KR101811397B1 - Nanocarbon-based polybenzimidazole nanocomposite and method for compression molding thereof - Google Patents

Nanocarbon-based polybenzimidazole nanocomposite and method for compression molding thereof Download PDF

Info

Publication number
KR101811397B1
KR101811397B1 KR1020160110674A KR20160110674A KR101811397B1 KR 101811397 B1 KR101811397 B1 KR 101811397B1 KR 1020160110674 A KR1020160110674 A KR 1020160110674A KR 20160110674 A KR20160110674 A KR 20160110674A KR 101811397 B1 KR101811397 B1 KR 101811397B1
Authority
KR
South Korea
Prior art keywords
nanocomposite
polybenzimidazole
carbon nanotube
nanocarbon
compression molding
Prior art date
Application number
KR1020160110674A
Other languages
Korean (ko)
Inventor
남상용
정문기
Original Assignee
경상대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경상대학교산학협력단 filed Critical 경상대학교산학협력단
Priority to KR1020160110674A priority Critical patent/KR101811397B1/en
Application granted granted Critical
Publication of KR101811397B1 publication Critical patent/KR101811397B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/18Polybenzimidazoles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/08Ingredients agglomerated by treatment with a binding agent

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

The present invention relates to a technology for manufacturing a polybenzimidazole nanocomposite comprising a carbon nanotube having a benzimidazole group or a graphene oxide by an improved compression molding method. According to the present invention, by the improved compression molding method, it is possible to manufacture the polybenzimidazole nanocomposite having excellent mechanical properties, which comprises the carbon nanotube having the benzimidazole group or the graphene oxide by a simple process through the improved compression molding method, thereby expecting industrial mass production as an engineering plastic.

Description

나노탄소 기반 폴리벤즈이미다졸 나노복합체 및 그의 압축성형방법{Nanocarbon-based polybenzimidazole nanocomposite and method for compression molding thereof}The present invention relates to a nanocarbon-based polybenzimidazole nanocomposite and a method for compression molding thereof,

본 발명은 나노탄소 기반 폴리벤즈이미다졸 나노복합체 및 그의 압축성형방법에 관한 것으로, 보다 상세하게는 벤즈이미다졸기를 갖는 탄소나노튜브 또는 그래핀 옥사이드를 포함하는 폴리벤즈이미다졸 나노복합체를 개선된 압축성형방법에 의하여 제조하는 기술에 관한 것이다.
The present invention relates to a nanocarbon-based polybenzimidazole nanocomposite and a compression molding method thereof, and more particularly to a carbon nanotube having a benzimidazole group or a polybenzimidazole nanocomposite comprising graphene oxide, The present invention relates to a technique for manufacturing by a compression molding method.

최근 고온·고압 등의 가혹한 조건의 산업분야에서부터 우주항공분야까지 저비용으로 매우 우수한 물성을 가지거나 새로운 특성을 갖는 재료에 대한 관심이 점점 커지고 있다. 더 이상 단일 재료로서의 역할을 기대하기보다는 조성 또는 구조가 다른 두 가지 이상의 재료를 물리적으로 결합시킨 복합재료에 대한 기대치가 더욱 증가하고 있는데 이는 복합재료가 단일재료가 가지지 못하는 특성을 나타내기 때문이다. 나노복합체의 범위 안에서 탄소나노튜브, 탄소나노섬유, 그래핀 등과 같은 탄소물질을 이용한 복합체의 경우 탄소물질 자체의 뛰어난 강도에 플라스틱의 우수한 성형성이 더해지면서 경량의 고강도 고탄성 복합재료를 만들 수 있게 된다. 현재 이러한 고성능의 복합재료는 자동차 재료부터 가혹한 조건의 산업기기용 부품, 우주항공 산업에 이르기까지 광범위한 분야에서 응용되고 있다.
In recent years, there has been a growing interest in materials having extremely high physical properties or new properties at low cost, from industrial fields such as high temperature and high pressure to aerospace fields. Rather than expecting to act as a single material anymore, expectations for composite materials that physically combine two or more materials of different composition or structure are increasing, because the composite material exhibits properties that a single material does not have. In the case of composites using carbon materials such as carbon nanotubes, carbon nanofibers, and graphenes within the range of nanocomposites, excellent molding properties of plastics are added to the excellent strength of the carbon material itself, so that a lightweight, high strength, high-elasticity composite material can be produced . Today, these high performance composites are being applied in a wide range of applications, from automotive materials to industrial equipment parts in harsh conditions, to the aerospace industry.

특히, 폴리벤즈이미다졸은 슈퍼 엔지니어링 플라스틱 분류에 속해 있는 만큼 뛰어난 고온 안정성, 내화학성, 기계적 물성 등을 가지고 있지만 소재의 가격이 비싸고 가공성이 좋지 않아 산업에서 해당 고분자를 다루는데 많은 어려움을 겪어 왔다. 하지만 공정 기술이 발달하면서 압출성형을 통한 폴리벤즈이미다졸 소재가 제조 및 유통되었고 주로 고온의 부식 환경에서 볼트, 너트 등의 밀봉재로 사용되고 있다. 폴리벤즈이미다졸의 높은 가공성의 장벽에도 불구하고 최근 새로운 공정들과 다양한 연구들이 발전하면서 기존 방열 섬유 또는 단순한 부품에 국한되었던 적용 분야들에서 많은 다른 분야에 적용이 되기 시작하였다.
In particular, polybenzimidazole has high temperature stability, chemical resistance, and mechanical properties, which are superior to those of super engineering plastics. However, since the cost of materials is high and the processability is poor, many difficulties have been encountered in dealing with the polymers in the industry. However, due to the development of process technology, polybenzimidazole material through extrusion molding has been manufactured and distributed, and it is mainly used as a sealing material for bolts and nuts in a high temperature corrosion environment. Despite the high processability barriers of polybenzimidazole, recent advances in new processes and diverse studies have begun to be applied to many other applications in applications that were limited to existing heat-dissipating fibers or simple components.

