KR101801455B1 - Copper pyrithione aggregate and use of same - Google Patents

Copper pyrithione aggregate and use of same Download PDF

Info

Publication number
KR101801455B1
KR101801455B1 KR1020157026913A KR20157026913A KR101801455B1 KR 101801455 B1 KR101801455 B1 KR 101801455B1 KR 1020157026913 A KR1020157026913 A KR 1020157026913A KR 20157026913 A KR20157026913 A KR 20157026913A KR 101801455 B1 KR101801455 B1 KR 101801455B1
Authority
KR
South Korea
Prior art keywords
salt
copper
inorganic
ammonium
pyrithione
Prior art date
Application number
KR1020157026913A
Other languages
Korean (ko)
Other versions
KR20150126638A (en
Inventor
야스히로 히다카
Original Assignee
유겐가이샤 와이에이치에스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 유겐가이샤 와이에이치에스 filed Critical 유겐가이샤 와이에이치에스
Publication of KR20150126638A publication Critical patent/KR20150126638A/en
Application granted granted Critical
Publication of KR101801455B1 publication Critical patent/KR101801455B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N55/00Biocides, pest repellants or attractants, or plant growth regulators, containing organic compounds containing elements other than carbon, hydrogen, halogen, oxygen, nitrogen and sulfur
    • A01N55/02Biocides, pest repellants or attractants, or plant growth regulators, containing organic compounds containing elements other than carbon, hydrogen, halogen, oxygen, nitrogen and sulfur containing metal atoms
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/12Powders or granules
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/34Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom
    • A01N43/40Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom six-membered rings
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • A01N59/20Copper
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/89Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members with hetero atoms directly attached to the ring nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic Table
    • C07F1/08Copper compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1606Antifouling paints; Underwater paints characterised by the anti-fouling agent
    • C09D5/1612Non-macromolecular compounds
    • C09D5/1618Non-macromolecular compounds inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1606Antifouling paints; Underwater paints characterised by the anti-fouling agent
    • C09D5/1612Non-macromolecular compounds
    • C09D5/1625Non-macromolecular compounds organic
    • C09D7/1233
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • C08K2003/3045Sulfates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • C08K2003/3045Sulfates
    • C08K2003/3054Ammonium sulfates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • C08K3/11Compounds containing metals of Groups 4 to 10 or of Groups 14 to 16 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/37Thiols
    • C08K5/372Sulfides, e.g. R-(S)x-R'
    • C08K5/3725Sulfides, e.g. R-(S)x-R' containing nitrogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Agronomy & Crop Science (AREA)
  • Dentistry (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Toxicology (AREA)
  • Paints Or Removers (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Pyridine Compounds (AREA)

Abstract

주요한 선저도료용 방오제로서, 세계적으로 인지되어온 구리피리티온의 앞으로의 과제로는, 해양 환경 보호의 관점에서, 어떻게 도막으로부터의 용출을 제어하고, 방오 효력의 지속기간을 길게하는 형상의 제품을 개발하는가, 또 작업 현장에서의 안전성을 높이기 위해, 어떻게 미립이 적은 입자의 제품을 개발하는가 라는 두가지가 있었다. 본 발명자는, 구리피리티온 종래 제법의 원료인 무기구리(Ⅱ)염 대신에, 무기구리(Ⅱ)염과 무기암모늄염과의 복합염을 이용함으로써, 종래의 구리피리티온의 침상결정과 다른 작은 원주상, 평판상 입자로 이루어진 구리피리티온 집합체를 얻는 데에 성공했다. 이 결과, 주로 구형, 타원형을 갖는 5.5 - 9μm 미만의 범위의 평균 입자경의 구리피리티온 집합체 입자가 선저방오도막으로부터 해수에의 용출을 제어할 수 있는 것, 또한 작업 현장에서의 분진 흡입의 위험을 경감할 수 있는 것을 견출하여, 상기 과제를 해결하였다.As a major antifouling agent for bottom paints, the world-recognized problem of copper pyrithione has been to formulate products that control the elution from the coating film and lengthen the duration of the antifouling effect from the viewpoint of protecting the marine environment There are two ways to develop products with low particle size to develop them and to increase safety at the work site. The inventors of the present invention have found that by using a composite salt of an inorganic copper (II) salt and an inorganic ammonium salt instead of an inorganic copper (II) salt which is a raw material of a copper pyrithione conventional production method, It succeeded in obtaining a copper pyrithione aggregate composed of columnar, flat-plate particles. As a result, copper pyrithione aggregate particles having an average particle size in the range of 5.5 to 9 μm, mainly having a spherical shape and an ellipsoidal shape, can control the elution from the bottom antifouling coating film into seawater and the risk of dust inhalation The present invention solves the above-mentioned problems.

Description

구리피리티온 집합체 및 그 용도 {Copper pyrithione aggregate and use of same}Copper pyrithione aggregates and their uses {Copper pyrithione aggregate and use of same}

본 발명은 구리피리티온 집합체 및 그 용도에 관한 것이다. 자세히는, 수용성 금속 피리티온 또는 암모늄피리티온과, 무기구리(II)염과 무기암모늄염과의 복합염, 또는 무기암모늄염의 일부를 무기알칼리금속염으로 대체한 복합염을 pH 4 초과 9 미만의 물 매질 중에서 반응시켜 만들어내는 구리피리티온 집합체 및 그 제조법에 관한 것이다. 또한, 수용성 금속 피리티온 또는 암모늄피리티온과 무기구리(II)염과 무기암모늄염과의 복합염, 또는 무기암모늄염의 일부를 무기알칼리금속염으로 대체한 복합염을 pH 1 - 9 미만의 물 매질 중에서, 반응시켜 제조되는 구리피리티온 집합체의 입자가 1 피크의 입도 범위를 갖는 것을 전제로 5.5 - 9μm 미만의 범위에 있는 수중방오제에 관한 것이다. The present invention relates to copper pyrithione aggregates and uses thereof. More specifically, a composite salt of a water-soluble metal pyrithione or ammonium pyrithione, a complex salt of an inorganic copper (II) salt and an inorganic ammonium salt, or a complex salt in which a part of an inorganic ammonium salt is replaced by an inorganic alkali metal salt, And a method for producing the copper pyrithione aggregate. The composite salt of the water-soluble metal pyrithione or ammonium pyrithione with a composite salt of an inorganic copper (II) salt and an inorganic ammonium salt or a part of an inorganic ammonium salt with an inorganic alkali metal salt is dissolved in a water medium having a pH of less than 1 to 9, And the particles of the copper pyrithione aggregate prepared by the reaction are within the range of 5.5 to 9 μm on the assumption that the particles have a particle size of 1 peak.

특허문헌 1에는, 구리피리티온의 제조에 있어서, 제조 공정에서 일어나는 겔화(gelation)를 방지하고, 반응을 촉진하기 위한 목적으로 계면활성제를 첨가하는 방법이 개시되어 있다. 본 특허의 청구범위에 기재되어있는 pH3 - 8의 조건하에서 피리티온 알칼리 금속염 수용액에 무기구리(II)염을 더하면, 구리피리티온을 생성하기 전에, 먼저 염기성구리염의 미세결정이 침전된다. 구리피리티온은, 미용성(微溶性)의 염기성구리염 침전물과 피리티온 알칼리 금속염과의 반응에 의해 얻을 수 있지만, 매우 고점도의 액성으로 된다. 이것이 겔화라 불리는 현상의 실태이다. 계면활성제를 첨가함으로써, 반응은 진행되지만, 생성한 구리피리티온의 입자는 수 미크론 정도로 작아지고, 여과성이 좋지 않다는 결점을 가진다. 또 구리피리티온 제품 중에 불순물로서 잔존하는 염기성구리염은, 선저도료에 배합된 때, 도료의 저장시에 겔화(gelation)를 일으키는 원인이 된다. Patent Document 1 discloses a method for preventing the gelation occurring in the production process in the production of copper pyrithione and adding a surfactant for the purpose of promoting the reaction. When an inorganic copper (II) salt is added to an aqueous solution of an alkali metal pyrithione under the condition of pH 3 to 8 described in the claims of this patent, microcrystals of a basic copper salt are precipitated before the copper pyrithione is produced. Copper pyrithione can be obtained by reaction of a slightly soluble basic copper salt precipitate with a pyrithione alkali metal salt, but becomes very viscous liquid. This is the actual state of the phenomenon called gelling. The addition of the surfactant causes the reaction to proceed, but the resulting particles of copper pyrithione are small to the extent of several microns and have the disadvantage of poor filtration properties. Further, the basic copper salt remaining as an impurity in the copper pyrithione product causes gelation at the time of storage of the paint when it is incorporated into the bottom paint.

특허문헌 2에는, pH1.6 ~ 3.2의 범위에서, 피리티온 금속염 수용액과 무기구리(II)염 수용액을 고온하에서 반응시켜, 이어서 무기구리(II)염을 추가하고, 가열처리를 행하는, 구리피리티온의 제조법이 개시되어 있다. 본 방법의 제 1 공정에서는, 저pH·고온하에서 장시간 반응시키는 제조조건에서, 피리티온 산(酸)의 산화에 의한 비스피리티온(2량체)가 생기기 쉬워, 제 2공정에서 비스피리티온을 열분해시켜, 동시에 무기구리(II)염을 보충함으로써, 구리피리티온의 순도를 높이는 수법이 취해지고 있다. 고순도 구리피리티온은 얻어지지만, 공정을 거듭함으로써, 제조 비용이 높아진다는 결점을 가진다. 또 제 2공정에서는, 생성량은 한정되어 있지만, 상술한 바와 같이 염기성구리염의 생성이 불가피하다. 본 특허 제조법으로 얻은 구리피리티온의 평균 입자경은, 생성하는 염기성구리염이 적기 때문에, 상기 특허문헌 1의 제조법으로 얻은 구리피리티온의 평균 입자경보다 훨씬 커지지만, 그래도 실시예에 나타낸 바와 같이, 원심식 입도 분포 측정 장치 「CAPA500」(호리바제작소)를 사용한 경우, 5μm를 초과하지 않는다.Patent Document 2 discloses a method for producing copper pyrithione by reacting an aqueous solution of a pyrithione metal salt with an aqueous solution of an inorganic copper (II) salt at a pH in the range of 1.6 to 3.2, then adding an inorganic copper (II) salt, A process for producing thiones is disclosed. In the first step of the present method, bispyrithione (dimer) is easily formed due to oxidation of pyrithione acid (acid) in a production condition under which the reaction is carried out for a long time at a low pH and a high temperature. In the second step, pyrethion And at the same time, an inorganic copper (II) salt is supplemented to increase the purity of the copper pyrithione. High purity copper pyrithione is obtained, but has the drawback that the production cost is increased by repeating the process. In the second step, the production amount is limited, but the production of the basic copper salt is inevitable as described above. The average particle diameter of the copper pyrithione obtained by the present patented production method is much larger than the average particle diameter of the copper pyrithione obtained by the production method of Patent Document 1 since the amount of the basic copper salt to be produced is small, When using the food particle size distribution measuring apparatus " CAPA500 " (Horiba Works), the thickness does not exceed 5 탆.

특허문헌 3에는, 일정의 입자경 범위를 구성요소로 하고, 그 비율의 범위를 정한 피리티온 금속염을 방오 유효성분으로 하는 방오 조성물이 개시되어 있다. 피리티온 금속염 중 구리피리티온에 대해서는, 실시예 및 비교예에서 중앙값을 나타내는 D(0.5)가 4 예시되어있다. 내역은 분쇄품이 1 예, 습식 여과물 1 예, 분쇄품과 미분쇄품의 혼합물이 1 예, 미분쇄품이 1 예 (비교예)이다. 분쇄품과 습식 여과물의 측정값이 2 - 3μm 인 반면, 분쇄품과 미분쇄품의 혼합물은, 5μm 이상을 나타내고 있다. 그러나 구리피리티온 제품은, 앞의 특허문헌 2의 실시 예 1에 기재된 바와 같이, 건조 블록을 분쇄하여 얻을 수 있다. 제조 공정에 있어서, 수세 여과 후 얻을 수 있는 웨트 케이크는 건조 과정에서 반드시 고화해 건조 블록을 형성한다. 당연히 미분쇄품은 제품은 될 수 없다. 제품 수준의 평균 입자경을 갖는 미건조품을 얻는 방법은, 소량의 샘플에 의해 실험실에서 제품화를 전제로 하지 않는 특별 조치를 실시하는 경우에 한정된다. 또 웨트 케이크를 그대로 수(水)분산액으로서 입도 분포 측정에 제공하는 방법도 가능하다. 그러나 이 방법은 실험실적으로는 채용 할 수 있다해도, 선저방오도료 및 어망방오제제가 유성계의 제품이며, 수분을 극단적으로 싫어하는 것으로 보아, 이 방법으로 얻은 측정값은 구리피리티온 제품의 측정 값을 반영하고 있지 않다고 말할 수 있다. 따라서 분쇄품과 미분쇄품의 혼합물의 측정값 5.8μm, 미분쇄품의 측정값 8.3μm은, 구리피리티온 제품의 평균 입자경으로는 부적당한 측정값이며, 산업상 이용 가능성의 관점으로부터 분쇄품의 측정값만 참조되어야 한다.Patent Document 3 discloses an antifouling composition comprising a pyrithione metal salt having a certain particle size range as a constituent element and a range of which is determined as an antifouling active ingredient. As for the copper pyrithione in the pyrithione metal salt, four examples of D (0.5) representing the median value in the examples and comparative examples are shown. (1), wet filtrate (1), mixture (1), and finely ground product (1) (comparative). The measured value of the pulverized product and the wet filtered product is 2 - 3 μm, while the mixture of the pulverized product and the non-pulverized product shows 5 μm or more. However, the copper pyrithione product can be obtained by pulverizing the dried block as described in Example 1 of the above-mentioned Patent Document 2. In the manufacturing process, the wet cake obtained after the water filtration is solidified in the drying process to form a drying block. Naturally, the finely ground product can not be a product. The method of obtaining an uncut product having an average particle size at the product level is limited to a case where special measures are taken not to be commercialized in the laboratory by a small amount of samples. It is also possible to provide the wet cake directly to the particle size distribution measurement as a water dispersion. However, even though this method can be adopted as an experimental result, since the bottom antifouling paint and antifouling agent are oil-based products, and the moisture is extremely disliked, the measured value obtained by this method is the measured value of the copper pyrithione product It can be said that it does not reflect. Therefore, the measured value of the mixture of the pulverized product and the non-pulverized product is 5.8 μm and the measured value of the pulverized product is 8.3 μm, which is an inadequate value for the average particle diameter of the copper pyrithione product. From the viewpoint of industrial applicability, Should be referenced.

특허문헌 1 : 일본 특허 제 3062825 호 공보Patent Document 1: Japanese Patent No. 3062825 특허문헌 2 : 일본 특허 제 3532500 호 공보Patent Document 2: Japanese Patent No. 3532500 특허문헌 3 : 일본 특허 제 4653642 호 공보Patent Document 3: Japanese Patent No. 4653642 특허문헌 4 : 일본 특허 제 5594619 호 공보Patent Document 4: Japanese Patent No. 5594619

주요한 선저도료용 방오제로서, 세계적으로 인지되어온 구리피리티온의 향후의 과제로는, 바다 환경 보호의 관점으로부터, 어떻게 도막으로부터의 용출을 제어하고, 방오 효력의 지속 기간을 길게 할 수 있는 형상의 제품을 개발하는가, 또 작업 현장에서의 안전성을 높이기 위하여, 어떻게 분립이 적은 입자의 제품을 개발하는가 하는 두 가지가 있었다.As a major problem of copper pyrithione which has been recognized worldwide as a major antifouling agent for bottom paints, there is a problem that from the viewpoint of protecting the marine environment, a method of controlling the elution from the coating film and lengthening the duration of the antifouling effect There are two ways to develop products and how to develop products with small particle size in order to increase the safety at work site.

본 발명자는, 구리피리티온을 종래 제법의 원료인 무기구리(Ⅱ)염 대신에, 무기구리(Ⅱ)염과 무기암모늄염과의 복합염을 이용함으로써, 종래의 구리피리티온의 침상결정과 다른 작은 원통형, 평판형 입자로 된 구리피리티온 집합체를 얻는데 성공하였다. 이 결과, 주로 구형, 타원 구형을 갖는 5.5 - 9μm 미만의 범위의 평균 입자경의 구리피리티온 집합체 입자가 선저방오도막으로부터 해수에의 용출을 제어할 수 있다는 것, 또 작업 현장에서의 분진 흡입의 위험을 경감할 수 있다는 것을 견출하여, 상기 과제를 해결했다. The inventors of the present invention have found that the use of copper pyrithione in combination with an inorganic copper (II) salt and an inorganic ammonium salt in place of the conventional copper (II) We succeeded in obtaining a copper pyrithione aggregate composed of cylindrical and flat particles. As a result, it was found that copper pyrithione aggregate particles having an average particle size of 5.5 to 9 μm or less, mainly spherical and elliptical spheres, can control the elution of the particles from the bottom antifouling coating film into seawater and the risk of dust inhalation Can be reduced, and solved the above problems.

즉, 본 발명은, That is,

(1) 일반식 (I):(1) General Formula (I):

Figure 112015094405114-pct00001
Figure 112015094405114-pct00001

(식 중 M은 1가 또는 2가의 금속, 또는 암모늄을, Py는 2-피리딜티오-N-옥사이드기를, n은 1 또는 2를 나타낸다.)로 나타내는 수가용성 금속 피리티온 또는 암모늄피리티온과,(Wherein M represents a monovalent or divalent metal or ammonium, Py represents a 2-pyridylthio-N-oxide group, and n represents 1 or 2), and a water soluble metal pyrithione or ammonium pyrithione ,

일반식 (Ⅱ):General formula (II):

Figure 112015094405114-pct00002
Figure 112015094405114-pct00002

(식 중 X는, Cl, 1/2S04, 또는 N03 중 어느 하나의 음이온을, M'는 암모늄 또는 알칼리 금속을 나타낸다.)로 나타내는 무기구리(Ⅱ)염과 무기암모늄염과의 복합염, 또는 무기암모늄염의 일부를 무기알칼리 금속염으로 대체한 복합염을 pH4 초과9 미만의 물 매질 중에서 반응시켜 만들어지는 구리피리티온 집합체,(Wherein X is, Cl, 1 / 2S0 4, Or any of the anion of N0 3, M 'is a compound substituting for a portion of the complex salt, or an inorganic ammonium salt of the inorganic copper (Ⅱ) salts and inorganic ammonium salts represented by represents an ammonium or alkali metal) of an inorganic alkali metal salt A copper pyrithione aggregate formed by reacting a salt in a water medium having a pH of more than 4 and less than 9,

(2) 일반식 (Ⅰ):(2) General formula (I):

Figure 112015094405114-pct00003
Figure 112015094405114-pct00003

(식 중 M은 1가 또는 2가의 금속, 또는 암모늄을, Py는 2-피리딜티오-N-옥사이드기를, n은 1 또는 2를 나타낸다.)로 나타내는 수용성 금속 피리티온 또는 암모늄피리티온과,(Wherein M represents a monovalent or divalent metal or ammonium, Py represents a 2-pyridylthio-N-oxide group, and n represents 1 or 2), and a water-soluble metal pyrithione or ammonium pyrithione,

일반식 (Ⅱ):General formula (II):

Figure 112015094405114-pct00004
Figure 112015094405114-pct00004

(식중 X는, Cl, 1/2S04, 또는 N03 중 어느 하나의 음이온을, M'은 암모늄 또는 알칼리 금속을 나타낸다.)로 나타내는 무기구리(II)염과 무기암모늄염과의 복합염, 또는 무기암모늄염의 일부를 무기알칼리 금속염으로 대체한 복합염을 pH4 초과9 미만의 물 매질중에서 반응시켜 만들어지는 것을 특징으로 하는, 구리피리티온 집합체의 제조 방법,(II) salt of an inorganic ammonium salt represented by the formula: wherein X represents any one of Cl, 1 / 2SO 4 , and NO 3 and M 'represents ammonium or an alkali metal, or A complex salt in which a part of the inorganic ammonium salt is replaced with an inorganic alkali metal salt is reacted in a water medium having a pH of more than 4 and less than 9 to prepare a copper pyrithione aggregate,

(3) 일반식 (I):(3) General formula (I):

Figure 112015094405114-pct00005
Figure 112015094405114-pct00005

(식중 M은 1가 또는 2가의 금속, 또는 암모늄을, Py는 2-피리딜티오-N-옥사이드기를, n은 1 또는 2를 나타낸다.)로 나타내는 수가용성 금속 피리티온 또는 암모늄피리티온과,(Wherein M represents a monovalent or divalent metal or ammonium, Py represents a 2-pyridylthio-N-oxide group, and n represents 1 or 2), and a water soluble metal pyrithione or ammonium pyrithione,

일반식 (II):General formula (II):

Figure 112015094405114-pct00006
Figure 112015094405114-pct00006

(식중 X는, Cl, 1/2S04, 또는 N03 중 어느 하나의 음이온을, M'은 암모늄 또는 알칼리 금속을 나타낸다.)로 나타내는 무기구리(II)염과 무기암모늄염과의 복합염, 또는 무기암모늄염의 일부를 무기알칼리 금속염으로 대체한 복합염을 pH1 - 9 미만의 물 매질중에서 반응시켜 만들어지는 구리피리티온 집합체 입자의 중앙값 직경이, 입도 분포에서의 하나의 피크를 갖는 것을 전제조건으로하여, 5.5 - 9μm 미만의 범위에 있는 구리피리티온 집합체,(II) salt of an inorganic ammonium salt represented by the formula: wherein X represents any one of Cl, 1 / 2SO 4 , and NO 3 and M 'represents ammonium or an alkali metal, or Assuming that the median diameter of the copper pyrithione aggregate particles formed by reacting the composite salt in which a part of the inorganic ammonium salt is substituted with an inorganic alkali metal salt in a water medium having a pH of less than 1 to 9 has one peak in the particle size distribution , A copper pyrithione aggregate in the range of less than 5.5 - 9 [mu] m,

(4) M은, 나트륨, 칼륨, 칼슘 및 마그네슘으로 이루어진 군으로부터 선택되는 금속인, 상기 (1) 또는 (3)에 기재된 구리피리티온 집합체,(4) The copper pyrithione aggregate according to (1) or (3), wherein M is a metal selected from the group consisting of sodium, potassium, calcium and magnesium,

(5) M은, 나트륨, 칼륨, 칼슘 및 마그네슘으로 이루어진 군으로부터 선택되는 금속인, 상기 (2)에 기재된 구리피리티온 집합체의 제조 방법,(5) The method for producing the copper pyrithione aggregate according to (2), wherein M is a metal selected from the group consisting of sodium, potassium, calcium and magnesium,

(6) 무기구리(II)염은, 염화구리(II) 또는 황산구리(II)이며, 무기암모늄염은, 염화암모늄 또는 황산암모늄인, 무기알칼리 금속염은, 염화나트륨 또는 황산나트륨인, 상기 (1), (3) 또는 (4)에 기재된 구리피리티온 집합체,(6) The method according to any one of the above items (1), (2) or (3), wherein the inorganic copper (II) salt is copper (II) chloride or copper (II) chloride, and the inorganic ammonium salt is ammonium chloride or ammonium sulfate and the inorganic alkali metal salt is sodium chloride or sodium sulfate 3) or the copper pyrithione aggregate according to (4)

(7) 무기구리(II)염은 염화구리(II) 또는 황산구리(II)이며, 무기암모늄염은 염화암모늄 또는 황산암모늄이며, 무기알칼리 금속염은 염화나트륨 또는 황산나트륨인, 상기 (2), 또는 (5)에 기재된 구리피리티온 집합체의 제조 방법,(7) The method according to (2) or (5) above, wherein the inorganic copper (II) salt is copper (II) chloride or copper (II) chloride, the inorganic ammonium salt is ammonium chloride or ammonium sulfate, and the inorganic alkali metal salt is sodium chloride or sodium sulfate. A method for producing the copper pyrithione aggregate described in

(8) 구리피리티온 집합체 입자의 중앙값 직경이, 입도 분포를 이용하는 것을 전제조건으로 하여, 5.5 - 9μm 미만의 범위에 있는, 상기 (3)의 구리피리티온 집합체,(8) The copper pyrithione aggregate of the above (3), wherein the median diameter of the copper pyrithione aggregate particles is in the range of less than 5.5 - 9 μm on the condition that the particle size distribution is used,

(9) 상기 (1)의 구리피리티온 집합체를 함유하는 수중방오제,(9) An underwater antifouling agent containing the copper pyrithione aggregate of (1)

(10) 상기 (3) 또는 (8)의 구리피리티온 집합체를 함유하는 수중방오제, 및(10) an underwater antifouling agent containing the copper pyrithione aggregate of the above (3) or (8), and

(11) 수중방오제가 선저도료용 방오제 또는 어망용 방오제인 상기 (9) 또는 (10)의 수중방오제, 를 제공한다.(11) The underwater antifouling agent of (9) or (10), wherein the underwater antifouling agent is an antifouling agent for bottom paints or a fishing net antifouling agent.

본 발명의 구리피리티온 집합체를 제조할 때 이용할 수 있는 바람직한 금속 피리티온으로는, 나트륨피리티온이, 바람직한 무기구리(II)염으로는, 황산구리(II) 또는 염화구리(II)가, 바람직한 무기암모늄염으로는 황산암모늄염 또는 염화암모늄염이, 바람직한 무기알칼리 금속염으로는, 황산나트륨 또는 염화나트륨을 들 수 있다.The preferred metal pyrithione that can be used in preparing the copper pyrithione aggregates of the present invention include sodium pyrithione and the preferred inorganic copper (II) salts include copper (II) chloride or copper (II) chloride, Examples of the ammonium salt include ammonium sulfate salts or ammonium chloride salts, and preferable inorganic alkali metal salts are sodium sulfate or sodium chloride.

본 발명에 이용되는 무기구리(II)염과 무기암모늄염과의 복합염으로는, 예를 들면 염화구리와 염화암모늄과의 복합염(CuCl2·2(NH4)Cl, 2H20), 황산구리와 황산암모늄과의 복합염 (CuS04 ·(NH4)2S04,·6H20), 무기구리(II)염과 무기알칼리 금속염과의 복합체로는, 예를 들면 황산구리와 황산나트륨의 복합염(CuS04·Na2S04·2H20), 황산구리와 황산칼륨의 복합염(CuS04·K2S04·6H20)를 들 수 있다. 이들 복합염은, 일반적으로 계산량의 무기구리(II)염과 무기알칼리 금속염 또는 무기암모늄염의 황산 또는 염산 수용액을 농축함으로써 결정으로 얻어진다. 그러나 상기의 농축액으로부터 결정을 추출할 필요 없이, 그대로 본 발명의 구리피리티온 집합체의 제조 원료 수용액으로써, 금속 피리티온 수용액과의 반응에 제공하는 것이 효율적이며, 바람직하다.Examples of the complex salt of an inorganic copper (II) salt and an inorganic ammonium salt used in the present invention include a complex salt of copper chloride and ammonium chloride (CuCl 2 .2 (NH 4 ) Cl, 2H 2 O) (CuSO 4. (NH 4 ) 2 SO 4 .6H 2 O), and a complex salt of inorganic copper (II) salt and an inorganic alkali metal salt, for example, a complex salt of copper sulfate and sodium sulfate (CuSO 4揃 Na 2 SO 4揃 2H 2 O), and a complex salt of copper sulfate and potassium sulfate (CuSO 4揃 K 2 SO 4揃 6H 2 O). These complex salts are obtained as crystals by generally concentrating a calculated amount of an inorganic copper (II) salt and an aqueous solution of sulfuric acid or hydrochloric acid of an inorganic alkali metal salt or an inorganic ammonium salt. However, it is efficient and preferable to provide the raw material aqueous solution for producing the copper pyrithione aggregate of the present invention directly to the reaction with the metal pyrithione aqueous solution, without needing to extract crystals from the concentrated liquid.

무기암모늄염의 일부를 무기알칼리 금속염으로 대체하여 이용할 때의 무기알칼리 금속염의 비율은, 10 - 90%, 바람직하게는 30 - 70%이다. 10% 미만에서는 대체 효과가 없고, 90%를 초과하면 암모늄에 의해 집합체 형성이 얻어지지 않는다. 무기암모늄염의 일부를 무기알칼리 금속염으로 대체하여 이용하는 장점은, 높은 pH역, 또 비교적 고온하에서 반응시킬 경우에 얻어진다. 이와 같은 반응 조건하에서는, 무기암모늄으로부터 발생하는 암모니아량을 제어하고, 또 교반을 보다 원활하게 하는 효과를 기대할 수 있다. 그러나 얻어진 구리피리티온 집합체에 포함되는 무기알칼리 금속염 불순물의 제거가 용이하지 않기 때문에, 이 불순물의 함량이 증대하기 쉽고, 또 입자의 형상이 가늘게 되기 때문에, 얻어진 구리피리티온 집합체의 품질, 입도 제어에 악영향을 출 수 있다. 따라서 낮은 pH역, 낮은 온도에서 반응시킬 경우, 즉 암모늄의 발생이 거의 없는 경우는, 무기알칼리 금속염은 이용하지 않고, 무기암모늄염만 이용하는 것이 권장된다. 어느것을 선택하는지는, 제조 조건, 제조 규모, 그리고 제조 설비에 의한다.When a part of the inorganic ammonium salt is replaced by an inorganic alkali metal salt, the ratio of the inorganic alkali metal salt is 10-90%, preferably 30-70%. If it is less than 10%, there is no substitution effect. If it exceeds 90%, aggregation by ammonium is not obtained. The advantage of using a part of the inorganic ammonium salt in place of the inorganic alkali metal salt is obtained when the reaction is carried out at a high pH and at a relatively high temperature. Under such reaction conditions, the effect of controlling the amount of ammonia generated from inorganic ammonium and making the stirring more smooth can be expected. However, since the removal of the inorganic alkali metal impurities contained in the obtained copper pyrithione aggregate is not easy, the content of the impurities is easily increased and the shape of the particles is narrowed. Therefore, the quality of the obtained copper pyrithione aggregate, Adverse effects can be obtained. Therefore, when the reaction is carried out at a low pH and a low temperature, that is, when there is little occurrence of ammonium, it is recommended to use only inorganic ammonium salts without using inorganic alkali metal salts. Which one to choose depends on manufacturing conditions, manufacturing scale, and manufacturing facilities.

종래의 금속 피리티온 수용액과 무기구리(II)염 수용액을 반응시켜 구리 피리티온을 얻는 방법으로는, pH4 - 8에 있어서는 구리피리티온을 생성하기 전에 염기성구리염(예를 들면 염기성 황산구리, CuS04·Cu(OH)2)를 생성하기 위해, 고(固)-액 반응으로 된 결과, 반응 효율이 나빠질 뿐만 아니라, 점도가 높아져, 상기 특허문헌 1에 기재되어 있는 바와 같이, 계면활성제를 사용하지 않는 한 반응이 진행되지 않는다. 그러나 본 발명의 금속 피리티온 수용액과 무기구리(II)염과 무기암모늄염과의 복합염 수용액, 또는 무기암모늄염의 일부를 무기알칼리 금속염으로 대체한 복합염 수용액을 반응시킬 경우는, 수산화구리보다도 결합력이 강한 무기암모늄염, 무기알칼리 금속염이 무기구리(II)염과 결합하고 있기 때문에, 염기성구리염은 생성하지 않고, 액-액 반응이 유지된다. 그 때문에 반응은 원활하게 진행되고, pH4 - 8 조건하의 반응에 있어서 계면활성제 첨가의 필요성이 없다는 이점을 가진다. 본 발명의 구리피리티온 집합체를 제조하는 것에 적절한 pH 범위는 1 - 9 미만이다. pH 1 - 4 의 범위에 대해서는, 이미 본 발명자에 의해 먼저 특허출원되어 있다(특허문헌 4). pH가 9를 초과하면, 필수 원료인 무기암모늄염이 무기알칼리염으로 치환하여 집합체 형성을 방해할 뿐만 아니라, 암모니아를 발생하여 악취의 문제를 일으킨다.A conventional method of reacting an aqueous solution of metal pyrithione with an aqueous solution of an inorganic copper (II) salt to obtain copper pyrithione includes a method in which a basic copper salt (for example, basic copper sulfate, CuSO 4 (Solid) - liquid reaction for producing Cu (OH) 2 ), not only the reaction efficiency is deteriorated but also the viscosity is increased. As described in Patent Document 1, the use of a surfactant The reaction does not proceed. However, when an aqueous solution of a metal pyrithione solution of the present invention and an aqueous solution of a composite salt of an inorganic copper (II) salt and an inorganic ammonium salt or an aqueous solution of a composite salt in which a part of an inorganic ammonium salt is substituted with an inorganic alkali metal salt is reacted, Since the strong inorganic ammonium salt and the inorganic alkali metal salt bind to the inorganic copper (II) salt, the basic copper salt is not produced and the liquid-liquid reaction is maintained. Therefore, the reaction proceeds smoothly and there is no need to add a surfactant in the reaction under pH 4 - 8. The pH range suitable for preparing the copper pyrithione aggregates of the invention is less than 1-9. With regard to the range of pH 1 to 4, the present inventor has already filed a patent (patent document 4). If the pH exceeds 9, the inorganic ammonium salt as an essential raw material is substituted with an inorganic alkali salt, which not only hinders the formation of aggregates, but also generates ammonia and causes a problem of odor.

종래의 금속 피리티온 수용액과 무기구리(II)염 수용액을 반응시켜 구리피리티온을 얻는 방법으로는, 반응은 70℃ 이상의 고온하에서 행해진다. 한편 본 발명의 금속 피리티온 수용액과 무기구리(II)염과 무기암모늄염과의 복합염 수용액, 또는 무기암모늄염의 일부를 무기알칼리 금속염으로 대체한 복합염 수용액을 반응시키는 방법으로는, 반응 온도는 10 - 40℃ , 바람직하게는 15 - 30℃의 상온하에서 행해진다. 고온하에서 반응시키면, 입자가 커져, 바람직한 집합체가 얻어지지 않고, 또 악취의 발생의 문제를 일으킨다.In the conventional method of reacting an aqueous solution of metal pyrithione with an aqueous solution of an inorganic copper (II) salt to obtain copper pyrithione, the reaction is carried out at a high temperature of 70 ° C or higher. In the method of reacting the metal pyrithione aqueous solution of the present invention with an aqueous solution of a composite salt of an inorganic copper (II) salt and an inorganic ammonium salt or an aqueous solution of a composite salt in which a part of an inorganic ammonium salt is replaced by an inorganic alkali metal salt, - 40 캜, preferably 15 - 30 캜. When the reaction is carried out at a high temperature, the particles become large, a desired aggregate is not obtained, and a problem of generation of odor is caused.

본 발명의 구리피리티온 집합체의 제조법에 기초하여, 나트륨피리티온, 황산구리(II)와 황산암모늄과의 복합염을 원료로 하여 얻어진 구리피리티온 집합체를 평균 입자경 약 10μm 정도의 입자로 분쇄하여 물에 분산시켜, 80℃에서 30분 가열하면, 희미한 암모니아 악취를 발생시켜, 집합체는 수 10% 정도 끊어진다. 여기부터 구리피리티온 집합체의 형성에 관계되는 물질은, 구리와 친화력이 있는 암모늄이온으로 고려되지만, X선 회절 분석으로는 황산암모늄의 존재는 인정되지 않고, 이것을 물질로 특정할 수 없었다. 구리피리티온의 X선 회절 분석표와 비교하여, 상이한 점이 인정되지 않는 것으로부터, 암모늄은 구리피리티온에 밀착되어 있어, 비정질인것으로 고려되어진다. Na함량을 1ppm 이하로까지 충분히 수세(水洗)한 구리피리티온 집합체의 HPLC에 의한 구리피리티온 순도는, 98.2 - 98.6%였다. 여기부터 구리피리티온 집합체 중의 암모늄 함량은 1.4% 정도로 추정된다. 한편 황산나트륨이 구리피리티온 집합체의 형성에 관계되어 있을 가능성에 대해서는 구리피리티온 집합체를 충분히 수세하면, 실시예 2로 나타난 바와 같이, Na 함량이 0.1ppm 정도이며, 집합체 중에 보유하고 있는 것은 아닌 것이 명백하므로, 그 가능성은 없다고 판단된다.Based on the production method of the copper pyrithione aggregate of the present invention, a copper pyrithione aggregate obtained by using a complex salt of sodium pyrithione, copper (II) sulfate and ammonium sulfate as a raw material is pulverized into particles having an average particle size of about 10 mu m, When dispersed and heated at 80 占 폚 for 30 minutes, a faint ammonia odor is generated, and the aggregate is broken by about 10%. From this, the substance related to the formation of the copper pyrithione aggregate is considered to be an ammonium ion having an affinity with copper, but the presence of ammonium sulfate is not recognized by X-ray diffraction analysis, and it can not be specified by the substance. As compared with the X-ray diffraction analysis table of copper pyrithione, since no difference is recognized, ammonium is considered to be amorphous because it is in close contact with copper pyrithione. The copper pyrithione purity of the copper pyrithione aggregate obtained by thoroughly washing (washing with water) the Na content to 1 ppm or less was 98.2 to 98.6%. From this, it is estimated that the ammonium content in the copper pyrithione aggregate is about 1.4%. On the other hand, regarding the possibility that sodium sulfate is involved in the formation of the copper pyrithione aggregate, it is evident that when the copper pyrithione aggregate is sufficiently washed with water, the Na content is about 0.1 ppm as shown in Example 2, Therefore, it is judged that there is no such possibility.

본 발명의 구리피리티온 집합체의 제조법에 기초하여, 반응 생성물을 수세 여과하고, 건조한 고체는, 수 100μm의 직경을 갖는 집합체 조대 입자이다. 이 조대 입자에 전단 응력을, 예를 들면 막자 사발에 문지르는 것처럼 힘을 가하여 분쇄하면, 일부가 미세 입자가 되고, 입도 분포에서 미세 입자 영역과 큰 입자 역에 두 개의 피크를 발생시킨다 (특허문헌 4 참조). 그러나, 표면에 갑압력을 가하여 분쇄한 경우, 예를 들면 미분쇄기인 보올 밀(ball mill)에 의해 분쇄한 경우, 정규 분포 또는 그것에 가까운 한 개의 피크의 입도 분포를 얻을 수 있다. 이러한 입도 분포의 양태는, 레이저 회절식의 입도 분포 측정 장치, 예를 들면 LA-920(호리바제작소)에 의해 확인된다. 본 발명의 분쇄 방법으로 얻어진 구리피리티온 집합체는, 실질적으로 미소립자를 포함하지 않기 때문에, 상기 미소립자 역과 대립자 역을 갖는 집합체 입자에 비해, 선저방오도료 또는 어망방오제제의 도막으로부터의 용출 제어 기능에 뛰어나다. 선저방오도료용 또는 어망방오제제용 방오제로써 바람직한 입자경 범위는, 1 - 30μm, 중앙값은 5.5 - 9μm 미만이다. 다만 하한의 5.5μm는, 원심식 입도 분포 장치, CAPA-500(호리바제작소)에 의해, 측정된 값일 것이 전제 조건이다. 왜냐하면 특허문헌 2의 특허청구범위인 1 - 5μm의 평균 입자경은, CAPA-5OO에 의해 측정된 값이기 때문이다.Based on the production method of the copper pyrithione aggregate of the present invention, the reaction product is washed by water filtration, and the dried solid is an aggregate coarse particle having a diameter of several hundreds of micrometers. When shear stress is applied to the coarse particles by, for example, rubbing against a mortar, a part of the particles become fine particles, and two peaks are generated in the fine particle region and the large particle region in the particle size distribution (Patent Document 4 Reference). However, when crushing is carried out by applying pressure to the surface, for example, by a ball mill which is a pulverizer, a normal distribution or a particle size distribution of one peak close thereto can be obtained. Such an aspect of the particle size distribution is confirmed by a laser diffraction type particle size distribution measuring apparatus, for example, LA-920 (Horiba Manufacturing Co.). Since the copper pyrithione aggregate obtained by the pulverizing method of the present invention does not substantially contain microparticles, compared with the aggregate particles having the microparticle region and the major particle region, the copper pyrithione aggregate obtained by the elution control from the coating film of the bottom antifouling paint or anti- Excellent in function. As the antifouling agent for bottom antifouling paint or fishing net antifouling agent, a preferable particle diameter range is 1 - 30 μm and a median value is less than 5.5 - 9 μm. However, the lower limit of 5.5 占 퐉 is a precondition for the value measured by a centrifugal particle size distribution apparatus, CAPA-500 (Horiba Works). This is because the average particle diameter of 1-5 占 퐉 as claimed in Patent Document 2 is a value measured by CAPA-5OO.

지금까지 구리피리티온이 분말상으로 취급된 경우, 작업 현장에서는 분립에 의한 흡입 때문에 건강을 해치게 되는 우려가 있었다. 특히 종래의 구리피리티온이 비교적 딱딱한 침상 결정인 점이 문제시되어, 계면활성제 등을 이용하여 입자를 조대화하는 방법, 유성 수지상 물질로 피복하여 페이스트(paste)화 하는 방법 등이 제안되어 왔다. 이들 방법은 효과적이지만, 구리피리티온 분말을 이차 처리하기 때문에 비용 상승이 불가피하다. 본 발명의 구리피리티온 집합체는, 입자가 커지고, 게다가 유동성이 있기 때문에, 취급하기 쉽고 분립하기 어려울뿐만 아니라, 침상 결정에 의한 문제가 없기 때문에, 이러한 이차 처리를 필요로 하지 않고, 분말상으로 취급된다고 하더라도, 종래에 비해 건강 피해의 위험은 매우 경감되는 이점을 갖는다.When copper pyrithione is handled in powder form, there has been a fear that health may be deteriorated due to inhalation by the separation at the working site. Particularly, there is a problem that conventional copper pyrithione is a relatively hard needle-shaped crystal. Thus, a method of coarsening particles by using a surfactant or the like, a method of coating with an oil-based resinous material and paste, and the like have been proposed. These methods are effective, but cost increases are inevitable because the copper pyrithione powder is subjected to secondary treatment. Since the copper pyrithione aggregate of the present invention is easy to handle and difficult to be broken down due to its large particle size and fluidity, there is no problem caused by needle-shaped crystals, and therefore, the copper pyrithione aggregate is handled in powder form The risk of health damage is greatly reduced compared to the conventional case.

선저도료나 어망방오제제의 도막으로부터 용출되는 구리피리티온의 용출 속도는, 구리피리티온의 표면적, 해수 온도에 더하여, 도막의 성질, 배의 항행 속도 또는 해류 속도, 오손 생물의 부착 상황 등의 요인이 관계한다. 단순히 구리피리티온의 표면적의 비율만으로, 그 차이를 논할 수 없지만, 평균 입자경(중앙값) 5.5 - 9μm 미만을 갖는 본 발명의 구리피리티온 집합체의 표면적은, 시판 구리피리티온의 표면적보다 1.5 - 4배 크고, 또한 집합체 형성 물질의 개재에 의해, 구리피리티온 집합체로 용출 지연 효과가 생기기 때문에, 종래의 구리피리티온에 비해, 해수에의 용출 속도가 크게 느려진다. 이 결과 열대 해역과 같은 고수온 조건하에서의 방오 효과 지속성이 개선될 뿐만 아니라, 해양에의 구리피리티온 배출량을 줄일 수 있기 때문에, 바다 환경 보호의 견지에서도 바람직하다.The elution rate of copper pyrithione eluted from the coating film of the bottom paint or fishing net antifouling formulation is determined by factors such as the surface area of copper pyrithione and the sea water temperature as well as the properties of the coating film, This is related. The surface area of the copper pyrithione aggregate of the present invention having an average particle diameter (median) of less than 5.5 - 9 占 퐉 is 1.5 to 4 times larger than the surface area of commercially available copper pyrithione, although the difference can not be solely determined by the ratio of the surface area of copper pyrithione The elution rate into the seawater is significantly slower than that of the conventional copper pyrithione due to the elution of the elution of the copper pyrithione into the aggregate due to the presence of the aggregation forming material. As a result, not only the sustainability of the antifouling effect under the high temperature condition such as the tropical sea area is improved but also the discharge of copper pyrithione to the ocean can be reduced, so it is preferable from the standpoint of protecting the marine environment.

본 발명의 구리피리티온 집합체는, 시릴 아크릴 수지, 아연 아크릴 수지, 구리 아크릴 수지 및 이들의 공중합 수지를 기재로 하는 선저방오도료에, 또한 아크릴 수지 등의 가연성 수지를 기재로하는 어망방오제제에 배합된다. 선저방오도료, 어망방오제제 중 어느 하나의 경우에도 통상 아산화구리와 함께 처방된다.The copper pyrithione aggregate of the present invention can be used as a base antifouling paint based on a silyl acrylic resin, a zinc acrylic resin, a copper acrylic resin and a copolymer resin thereof, and also to a fishing net antifouling agent based on a flammable resin such as acrylic resin do. A bottom antifouling paint, and a fishing net antifouling agent are usually formulated together with copper oxide.

본 발명의 구리피리티온 집합체는, 종래의 구리피리티온이 중앙값 직경 5μm 이하의 침상결정인 것에 대해, 중앙값 직경이 5.5 - 9μm 미만으로 크고, 또한 길이가 짧은 소입자의 입상 집합체이기 때문에, 유동성이 좋고, 작업 현장에서의 흡입의 위험성이 큰 폭으로 경감됨과 함께, 선저방오도료용 및 어망방오제제용 방오제로써 사용할 때, 해수에의 용출이 큰 폭으로 저감되어, 방오 효과의 지속성이 개선된다.Since the copper pyrithione aggregate of the present invention is a granular aggregate of small particles having a median diameter of less than 5.5 to 9 占 퐉 and a short length although the conventional copper pyrithione is an acicular crystal having a median diameter of 5 占 퐉 or less, The risk of inhalation at the work site is greatly reduced and the release to seawater is greatly reduced when used as an antifouling agent for a bottom antifouling paint and a fishing net antifouling formulation to improve the durability of the antifouling effect .

[도 1]은, 실시예 1에서 얻어진 구리피리티온 집합체의 X선 회절 분석에 의한 회절 패턴을 나타낸 챠트이다.
[도 2]는, 시판 구리피리티온의 X선 회절 분석에 의한 회절 패턴을 나타내는 챠트이다.
[도 3]은, 실시예 1에서 얻어진 구리피리티온 집합체의 DTA/TGA에서의 발열 피크 온도를 나타낸 챠트이다.
[도 4]은, 실시예 1에서 얻어진 구리피리티온 집합체의 입도 분포로부터 중앙값 직경(50%)을 나타낸 챠트이다.(원심식 「CAPA-500」(호리바제작소))
[도 5]는, 실시예 1에서 얻어진 구리피리티온 집합체의 입도 분포로부터 중앙값 직경(50%)을 나타낸 챠트이다.(레이저 회절식「LA-920」(호리바제작소))
[도 6]은, 실시예 1에서 얻어진 구리피리티온 집합체의 전자 현미경 사진이다.
[도 7]은, 실시예 2에서 얻어진 구리피리티온 집합체의 입도 분포로부터 중앙값 직경(50%)을 나타낸 챠트이다.(레이저 회절식「LA-920」(호리바제작소))
[도 8]은, 실시예 3에서 얻어진 구리피리티온 집합체의 입도 분포로부터 중앙값 직경(50%)을 나타낸 챠트이다.(레이저 회절식「LA-920」(호리바제작소))
[도 9]는, 실시예 3에서 얻어진 구리피리티온 집합체의 전자 현미경 사진이다.
[도 10]은, 실시예 4에서 얻어진 구리피리티온 집합체의 X선 회절 분석에 의한 회절 패턴을 나타낸 챠트이다.
[도 11]은, 실시예 4에서 얻어진 구리피리티온 집합체의 입도 분포로부터 중앙값 직경(50%)을 나타낸 챠트이다.(원심식「CAPA-500」(호리바제작소))
[도 12]는, 실시예 4에서 얻어진 구리피리티온 집합체의 전자 현미경 사진이다.
Fig. 1 is a chart showing a diffraction pattern by X-ray diffraction analysis of the copper pyrithione aggregate obtained in Example 1. Fig.
[Fig. 2] is a chart showing a diffraction pattern by commercial X-ray diffraction analysis of copper pyrithione.
[Fig. 3] is a chart showing an exothermic peak temperature in DTA / TGA of the copper pyrithione aggregate obtained in Example 1. Fig.
4 is a chart showing the median diameter (50%) from the particle size distribution of the copper pyrithione aggregates obtained in Example 1. (Centrifugal type "CAPA-500" (Horiba Manufacturing Co.))
5 is a chart showing the median diameter (50%) from the particle size distribution of the copper pyrithione aggregate obtained in Example 1. (laser diffraction type LA-920 manufactured by Horiba Ltd.)
6 is an electron micrograph of the copper pyrithione aggregate obtained in Example 1. Fig.
7 is a chart showing the median diameter (50%) from the particle size distribution of the copper pyrithione aggregate obtained in Example 2. (laser diffraction type LA-920 manufactured by Horiba Ltd.)
8 is a chart showing the median diameter (50%) from the particle size distribution of the copper pyrithione aggregate obtained in Example 3. (laser diffraction type LA-920 manufactured by Horiba Ltd.)
9 is an electron micrograph of the copper pyrithione aggregate obtained in Example 3. Fig.
10 is a chart showing a diffraction pattern by X-ray diffraction analysis of the copper pyrithione aggregate obtained in Example 4. Fig.
11 is a chart showing the median diameter (50%) from the particle size distribution of the copper pyrithione aggregates obtained in Example 4. (Centrifugal type "CAPA-500" (Horiba Manufacturing Co.))
12 is an electron micrograph of the copper pyrithione aggregate obtained in Example 4. Fig.

이하에 실시예를 들어, 본 발명을 구체적으로 설명한다. Hereinafter, the present invention will be described in detail by way of examples.

실시예 1Example 1

5L의 반응기에 황산구리 5 수화물 125g (0.5 몰)과 황산암모늄 66g (0.5 몰)을 넣어 1.8L의 수용액으로 한 후, 10% 황산 20mL를 더하여, pH를 2로 조정했다. 이어서 나트륨피리티온 40% 수용액 (비중 1.22) 300mL를 물로 희석하여, 1.2L의 수용액으로 했다. 황산구리·황산암모늄 수용액 1.8L에 나트륨피리티온 수용액 1. 2L를 교반하에 2시간 걸쳐 20℃에서 적하했다. 얻어진 구리피리티온 집합체 슬러리(slurry)액 3L를 감압하에서 흡인 여과했다. 여과 후 남은 고체를 한번 더 원래의 용기에 옮겨, 물을 가하여 다시 3L의 구리피리티온 집합체 슬러리액으로 하고, 교반후 다시 흡인 여과를 실시했다. 이 조작을 2회 반복했다. 얻어진 고체를 80℃에서 밤새 건조기에 넣어 건조하고, 작은 조각으로 분쇄한 후 40분에 걸쳐 보올 밀로 분쇄했다. 수량은 약 150g 였다.125 g (0.5 mol) of copper sulfate pentahydrate and 66 g (0.5 mol) of ammonium sulfate were added to a 5 L reactor to make 1.8 L of an aqueous solution, and then 20 mL of 10% sulfuric acid was added to adjust the pH to 2. Subsequently, 300 mL of a 40% aqueous solution of sodium pyrithione (specific gravity 1.22) was diluted with water to obtain 1.2 L of an aqueous solution. To 1.8 L of an aqueous copper sulfate · ammonium sulfate solution, 1.2 L of a sodium pyrithione aqueous solution was added dropwise at 20 ° C over 2 hours with stirring. 3 L of the resulting slurry of copper pyrithione aggregate was subjected to suction filtration under reduced pressure. The solids remaining after filtration were transferred to the original vessel one more time, and water was added to make 3 L of a solution of the copper pyrithione aggregate slurry, followed by stirring again, followed by suction filtration. This operation was repeated twice. The obtained solid was put in a drier overnight at 80 캜, dried, ground into small pieces, and pulverized with a boehmole for 40 minutes. The yield was about 150 g.

이 중에서 소량을 취하여 X선 회절 분석을 실시한 결과, 시판 구리피리티온의 회절 패턴과 완전히 동일한 패턴을 나타냈다(도 1, 도 2). 또 DTA/TGA의 발열 피크 온도의 값은 280℃이며, 불순물의 함유를 나타내는 흡열, 발열 피크는 전혀 인정되지 않았다(도 3). 구리피리티온 재결정 정제품의 발열 피크 온도는 276℃, 시판 구리피리티온의 발열 피크 온도는 282 - 285℃이므로, 본 실시예로 얻어진 구리피리티온 집합체는, 미량의 결합성 암모늄을 포함하고 있음에도 불구하고, 순도가 높은 것임을 나타내고 있으며, 사실 HPLC 순도는 98.2% 였다. 또한 평균 입자경은, 원심식의 「CAPA-500」(호리바제작소)에서 5.9μm (도 4), 레이저 회절식의 「LA-920」(호리바제작소)에서 6.48μm (도 5) (각각 중앙값, 분산매: 0.2% 데몰N수용액) 이었다. 또한 본 실시예에서 얻어진 구리피리티온 집합체는, SEM 사진에 따라 아스펙트 비가 작은 원주상 또는 평판상의 입자의 집합체인 것으로 확인되었다 (도 6).Among them, a small amount was taken and X-ray diffraction analysis was carried out. As a result, the pattern was completely identical to the diffraction pattern of commercially available copper pyrithione (Figs. 1 and 2). Further, the value of the exothermic peak temperature of DTA / TGA was 280 DEG C, and no endothermic peak and exothermic peak indicative of impurity content were observed (FIG. 3). Since the exothermic peak temperature of the purified copper pyrithione recrystallized product is 276 ° C and the exothermic peak temperature of the commercial copper pyrithione is 282-285 ° C, the copper pyrithione aggregate obtained in this Example contains a small amount of bound ammonium , Indicating that the purity is high. In fact, the HPLC purity was 98.2%. In addition, the average particle size was found to be 5.8 占 퐉 (Fig. 4) in the centrifugal type " CAPA-500 " (Horiba Works) : 0.2% aqueous solution of demol N). Also, it was confirmed that the copper pyrithione aggregate obtained in this Example was an aggregate of cylindrical or flat-shaped particles having a small aspect ratio according to the SEM photograph (Fig. 6).

실시예 2Example 2

실시예 1과 마찬가지로 합성을 실시하여, 얻어진 구리피리티온 집합체 슬러리액을 500mL 비커에 분취하여, 18cm 직경의 5A 여과지를 이용하여 수세 여과를 실시했다. 여과 잔여물을 다시 비커에 옮겨 물을 가하여, 교반 후, 5A 여과지를 이용하여 수세 여과를 실시하는 조작을 3회 반복하였다. 물을 짜낸 고체를 건조기에 넣고, 60℃에서 6시간 건조하여, 얻어진 작은 조각을 40분간 보올 밀로 분쇄했다. 이 중에서 소량을 취하여, X선 회절 분석을 실시한 결과, 구리피리티온의 회절 패턴과 완전히 동일한 패턴을 나타냈다. 또 평균 입자경은, 레이저 회절식의 「LA-920」(호리바제작소)에서 5.79μm (도 7) (중앙값, 분산매: 0.2% 데몰N수용액)이었다. 거기에 이것의 나트륨 함량을 원자 흡광 분석에 따라 구한 결과, 0.09μg/mg이며, 부산물 황산 나트륨은 거의 남아 있지 않았다.Synthesis was carried out in the same manner as in Example 1, and the resulting slurry of the copper pyrithione aggregate was collected into a 500-mL beaker and subjected to flushing with 5-A filter paper having a diameter of 18 cm. The filtration residue was transferred to a beaker again, water was added, and the mixture was stirred and washed with water using 5A filter paper. This operation was repeated three times. The water-squeezed solid was placed in a drier, dried at 60 DEG C for 6 hours, and the obtained small pieces were pulverized for 40 minutes with a boil mill. Among them, a small amount was taken and X-ray diffraction analysis was carried out. As a result, a pattern completely identical to the diffraction pattern of copper pyrithione was shown. The average particle diameter was 5.79 mu m (median value, dispersion medium: 0.2% demol N aqueous solution) in the laser diffraction type LA-920 (Horiba Seisakusho). Its sodium content was determined by atomic absorption spectrometry to be 0.09 μg / mg, and there remained almost no by-product sodium sulfate.

실시예 3Example 3

1L의 비커에 황산구리 5 수화물 12.5g과 황산암모늄 6.6을 합하여, 360mL의 수용액으로 한 후, 1% 수산화나트륨 수용액으로 pH를 4.1로 조정했다. 이어서 나트륨피리티온 40% 수용액 (비중 1.22) 30mL을 물로 희석하여, 240mL의 수용액으로 했다. 염기성황산구리의 생성은 인정되지 않았다. 황산구리·황산암모늄 수용액 360mL에 나트륨피리티온 수용액 240mL를 교반하에 30분 걸쳐 26℃에서 적하했다. 반응 종료 후의 pH는 7.3 이었다. 반응 후의 구리피리티온 집합체 슬러리액 600mL를 밤새 방치하고, 5A 여과지를 이용하여 수세 여과를 실시했다. 여과지 위에 남은 액상 고체를 한번 더 비커에 옮겨, 물을 가하여 교반후 다시 여과를 실시했다. 이 조작을 2회 반복했다. 물을 짜낸 고체를 건조기에 넣고, 6O℃에서 6시간 건조하여, 얻은 작은 조각을 30분간 보올 밀로 분쇄했다. 수량은 약 150g이었다. 또한 HPLC 순도는 98.6%이었다.12.5 g of copper sulfate pentahydrate and 6.6 g of ammonium sulfate were added to 1 L of the beaker to make 360 mL of an aqueous solution, and then the pH was adjusted to 4.1 with 1% aqueous sodium hydroxide solution. Subsequently, 30 mL of a 40% aqueous solution of sodium pyrithione (specific gravity 1.22) was diluted with water to make 240 mL of an aqueous solution. The generation of basic copper sulfate was not recognized. To 360 mL of an aqueous copper sulfate · ammonium sulfate solution was added dropwise 240 mL of an aqueous solution of sodium pyrithione at 26 ° C over 30 minutes with stirring. The pH after completion of the reaction was 7.3. After the reaction, 600 mL of the copper pyrithione aggregate slurry solution was left overnight, followed by washing with water using a 5A filter paper. The liquid solid remaining on the filter paper was transferred to a beaker once more, and water was added thereto, followed by stirring again, followed by filtration. This operation was repeated twice. The water-squeezed solid was placed in a drier, dried at 6O < 0 > C for 6 hours, and the obtained small pieces were pulverized with a boil mill for 30 minutes. The yield was about 150 g. The HPLC purity was 98.6%.

이 중에서 소량을 취하여, X선 회절 분석을 실시한 결과, 구리피리티온의 회절 패턴과 완전히 동일한 패턴을 나타냈다. 또 평균 입자경은, 레이저 회절식의 「LA-920」(호리바제작소)에서 분쇄 30분의 경우 7.43μm (도 8) (각각 중앙값, 분산매: 0.2% 데몰N수용액)이었다. 또 본 실시예로 얻어진 구리피리티온 집합체는, SEM 사진에 따라 아스펙트 비가 작은 원주상 또는 평판상의 입자의 집합체인 것으로 확인되었다 (도 9).Among them, a small amount was taken and X-ray diffraction analysis was carried out. As a result, a pattern completely identical to the diffraction pattern of copper pyrithione was shown. The average particle size was 7.43 mu m (Fig. 8) (median, dispersion medium: 0.2% demol N aqueous solution) in the laser diffraction type "LA-920" It was also confirmed that the copper pyrithione aggregate obtained in this Example was an aggregate of cylindrical or flat-shaped particles having a small aspect ratio according to the SEM photograph (Fig. 9).

실시예 4Example 4

실시예 3의 황산암모늄 6.6g을 황산암모늄 3.3g과 황산나트륨 3.6g 대신에, 1% 수산화나트륨 수용액으로 pH를 6.4으로 조정하여, 30℃에서 실시예 3과 마찬가지로 반응시켰다. 반응 종료 후의 pH는, 7.8 이었다. 암모니아 냄새는 감지 할 수 없었다. 반응 후의 구리피리티온 집합체 슬러리액을, 실시예 3과 마찬가지로 하여, 수세 여과를 실시하고, 건조하여 얻은 작은 조각을 보올 밀에서 15분간 분쇄했다. 이 중에서 소량을 취하여, X선 회절 분석을 실시한 결과, 구리피리티온의 회절 패턴과 완전히 동일한 패턴을 나타냈다(도 10). 또 평균 입자경은, 원심식의 「CAPA-500」(호리바제작소)에서 8.5μm (도 11) (중앙값, 분산매: 0.2% 데몰N수용액) 이었다. 또한 본 실시예에서 얻어진 구리피리티온 집합체는, SEM 사진에 따라 아스펙트 비가 작은 원주상의 입자의 집합체인 것으로 확인되었다 (도 12).6.6 g of the ammonium sulfate of Example 3 was adjusted to pH 6.4 with 1% sodium hydroxide aqueous solution instead of 3.3 g of ammonium sulfate and 3.6 g of sodium sulfate and reacted at 30 캜 in the same manner as in Example 3. The pH after completion of the reaction was 7.8. No ammonia odor was detectable. After the reaction, the copper pyrithione aggregate slurry solution was subjected to washing with water and filtration in the same manner as in Example 3, followed by drying, and the obtained small pieces were ground in a ball mill for 15 minutes. Among them, a small amount was taken and subjected to an X-ray diffraction analysis. As a result, a completely identical pattern to the diffraction pattern of copper pyrithione was shown (FIG. 10). The average particle diameter was 8.5 mu m (Fig. 11) (median, dispersion medium: 0.2% demol N aqueous solution) in the centrifugal type " CAPA-500 " It was also confirmed that the copper pyrithione aggregate obtained in this Example was an aggregate of cylindrical particles having a small aspect ratio according to the SEM photograph (FIG. 12).

실시예 5Example 5

어망방오제제 도막으로부터의 방오제의 용출성을 조사하기 위해, 용출성에 영향을 미칠 우려가 있는 다른 성분을 제외한 하기 조성의 성분을 균일하게 혼합해, 어망방오제제를 얻었다.In order to examine the leaching property of the antifouling agent from the antifouling agent coating film, the components of the following composition except for the other components that might affect the elution property were uniformly mixed to obtain the antifouling agent preparation.

Figure 112015094405114-pct00007
Figure 112015094405114-pct00007

주: 시판 구리피리티온; A사제 구리피리티온(침상결정) 평균 입자경 4.8μm (CAPA-500)Note: Commercial copper pyrithione; Copper pyrithione (needle crystal) manufactured by A Company Average particle diameter 4.8 μm (CAPA-500)

폴리에틸렌제 무결절망(6절, 400데닐, 6본) 을 상기 처방Ⅰ 및 Ⅱ의 어망방오제제에 침지하고, 건조했다. 어망방오제제 조성중의 구리피리티온 집합체 및 구리피리티온이 각각 어떤 속도로 수중으로 용출하는지, 용출구리 농도를 경시적으로 측정하여 조사하였다.The polyethylenesulfate desperation (Section 6, 400 Denil, 6) was immersed in the antifouling preparations of Prescription I and II and dried. The elution copper concentration and the elution rate of copper pyrithione aggregate and copper pyrithione in water at each rate were investigated with time.

시료조제Sample preparation

실시예 6의 처방Ⅰ 및 Ⅱ의 어망방오제제에 침지하고, 건조한 폴리에틸렌 무 결절망을 방오제의 도포량이 1g이 되도록 잘라넣었다. 각 시료를 각각 초순수 250mL에 침지한 것을 실온에서 1일, 4일, 7일간 교반했다(총 6 시료). 다음으로 5C의 여과지, 이어서 평균 구멍 직경 0.45μm 멤브레인 필터를 이용하여 여과한 후, 여액에에 O.1몰/L가 되도록 질산을 첨가한 용액을 측정에 사용했다.The fabric was immersed in antifouling preparations of formulations I and II of Example 6, and the dried polyethylene filaments were cut to a coating amount of 1 g of the antifouling agent. Each sample was immersed in 250 mL of ultrapure water and stirred at room temperature for 1 day, 4 days, and 7 days (total 6 samples). Next, the solution was filtered using a filter paper of 5C, followed by filtration using an average pore diameter of 0.45 μm membrane filter, and a solution in which nitric acid was added so as to be 0.1 mol / L to the filtrate was used for the measurement.

또한 비교를 위하여, 처방Ⅰ의 구리피리티온 집합체 및 처방Ⅱ의 구리피리티온의 물에 대한 용해도(용해 구리)를 마찬가지의 방법으로 24시간 교반해 측정했다.For comparison, the solubility (dissolved copper) in water of copper pyrithione aggregate of Formulation I and copper pyrithione of Formulation II was measured by stirring in the same manner for 24 hours.

측정방법How to measure

ICP 발광 분광 분석(기기; 시마즈제작소 「ICPS-2000」)ICP emission spectroscopic analysis (instrument; Shimadzu Corporation "ICPS-2000")

측정 결과를 표 1로 나타낸다.The measurement results are shown in Table 1.

제 1 표 용출 구리 성분 농도(mg/L)Table 1 Dissolved copper component concentration (mg / L)

시료 Ⅰ. 실시예 1의 구리피리티온 집합체 평균 입자경; 5.9μm(CAPA-500)Samples I. The average particle diameter of the copper pyrithione aggregate of Example 1; 5.9 m (CAPA-500)

Ⅱ. A사제 구리피리티온 평균 입자경; 4.8μm(CAPA-500)Ⅱ. Average particle diameter of copper pyrithione manufactured by A company; 4.8 m (CAPA-500)

Figure 112015094405114-pct00008
Figure 112015094405114-pct00008

상기 표의 결과는, 본 발명의 구리피리티온 집합체는, 시판 구리피리티온과 비교해, 어망방오제제도막의 수중에의 용출이 구리피리티온과의 평균 입자경의 차이 이상으로 느리다는 것을 나타내고 있다. 즉 집합체라는 형상이 기여하고 있을 가능성이 있다. 선저방오도료도막으로부터의 수중에의 용출성에 대해서는, 선저방오도료가 일반적으로 통상 아산화구리와 함께 처방되기 때문에, 본 측정법을 적용할 수 없다. 그러나 선저방오도료에 사용되는 수지가 아크릴수지라고 하는 어망방오제제와의 유사성을 생각하면, 본 실시 예의 결과가 선저방오도료의 경우에도 마찬가지 혹은 가까운 경향을 나타내는 것이라고 추측된다.The results of the above table show that the copper pyrithione aggregates of the present invention are slower than the difference in average particle diameter with copper pyrithione in water release of the antifouling antifouling agent coating film as compared with commercially available copper pyrithione. There is a possibility that the shape of the aggregate is contributing. With respect to the elution into water from the bottom antifouling paint coating film, this measurement method can not be applied because the bottom antifouling paint is generally ordinarily formulated together with copper oxide. However, in consideration of the similarity with the fishing net antifouling agent called acrylic resin, the resin used for the bottom antifouling paint is presumed to have the same or close tendency in the case of the bottom antifouling paint.

실시예 6Example 6

하기 성분을 균일하게 혼합하여, 선저도료를 얻었다.The following components were uniformly mixed to obtain a bottom coating.

Figure 112015094405114-pct00009
Figure 112015094405114-pct00009

도료조제시 또 3개월 후에도 겔화(gelation) 등의 이상은 인정되지 않았다.No abnormality such as gelation was recognized even after three months at the time of preparation of the paint.

본 발명의 구리피리티온 집합체는, 종래의 시판 구리피리티온에 비해, 작업시 분립이 적기 때문에 취급하기 쉽고, 또 중앙값 직경으로 5.5 - 9 미만 μm의 큰 평균 입자경을 가지고 있기 때문에, 선저방오도료 및 어망방오제제의 도막으로부터의 용출이 지연되는 결과, 특히 열대 해역에서 장기 방오 성능을 발휘하는 방오제로서, 또한 환경에의 배출량이 적은 방오제로서 유용한 가능성이 있다. Since the copper pyrithione aggregate of the present invention has a large average particle diameter of 5.5 - 9 μm or less at median diameter as compared with the conventional commercially available copper pyrithione, There is a possibility that the antifouling agent is used as an antifouling agent exhibiting a long-term antifouling performance particularly in the tropical waters, and as an antifouling agent having a small emission amount to the environment, as a result of delayed elution of the antifouling agent formulation from the coating film.

Claims (12)

일반식 (I):
[화학식 1]
Figure 112017049965915-pct00010

(식 중 M은 1가 또는 2가의 금속, 또는 암모늄을, Py는 2-피리딜티오-N-옥사이드기를, n은 1 또는 2를 나타냄)로 나타내는 수가용성 금속 피리티온 또는 암모늄피리티온과,
일반식 (Ⅱ):
[화학식 2]
Figure 112017049965915-pct00011

(식 중 X는, Cl, 1/2S04, 또는 N03 중 어느 하나의 음이온을, M'는 암모늄을나타냄)로 나타내는 무기구리(Ⅱ)염과 무기암모늄염과의 복합염, 또는 무기암모늄염의 일부를 무기알칼리 금속염으로 대체한 복합염을, pH4 초과 9 미만의 물 매질 중에서 반응시켜 만들어지는 구리피리티온 집합체.
General formula (I):
[Chemical Formula 1]
Figure 112017049965915-pct00010

(Wherein M represents a monovalent or divalent metal, or ammonium, Py represents a 2-pyridylthio-N-oxide group, and n represents 1 or 2), and a water soluble metal pyrithione or ammonium pyrithione,
General formula (II):
(2)
Figure 112017049965915-pct00011

(II) salt and an inorganic ammonium salt, wherein X represents any one of Cl, 1 / 2SO4, or NO3, and M 'represents ammonium, or a part of an inorganic ammonium salt A copper pyrithione aggregate formed by reacting a complex salt substituted with an inorganic alkali metal salt in a water medium having a pH of more than 4 and less than 9.
일반식 (I):
[화학식 3]
Figure 112017049965915-pct00012

(식 중 M은 1가 또는 2가의 금속, 또는 암모늄을, Py는 2-피리딜티오-N-옥사이드기를, n은 1 또는 2를 나타냄)로 나타내는 수가용성 금속 피리티온 또는 암모늄피리티온과,
일반식(Ⅱ):
[화학식 4]
Figure 112017049965915-pct00013

(식중 X는, Cl, 1/2S04, 또는 N03 중 어느 하나의 음이온을, M'은 암모늄을 나타냄)로 나타내는 무기구리(II)염과 무기암모늄염과의 복합염, 또는 무기암모늄염의 일부를 무기알칼리 금속염으로 대체한 복합염을, pH4 초과 9 미만의 물 매질중에서 반응시켜 만들어지는 것을 특징으로 하는, 구리피리티온 집합체의 제조 방법.
General formula (I):
(3)
Figure 112017049965915-pct00012

(Wherein M represents a monovalent or divalent metal, or ammonium, Py represents a 2-pyridylthio-N-oxide group, and n represents 1 or 2), and a water soluble metal pyrithione or ammonium pyrithione,
General formula (II):
[Chemical Formula 4]
Figure 112017049965915-pct00013

(II) salt with an inorganic ammonium salt, or a complex salt of an inorganic ammonium salt with an inorganic ammonium salt represented by the formula (I) wherein X is any one of Cl, 1 / 2SO4, or NO3 and M ' Characterized in that the composite salt is prepared by reacting a complex salt substituted with an alkali metal salt in a water medium having a pH of more than 4 and less than 9.
일반식 (I):
[화학식 5]
Figure 112017049965915-pct00014

(식중 M은 1가 또는 2가의 금속, 또는 암모늄을, Py는 2-피리딜티오-N-옥사이드기를, n은 1 또는 2를 나타냄)로 나타내는 수가용성 금속 피리티온 또는 암모늄피리티온과,
일반식 (II):
[화학식 6]
Figure 112017049965915-pct00015

(식중 X는, Cl, 1/2S04, 또는 N03 중 어느 하나의 음이온을, M'은 암모늄을 나타냄)로 나타내는 무기구리(II)염과 무기암모늄염과의 복합염, 또는 무기암모늄염의 일부를 무기알칼리 금속염으로 대체한 복합염을, pH1 - 9 미만의 물 매질중에서 반응시켜 만들어지는 구리피리티온 집합체 입자의 중앙값 직경이, 입도 분포에 있어서 하나의 피크를 갖는 것을 전제조건으로하여, 5.5 - 9μm 미만의 범위에 있는 구리피리티온 집합체.
General formula (I):
[Chemical Formula 5]
Figure 112017049965915-pct00014

(Wherein M represents a monovalent or divalent metal, or ammonium, Py represents a 2-pyridylthio-N-oxide group, and n represents 1 or 2), and a water-soluble metal pyridione or ammonium pyrithione,
General formula (II):
[Chemical Formula 6]
Figure 112017049965915-pct00015

(II) salt with an inorganic ammonium salt, or a complex salt of an inorganic ammonium salt with an inorganic ammonium salt represented by the formula (I) wherein X is any one of Cl, 1 / 2SO4, or NO3 and M ' The median diameter of the copper pyrithione aggregate particles formed by reacting the composite salt substituted with an alkali metal salt in a water medium having a pH of less than 1 to 9 has a peak in the particle size distribution, Lt; / RTI >
제 1항 또는 제 3항에 있어서,
M은 나트륨, 칼륨, 칼슘 및 마그네슘으로 이루어진 군으로부터 선택되는 금속인, 구리피리티온 집합체.
The method according to claim 1 or 3,
And M is a metal selected from the group consisting of sodium, potassium, calcium, and magnesium.
제 2항에 있어서,
M은 나트륨, 칼륨, 칼슘 및 마그네슘으로 이루어진 군으로부터 선택되는 금속인, 구리피리티온 집합체의 제조 방법.
3. The method of claim 2,
And M is a metal selected from the group consisting of sodium, potassium, calcium and magnesium.
제 1항 또는 제 3항에 있어서,
무기구리(II)염은 염화구리(II) 또는 황산구리(II)이고, 무기암모늄염은 염화암모늄 또는 황산암모늄이며, 무기알칼리 금속염은 염화나트륨 또는 황산나트륨인, 구리피리티온 집합체.
The method according to claim 1 or 3,
Wherein the inorganic copper (II) salt is copper (II) chloride or copper (II) chloride, the inorganic ammonium salt is ammonium chloride or ammonium sulfate, and the inorganic alkali metal salt is sodium chloride or sodium sulfate.
제 2항에 있어서,
무기구리(II)염은 염화구리(II) 또는 황산구리(II)이고, 무기암모늄염은 염화암모늄 또는 황산암모늄이며, 무기알칼리 금속염은 염화나트륨 또는 황산나트륨인, 구리피리티온 집합체의 제조 방법.
3. The method of claim 2,
Wherein the inorganic copper (II) salt is copper (II) chloride or copper (II) chloride, the inorganic ammonium salt is ammonium chloride or ammonium sulfate, and the inorganic alkali metal salt is sodium chloride or sodium sulfate.
제 3항에 있어서,
구리피리티온 집합체 입자의 중앙값 직경이, 미분쇄기를 이용하는 것을 전제로 하여 5.5 - 9μm 미만의 범위에 있는, 구리피리티온 집합체.
The method of claim 3,
Wherein the median diameter of the copper pyrithione aggregate particles is in the range of less than 5.5 to 9 占 퐉 on the premise of using a pulverizer.
제 1항의 구리피리티온 집합체를 함유하는 수중방오제.An antifouling agent containing the copper pyrithione aggregate of claim 1. 제 3항 또는 제 8항의 구리피리티온 집합체를 함유하는 수중방오제.An antifouling agent containing the copper pyrithione aggregate of claim 3 or 8. 제 9항에 있어서,
수중방오제가 선저도료용 방오제 또는 어망용 방오제인, 수중방오제.
10. The method of claim 9,
An underwater antifouling agent, which is an antifouling agent for bottom paint or a antifouling agent for fishing net.
제 10항에 있어서,
수중방오제가 선저도료용 방오제 또는 어망용 방오제인, 수중방오제.

















11. The method of claim 10,
An underwater antifouling agent, which is an antifouling agent for bottom paint or a antifouling agent for fishing net.

















KR1020157026913A 2014-03-06 2014-09-25 Copper pyrithione aggregate and use of same KR101801455B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014064675 2014-03-06
JPJP-P-2014-064675 2014-03-06
PCT/JP2014/075341 WO2015132992A1 (en) 2014-03-06 2014-09-25 Copper pyrithione assembly and use thereof

Publications (2)

Publication Number Publication Date
KR20150126638A KR20150126638A (en) 2015-11-12
KR101801455B1 true KR101801455B1 (en) 2017-11-24

Family

ID=54054818

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020157026913A KR101801455B1 (en) 2014-03-06 2014-09-25 Copper pyrithione aggregate and use of same

Country Status (6)

Country Link
JP (1) JP5732639B1 (en)
KR (1) KR101801455B1 (en)
CN (1) CN105263908B (en)
MY (1) MY169990A (en)
SG (1) SG11201507048WA (en)
WO (1) WO2015132992A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102405516B1 (en) * 2017-06-20 2022-06-03 코오롱생명과학 주식회사 Method for preparing pyrithion salt and pyrithion salt prepared by using the same
WO2020225674A1 (en) 2019-05-03 2020-11-12 Lonza Llc Method and composition for treatment of nets for aquaculture
JP7093914B2 (en) * 2020-02-03 2022-07-01 有限会社 ワイエイチエス Method for manufacturing copper pyrithione aggregate

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009155316A (en) 2007-12-26 2009-07-16 Yhs:Kk Method for producing metal pyrithion-metal oxide complex compound and/or metal pyrithion-metal hydroxide complex compound
CN102702094A (en) 2012-06-29 2012-10-03 南通醋酸化工股份有限公司 Synthesis method of copper pyrithione

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5540860A (en) * 1994-02-28 1996-07-30 Olin Corporation Process for preparing copper pyrithione
JP3532500B2 (en) * 1999-05-31 2004-05-31 キクチカラー株式会社 Antifouling agent for ship bottom paint and method for producing high purity copper pyrithione used therefor
DK1086996T3 (en) * 1999-09-21 2004-11-29 Nippon Paint Co Ltd Resin for use in an antifouling coating
WO2005040122A1 (en) * 2003-10-24 2005-05-06 Yhs Ltd. Novel pyrithione complex compound, process for producing the same and use thereof
KR100529159B1 (en) * 2005-02-22 2005-11-17 주식회사 코오롱 Pyrithione salts having a defined crystallite size distribution and paint composition comprising it
CN104203917B (en) * 2012-09-12 2016-08-24 Yhs有限会社 Copper pyrithione aggregate and application thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009155316A (en) 2007-12-26 2009-07-16 Yhs:Kk Method for producing metal pyrithion-metal oxide complex compound and/or metal pyrithion-metal hydroxide complex compound
CN102702094A (en) 2012-06-29 2012-10-03 南通醋酸化工股份有限公司 Synthesis method of copper pyrithione

Also Published As

Publication number Publication date
JPWO2015132992A1 (en) 2017-04-06
WO2015132992A1 (en) 2015-09-11
SG11201507048WA (en) 2015-10-29
KR20150126638A (en) 2015-11-12
CN105263908A (en) 2016-01-20
JP5732639B1 (en) 2015-06-10
CN105263908B (en) 2017-02-08
MY169990A (en) 2019-06-19

Similar Documents

Publication Publication Date Title
Henrist et al. Study of the morphology of copper hydroxynitrate nanoplatelets obtained by controlled double jet precipitation and urea hydrolysis
CN102275987B (en) Nano/micro-scale sheet bismuthyl carbonate material and preparation method thereof
KR101801455B1 (en) Copper pyrithione aggregate and use of same
JP2008538593A (en) Formation of fine copper powder
JP4288452B2 (en) Method for producing Mg-Al hydrotalcite-type particle powder, chlorine-containing resin stabilizer and chlorine-containing resin composition
JP4845188B2 (en) Waste water treatment agent and method for reducing fluorine ions in waste water
KR101630560B1 (en) Copper pyrithione aggregate and use of same
US9670564B2 (en) Low-temperature dispersion-based syntheses of silver and silver products produced thereby
US20150211091A1 (en) Silver Recovery Methods and Silver Products Produced Thereby
JP7057738B2 (en) Manufacturing method of copper sulfide powder and copper sulfide powder
EP2505558A1 (en) Process for preparing magnetic (Fe3O4) and derivatives thereof
JP2012031039A (en) Magnesium hydroxide, and method for manufacturing the same
JP2012512144A (en) Process for preparing a readily dispersible solid N'-hydroxy-N-cyclohexyldiazenium oxide salt
JP2696232B2 (en) Stabilized red phosphorus and method for producing the same
JP7026485B2 (en) Potassium-silica granules
Sofronov et al. Study of Mn²⁺ and MnO₄⁻ products interaction in alkaline solution
WO2010058774A1 (en) Solid heavy metal processing agent, method for producing same and use of same
JP7093914B2 (en) Method for manufacturing copper pyrithione aggregate
JP2835955B2 (en) Stabilized red phosphorus and method for producing the same
JP6845195B2 (en) Highly basic aluminum chloride
CN113905988B (en) Method for producing rare earth carbonate fine particles, and rare earth carbonate fine particles
JP5684773B2 (en) How to collect heavy metal ions
Opimakh et al. A mechanism of bismuth orthovanadate structure formation during solvothermal synthesis
JP2005289763A (en) Method of producing calcium hydrogenphosphate
JP2021046353A (en) Highly basic aluminum chloride and its production method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant