인하여 TREF 측정시 T(90)이 70℃ 이상, 구체적으로는 80℃ 이상, 보다 구체적으로는 85℃ 내지 120℃일 수 있다. 한편, 일반적인 메탈로센 촉매로 중합된 올레핀계 중합체는 밀도 및 결정성에 따라 T(90)이 측정 범위인 -20℃ 내지 120℃에서 나타나므로 한정하기 어렵다.
본 발명에 있어서, 상기 TREF의 측정은 예를 들어, PolymerChar 사의 TREF 기계를 사용하여 측정될 수 있으며, 구체적으로는 o-디클로로벤젠을 용매로 하여 -20℃부터 120℃까지 승온시키면서 측정할 수 있다.
또, 본 발명에 있어서, T(50)은 온도에 대한 용출량(dC/dT)으로 표현되는 TREF 용출 곡선에서 전체 용출량의 50중량%가 용출 종료되는 시점의 온도를 의미하고, T(90)은 온도에 대한 용출량(dC/dT)으로 표현되는 TREF 용출 곡선에서 전체 용출량의 90중량%가 용출 종료되는 시점의 온도를 의미한다. 또, 상기 T(90) 및 T(50)을 계산함에 있어서 온도에 대한 용출량(dC/dT) 그래프에서 각 피크의 시작점은 기준선(base line)을 기준으로 중합체가 용출되기 시작하는 지점으로 정의하며, 각 피크의 끝점은 기준선을 기준으로 중합체의 용출이 종료되는 지점으로 정의할 수 있다. 또, -20℃ 내지 -10℃에서 표현되는 피크는 -10℃ 이후에 나오는 피크의 일부가 측정 상의 한계로 인하여 이 위치에 나타나는 것으로 볼 수 있으며, 따라서, 이 위치에서 나타나는 피크는 -10℃ 이후에 나오는 피크에 포함시켜 처리할 수 있다.
또, 본 발명의 일 실시예에 따른 올레핀계 중합체는 온도상승 용리 분별 측정 시 -20℃ 미만의 퍼지, 또는 -20℃ 내지 10℃ 온도 범위에서의 누적용출량이 중합체 총 중량에 대하여 20 내지 80 중량%, 보다 구체적으로는 30 내지 80중량%, 보다 더 구체적으로는 50 내지 70중량%인 것일 수 있다.
상기 올레핀계 중합체는 올레핀계 단량체, 구체적으로는 알파-올레핀계 단량체, 사이클릭 올레핀계 당량체, 디엔 올레핀계 단량체, 트리엔 올레핀계 단량체 및 스티렌계 단량체 중에서 선택되는 어느 하나의 단독 중합체이거나 또는 2종 이상의 공중합체 일 수 있다. 보다 구체적으로는 상기 올레핀계 중합체는 에틸렌과, 탄소수 3 내지 12 또는 탄소수 3 내지 8의 알파-올레핀의 공중합체일 수 있으며, 보다 더 구체적으로는 에틸렌과 프로필렌, 에틸렌과 1-부텐, 에틸렌과 1-헥센, 에틸렌과 4-메틸-1-펜텐 또는 에틸렌과 1-옥텐의 공중합체일 수 있다. 또, 상기 올레핀계 중합체가 에틸렌과 알파-올레핀의 공중합체일 경우 상기 알파-올레핀의 양은 공중합체 총 중량에 대해 90중량% 이하, 보다 구체적으로 70중량% 이하, 보다 더 구체적으로는 5 내지 50중량%일 수 있다. 상기한 범위로 포함될 때, 전술한 물성적 특성의 구현이 용이하고, 폴리프로필렌에 대해 보다 우수한 혼화성을 나타내며, 그 결과로서 보다 개선된 충격 강도 효과를 나타낼 수 있다.
상기와 같은 물성 및 구성적 특징을 갖는 본 발명의 일 실시예에 따른 올레핀계 중합체는, 단일 반응기에서 1종 이상의 전이금속 화합물을 포함하는 메탈로센 촉매 조성물의 존재 하에 연속 용액 중합 반응을 통해 제조될 수 있다. 이에 따라 본 발명의 일 실시예에 따른 올레핀계 중합체는 중합체내 중합체를 구성하는 단량체 중 어느 하나의 단량체 유래 반복 단위가 2개 이상 선상으로 연결되어 구성된 블록이 형성되지 않는다. 즉, 본 발명에 따른 올레핀계 중합체는 블록 공중합체(block copplymer)를 포함하지 않으며, 랜덤 공중합체(random coplymer), 교호 공중합체(alternating copolymer) 및 그래프트 공중합체(graft copolymer)로 이루어진 군에서 선택되는 것일 수 있으며, 보다 구체적으로는 랜덤 공중합체일 수 있다.
구체적으로는 상기 올레핀계 중합체는 하기 화학식 1의 제1 전이금속 화합물 및 하기 화학식 2의 제2 전이금속 화합물을 50:50 내지 80:20의 중량비로 포함하는 촉매 조성물을 이용하여 올레핀계 단량체를 중합하는 단계를 포함하는 제조방법에 의해 구현될 수 있다. 이에 따라 본 발명의 또 다른 일 실시예에 따르면 상기한 올레핀계 중합체의 제조방법이 제공된다. 다만 본 발명의 일 실시예에 따른 올레핀계 중합체의 제조에 있어서, 하기 제1 전이금속 화합물 및 제2전이금속 화합물의 구조의 범위를 특정한 개시 형태로 한정하지 않으며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
[화학식 1]
Figure 112015120166826-pat00001
[화학식 2]
Figure 112015120166826-pat00002
상기 화학식 1 및 2에 있어서,
M1 및 M2는 각각 독립적으로 4족 전이금속이고,
Q1, Q2, Q3 및 Q4는 각각 독립적으로 수소원자, 할로겐기, 탄소수 1 내지 20의 알킬기, 탄소수 2 내지 20의 알케닐기, 탄소수 3 내지 20의 사이클로알킬기, 탄소수 6 내지 20의 아릴기, 탄소수 6 내지 20의 알킬아릴기, 탄소수 7 내지 20의 아릴알킬기, 탄소수 1 내지 20의 알킬아미노기, 탄소수 6 내지 20의 아릴아미노기, 및 탄소수 1 내지 20의 알킬리덴기로 이루어진 군에서 선택되고,
R11 내지 R14은 각각 독립적으로, 수소원자, 할로겐기, 실릴기, 탄소수 1 내지 20의 알킬기, 탄소수 2 내지 20의 알케닐기, 탄소수 3 내지 20의 사이클로알킬기, 탄소수 6 내지 20의 아릴기, 탄소수 7 내지 20의 알킬아릴기, 탄소수 7 내지 20의 아릴알킬기, 및 탄소수 1 내지 20의 하이드로카르빌기로 치환된 14족 금속의 메탈로이드 라디칼로 이루어진 군에서 선택되거나; 또는 상기 R11 내지 R14 중 인접하는 2 이상의 작용기는 서로 연결되어, 할로겐기, 탄소수 1 내지 20의 알킬기, 탄소수 2 내지 20의 알케닐기 및 탄소수 6 내지 20의 아릴기로 이루어진 군에서 선택되는 적어도 하나의 치환기로 치환되거나 비치환된, 탄소수 5 내지 20의 지방족 고리 또는 탄소수 6 내지 20의 방향족 고리기를 형성하며;
R15 내지 R19는 각각 독립적으로 수소원자, 할로겐기, 실릴기, 탄소수 1 내지 20의 알킬기, 탄소수 2 내지 20의 알케닐기, 탄소수 3 내지 20의 사이클로알킬기, 탄소수 6 내지 20의 아릴기, 탄소수 7 내지 20의 알킬아릴기 및 탄소수 7 내지 20의 아릴알킬기로 이루어진 군에서 선택되거나, 또는 R15 내지 R19 중 서로 인접하는 2 이상의 작용기는 서로 연결되어 할로겐기, 탄소수 1 내지 20의 알킬기, 탄소수 2 내지 20의 알케닐기 및 탄소수 6 내지 20의 아릴기로 이루어진 군에서 선택되는 적어도 하나의 치환기로 치환되거나 비치환된, 탄소수 5 내지 20의 지방족 고리 또는 탄소수 6 내지 20의 방향족 고리를 형성하고,
R21 내지 R27은 각각 독립적으로, 수소원자, 할로겐기, 탄소수 1 내지 20의 하이드로카르빌기, 탄소수 1 내지 20의 헤테로 하이드로카르빌기 및 탄소수 1 내지 20의 하이드로카르빌기로 치환된 14족 금속의 메탈로이드 라디칼로 이루어진 군에서 선택되고, 구체적으로는 R21 내지 R27은 각각 독립적으로, 수소원자, 할로겐기, 실릴기, 탄소수 1 내지 20의 알킬기, 탄소수 2 내지 20의 알케닐기, 탄소수 3 내지 20의 사이클로알킬기, 탄소수 6 내지 20의 아릴기, 탄소수 7 내지 20의 알킬아릴기, 탄소수 7 내지 20의 아릴알킬기, 및 탄소수 1 내지 20의 하이드로카르빌기로 치환된 14족 금속의 메탈로이드 라디칼로 이루어진 군에서 선택되며;
X1 내지 X3은 각각 독립적으로 수소원자, 할로겐기, 탄소수 1 내지 20의 하이드로카르빌기 및 탄소수 1 내지 20의 헤테로하이드로카르빌기로 이루어진 군에서 선택되며, 보다 구체적으로는 수소원자, 할로겐기, 실릴기, 아미노기, (탄소수 1 내지 20의 알킬)아미노기, 탄소수 1 내지 20의 알킬기, 탄소수 2 내지 20의 알케닐기, 탄소수 3 내지 20의 사이클로알킬기, 탄소수 6 내지 20의 아릴기, 탄소수 7 내지 20의 알킬아릴기 및 탄소수 7 내지 20의 아릴알킬기로 이루어진 군에서 선택되거나; 또는 X1 내지 X3 중 인접하는 둘 이상의 작용기는 서로 연결되어, 할로겐기, 실릴기, 아미노기, (탄소수 1 내지 20의 알킬)아미노기, 탄소수 1 내지 20의 알킬기, 탄소수 2 내지 20의 알케닐기 및 탄소수 6 내지 20의 아릴기로 이루어진 군에서 선택되는 적어도 하나의 치환기로 치환된 탄소수 5 내지 20의 지방족 고리 또는 탄소수 6 내지 20의 방향족 고리를 형성하며, 그리고
Z는 인(P), 비소(As) 또는 안티몬(Sb)이다.
상기 화학식 1의 전이금속 화합물은 페닐렌 브릿지에 연결되어 있는 아미노 그룹이 도입된 시클로펜타디에닐 리간드에 의해 금속 자리가 연결되어 있어 구조적으로 Cp-M1-N 각도는 좁고, 모노머가 접근하는 Q1-M1-Q2 각도는 넓게 유지하는 특징을 가진다. 또한, 실리콘 브릿지에 의해 연결된 CGC 구조와는 달리, 상기 화학식 1의 전이금속 화합물 구조에서는 고리 형태의 결합에 의해 시클로펜타디엔, 페닐렌 브릿지, 질소 및 금속(M1)이 순서대로 연결되어 더욱 안정하고 단단한 5 각형의 링 구조를 이룰 수 있다. 즉, 아미노기의 질소 원자가 페닐렌 브릿지와 고리 형태로 2개의 결합에 의해 연결되어 보다 견고한 착화합물 구조를 가지게 된다. 따라서 이러한 전이금속 화합물들을 메틸알루미녹산 또는 B(C6F5)3와 같은 조촉매와 반응시켜 활성화한 후 올레핀 중합에 적용시, 높은 중합 온도에서도 고활성 및 고공중합성 등의 특징을 갖는 올레핀 중합체의 제조가 가능하다. 특히, 촉매의 구조적인 특징상 저밀도의 폴리에틸렌뿐만 아니라 많은 양의 알파-올레핀이 도입 가능하기 때문에 밀도 0.910 g/cc 이하, 보다 구체적으로는 밀도 0.850 내지 0.910 g/cc 수준의 저밀도 폴리올레핀 공중합체의 제조가 가능하다. 또, 상기 전이금속 화합물을 포함하는 촉매 조성물을 사용하여 CGC 대비 MWD가 좁고 공중합성이 우수하며 저밀도 영역에서도 고분자량을 갖는 중합체의 제조가 가능하다.
또한, 상기 화학식 1의 전이금속 화합물 구조에서 시클로펜타디에닐 고리 및 퀴놀린계 고리에 다양한 치환체를 도입할 수 있는데, 이는 궁극적으로 금속 주위의 전자적, 입체적 환경을 쉽게 제어함으로써, 생성되는 폴리올레핀의 구조 및 물성 등을 용이하게 조절할 수 있다. 상기 화학식 1의 전이금속 화합물은 올레핀 단량체의 중합용 촉매를 제조하는 데 사용되는 것이 바람직하나, 이에 한정되지는 않으며 기타 상기 전이금속 화합물이 사용될 수 있는 모든 분야에 적용이 가능하다.
한편, 상기 화학식 1의 전이금속 화합물과 혼합 사용되는 상기 화학식 2의 전이금속 화합물은 황이 포함된 헤테로고리를 가지는 사이클로펜타디엔의 유도체에 포스핀이미드 리간드(phosphinimide ligands)와 같은 이미드계 리간드가 연결된 구조를 갖는다. 이로 인해 에틸렌과, 옥텐, 헥센 또는 부텐 등의 올레핀계 중합체의 공중합시 촉매로서 이용될 경우 높은 촉매 활성을 나타내어 높은 분자량, 낮은 밀도 등 그 자체로서도 우수한 물성적 특성을 갖는 올레핀계 중합체의 제조가 가능하며, 상기 화학식 1의 전이금속 화합물과의 혼화성이 우수하여 촉매 조성물 내에 균일 혼합됨으로써, 촉매 조성물의 촉매 활성을 더욱 향상시킬 수 있다.
한편, 본 명세서에 있어서 알킬기는 특별히 정의되지 않는 한, 탄소수 1 내지 20의 직쇄형 및 분지형 지방족 포화 탄화수소기를 의미한다. 구체적으로는 상기 알킬기는 탄소수 1 내지 20, 보다 구체적으로는 탄소수 1 내지 6의 직쇄형 또는 분지형 알킬기를 포함한다. 상기 알킬기의 구체적인 예로는 메틸기, 에틸기, n-프로필기, 이소프로필기, n-부틸기, 이소부틸기, sec-부틸기, t-부틸기, 펜틸기, iso-아밀기, 또는 헥실기 등을 들 수 있다.
또, 본 명세서에 있어서 알콕시기는 특별히 정의되지 않는 한, 산소와 결합된 탄소수 1 내지 20의 직쇄형 또는 분지형 알킬기(-OR)를 의미한다. 구체적으로는 상기 알킬기는 탄소수 1 내지 20, 보다 구체적으로는 탄소수 1 내지 6의 알콕시기를 포함한다. 상기 알콕시기의 구체적인 예로는 메톡시기, 에톡시기, 프로폭시기, 부톡시기 또는 t-부톡시기 등을 들 수 있다.
또, 본 명세서에 있어서 알케닐기는 특별히 정의되지 않는 한, 탄소-탄소 이중결합을 포함하는 탄소수 2 내지 20의 직쇄형 및 분지형 지방족 불포화 탄화수소기를 의미한다. 구체적으로 상기 알케닐기는 탄소수 2 내지 6의 알케닐기를 포함한다. 상기 알케닐기의 구체적인 예로는 에테닐기, 프로페닐기 또는 부테닐기 등을 들 수 있다.
또, 본 명세서에 있어서 사이클로알킬기는 특별히 정의되지 않는 한, 탄소수 3 내지 20의 환형 포화 탄화수소기를 의미한다. 구체적으로 상기 사이클로알킬기는 탄소수 3 내지 6의 사이클로알킬기를 포함한다. 상기 사이클로알킬기의 구체적인 예로는, 사이클로프로필기, 사이클로부틸기 또는 사이클로헥실기 등을 들 수 있다.
또, 본 명세서에 있어서 상기 아릴기는 특별히 정의되지 않는 한, 하나 이상의 고리를 포함하는 탄소수 6 내지 20의 카보사이클 방향족 리디칼을 의미하며, 상기 고리들은 펜던트 방법으로 함께 부착되거나 또는 융합될 수 있다. 구체적으로 상기 아릴기는 탄소수 6 내지 20, 보다 구체적으로는 탄소수 6 내지 12의 아릴기를 포함한다. 상기 아릴기의 구체적인 예로는 페닐기, 나프틸기, 안트릴기, 페난트릴기 또는 비페닐기 등을 들 수 있다.
또, 본 명세서에 있어서 상기 아릴알킬기는 특별히 정의되지 않는 한, 방향족 탄화수소기인 아릴기(Ar)가 직쇄 또는 분지형 알킬기(R)의 탄소에 치환된 작용기(Ar-R-)를 의미한다. 구체적으로 상기 아릴알킬기는 탄소수 7 내지 20, 보다 구체적으로는 탄소수 7 내지 12의 아릴알킬기를 포함한다. 상기 아릴알킬기의 구체적인 예로는 벤질기, 펜에틸기 등을 들 수 있다.
또, 본 명세서에 있어서 알킬아릴기는 특별히 정의되지 않는 한, 직쇄 또는 분지형 알킬기(R)가 방향족 탄화수소기(Ar)의 탄소에 치환된 작용기(R-Ar-)를 의미한다. 구체적으로 상기 알킬아릴기는 탄소수 7 내지 20, 보다 구체적으로는 탄소수 7 내지 12읠 알킬아릴기를 포함한다.
또, 본 명세서에 있어서 상기 아릴옥시기는 특별히 정의되지 않는 한, 산소와 결합된 아릴기(-OAr)를 의미하며, 이때 상기 아릴기는 앞서 정의한 바와 같다. 구체적으로 상기 아릴옥시기는 탄소수 6 내지 20, 보다 구체적으로는 탄소수 6 내지 12읠 아릴옥시기를 포함한다. 상기 아릴옥시기의 구체적인 예로는 페녹시 등을 들 수 있다.
또, 본 명세서에 있어서 상기 실릴기는 특별히 정의되지 않는 한, 실란(silane)으로부터 유도된 -SiH3 라디칼을 의미하며, 상기 실릴기 내 수소원자 중 적어도 하나가 탄소수 1 내지 20의 알킬기 또는 할로겐기 등의 다양한 유기기로 치환될 수도 있다. 구체적으로, 상기 실릴기는 트리메틸실릴기 또는 트리에틸실릴 등일 수 있다.
또, 본 명세서에 있어서 상기 알킬아미노기는 특별히 정의되지 않는 한, 아미노기(-NH2)에서의 적어도 하나의 수소가 알킬기로 치환된 작용기를 의미하며, 이때 알킬기는 앞서 정의한 바와 같다. 구체적으로 상기 알킬아미노기는 -NR2(이때 R은 각각 수소원자이거나 탄소수 1 내지 20의 직쇄 또는 분지상의 알킬기일 수 있으며, 단 두개의 R 모두가 수소원자는 아니다).
또, 본 명세서에 있어서 상기 아릴아미노기는 특별히 정의되지 않는 한, 아미노기(-NH2)에서의 적어도 하나의 수소가 아릴기로 치환된 작용기를 의미하며, 이때 아릴기는 앞서 정의한 바와 같다.
또, 본 명세서에 있어서 알킬리덴기(alkylidene group)는 특별히 정의되지 않는 한, 알킬기의 동일한 탄소원자로부터 2개의 수소원자가 제거된 2가의 지방족 탄화수소기를 의미한다. 구체적으로 상기 알킬리덴기는 탄소수 1 내지 20, 보다 구체적으로는 탄소수 1 내지 12의 알킬리덴기를 포함한다. 상기 알킬리덴기의 구체적인 예로는 프로판-2일리덴기(propane-2-ylidene group) 등을 들 수 있다.
또, 본 명세서에 있어서 상기 하이드로카르빌기(hydrocarbyl group)는 특별히 정의되지 않는 한, 알킬기, 아릴기, 알케닐기, 알키닐기, 사이클로알킬기, 알킬아릴기 또는 아릴알킬기 등 그 구조에 상관없이 탄소 및 수소로만 이루어진 탄소수 1 내지 20의 1가의 탄화수소기를 의미하고, 하이드로카르빌렌기(hydrocarbylene group)는 탄소수 1 내지 20의 2가의 탄화수소기를 의미한다.
또, 본 명세서에 있어서 상기 헤테로하이드로카르빌기(hydrocarbyl group)는 특별히 정의되지 않는 한, 탄화수소기내 1 이상의 탄소원자 대신에 헤테로원자를 포함하는 것이나; 또는 탄화수소기내 탄소원자에 결합된 1 이상의 수소원자가 헤테로원자, 또는 헤테로원자 포함 작용기로 치환된 것일 수 있으며, 이때 상기 헤테로원자는 N, O, S 및 Si로 이루어진 군에서 선택되는 것일 수 있다. 구체적으로는 알콕시기; 페녹시기; 카르복시기; 산무수물기; 아미노기; 아미드기; 에폭시기; 실릴기; -[RaO]xRb (이때 Ra은 탄소수 2 내지 20의 알킬렌기이고, Rb는 수소원자, 탄소수 1 내지 20의 알킬기, 탄소수 3 내지 20의 사이클로알킬기, 탄소수 6 내지 20의 아릴기 및 탄소수 7 내지 20의 아릴알킬기로 이루어진 군에서 선택되며, x는 2 내지 10의 정수임); 히드록시기, 알콕시기, 페녹시, 카르복시기, 에스테르기, 산무수물기, 아미노기, 아미드기, 에폭시기 및 실릴기로 이루어진 군에서 선택되는 1 이상의 작용기를 포함하는 탄소수 1 내지 20의 탄화수소기(예를 들면, 히드록시알킬기, 알콕시알킬기, 페녹시알킬기, 아미노알킬기 또는 티올알킬기 등)일 수 있다.
구체적으로, 상기 화학식 1의 제1전이금속 화합물은 하기 화학식 1a 내지 1c 중 어느 하나의 구조를 갖는 화합물일 수 있다:
[화학식 1a]
Figure 112015120166826-pat00003
[화학식 1b]
Figure 112015120166826-pat00004
[화학식 1c]
Figure 112015120166826-pat00005
상기 화학식 1a 내지 1c에서, M1은 앞서 정의한 바와 동일한 것일 수 있으며, 보다 구체적으로, Ti, Hf 또는 Zr일 수 있다.
또, Q1 및 Q2는 각각 독립적으로 앞서 정의한 바와 동일한 것일 수 있으며, 보다 구체적으로는 할로겐기 또는 탄소수 1 내지 8의 알킬기일 수 있다.
또, R11 내지 R14는 앞서 정의한 바와 동일한 것일 수 있으며, 보다 구체적으로는 각각 독립적으로 수소원자, 할로겐기, 실릴기, 탄소수 1 내지 8의 알킬기, 탄소수 2 내지 8의 알케닐기, 탄소수 3 내지 12 사이클로알킬기, 탄소수 6 내지 18의 아릴기, 탄소수 7 내지 18의 알킬아릴기, 탄소수 7 내지 18의 아릴알킬기, 및 탄소수 1 내지 8의 하이드로카르빌기로 치환된 14족 금속의 메탈로이드 라디칼로 이루어진 군에서 선택되거나; 또는 상기 R11 내지 R14 중 인접하는 2 이상의 작용기는 서로 연결되어, 할로겐기, 탄소수 1 내지 8의 알킬기, 탄소수 2 내지 8의 알케닐기 및 탄소수 6 내지 18의 아릴기로 이루어진 군에서 선택되는 적어도 하나의 치환기로 치환되거나 비치환된, 탄소수 5 내지 18의 지방족 포화 또는 불포화 고리기, 또는 탄소수 6 내지 18의 방향족 고리기를 형성할 수 있으며, 보다 더 구체적으로는 탄소수 1 내지 4의 알킬기일 수 있다.
또, R15 내지 R17은 앞서 정의한 바와 동일한 것일 수 있으며, 보다 구체적으로는 각각 독립적으로 수소원자, 할로겐기, 실릴기, 탄소수 1 내지 8의 알킬기, 탄소수 2 내지 8의 알케닐기, 탄소수 3 내지 12의 사이클로알킬기, 탄소수 6 내지 18의 아릴기, 탄소수 7 내지 18의 알킬아릴기 및 탄소수 7 내지 18의 아릴알킬기로 이루어진 군에서 선택되거나, 또는 R15 내지 R17 중 서로 인접하는 2 이상의 작용기가 서로 연결되어 할로겐기, 탄소수 1 내지 8의 알킬기, 탄소수 2 내지 8의 알케닐기 및 탄소수 6 내지 18의 아릴기로 이루어진 군에서 선택되는 적어도 하나의 치환기로 치환되거나 비치환된, 탄소수 5 내지 18의 지방족 포화 또는 불포화 고리기, 또는 탄소수 6 내지 18의 방향족 고리를 형성할 수도 있다.
또, R31 내지 R44는 각각 독립적으로 수소원자, 할로겐기, 탄소수 1 내지 8의 알킬기, 탄소수 2 내지 8의 알케닐기 및 탄소수 6 내지 18의 아릴기로 이루어진 군에서 선택되거나, 또는 인접하는 2 이상의 작용기가 서로 연결되어 할로겐기, 탄소수 1 내지 8의 알킬기, 탄소수 2 내지 8의 알케닐기 및 탄소수 6 내지 18의 아릴기로 이루어진 군에서 선택되는 적어도 하나의 치환기로 치환되거나 비치환된, 탄소수 5 내지 18의 지방족 포화 또는 불포화 고리기, 또는 탄소수 6 내지 18의 방향족 고리를 형성할 수 있으며, 보다 구체적으로는 수소원자, 할로겐기 또는 탄소수 1 내지 4의 알킬기이거나, 또는 인접하는 2 이상의 작용기가 서로 연결되어 탄소수 1 내지 8의 알킬기로 치환되거나 또는 비치환된 탄소수 6 내지 18의 방향족 고리를 형성할 수도 있다.
보다 구체적으로, 금속 주위의 전자적 입체적 환경의 제어를 위해 더욱 선호되는 상기 화학식 1의 제1전이금속 화합물은, 하기 구조의 화합물 (1-1) 내지 (1-12) 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
Figure 112015120166826-pat00006
상기 화학구조식들에서 Q1, Q2, R12 및 R13은 앞서 정의한 바와 같다.
상기 예시된 화합물들 외에도, 상기 제1전이금속 화합물은 상기 화학식 1에 정의된 범위 내에서 다양한 구조를 가질 수 있으며, 이들 화합물은 동등한 작용과 효과를 나타낼 수 있다.
한편, 상기 화학식 2의 제2전이금속 화합물은, 하기 화학식 2a의 화합물일 수 있다.
[화학식 2a]
Figure 112015120166826-pat00007
상기 화학식 2a에 있어서,
M2는 앞서 정의한 바와 동일한 것일 수 있으며, 구체적으로는 Ti, Hf 또는 Zr일 수 있고,
Q3 및 Q4는 앞서 정의한 바와 동일한 것일 수 있으며, 구체적으로는 각각 독립적으로 할로겐기 또는 탄소수 1 내지 8의 알킬기일 수 있고,
R21 내지 R27은 앞서 정의한 바와 동일한 것일 수 있으며, 보다 구체적으로는 R21 내지 R27은 각각 독립적으로, 수소원자, 할로겐기, 실릴기, 탄소수 1 내지 8의 알킬기, 탄소수 2 내지 6의 알케닐기, 탄소수 3 내지 12 사이클로알킬기, 탄소수 6 내지 18의 아릴기, 탄소수 7 내지 18의 알킬아릴기, 탄소수 7 내지 18의 아릴알킬기, 및 탄소수 1 내지 8의 하이드로카르빌기로 치환된 14족 금속의 메탈로이드 라디칼로 이루어진 군에서 선택되고, 보다 더 구체적으로는 R21 내지 R27은 각각 독립적으로 수소원자 또는 탄소수 1 내지 8, 혹은 탄소수 1 내지 4의 알킬기이며;
X1 내지 X3은 앞서 정의한 바와 동일한 것일 수 있으며, 보다 구체적으로는 X1 내지 X3은 각각 독립적으로 수소원자, 할로겐기, 실릴기, 아미노기, (탄소수 1 내지 8의 알킬)아미노기, 탄소수 1 내지 8의 알킬기, 탄소수 2 내지 6의 알케닐기, 탄소수 3 내지 12의 사이클로알킬기, 탄소수 6 내지 18의 아릴기, 탄소수 7 내지 18의 알킬아릴기 및 탄소수 7 내지 18의 아릴알킬기로 이루어진 군에서 선택되거나; 또는 X1 내지 X3 중 인접하는 두 작용기가 서로 연결되어, 할로겐기, 실릴기, 아미노기, (탄소수 1 내지 8의 알킬)아미노기, 탄소수 1 내지 8의 알킬기, 탄소수 2 내지 6의 알케닐기 및 탄소수 6 내지 12의 아릴기로 이루어진 군에서 선택되는 적어도 하나의 치환기로 치환된 탄소수 5 내지 12의 사이클로알킬기 또는 탄소수 6 내지 20의 아릴기를 형성하며, 보다 더 구체적으로는 X1 내지 X3은 각각 독립적으로 할로겐기, 탄소수 1 내지 8의 알킬기, 탄소수 3 내지 12의 사이클로알킬기 및 탄소수 6 내지 12의 아릴기로 이루어진 군에서 선택되는 것일 수 있다.
보다 구체적으로 금속 주위의 전자적 입체적 환경의 제어를 위해 더욱 선호되는 상기 화학식 2의 제2전이금속 화합물은, 하기 화합물들일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
Figure 112015120166826-pat00008
상기 화학구조식들에서, Cy는 사이클로헥실기, tBu는 t-부틸기, Me는 메틸기 그리고 Ph는 페닐기를 의미한다.
상기 예시된 화합물들 외에도, 상기 제2전이금속 화합물은 상기 화학식 2에 정의된 범위 내에서 다양한 구조를 가질 수 있으며, 이들 화합물은 동등한 작용과 효과를 나타낼 수 있다.
상기한 화학식 1의 제1 전이금속 화합물 및 화학식 2의 제2 전이금속 화합물은 공지의 합성 반응을 이용하여 제조될 수도 있다.
한편, 상기 화학식 1 및 2의 전이금속 화합물을 포함하는 촉매 조성물은, 상기 화학식 1 및 2의 전이금속 화합물을 50:50 내지 80:20의 중량비로 포함할 수 있다. 상기 화학식 1 및 2의 전이금속 화합물의 혼합비가 상기 범위를 벗어날 경우, 앞서 정의한 (1) 내지 (4)의 물성 요건, 특히 (1)의 밀도 요건을 충족하는 올레핀계 중합체의 제조가 어렵다.
또, 상기 촉매 조성물은 조촉매를 더 포함할 수 있다.
상기 조촉매는 알킬알루미녹산, 알킬알루미늄 또는 루이스산 등 당 기술분야에 알려져 있는 것이라면 특별한 제한없이 사용가능하다. 구체적으로, 상기 조촉매는 하기 화학식 3 내지 5의 화합물로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 혼합물을 포함할 수 있다.
[화학식 3]
-[Al(R51)-O]a-
(상기 화학식 3에서, R51은 각각 독립적으로 할로겐기, 탄소수 1 내지 20의 하이드로카르빌기 또는 할로겐으로 치환된 탄소수 1 내지 20의 하이드로카르빌기이며, a는 2 이상의 정수이다)
[화학식 4]
D(R52)3
(상기 화학식 4에서, D는 알루미늄 또는 보론이며, R52은 각각 독립적으로 할로겐 라디칼, 탄소수 1 내지 20의 하이드로카르빌 라디칼 또는 할로겐으로 치환된 탄소수 1 내지 20의 하이드로카르빌라디칼이다)
[화학식 5]
[L-H]+[Z(A)4]- 또는 [L]+[Z(A)4]-
(상기 화학식 5에서, L이 중성 또는 양이온성 루이스산이며, H가 수소원자 이고, Z가 13족 원소이며, A가 각각 독립적으로 1 이상의 수소 원자가 치환기로 치환될 수 있는 탄소수 6 내지 20의 아릴기 또는 탄소수 1 내지 20의 알킬기이고, 상기 치환기는 할로겐기, 탄소수 1 내지 20의 하이드로카르빌기, 탄소수 1 내지 20의 알콕시기, 또는 탄소수 6 내지 20의 아릴옥시기이다)
구체적으로, 상기 화학식 3의 화합물은 알킬알루미녹산일 수 있으며, 보다 구체적으로는 메틸알루미녹산, 에틸알루미녹산, 이소부틸알루미녹산, 부틸알루미녹산 등이 있으며, 보다 더 구체적으로는 메틸알루미녹산일 수 있다.
또, 상기 화학식 4의 화합물은 구체적으로 트리메틸알루미늄, 트리에틸알루미늄, 트리이소부틸알루미늄, 트리프로필알루미늄, 트리부틸알루미늄, 디메틸클로로알루미늄, 트리이소프로필알루미늄, 트리-s-부틸알루미늄, 트리사이클로펜틸알루미늄, 트리펜틸알루미늄, 트리이소펜틸알루미늄, 트리헥실알루미늄, 트리옥틸알루미늄, 에틸디메틸알루미늄, 메틸디에틸알루미늄, 트리페닐알루미늄, 트리-p-톨릴알루미늄, 디메틸알루미늄메톡시드, 디메틸알루미늄에톡시드, 트리메틸보론, 트리에틸보론, 트리이소부틸보론, 트리프로필보론, 트리부틸보론등이포함되며, 특히바람직한화합물은트리메틸알루미늄, 트리에틸알루미늄, 트리이소부틸알루미늄중에서선택된다.
또, 상기 화학식 5의 화합물은 구체적으로 트리에틸암모니움테트라페닐보론, 트리부틸암모니움테트라페닐보론, 트리메틸암모니움테트라페닐보론, 트리프로필암모니움테트라페닐보론, 트리메틸암모니움테트라(p-톨릴)보론, 트리메틸암모니움테트라(o,p-디메틸페닐)보론, 트리부틸암모니움테트라(p-트리플루오로메틸페닐)보론, 트리메틸암모니움테트라(p-트리플루오로메틸페닐)보론, 트리부틸암모니움테트라펜타플루오로페닐보론, N,N-디에틸아닐리디움테트라페틸보론, N,N-디에틸아닐리디움테트라페닐보론, N,N-디에틸아닐리니움테트라펜타플루오로페닐보론, 디에틸암모니움테트라펜타플루오로페닐보론, 트리페닐포스포늄테트라페닐보론, 트리메틸포스포늄테트라페닐보론, 디메틸아닐리늄 테트라키스(펜타플루오로페닐) 보레이트, 트리에틸암모니움테트라페닐알루미늄, 트리부틸암모니움테트라페닐알루미늄, 트리메틸암모니움테트라페닐알루미늄, 트리프로필암모니움테트라페닐알루미늄, 트리메틸암모니움테트라(p-톨릴)알루미늄, 트리프로필암모니움테트라(p-톨릴)알루미늄, 트리에틸암모니움테트라(o,p-디메틸페닐)알루미늄, 트리부틸암모니움테트라(p-트리플루오로메틸페닐)알루미늄, 트리메틸암모니움테트라(p-트리플루오로메틸페닐)알루미늄, 트리부틸암모니움테트라펜타플루오로페닐알루미늄, N,N-디에틸아닐리니움테트라페닐알루미늄, N,N-디에틸아닐리니움테트라페닐알루미늄, N,N-디에틸아닐리니움테트라펜타플루오로페닐알루미늄, 디에틸암모니움테트라펜타텐트라페닐알루미늄, 트리페닐포스포늄테트라페닐알루미늄, 트리메틸포스포늄테트라페닐알루미늄, 트리에틸암모니움테트라페닐알루미늄, 트리부틸암모니움테트라페닐알루미늄, 트리메틸암모니움테트라페닐보론, 트리프로필암모니움테트라페닐보론, 트리메틸암모니움테트라(p-톨릴)보론,트리프로필암모니움테트라(p-톨릴)보론, 트리에틸암모니움테트라(o,p-디메틸페닐)보론, 트리메틸암모니움테트라(o,p-디메틸페닐)보론, 트리부틸암모니움테트라(p-트리플루오로메틸페닐)보론, 트리메틸암모니움테트라(p-트리플루오로메틸페닐)보론, 트리부틸암모니움테트라펜타플루오로페닐보론, N,N-디에틸아닐리니움테트라페닐보론, N,N-디에틸아닐리니움테트라페닐보론, N,N-디에틸아닐리니움테트라펜타플루오로페닐보론, 디에틸암모니움테트라펜타플루오로페닐보론, 트리페닐포스포늄테트라페닐보론, 트리페닐카보니움테트라(p-트리플루오로메틸페닐)보론 또는 트리페닐카보니움테트라펜타플루오로페닐보론 등이 있다.
또한, 상기 제1 및 제2 전이금속 화합물과 조촉매는 담체에 담지된 형태로도 이용할 수 있다. 담체로는 실리카-알루미나 또는 실리카-마그네시아 등으로 될 수 있고, 기타 당 기술분야에 알려진 임의의 담체를 사용할 수 있다. 또한, 이러한 담체는 고온에서 건조된 상태로 사용될 수 있는데, 건조 온도는, 예를 들어, 180℃ 이상 내지 800℃ 이하로 될 수 있다. 만일, 건조 온도가 180 ℃ 미만으로 지나치게 낮으면, 담체 상의 과량의 부분이 조촉매와 반응하여 성능을 떨어뜨릴 수 있고, 건조 온도가 800 ℃를 초과하여 지나치게 높으면 담체 표면에 히드록시기 함량이 낮아져 조촉매와의 반응 자리가 감소할 수 있다.
상기 촉매 조성물은 상기 화학식 1 및 2의 전이금속 화합물의 1차 혼합물에 상기 화학식 3 또는 화학식 4의 화합물을 첨가하고 혼합하여 2차 혼합물을 제조한 후, 여기에 상기 화학식 5의 화합물을 첨가하여 혼합하거나(제1방법); 또는 상기 화학식 1 및 2의 전이금속 화합물의 1차 혼합물에 상기 화학식 5의 화합물을 첨가하고 혼합함(제2방법)으로써 제조될 수 있다.
촉매 조성물 제조를 위한 제1방법의 경우, 상기 화학식 1 및 2의 전이금속 화합물의 1차 혼합물 1몰에 대해, 상기 화학식 3 또는 화학식 4의 화합물이 2 내지 5,000몰비, 보다 구체적으로는 10 내지 1,000몰비, 보다 더 구체적으로는 20 내지 500의 몰비로 첨가될 수 있다. 상기 제1혼합물 대비 상기 화학식 3 또는 화학식 4의 몰비가 1:2 미만일 경우에는 전이금속 화합물에 대한 알킬화가 완전히 진행되지 못할 우려가 있고, 1:5,000 초과인 경우에는 과량의 상기 화학식 3 또는 4의 화합물과 상기 화학식 5의 화합물 사이의 부반응으로 인하여 알킬화된 전이금속 화합물의 활성화가 충분히 이루어지지 못 할 우려가 있다.
또, 상기 화학식 5의 화합물은 상기 2차 혼합물 1몰에 대해 1 내지 25, 보다 구체적으로는 1 내지 10, 보다 더 구체적으로는 1 내지 5의 몰비로 첨가될 수 있다. 상기 2차 혼합물 대비 상기 화학식 5의 화합물의 몰비가 1:1 미만일 경우에는 활성화제의 양이 상대적으로 적어 전이금속 화합물의 활성화가 완전히 이루어지지 못해 생성되는 촉매 조성물의 활성도가 저하될 우려가 있고, 1:25 초과인 경우에는 남아있는 과량의 화학식 5의 화합물로 인해 생성되는 고분자의 순도가 저하될 우려가 있다.
한편, 촉매 조성물 제조를 위한 제2방법의 경우, 상기 1차 혼합물 1몰에 대해 상기 화학식 5의 화합물이 1 내지 500의 몰비, 구체적으로는 1 내지 50의 몰비, 보다 구체적으로는 2 내지 25의 몰비로 첨가될 수 있다. 상기 몰비가 1:1 미만일 경우에는 활성화제인 화학식 5의 화합물의 양이 상대적으로 적어 전이금속 화합물의 활성화가 완전히 이루어지지 못해 생성되는 촉매 조성물의 활성도가 저하될 우려가 있고, 1:500 초과인 경우에는 전이금속 화합물의 활성화는 완전히 이루어지지만, 남아있는 과량의 화학식 5의 화합물로 인해 생성되는 고분자의 순도가 떨어지는 문제가 있다.
또한, 상기 촉매 조성물은 첨가제를 더 포함할 수도 있다.
구체적으로는 상기 첨가제는 O, S, Se, N, P 및 Si로 이루어진 군에서 선택되는 1이상의 헤테로 원자를 함유한 화합물일 수 있다. 또 상기 헤테로원자를 함유한 화합물은 헤테로 원자를 함유한 5원 또는 6원의 방향족 고리 화합물 헤테로시클로알칸, 또는 헤테로시클로알켄과 같은 헤테로 고리 화합물; 또는 아민기 또는 에테르기를 포함하는 알칸과 같은, 헤테로원자를 함유한 알칸일 수 있다. 상기 헤테로원자를 함유한 화합물은 메틸기, 페닐기 및 벤질기로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 치환기로 치환될 수도 있다. 보다 구체적으로 상기 헤테로원자를 함유한 화합물의 예로는 피리딘, 3,5-디메틸피리딘, 2,4,6-트리메틸피리딘, 2,6-디메틸피리딘, 2,4-디메틸피리딘, 티오펜, 2-메틸티오펜, 2,3-디메틸티오펜, 피페리딘, 포스피넨, 피롤, 2-메틸피롤, 아닐린, 파라-톨루이딘, 테트라히드로푸란, 2,3-디메틸테트라히드로푸란, 2,5-테트라히드로푸란, 3,4-디히드로-2H-파이렌, 푸란, 2-메틸푸란, 2,3-디메틸푸란, 2,5-디메틸푸란, 디에틸에테르, 메틸 터트부틸 에테르 또는 트리에틸아민 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
한편, 상기 올레핀계 중합체의 제조에 사용가능한 단량체로는 구체적으로 알파-올레핀계 단량체, 사이클릭 올레핀계 당량체, 디엔 올레핀계 단량체, 트리엔 올레핀계 단량체 또는 스티렌계 단량체 등을 들 수 있다.
상기 알파-올레핀계 단량체는 탄소수 2 내지 12 또는 탄소수 2 내지 8 의 지방족 올레핀일 수 있으며, 구체적으로는 에틸렌, 프로필렌, 1-부텐, 1-펜텐, 3-메틸-1-부텐, 1-헥센, 4-메틸-1-펜텐, 3-메틸-1-펜텐, 1-헵텐, 1-옥텐, 1-데센(1-decene), 1-운데센, 1-도데센, 1-테트라데센, 1-헥사데센, 1-아이토센, 4,4-디메틸-1-펜텐, 4,4-디에틸-1-헥센, 3,4-디메틸-1-헥센 등을 들 수 있다.
또, 상기 사이클릭 올레핀계 단량체는 탄소수 3 내지 24, 또는 3 내지 18의 사이클릭 올레핀일 수 있으며, 구체적으로는 사이클로펜텐(cyclopentene), 사이클로부텐, 사이클로헥센, 3-메틸사이클로헥센, 사이클로옥텐, 테트라사이클로데센, 옥타사이클로데센, 디사이클로펜타디엔, 노르보르넨, 노르보나디엔, 페닐노르보르넨, 비닐노르보르넨, 5-메틸-2-노르보르넨, 5-에틸-2-노르보르넨, 5-이소부틸-2-노르보르넨, 5,6-디메틸-2-노르보르넨, 5,5,6-트리메틸-2-노르보르넨 및 에틸리덴노르보르넨 등을 들 수 있다.
또 상기 디엔 및 트리엔(triene)계 단량체는 2개 또는 3개의 이중결합을 갖는 탄소수 4 내지 26의 폴리엔일 수 있으며, 구체적으로는 1,3-부타디엔, 1,4-부타디엔, 1,4-펜타디엔, 1,5-펜타디엔, 1,4-헥사디엔, 1,5-헥사디엔, 1,6-헥사디엔, 1,9-데카디엔, 2-메틸-1,3-부타디엔 등을 들 수 있다.
또, 상기 스티렌계 단량체는 스티렌; 또는 탄소수 1 내지 10 의 알킬기, 탄소수 1 내지 10 의 알콕시기, 할로겐기, 아미노기, 실릴기 또는 할로알킬기 등으로 치환된 스티렌, 예컨대 알파-메틸스티렌, 디비닐벤젠 및 3-클로로메틸스티렌일 수 있다.
또, 상기 올레핀계 중합체의 제조시 중합 반응은 균일 용액 상태의 촉매 조성물 뿐만 아니라, 담체에 담지된 형태 또는 담체의 불용성 입자 형태로 존재하기 때문에, 용액상, 슬러리상, 괴상(Bulk Phase) 또는 기상의 중합으로 수행될 수 있으나, 본 발명에서는 용액 중합으로 수행된다. 또한 용액 중합시의 중합 조건은 사용되는 촉매의 상태(균일상 또는 불균일상(담지형)), 중합 방법(용액중합, 슬러리 중합, 기상중합), 목적하는 중합결과 또는 중합체의 형태에 따라 다양하게 변형될 수 있다.
상기 용액 중합의 경우 탄화수소계 용매 중에서 수행될 수 있다. 상기 용매는 구체적으로 펜탄, 헥산, 헵탄 등과 같은 탄소수 5 내지 12의 지방족 탄화수소계 용매, 디클로로메탄, 클로로벤젠과 같은 염소원자로 치환된 탄화수소 용매, 벤젠, 톨루엔 등과 같은 방향족 탄화수소 용매가 사용될 수 있으나, 반드시 이에 한정되지는 않으며 당해 기술분야에서 사용 가능한 모든 용매가 사용될 수 있다. 여기에 사용되는 용매는 소량의 알킬알루미늄 처리함으로써 촉매 독으로 작용하는 소량의 물 또는 공기 등을 제거하여 사용하는 것이 바람직하며, 조촉매를 더 사용하여 실시하는 것도 가능하다. 이때 상기 알킬알루미늄으로는 트리알킬알루미늄, 디알킬 알루미늄 할라이드, 알킬 알루미늄 디할라이드, 알루미늄 디알킬 하이드라이드 또는 알킬 알루미늄 세스퀴 할라이드 등을 들 수 있으며, 이의 보다 구체적인 예로는, Al(C2H5)3, Al(C2H5)2H, Al(C3H7)3, Al(C3H7)2H, Al(i-C4H9)2H, Al(C8H17)3, Al(C12H25)3, Al(C2H5)(C12H25)2, Al(i-C4H9)(C12H25)2, Al(i-C4H9)2H, Al (i-C4H9)3, (C2H5)2AlCl, (i-C3H9)2AlCl 또는 (C2H5)3Al2Cl3 등을 들 수 있다. 이러한 유기 알루미늄 화합물은 각 반응기에 연속적으로 투입될 수 있고, 적절한 수분 제거를 위해 반응기에 투입되는 반응 매질의 1kg 당 약 0.1 내지 10몰의 비율로 투입될 수 있다.
또, 상기 올레핀계 중합체의 제조시 중합 반응은 단일 반응기 내에서 연속으로 진행될 수 있다.
또, 상기 중합 반응은 120℃ 내지 250℃, 구체적으로는 130℃ 내지 200℃의 온도 범위에서 수행될 수 있다. 또한, 중합시 압력은 약 1 내지 약 150 bar일 수 있으며, 구체적으로는 약 1 내지 약 120 bar, 보다 구체적으로는 약 10 내지 약 120 bar일 수 있다.
또, 상기와 같은 제조방법에 의해 제조된 올레핀계 중합체는 통상의 방법에 따라 탈크, Ca계 또는 Si계 등의 무기물로 표면처리될 수 있다. 이에 따라 본 발명에 따른 올레핀계 중합체는 그 표면에 탈크, Ca계 또는 Si계 등의 무기물을 포함하는 코팅층을 더 포함할 수 있다.
상기 제조방법에 따라 제조되어 상기한 물성적 요건을 충족하는 올레핀계 중합체는 인장강도 등 기계적 물성 면에서의 저하없이 개선된 충격강도를 나타낼 수 있다. 구체적으로 상기 올레핀계 중합체는 ASTM D638(조건: 50mm/min)에 따른 최대 인장강도(tensile strength) 측정시, 최대 인장강도가 160 내지 200kgf/cm2일 수 있다. 또, ASTM D256에 따른 충격강도 측정시 25±5℃에서의 충격강도가 55 kgf·m/m 이상일 수 있다.
이에 따라 자동차용, 전선용, 완구용, 섬유용, 의료용 등의 재료과 같은 각종 포장용, 건축용, 생활용품 등의 다양한 분야 및 용도에서의 중공성형용, 압출성형용 또는 사출성형용으로 유용하며, 특히 우수한 충격 강도가 요구되는 자동차용으로 유용할 수 있다.
또, 본 발명의 또 다른 일 실시예에 따르면, 상기한 물성적 요건을 충족하는 폴리올레핀계 중합체를 이용하여 제조된 성형체를 제공한다.
상기 성형체는 구체적으로 블로우 몰딩 성형체, 인플레이션 성형체, 캐스트 성형체, 압출 라미네이트 성형체, 압출 성형체, 발포 성형체, 사출 성형체, 시이트(sheet), 필름(film), 섬유, 모노필라멘트, 또는 부직포 등일 수 있다.
이하, 하기 실시예에 의거하여 본 발명을 보다 구체적으로 설명한다. 이들 실시예는 본 발명의 이해를 돕기 위한 것으로서 본 발명의 범위가 이들에 의해 한정되는 것은 아니다.
합성예
하기 화학식 (i)로 표시되는 화합물 (1.30g, 2.37mmol)을 톨루엔 (20ml)에 녹인 후 상온(23℃)에서 MeMgBr(1.62ml, 4.86mmol, 2.05eq.)을 천천히 적하였다, 이후 상온에서 12시간 동안 교반하였다. NMR로 출발물질이 없어진 것을 확인하고, 톨루엔 용매를 감압여과 후 반응 혼합물을 헥산(30ml)에 용해시켰다. 이후 filtration을 통해 고체를 제거하고, 결과로 수득한 용액 중 헥산 용매를 감압 여과하여 하기 화학식 (ii)의 전이금속 화합물을 수득하였다.
Figure 112015120166826-pat00009
Figure 112015120166826-pat00010
실시예 1
1.5L 오토클레이브 연속 공정 반응기에 헥산 용매(4.8kg/h)와 1-옥텐(0.55 kg/h)을 채운 후, 반응기 상단의 온도를 160℃로 예열하였다. 트리이소부틸알루미늄 화합물(0.05 mmol/min), 제1전이금속 화합물(A)로서 [(1,2,3,4-테트라하이드로퀴놀린-8-일)테트라메틸시클로펜타디에닐-η5,κ-N]티타늄 디메틸([(1,2,3,4-tetrahydroquinolin-8-yl)tetramethylcyclopentadienyl-η5,κ-N]titanium dimethyl) (0.5μmol/min) 및 상기 합성예에서 제조한 화학식 ii의 제2전이금속 화합물(0.5μmol/min, 제1 및 제2전이금속 화합물의 혼합중량비=5:5) 그리고 디메틸아닐리늄 테트라키스(펜타플루오로페닐) 보레이트 조촉매(1.5μmol/min)를 동시에 반응기로 투입하였다. 이어서, 상기 오토클레이브 반응기 속으로 에틸렌(0.87 kg/h)를 투입하여 89 bar의 압력으로 연속 공정에서 160℃로 30분 이상 유지된 후 공중합 반응을 진행하여 올레핀계 램덤 공중합체를 얻었다. 다음으로, 남은 에틸렌 가스를 빼내고 고분자 용액을 진공 오븐에서 12시간 이상 건조한 후 물성을 측정하였다.
실시예 2
상기 실시예 1에서 1-옥텐을 1.42kg/h로 사용한 것을 제외하고는 상기 실시예 1에서와 동일한 방법으로 실시하여 올레핀계 램덤 공중합체를 제조하였다.
실시예 3
상기 실시예 1에서 1-옥텐을 1.19kg/h로 사용한 것을 제외하고는 상기 실시예 1에서와 동일한 방법으로 실시하여 올레핀계 램덤 공중합체를 제조하였다.
실시예 4
상기 실시예 1에서 1-옥텐을 1.39kg/h로 사용한 것을 제외하고는 상기 실시예 1에서와 동일한 방법으로 실시하여 올레핀계 램덤 공중합체를 제조하였다.
실시예 5
상기 실시예 1에서 1-옥텐을 1.50kg/h로 사용한 것을 제외하고는 상기 실시예 1에서와 동일한 방법으로 실시하여 올레핀계 램덤 공중합체를 제조하였다.
실시예 6
상기 실시예 1에서 1-옥텐을 1.69kg/h로 사용한 것을 제외하고는 상기 실시예 1에서와 동일한 방법으로 실시하여 올레핀계 램덤 공중합체를 제조하였다.
실시예 7
상기 실시예 1에서 1-옥텐을 1.58kg/h로 사용한 것을 제외하고는 상기 실시예 1에서와 동일한 방법으로 실시하여 올레핀계 램덤 공중합체를 제조하였다.
비교예 1
Dow사의 에틸렌-1-옥텐 공중합체(제품명: EG8200)를 준비하였다.
비교예 2
1종의 메탈로센 촉매만을 이용하여 제조된 LG화학의 에틸렌-1-옥텐 공중합체(제품명: LC670)를 준비하였다.
비교예 3
Dow사의 에틸렌-1-옥텐 공중합체(제품명: EG8407)를 준비하였다.
비교예 4
1종의 지글러-나타 촉매만을 이용하여 제조된 LG화학의 LLDPE(제품명: ST508)을 준비하였다.
실험예 1 : 올레핀계 중합체의 물성 평가(I)
상기 실시예 1~7 및 비교예 1~4에서 제조한 올레핀계 중합체에 대해 하기와 같은 방법으로 다양한 물성을 측정, 평가하였다.
(1) 중합체의 밀도(Density, g/cc); ASTM D-792로 측정하였다.
(2) 고분자의 용융지수 (Melt Index, MI, g/10min): ASTM D-1238 (조건 E, 190 ℃, 2.16 Kg 하중) 로 측정하였다.
(3) 중량평균 분자량(Mw, g/mol) 및 분자량 분포(MWD): 겔 투과 크로마토 그래피(GPC: gel permeation chromatography)를 이용하여 수 평균 분자량(Mn) 및 중량 평균 분자량(Mw)을 각각 측정하고, 또, 중량 평균 분자량을 수 평균 분자량으로 나누어 분자량 분포를 계산하였다.
(4) TREF (temperature rising elution fractionation)
TREF는 PolymerChar의 TREF 기계를 사용하였으며 o-디클로로벤젠을 용매로 하여 -20℃~120℃ 범위에서 측정하였다.
상세하게는, 40mg의 중합체 샘플을 20ml의 o-디클로로벤젠 용매 하에서 135℃에서 30분간 용해시킨 후 95℃에서 30분간 안정화시켰다. 이것을 TREF 컬럼에 도입한 후, 0.5℃/분의 강온 속도로 -20℃까지 냉각 후, 2분간 유지하였다. 그 후 -20℃에서 120℃까지 1℃/min의 강온 속도로 가열하면서 용매인 o-디클로로벤젠을 0.5 mL/분의 유속으로 컬럼에 흘리고 용출온도에 따른 중합체의 용출량, 50℃ 및 90℃에서의 용출량, 그리고 퍼지 및 10℃에서의 누적 용출량을 측정하였다.
상기 측정 결과는 도 1 내지 21, 및 하기 표 1에 나타내었다.
도 1 내지 도 11은 상기 실시예 1~7 및 비교예 1~4에서 제조한 올레핀계 중합체의 온도상승 용리 분별 (TREF) 그래프이고, 도 12 내지 21은 상기 실시예 1~7 및 비교예 1~3에서 제조한 올레핀계 중합체의 분자량 분포(GPC) 그래프를 나타낸 것이다.
Figure 112015120166826-pat00011
실험결과, 본 발명에 따른 실시예 1 내지 7의 올레핀계 중합체는 T50과 T90의 차이가 60℃ 이상을 나타낸 반면, 비교예 1 내지 4의 경우 약 10℃ 내지 30℃ 범위의 값을 나타내었다.
또, 본 발명에 따른 실시예 1 내지 7의 올레핀계 중합체는 밀도 0.855 내지 0.910g/cc의 범위 내에서 TREF 상에서 피크(P1)과 피크(P2)의 2개의 피크를 나타내었다. 반면, 비교예 1 내지 4의 중합체는 동일한 밀도 범위 내에서 오직 1개의 피크만이 확인되었다.
또, 본 발명에 따른 실시예 1 내지 7의 올레핀계 중합체는 GPC 상에서 단일 피크를 나타내었으며 분자량 분포(MWD)가 1.5 내지 2.5로, 비교예 1 내지 3의 중합체와 동등 수준의 좁은 분자량 분포를 나타내었다.
또, 본 발명에 따른 실시예 1 내지 7의 올레핀계 중합체는 퍼지 또는 10℃ 누적 용출량이 20~80% 수준인 반면, 비교예 1 내지 3의 올레핀계 중합체는 20% 미만이었다.

Claims (13)

  1. 하기 (1) 내지 (4)의 요건을 충족하는 올레핀계 중합체:
    (1) 밀도(d): 0.850 내지 0.910 g/cc
    (2) 용융지수(MI, 190 ℃, 2.16 kg 하중 조건): 0.1 내지 100g/10분,
    (3) 분자량 분포(MWD): 1.5 내지 3.0,
    (4) 온도상승 용리 분별(TREF; temperature rising elution fractionation) 측정시 -20 ℃ 내지 120 ℃ 온도 범위에서 2개의 피크를 가지며, T(90)-T(50) ≥ 60℃ (여기서, T(90)은 올레핀계 중합체의 90중량%가 용출되는 온도이고, T(50)은 올레핀계 중합체의 50중량%가 용출되는 온도이다)
  2. 청구항 1에 있어서,
    온도상승 용리 분별 측정시 -20℃ 내지 120℃ 온도 범위에서 2개의 피크를 가지며, T(90)-T(50)가 70℃ 내지 110℃인 것인 올레핀계 중합체.
  3. 청구항 1에 있어서,
    온도상승 용리 분별 측정시 -20℃ 내지 120℃ 온도 범위에서 2개의 피크를 가지며, 90중량% 용출했을 때의 온도 T(90) ≥ 70℃인 것인 올레핀계 중합체.
  4. 청구항 1에 있어서,
    온도상승 용리 분별 측정시 -20℃ 내지 120℃ 온도 범위에서 2개의 피크를 가지며, 90중량% 용출했을 때의 온도 T(90)이 85℃ 내지 120℃인 것인 올레핀계 중합체.
  5. 청구항 1에 있어서,
    온도상승 용리 분별 측정 시 -20℃ 미만의 퍼지, 또는 -20℃ 내지 10℃ 온도 범위에서의 누적용출량이 중합체 총 중량에 대하여 20 내지 80 중량%인 것인 올레핀계 중합체.
  6. 청구항 1 내지 5 중 어느 한 항에 있어서,
    중량 평균 분자량이 10,000 내지 500,000g/mol인 것인 올레핀계 중합체.
  7. 청구항 1 내지 5 중 어느 한 항에 있어서,
    겔 투과형 크로마토그래피 측정시, 분자량 분포 곡선에서 모노모달형(monomodal-type) 피크를 나타내는 것인 올레핀계 중합체.
  8. 청구항 1 내지 5 중 어느 한 항에 있어서,
    상기 올레핀계 중합체는 알파-올레핀계 단량체, 사이클릭 올레핀계 단량체, 디엔 올레핀계 단량체, 트리엔 올레핀계 단량체 및 스티렌계 단량체로 이루어진 군에서 선택되는 올레핀 단량체의 단독 중합체 또는 공중합체인 것인 올레핀계 중합체.
  9. 청구항 1 내지 5 중 어느 한 항에 있어서,
    상기 올레핀계 중합체는 에틸렌 또는 프로필렌 단량체와; 탄소수 3 내지 12의 알파-올레핀 공단량체와의 공중합체인 것인 올레핀계 중합체.
  10. 청구항 8에 있어서,
    상기 올레핀 단량체는 프로필렌, 1-부텐, 1-펜텐, 4-메틸-1-펜텐, 1-헥센, 1-헵텐, 1-옥텐, 1-데센, 1-운데센, 1-도데센, 1-테트라데센, 1-헥사데센, 노르보르넨, 노르보나디엔, 에틸리덴노르보르넨, 페닐노르보르넨, 비닐노르보르넨, 디사이클로펜타디엔, 1,4-부타디엔, 1,5-펜타디엔, 1,6-헥사디엔, 스티렌, 알파-메틸스티렌, 디비닐벤젠 및 3-클로로메틸스티렌으로 이루어진 군으로부터 선택되는 어느 하나 또는 둘 이상의 혼합물을 포함하는 것인 올레핀계 중합체.
  11. 청구항 1 내지 5 중 어느 한 항에 있어서,
    상기 올레핀계 중합체는 에틸렌과 알파 올레핀 공단량체의 공중합체이며, 상기 알파 올레핀 공단량체의 함량은 올레핀계 중합체 총 중량에 대하여 5 내지 60 중량%인 것인 올레핀계 중합체.
  12. 청구항 1 내지 5 중 어느 한 항에 있어서,
    1종 이상의 전이금속 화합물을 포함하는 메탈로센계 촉매 조성물의 존재 하에 연속 용액 중합 반응에 의해 제조되며, 중합체를 구성하는 단량체 중 어느 하나의 단량체 유래 반복 단위가 2개 이상 선상으로 연결되어 구성된 블록을 포함하지 않는 올레핀계 중합체.
  13. 청구항 1 내지 5 중 어느 한 항에 있어서,
    랜덤 공중합체인 것인 올레핀계 중합체.
KR1020150174229A 2015-12-08 2015-12-08 올레핀계 중합체 KR101889598B1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020150174229A KR101889598B1 (ko) 2015-12-08 2015-12-08 올레핀계 중합체
CN201680043554.7A CN107849172B (zh) 2015-12-08 2016-12-08 基于烯烃的聚合物
US15/743,469 US10508165B2 (en) 2015-12-08 2016-12-08 Olefin-based polymer
PCT/KR2016/014369 WO2017099491A1 (ko) 2015-12-08 2016-12-08 올레핀계 중합체
EP16873356.6A EP3305815B1 (en) 2015-12-08 2016-12-08 Olefin-based polymer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150174229A KR101889598B1 (ko) 2015-12-08 2015-12-08 올레핀계 중합체

Publications (2)

Publication Number Publication Date
KR20170067499A KR20170067499A (ko) 2017-06-16
KR101889598B1 true KR101889598B1 (ko) 2018-08-17

Family

ID=59013807

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150174229A KR101889598B1 (ko) 2015-12-08 2015-12-08 올레핀계 중합체

Country Status (5)

Country Link
US (1) US10508165B2 (ko)
EP (1) EP3305815B1 (ko)
KR (1) KR101889598B1 (ko)
CN (1) CN107849172B (ko)
WO (1) WO2017099491A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200010657A1 (en) * 2016-09-23 2020-01-09 Lg Chem, Ltd. Polypropylene-based Resin Composition

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111511782A (zh) 2017-12-26 2020-08-07 Lg化学株式会社 基于烯烃的聚合物
WO2019212306A1 (ko) 2018-05-04 2019-11-07 주식회사 엘지화학 올레핀계 공중합체 및 이의 제조방법
CN112105655A (zh) 2018-05-04 2020-12-18 Lg化学株式会社 包含乙烯/α-烯烃共聚物的粘合剂组合物
WO2019212302A1 (ko) * 2018-05-04 2019-11-07 주식회사 엘지화학 올레핀계 공중합체 및 이의 제조방법
KR102419481B1 (ko) * 2019-02-20 2022-07-12 주식회사 엘지화학 올레핀계 중합체
KR102563024B1 (ko) * 2019-05-03 2023-08-04 주식회사 엘지화학 에틸렌/알파-올레핀 공중합체 및 이의 제조방법
JP7125569B2 (ja) 2020-06-29 2022-08-24 ポリプラスチックス株式会社 環状オレフィン共重合体の製造方法、及びノルボルネン単量体とエチレンとの共重合用の触媒組成物
WO2024050360A1 (en) * 2022-08-29 2024-03-07 Dow Global Technologies Llc Multimodal polymerization processes with multi-catalyst systems

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5064802A (en) 1989-09-14 1991-11-12 The Dow Chemical Company Metal complex compounds
EP0724604B2 (en) 1993-10-21 2005-12-14 Exxonmobil Oil Corporation Polyolefin blends of bimodal molecular weight distribution
WO2003000790A1 (en) * 2001-06-22 2003-01-03 Exxonmobil Chemical Patents, Inc. Metallocene-produced very low density polyethylenes or linear lowdensity polyethylenes as impact modifiers
AR048104A1 (es) * 2004-03-17 2006-03-29 Dow Global Technologies Inc Composicion catalizadora que comprende un agente de enlace para la formacion de copolimeros superiores de olefina en bloques multiples
WO2006101926A2 (en) * 2005-03-17 2006-09-28 Dow Global Technologies Inc. Interpolymers of ethylene/alpha-olefins blends and profiles and gaskets made therefrom
ATE501185T1 (de) 2006-06-27 2011-03-15 Univation Tech Llc Ethylen-alpha-olefin-copolymere und polymerisierungsverfahren für deren herstellung
US8962762B2 (en) * 2007-06-13 2015-02-24 Exxonmobil Chemical Patents Inc. Thermoplastic polymer compositions, methods for making the same, and articles made therefrom
US8431661B2 (en) 2010-10-21 2013-04-30 Exxonmobil Chemical Patents Inc. Polyethylene and process for production thereof
KR101628792B1 (ko) 2008-10-03 2016-06-09 다우 글로벌 테크놀로지스 엘엘씨 에틸렌/α-올레핀 혼성중합체를 갖는 중합체 블렌드
CN103261239B (zh) * 2010-10-21 2016-04-06 尤尼威蒂恩技术有限责任公司 聚乙烯及其生产方法
CA2798855C (en) 2012-06-21 2021-01-26 Nova Chemicals Corporation Ethylene copolymers having reverse comonomer incorporation
EP2914638A4 (en) * 2012-10-31 2016-07-27 Exxonmobil Chem Patents Inc PROPYLENE COPOLYMER COMPOSITIONS AND METHODS OF MAKING THE SAME
BR112015014121B1 (pt) * 2012-12-14 2021-04-06 Nova Chemicals (International) S.A. Copolímero de etileno, processo de polimerização de olefina para produzir um copolímero de etileno e camada de película
JP5972474B2 (ja) * 2013-09-26 2016-08-17 エルジー・ケム・リミテッド 遷移金属化合物、これを含む触媒組成物およびこれを用いた重合体の製造方法
US9376519B2 (en) 2013-09-26 2016-06-28 Lg Chem, Ltd. Transition metal compound, catalytic composition including the same, and method for preparing polymer using the same
KR101967775B1 (ko) 2015-12-08 2019-08-13 주식회사 엘지화학 폴리프로필렌계 복합재

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200010657A1 (en) * 2016-09-23 2020-01-09 Lg Chem, Ltd. Polypropylene-based Resin Composition
US10844206B2 (en) * 2016-09-23 2020-11-24 Lg Chem, Ltd. Polypropylene-based resin composition

Also Published As

Publication number Publication date
CN107849172A (zh) 2018-03-27
EP3305815A1 (en) 2018-04-11
KR20170067499A (ko) 2017-06-16
US20180201706A1 (en) 2018-07-19
EP3305815B1 (en) 2021-03-17
CN107849172B (zh) 2021-02-02
EP3305815A4 (en) 2018-09-12
WO2017099491A1 (ko) 2017-06-15
US10508165B2 (en) 2019-12-17

Similar Documents

Publication Publication Date Title
KR101889598B1 (ko) 올레핀계 중합체
KR101681372B1 (ko) 올레핀계 중합체의 제조방법 및 이에 의해 제조된 올레핀계 중합체
KR101847702B1 (ko) 올레핀계 중합체
CN108401432B (zh) 用于合成烯烃共聚物的催化剂组合物和制备烯烃共聚物的方法
KR102260362B1 (ko) 올레핀 공중합체
KR101593666B1 (ko) 가공성이 우수한 올레핀계 중합체
KR102065164B1 (ko) 올레핀계 중합체
KR102064990B1 (ko) 에틸렌 슬러리 중합용 혼성 담지 촉매 시스템 및 이를 이용한 에틸렌 중합체의 제조 방법
CN107207661B (zh) 具有优异的加工性能和表面特性的乙烯/α-烯烃共聚物
CN113195560B (zh) 基于烯烃的聚合物
KR20170067642A (ko) 폴리프로필렌계 복합재
WO2016167568A1 (ko) 가공성이 우수한 에틸렌 /알파-올레핀 공중합체
KR102190243B1 (ko) 올레핀 중합용 촉매 조성물, 올레핀계 중합체의 제조방법, 및 이를 이용하여 제조된 올레핀계 중합체
KR101919435B1 (ko) 전이금속 화합물, 이를 포함하는 촉매 조성물 및 이를 이용한 폴리올레핀의 제조 방법
KR101938585B1 (ko) 폴리올레핀의 제조방법
KR101792934B1 (ko) 올레핀계 엘라스토머
KR102259746B1 (ko) 올레핀계 중합체
KR102071588B1 (ko) 올레핀계 중합체
KR20220004581A (ko) 올레핀계 중합체
KR20220132468A (ko) 올레핀계 중합체
KR20210038234A (ko) 올레핀계 중합체
KR20220135028A (ko) 올레핀계 중합체
WO2019022569A1 (ko) 신규한 전이금속 화합물 및 이를 제조하는 방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right