한편, 압출성형공정은 성형품의 질이 우수하지만 다른 공정에 비해 상대적으로 설비가 크고 비싸며 복잡한 공정과정을 가진다. 반대로 압축성형공정은 성형품의 질이 상대적으로 떨어지지만 단순한 가열, 가압 방식의 공정과정을 거치므로 설치비용과 공간이 효율적이고 추가공정 적용 및 공정변화가 쉽기 때문에 압축성형공정을 개선하면 우수한 성형물을 제조할 수 있다.
On the other hand, the extrusion molding process is relatively expensive compared to other processes, and has a complicated process process. On the contrary, the compression molding process is relatively low in quality of the molded product, but the process of simple heating and pressurization is performed. Therefore, the installation cost and space are efficient, and the additional process application and process change are easy. can do.

따라서 본 발명자는 폴리벤즈이미다졸을 매트릭스로 하는 나노탄소 복합체를 개발하기 위하여 연구를 거듭한 결과, 탄소나노튜브 또는 그래핀 옥사이드에 벤즈이미다졸기를 도입하면 폴리벤즈이미다졸과의 혼화성이 향상될 수 있고, 이를 포함하는 폴리벤즈이미다졸과의 나노복합체를 간단한 압축성형공정에 의하여 제조할 수 있으면, 기계적 물성이 우수한 나노탄소 기반의 폴리벤즈이미다졸 나노복합체를 양산할 수 있음에 착안하여 본 발명을 완성하기에 이르렀다.
Accordingly, the present inventors have conducted extensive research to develop a nanocarbon composite material having polybenzimidazole as a matrix. As a result, it has been found that when a benzimidazole group is introduced into carbon nanotubes or graphene oxide, miscibility with polybenzimidazole is improved And that a nanocomposite with polybenzimidazole containing it can be produced by a simple compression molding process, it is possible to produce a nanocarbon-based polybenzimidazole nanocomposite having excellent mechanical properties, And has reached the completion of the invention.

특허문헌 1 한국공개특허공보 제10-2015-0066211호Patent Document 1 Korean Patent Laid-Open No. 10-2015-0066211 특허문헌 2 한국공개특허공보 제10-2016-0079725호Patent Document 2: Korean Patent Laid-Open Publication No. 10-2016-0079725 특허문헌 3 미국등록특허공보 제8,449,959호Patent Document 3 US Patent No. 8,449,959

본 발명은 상기와 같은 문제점을 감안하여 안출된 것으로, 본 발명의 목적은 기계적 물성이 우수한, 벤즈이미다졸기를 갖는 탄소나노튜브 또는 그래핀 옥사이드를 포함하는 폴리벤즈이미다졸 나노복합체 및 이를 제조하기 위한 개선된 압축성형방법을 제공하고자 하는 것이다.
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and it is an object of the present invention to provide a polybenzimidazole nanocomposite comprising carbon nanotubes or graphene oxide having a benzimidazole group and having excellent mechanical properties, And to provide an improved compression molding method for such a compression molding method.

상기한 바와 같은 목적을 달성하기 위한 본 발명은, 폴리벤즈이미다졸; 및 벤즈이미다졸기를 갖는 탄소나노튜브 또는 그래핀 옥사이드;를 포함하는 나노탄소 기반 폴리벤즈이미다졸 나노복합체를 제공한다.In order to accomplish the above object, the present invention relates to polybenzimidazole; And a carbon nanotube or graphen oxide having a benzimidazole group. The nanocarbon-based polybenzimidazole nanocomposite is also provided.

상기 탄소나노튜브는 단일벽 탄소나노튜브, 이중벽 탄소나노튜브, 다중벽 탄소나노튜브 및 다발형 탄소나노튜브로 이루어진 군으로부터 선택된 어느 하나의 것을 특징으로 한다.The carbon nanotube may be any one selected from the group consisting of a single-walled carbon nanotube, a double-walled carbon nanotube, a multi-walled carbon nanotube, and a multi-walled carbon nanotube.

또한, 본 발명은 I) 나노탄소 기반 폴리벤즈이미다졸 나노복합체 분말을 금형에 투입하여 20~60 Mpa로 1차 가압하는 단계; II) 금형에 걸린 압력을 0 Mpa로 제거하고, 430~500℃로 가열하여 30분~1시간 동안 유지한 후, 70~80 Mpa로 2~3시간 동안 2차 가압하는 단계; 및 III) 상온으로 냉각한 다음, 압력을 제거하고 압축성형물을 금형으로부터 분리하는 단계;를 포함하는 나노탄소 기반 폴리벤즈이미다졸 나노복합체의 압축성형방법을 제공한다.The present invention also provides a method for producing a nanocarbon-based polybenzimidazole nanocomposite powder, comprising the steps of: (I) charging nanocarbon-based polybenzimidazole nanocomposite powder into a mold and firstly pressurizing the nanocarbon-based polybenzimidazole nanocomposite powder at 20 to 60 MPa; II) removing the pressure on the mold at 0 Mpa, heating it to 430 to 500 ° C, holding it for 30 minutes to 1 hour, and secondary pressurizing to 70 to 80 MPa for 2 to 3 hours; And III) cooling the mixture to room temperature, and then removing the pressure and separating the compression-molded product from the mold. The present invention also provides a compression molding method of a nano-carbon based polybenzimidazole nanocomposite.

상기 나노탄소는 벤즈이미다졸기를 갖는 탄소나노튜브 또는 그래핀 옥사이드인 것을 특징으로 한다.Wherein the nano carbon is a carbon nanotube having a benzimidazole group or graphen oxide.

상기 벤즈이미다졸기를 갖는 탄소나노튜브 또는 그래핀 옥사이드는 나노복합체 내에 0.01 내지 0.5 중량%를 함유하는 것을 특징으로 한다.The carbon nanotube or graphene oxide having the benzimidazole group is characterized by containing 0.01 to 0.5% by weight in the nanocomposite.

본 발명에 따르면, 개선된 압축성형방법에 의하여 간단한 공정으로 벤즈이미다졸기를 갖는 탄소나노튜브 또는 그래핀 옥사이드를 포함하는 기계적 물성이 우수한 폴리벤즈이미다졸 나노복합체 압축성형물을 제조할 수 있어, 엔지니어링 플라스틱으로서의 산업적 양산을 기대할 수 있다.
According to the present invention, a polybenzimidazole nanocomposite compact having excellent mechanical properties including carbon nanotubes or graphene oxide having a benzimidazole group can be produced by a simple process by an improved compression molding method, Industrial mass production as a plastic can be expected.

도 1은 본 발명의 실시예 1에 따른 나노탄소 기반 폴리벤즈이미다졸 나노복합체의 압축성형 공정도.
1 is a compression molding process of a nanocarbon-based polybenzimidazole nanocomposite according to Example 1 of the present invention.

이하에서는 본 발명에 따른 나노탄소 기반 폴리벤즈이미다졸 나노복합체 및 그의 압축성형방법에 대하여 첨부된 도면과 함께 상세히 설명하기로 한다.Hereinafter, the nanocarbon-based polybenzimidazole nanocomposite according to the present invention and its compression molding method will be described in detail with reference to the accompanying drawings.

본 발명에서는 폴리벤즈이미다졸; 및 벤즈이미다졸기를 갖는 탄소나노튜브 또는 그래핀 옥사이드;를 포함하는 나노탄소 기반 폴리벤즈이미다졸 나노복합체를 제공한다.
In the present invention, polybenzimidazole; And a carbon nanotube or graphen oxide having a benzimidazole group. The nanocarbon-based polybenzimidazole nanocomposite is also provided.

폴리벤즈이미다졸(Polybenzimidazole, PBI)은 현존하는 고분자 중 최고의 내열성기능을 지닌 열가소성 엔지니어링 플라스틱으로서, 1960년 초반에 보겔과 마벨에 의해 처음으로 합성되었으며, 1980년 중반에는 Hoechst Celanese사와 Alpha Precision Plastics사에 의해서 세라졸(Celazole®)이라는 상품명으로 처음 출시된 바 있다. 이러한 폴리벤즈이미다졸은 일반적으로 이소프탈산과 같은 방향족 이염기산과 3,3'-디아미노벤지딘과 같은 테트라아민 단량체의 축합 반응에 의하여 합성되는 것이 다수의 문헌에 공지되어 있어, 본 발명에서는 폴리벤즈이미다졸을 공지된 통상의 합성방법에 의하여 얻거나, 상용화된 폴리벤즈이미다졸을 그대로 사용한다.
Polybenzimidazole (PBI) is a thermoplastic engineering plastic with the highest heat resistance of existing polymers. It was first synthesized by Vogel and Marvel in the early 1960s and by Hoechst Celanese and Alpha Precision Plastics in mid 1980 Which was first introduced under the trade name Celazole ® . These polybenzimidazoles are generally known in the literature as synthesized by condensation reaction of an aromatic dibasic acid such as isophthalic acid and a tetraamine monomer such as 3,3'-diaminobenzidine. In the present invention, Imidazole is obtained by a known synthetic method or the commercially available polybenzimidazole is used as it is.

또한, 본 발명에서는 나노탄소 기반의 폴리벤즈이미다졸 나노복합체를 제공하기 위하여, 나노탄소로서는 매트릭스인 폴리벤즈이미다졸과의 혼화성을 향상시키고자 벤즈이미다졸기를 갖는 탄소나노튜브 또는 그래핀 옥사이드를 사용한다.
In the present invention, in order to provide a nanocarbon-based polybenzimidazole nanocomposite, the nanocarbon is preferably a carbon nanotube or a graphen oxide having a benzimidazole group in order to improve miscibility with the polybenzimidazole, Lt; / RTI >

이때, 상기 탄소나노튜브는 단일벽 탄소나노튜브(single wall carbon nanotube), 이중벽 탄소나노튜브(double wall carbon nanotube), 다중벽 탄소나노튜브(multi wall carbon nanotube) 및 다발형 탄소나노튜브(rope carbon nanotube)로 이루어진 군으로부터 선택된 어느 하나의 것일 수 있으며, 다중벽 탄소나노튜브를 보다 바람직하게 사용하고 산처리함으로써 카르복실기를 탄소나노튜브에 도입한다.
The carbon nanotube may be a single wall carbon nanotube, a double wall carbon nanotube, a multi wall carbon nanotube, or a rope carbon nanotube. nanotubes). More preferably, the multi-walled carbon nanotubes are more preferably used and acid-treated to introduce the carboxyl groups into the carbon nanotubes.

또한, 상기 그래핀 옥사이드는 산화제를 이용하여 그라파이트를 산화시킴으로써 대량으로 제조할 수 있는 것으로, 히드록실기, 카르복실기, 카르보닐기, 또는 에폭시기와 같은 친수성 작용기를 포함하고 있다. 현재 그래핀 옥사이드는 대부분 Hummers method[Hummers, W.S. & Offeman, R.E. Preparation of graphite oxide. J. Am. Chem. Soc. 80. 1339(1958)]에 의해 제조되거나 일부 변형된 Hummers method에 의해 제조되고 있어, 본 발명에서도 변형된 Hummers method에 따라 그래핀 옥사이드를 얻는다.
The graphene oxide can be mass-produced by oxidizing graphite using an oxidizing agent and includes a hydrophilic functional group such as a hydroxyl group, a carboxyl group, a carbonyl group, or an epoxy group. Currently, graphene oxide is mostly used in Hummers method [Hummers, WS & Offeman, RE Preparation of graphite oxide. J. Am. Chem. Soc. 80 . 1339 (1958)) or by the partially modified Hummers method, and graphene oxide is obtained according to the modified Hummers method in the present invention.

본 발명에서는 상술한 바와 같이 카르복실기를 함유하는 탄소나노튜브 또는 그래핀 옥사이드를 오르쏘-페닐렌디아민과 반응시켜 벤즈이미다졸기를 갖는 탄소나노튜브 또는 그래핀 옥사이드를 얻고, 이를 폴리벤즈이미다졸과 배합함으로써 나노복합체를 형성한다. 특히, 나노탄소 기반 물질로서 벤즈이미다졸기를 갖는 그래핀 옥사이드를 사용하는 경우, 아래 반응식과 같이 카르복실기를 함유하는 그래핀 옥사이드를 오르쏘-페닐렌디아민과 반응시켜 벤즈이미다졸기를 갖는 그래핀 옥사이드를 얻을 수 있다.In the present invention, carbon nanotubes or graphene oxide having a benzimidazole group are obtained by reacting carbon nanotubes or graphene oxides containing a carboxyl group with ortho-phenylenediamine as described above, To form a nanocomposite. Particularly, when graphene oxide having a benzimidazole group is used as a nano-carbon based material, graphene oxide containing a carboxyl group is reacted with ortho-phenylenediamine as shown in the following reaction formula to prepare graphene oxide having a benzimidazole group Oxides can be obtained.

<반응식><Reaction Scheme>

Figure 112016084371385-pat00001
Figure 112016084371385-pat00001

상기 벤즈이미다졸기를 갖는 그래핀 옥사이드를 나노탄소 기반 물질로 사용하여 폴리벤즈이미다졸과의 나노복합체를 형성하는 경우에 있어서, 나노탄소 기반 물질인 벤즈이미다졸기를 갖는 그래핀 옥사이드를 고분자 매트릭스인 폴리벤즈이미다졸에 고르게 분산시키기 위하여 소니케이션 방법을 이용한다. 즉, 디메틸아세트아미드(N,N-dimethylacetamide)와 같은 유기용매에 폴리벤즈이미다졸을 균일하게 용해시킨 후, 여기에 벤즈이미다졸기를 갖는 그래핀 옥사이드를 첨가하고 100W 이상의 출력을 가진 초음파 균질기 장비를 이용하여 최소 2시간 동안 분산작업을 수행한다. 이때, 폴리벤즈이미다졸에 벤즈이미다졸기를 갖는 그래핀 옥사이드가 균일하게 분산된 분산용액은 재침전을 통해 다시 분말형태로 석출시키고, 사용하였던 유기용매가 제거될 때 까지 세척작업을 수회 반복 및 건조함으로써 잔류 용매 및 수분이 완전히 제거된 나노탄소 기반 폴리벤즈이미다졸 나노복합체를 얻는다.
When graphene oxide having the benzimidazole group is used as a nano-carbon based material to form a nanocomposite with polybenzimidazole, graphene oxide having a benzimidazole group, which is a nano carbon based material, A method of sonication is used to disperse evenly the polybenzimidazole. That is, polybenzimidazole is uniformly dissolved in an organic solvent such as N, N-dimethylacetamide, graphene oxide having a benzimidazole group is added thereto, and an ultrasonic homogenizer Dispense for at least 2 hours using equipment. At this time, the dispersion solution in which graphene oxide having a benzimidazole group in polybenzimidazole is uniformly dispersed is precipitated again in the form of powder through re-precipitation, and the washing operation is repeatedly carried out until the used organic solvent is removed. Followed by drying to obtain a nanocarbon-based polybenzimidazole nanocomposite in which residual solvent and moisture are completely removed.

또한, 본 발명은 I) 나노탄소 기반 폴리벤즈이미다졸 나노복합체 분말을 금형에 투입하여 20~60 Mpa로 1차 가압하는 단계; II) 금형에 걸린 압력을 0 Mpa로 제거하고, 430~500℃로 가열하여 30분~1시간 동안 유지한 후, 70~80 Mpa로 2~3시간 동안 2차 가압하는 단계; 및 III) 상온으로 냉각한 다음, 압력을 제거하고 압축성형물을 금형으로부터 분리하는 단계;를 포함하는 나노탄소 기반 폴리벤즈이미다졸 나노복합체의 압축성형방법을 제공한다.
The present invention also provides a method for producing a nanocarbon-based polybenzimidazole nanocomposite powder, comprising the steps of: (I) charging nanocarbon-based polybenzimidazole nanocomposite powder into a mold and firstly pressurizing the nanocarbon-based polybenzimidazole nanocomposite powder at 20 to 60 MPa; II) removing the pressure on the mold at 0 Mpa, heating it to 430 to 500 ° C, holding it for 30 minutes to 1 hour, and secondary pressurizing to 70 to 80 MPa for 2 to 3 hours; And III) cooling the mixture to room temperature, and then removing the pressure and separating the compression-molded product from the mold. The present invention also provides a compression molding method of a nano-carbon based polybenzimidazole nanocomposite.

상기 I) 단계에서는 나노탄소 기반 폴리벤즈이미다졸 나노복합체 분말을 금형에 투입하여 20~60 Mpa로 1차 가압하는바, 나노탄소 기반 폴리벤즈이미다졸 나노복합체 분말을 금형에 투입하기 전에 80~150℃ 진공오븐에서 12시간 이상 건조시켜 수분 및 잔류용매를 완전히 제거하는 것이 바람직하다. 특히, 1차 가압시 압력을 20~60 Mpa 범위에서 순차적으로 압력을 높여가며 가압하는 것이 금형 속 복합체 분말 사이의 빈 공간을 조밀하게 채울 수 있다.In step I), the nanocarbon-based polybenzimidazole nanocomposite powder is charged into a mold and subjected to primary pressurization at 20 to 60 MPa. The nanocarbon-based polybenzimidazole nanocomposite powder is sprayed at 80 to 150 MPa Lt; 0 &gt; C in a vacuum oven for at least 12 hours to completely remove moisture and residual solvent. Especially, when the primary pressure is increased, the pressure is gradually increased in the range of 20 to 60 MPa to pressurize the void space between the mold composite particles.

이때, 상기 나노탄소 기반 물질로서는 상술한 바와 같은 벤즈이미다졸기를 갖는 탄소나노튜브 또는 그래핀 옥사이드를 사용하며, 나노복합체 내에 0.01 내지 0.5 중량%를 함유하는 것이 바람직한바, 벤즈이미다졸기를 갖는 탄소나노튜브 또는 그래핀 옥사이드의 함량이 0.01 중량% 미만이면 나노탄소 복합체를 구성하는 나노탄소 기반 물질의 첨가 효과가 미미하고, 그 함량이 0.5 중량%를 초과하면 매트릭스인 폴리벤즈이미다졸에 균일하게 분산되지 않을 수 있어 기계적 물성이 떨어질 우려가 있다.
At this time, as the nano carbon based material, carbon nanotubes or graphen oxide having the benzimidazole group as described above are used, and it is preferable that 0.01 to 0.5% by weight is contained in the nanocomposite, If the content of the carbon nanotubes or graphene oxide is less than 0.01% by weight, the effect of adding the nano-carbon-based material constituting the nanocarbon composite material is insignificant. If the content exceeds 0.5% by weight, the polybenzimidazole It may not be dispersed and the mechanical properties may deteriorate.

다음으로, 상기 II) 단계에서는 I) 단계의 금형에 걸린 압력을 0 Mpa로 제거하고, 430~500℃로 가열하여 30분~1시간 동안 유지한 후, 70~80 Mpa로 2~3시간 동안 2차 가압하는바, 가열 전에 I) 단계의 금형에 걸린 압력을 0 Mpa로 제거하는 것은 가열시 발생하는 수증기 또는 기체들이 금형 상의 좁은 슬릿 사이로 잘 빠져나갈 수 있도록 하기 위한 것으로, 압축성형장비의 상하 가열판의 거리는 고정시키되 압축성형장비에 걸려있는 압력만 제거시키면 된다. 상기와 같이 압력이 제거된 후, 폴리벤즈이미다졸의 유리전이온도인 430℃ 이상에서 가열하는데, 430~500℃로 가열하여 30분~1시간 동안 유지함으로써 안정화를 기한다. 이어서, 상기 온도 범위를 유지한 상태에서 70~80 Mpa로 2~3시간 동안 2차 가압하되, 1차 가압할 때와 마찬가지로 순차적으로 압력을 높여가며 가압한다.
Next, in step II), the pressure applied to the mold of step I) is removed to 0 Mpa, the mold is heated to 430 to 500 ° C., and the mold is maintained for 30 minutes to 1 hour. Then, the mold is heated to 70 to 80 MPa for 2 to 3 hours In order to allow the water vapor or gases generated during heating to escape through the narrow slits on the mold, the pressure applied to the mold of I) The distance of the heating plate should be fixed, but only the pressure applied to the compression molding equipment should be removed. After the pressure is removed as described above, the polybenzimidazole is heated at 430 ° C or higher, which is the glass transition temperature of the polybenzimidazole. The polybenzimidazole is stabilized by heating at 430 to 500 ° C for 30 minutes to 1 hour. Subsequently, while maintaining the above-mentioned temperature range, secondary pressurization is carried out at 70 to 80 MPa for 2 to 3 hours, and the pressure is gradually increased in the same manner as in primary pressurization.

마지막으로, 상기 III) 단계에서는 상온으로 냉각한 다음, 압력을 제거하고 압축성형물을 금형으로부터 분리하는바, 압력을 제거하지 않은 상태에서 아무런 냉각장치를 사용하지 않고 저절로 상온까지 서서히 냉각시키는 것이 바람직한데, 이는 스프링 백 현상 및 압축성형물의 수축을 방지하기 위한 것이다. 금형에 가해진 온도가 상온으로 완전히 떨어지면 비로소 압력을 제거하고 금형으로부터 압축성형물을 분리함으로써 나노탄소 기반 폴리벤즈이미다졸 나노복합체의 압축성형물을 제조할 수 있다. 이하에서는 본 발명에 따른 실시예를 첨부된 도면과 함께 구체적으로 서술한다.
Finally, in step III), it is preferable to cool the mold to room temperature by itself without using any cooling device without removing the pressure, after cooling the mold to room temperature, then removing the pressure and separating the compression mold from the mold , Which is intended to prevent springback phenomenon and shrinkage of the compression mold. When the temperature applied to the mold is completely lowered to room temperature, the compression molded product of the nano carbon-based polybenzimidazole nanocomposite can be produced by removing the pressure and separating the compression molding from the mold. Hereinafter, embodiments according to the present invention will be described in detail with reference to the accompanying drawings.

[실시예 1] 나노탄소 기반 폴리벤즈이미다졸 나노복합체의 압축성형[Example 1] Compression molding of nanocarbon-based polybenzimidazole nanocomposite

벤즈이미다졸기를 갖는 그래핀 옥사이드-폴리벤즈이미다졸 나노복합체 분말을 150℃ 진공오븐에서 12시간 건조한 후 금형에 투입하고 20 Mpa로 10분, 40 Mpa로 10분, 60 Mpa로 10분 동안 순차적으로 1차 가압하였다. 가압장치를 고정하여 압력을 0 Mpa로 제거하고, 440℃로 가열하여 30분 동안 유지한 후, 73 Mpa로 2~3시간 동안 2차 가압하였다. 이어서, 압력제거 전 상온까지 냉각한 다음, 압력을 제거하고 압축성형물을 금형으로부터 분리하여 나노탄소 기반 폴리벤즈이미다졸 나노복합체의 압축성형물(나노복합체 내 벤즈이미다졸기를 갖는 그래핀 옥사이드 함량 0.01 중량%)을 제조하였으며, 도 1에 본 발명의 실시예 1에 따른 나노탄소 기반 폴리벤즈이미다졸 나노복합체의 압축성형 공정도를 나타내었다.
The graphene oxide-polybenzimidazole nanocomposite powder having a benzimidazole group was dried in a vacuum oven at 150 ° C. for 12 hours, and then charged into a mold. The powder was charged into a mold at a rate of 20 MPa for 10 minutes, 40 MPa for 10 minutes and 60 MPa for 10 minutes . The pressure device was fixed, and the pressure was removed at 0 Mpa. The device was heated to 440 ° C., held for 30 minutes, and then pressurized to 73 MPa for 2 to 3 hours. Subsequently, the mixture was cooled to room temperature before removing the pressure, and then the pressure was removed. Then, the compression molded product was separated from the mold to obtain a compression molded product of nano carbon based polybenzimidazole nanocomposite (content of graphene oxide having a benzimidazole group in the nanocomposite %). FIG. 1 shows a compression molding process of the nanocarbon-based polybenzimidazole nanocomposite according to Example 1 of the present invention.

[실시예 2 내지 4] 나노탄소 기반 폴리벤즈이미다졸 나노복합체의 압축성형[Examples 2 to 4] Compression molding of nanocarbon-based polybenzimidazole nanocomposite

상기 나노복합체 내 벤즈이미다졸기를 갖는 그래핀 옥사이드 함량을 달리한 것(실시예 2 : 0.05 중량%, 실시예 3 : 0.1 중량%, 실시예 4 : 0.5 중량%)을 제외하고는 실시예 1과 동일한 압축성형방법으로 나노탄소 기반 폴리벤즈이미다졸 나노복합체의 압축성형물을 제조하였다.
Except that the content of graphene oxide having a benzimidazole group in the nanocomposite was different (Example 2: 0.05 wt%, Example 3: 0.1 wt%, Example 4: 0.5 wt%). A compression molding of a nano carbon-based polybenzimidazole nanocomposite was produced.

[비교예] 나노탄소 기반 폴리벤즈이미다졸 나노복합체의 압축성형[Comparative Example] Compression molding of nano carbon-based polybenzimidazole nanocomposite

상기 나노복합체 내 벤즈이미다졸기를 갖는 그래핀 옥사이드 함량을 1 중량%로 조절한 것을 제외하고는 실시예 1과 동일한 압축성형방법으로 나노탄소 기반 폴리벤즈이미다졸 나노복합체의 압축성형물을 제조하였다.
A compression molding of a nanocarbon-based polybenzimidazole nanocomposite was prepared by the same compression molding method as in Example 1 except that the content of graphene oxide having a benzimidazole group in the nanocomposite was adjusted to 1 wt%.

하기 표 1에는 본 발명의 실시예 1 내지 4 및 비교예로부터 제조된 나노탄소 기반 폴리벤즈이미다졸 나노복합체 압축성형물의 기계적 물성을 나타내었다.Table 1 below shows the mechanical properties of the nano-carbon-based polybenzimidazole nanocomposite compacts prepared from Examples 1 to 4 and Comparative Examples of the present invention.

샘플Sample 인장강도(Mpa)Tensile Strength (Mpa) 인장모듈러스(Mpa) Tensile modulus (Mpa) 굽힘강도(Mpa)Bending strength (Mpa) 굽힘모듈러스(Mpa)Bending modulus (Mpa) 실시예 1Example 1 176176 7,5007,500 235235 8,4008,400 실시예 2Example 2 177177 7,4007,400 233233 8,1008,100 실시예 3Example 3 178178 7,4007,400 232232 8,2008,200 실시예 4Example 4 165165 6,5006,500 225225 6,9006,900 비교예Comparative Example 160160 5,8005,800 215215 6,1006,100 참고예*Reference example * 160160 5,9005,900 220220 6,5006,500

* 폴리벤즈이미다졸(Celazole®U60, www.polymics.com/_pdfs/CelazoleU60.pdf)
* Polybenzimidazole (Celazole ® U60, www.polymics.com/_pdfs/CelazoleU60.pdf)

상기 표 1에서 보는 바와 같이, 본 발명의 실시예 1 내지 4로부터 제조된 나노탄소 기반 폴리벤즈이미다졸 나노복합체 압축성형물은 종래 상업화된 순수한 폴리벤즈이미다졸(참고예)에 비하여 인장강도와 굽힘강도가 크게 증가하고, 인장모듈러스 및 굽힘모듈러스는 현저하게 상승된 값을 나타내어 나노탄소 기반의 고분자 나노복합체로서 기계적 물성이 매우 우수함을 알 수 있다. 이는 구조상으로 벤즈이미다졸기 사이의 친화성 및 수소결합 등과 같은 힘에 의해 기계적 물성이 향상된 것이라 볼 수 있으며, 적절한 벤즈이미다졸기를 가지는 그래핀 옥사이드의 함량은 외력이 작용하였을 때 강도의 증가와 함께 변형에 크게 저항하는 거동을 보여 주는 것이라 할 수 있다.As shown in Table 1, the nano-carbon-based polybenzimidazole nanocomposite compacts prepared from Examples 1 to 4 of the present invention had tensile strength and bending strength higher than those of conventional pure polybenzimidazole (Reference Example) And tensile modulus and bending modulus are remarkably increased, indicating that the nanocarbon-based polymer nanocomposite has excellent mechanical properties. It is considered that the mechanical properties are improved due to the affinity between the benzimidazole groups and the hydrogen bond, and the content of graphene oxide having an appropriate benzimidazole group is increased with the increase of the strength Together they show a behavior that is highly resistant to deformation.

반면, 상기 비교예로부터 제조된 나노탄소 기반 폴리벤즈이미다졸 나노복합체 압축성형물은 실시예 1 내지 4로부터 제조된 나노탄소 기반 폴리벤즈이미다졸 나노복합체 압축성형물에 비하여 전반적으로 기계적 물성이 저하되고, 굽힘강도와 굽힘모듈러스와 같은 일부 항목에서는 종래 상업화된 순수한 폴리벤즈이미다졸(참고예)에 비하여도 낮은 값을 나타내는바, 이는 나노복합체 내 벤즈이미다졸기를 가지는 그래핀 옥사이드의 함량이 0.5 중량%를 초과하여 많은 양이 포함될수록 매트릭스인 폴리벤즈이미다졸에 균일하게 분산되기 어려움과 동시에, 변형에 저항하려는 성질보다 갈라짐을 일으키려는 성질이 커지게 되면서 물성의 저하를 일으키게 되는 것으로 해석된다.
On the other hand, the nano-carbon-based polybenzimidazole nanocomposite compacts prepared from the above Comparative Examples have lower mechanical properties as compared with the nano carbon-based polybenzimidazole nanocomposite compacts prepared in Examples 1 to 4, In some items such as strength and bending modulus, the value is lower than that of conventional commercial pure polybenzimidazole (Reference Example), indicating that the content of graphene oxide having a benzimidazole group in the nanocomposite is 0.5 wt% It is difficult to uniformly disperse in the matrix polybenzimidazole, and at the same time, the property to cause cracking rather than the property to resist deformation increases, which leads to a decrease in physical properties.

그러므로 본 발명에 따르면, 개선된 압축성형방법에 의하여 간단한 공정으로 벤즈이미다졸기를 갖는 탄소나노튜브 또는 그래핀 옥사이드를 포함하는 기계적 물성이 우수한 폴리벤즈이미다졸 나노복합체 압축성형물을 제조할 수 있어, 엔지니어링 플라스틱으로서의 산업적 양산을 기대할 수 있다.Therefore, according to the present invention, a polybenzimidazole nanocomposite compact having excellent mechanical properties including carbon nanotubes or graphen oxide having a benzimidazole group can be produced by a simple process by an improved compression molding method, Industrial mass production as an engineering plastic can be expected.

Claims (5)

폴리벤즈이미다졸; 및
벤즈이미다졸기를 갖는 탄소나노튜브 또는 그래핀 옥사이드;를 포함하는 나노탄소 기반 폴리벤즈이미다졸 나노복합체로서,
상기 벤즈이미다졸기를 갖는 탄소나노튜브 또는 그래핀 옥사이드는 나노복합체 내에 0.01 내지 0.5 중량%를 함유하는 것을 특징으로 하는 나노탄소 기반 폴리벤즈이미다졸 나노복합체.
Polybenzimidazole; And
A nanocarbon-based polybenzimidazole nanocomposite comprising a carbon nanotube or graphen oxide having a benzimidazole group,
The nanocarbon-based polybenzimidazole nanocomposite characterized in that the carbon nanotube or graphene oxide having the benzimidazole group contains 0.01 to 0.5 wt% in the nanocomposite.
제1항에 있어서, 상기 탄소나노튜브는 단일벽 탄소나노튜브, 이중벽 탄소나노튜브, 다중벽 탄소나노튜브 및 다발형 탄소나노튜브로 이루어진 군으로부터 선택된 어느 하나의 것을 특징으로 하는 나노탄소 기반 폴리벤즈이미다졸 나노복합체.The carbon nanotube according to claim 1, wherein the carbon nanotube is any one selected from the group consisting of a single-walled carbon nanotube, a double-walled carbon nanotube, a multi-walled carbon nanotube, Imidazole nanocomposite. I) 나노탄소 기반 폴리벤즈이미다졸 나노복합체 분말을 금형에 투입하여 20~60 Mpa로 1차 가압하는 단계;
II) 금형에 걸린 압력을 0 Mpa로 제거하고, 430~500℃로 가열하여 30분~1시간 동안 유지한 후, 70~80 Mpa로 2~3시간 동안 2차 가압하는 단계; 및
III) 상온으로 냉각한 다음, 압력을 제거하고 압축성형물을 금형으로부터 분리하는 단계;를 포함하는 나노탄소 기반 폴리벤즈이미다졸 나노복합체의 압축성형방법으로서,
상기 나노탄소는 벤즈이미다졸기를 갖는 탄소나노튜브 또는 그래핀 옥사이드이며,
상기 벤즈이미다졸기를 갖는 탄소나노튜브 또는 그래핀 옥사이드는 나노복합체 내에 0.01 내지 0.5 중량%를 함유하는 것을 특징으로 하는 나노탄소 기반 폴리벤즈이미다졸 나노복합체의 압축성형방법.
I) placing nanocarbon-based polybenzimidazole nanocomposite powder into a metal mold and first pressurizing at 20 to 60 MPa;
II) removing the pressure on the mold at 0 Mpa, heating it to 430 to 500 ° C, holding it for 30 minutes to 1 hour, and secondary pressurizing to 70 to 80 MPa for 2 to 3 hours; And
III) cooling the mixture to room temperature, and then removing the pressure and separating the compression molded product from the mold, comprising the steps of:
The nano carbon is a carbon nanotube or graphen oxide having a benzimidazole group,
Wherein the carbon nanotube or graphene oxide having the benzimidazole group contains 0.01 to 0.5% by weight in the nanocomposite.
삭제delete 삭제delete
KR1020160110674A 2016-08-30 2016-08-30 Nanocarbon-based polybenzimidazole nanocomposite and method for compression molding thereof KR101811397B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160110674A KR101811397B1 (en) 2016-08-30 2016-08-30 Nanocarbon-based polybenzimidazole nanocomposite and method for compression molding thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160110674A KR101811397B1 (en) 2016-08-30 2016-08-30 Nanocarbon-based polybenzimidazole nanocomposite and method for compression molding thereof

Publications (1)

Publication Number Publication Date
KR101811397B1 true KR101811397B1 (en) 2017-12-22

Family

ID=60936514

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160110674A KR101811397B1 (en) 2016-08-30 2016-08-30 Nanocarbon-based polybenzimidazole nanocomposite and method for compression molding thereof

Country Status (1)

Country Link
KR (1) KR101811397B1 (en)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J. Mater. Chem., 2012, 22, 23439*

Similar Documents

Publication Publication Date Title
Pan et al. Highly thermal conductive epoxy nanocomposites filled with 3D BN/C spatial network prepared by salt template assisted method
Song et al. A green plastic constructed from cellulose and functionalized graphene with high thermal conductivity
Srivastava et al. Nanocarbon reinforced rubber nanocomposites: detailed insights about mechanical, dynamical mechanical properties, payne, and mullin effects
Qiu et al. Exchangeable interfacial crosslinks towards mechanically robust elastomer/carbon nanotubes vitrimers
Lian et al. Study on modified graphene/butyl rubber nanocomposites. I. Preparation and characterization
Ponnamma et al. Carbon nanotube based elastomer composites–an approach towards multifunctional materials
Gong et al. Nylon-6/Graphene composites modified through polymeric modification of graphene
Miller et al. Characterization of epoxy functionalized graphite nanoparticles and the physical properties of epoxy matrix nanocomposites
Goh et al. Dynamic mechanical behavior of in situ functionalized multi-walled carbon nanotube/phenoxy resin composite
Ye et al. Fluorinated graphene reinforced polyimide films with the improved thermal and mechanical properties
JP2007524727A (en) Elastomers reinforced with carbon nanotubes
Kesavan Pillai et al. Epoxy-based carbon nanotubes reinforced composites
Afroze et al. Hierarchical honeycomb graphene aerogels reinforced by carbon nanotubes with multifunctional mechanical and electrical properties
Wang et al. Enhanced sheet-sheet welding and interfacial wettability of 3D graphene networks as radiation protection in gamma-irradiated epoxy composites
KR102076171B1 (en) Composite resin material and molded body
Wang et al. Mechanical and fracture properties of hyperbranched polymer covalent functionalized multiwalled carbon nanotube-reinforced epoxy composites
CN108795041B (en) Nano MoS2Carbon nano tube/bismaleimide resin composite material and preparation method thereof
Hsu et al. Nanocomposites based on Resole/graphene/carbon fibers: a review study
Wu et al. One step fabrication of multi-walled carbon nanotubes/graphene nanoplatelets hybrid materials with excellent mechanical property
Chen et al. Effect of the molecular chains grafted on graphene nanosheets on the properties of poly (l‐lactic acid) nanocomposites
Chen et al. Using supercritical carbon dioxide in preparing carbon nanotube nanocomposite: Improved dispersion and mechanical properties
Sujan et al. Graphene oxide crosslinker for the enhancement of mechanical properties of polylactic acid
Choi et al. In situ grafting of polybutylene terephthalate onto multi-walled carbon nanotubes by melt extrusion, and characteristics of their composites with polybutylene terephthalate
Pathak et al. Polypropylene nanocomposites with high-loading conductive carbon nano-reinforcements for multifunctional applications
KR101811397B1 (en) Nanocarbon-based polybenzimidazole nanocomposite and method for compression molding thereof

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant